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Convex-split and hypothesis testing approach to one-shot quantum
measurement compression and randomness extraction
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Abstract

We consider the problem of quantum measurement compression with side information in the one-shot setting
with shared randomness. In this problem, Alice shares a pure state with Reference and Bob and she performs a
measurement on her registers. She wishes to communicate the outcome of this measurement to Bob using shared
randomness and classical communication, in such a way that the outcome that Bob receives is correctly correlated
with Reference and Bob’s own registers. Our goal is to simultaneously minimize the classical communication and
randomness cost. We provide a protocol based on convex-split and position based decoding with its communication
upper bounded in terms of smooth max and hypothesis testing relative entropies.

We also study the randomness cost of our protocol in both one-shot and asymptotic and i.i.d. setting. By gen-
eralizing the convex-split technique to incorporate pair-wise independent random variables, we show that our one
shot protocol requires small number of bits of shared randomness. This allows us to construct a new protocol in the
asymptotic and i.i.d. setting, which is optimal in both the number of bits of communication and the number of bits of
shared randomness required.

We construct a new protocol for the task of strong randomness extraction in the presence of quantum side infor-
mation. Our protocol achieves error guarantee in terms of relative entropy (as opposed to trace distance) and extracts
close to optimal number of uniform bits. As an application, we provide new achievability result for the task of quantum
measurement compression without feedback, in which Alice does not need to know the outcome of the measurement.
This leads to the optimal number of bits communicated and number of bits of shared randomness required, for this
task in the asymptotic and i.i.d. setting.

1 Introduction

The formalism of quantum mechanics is well known to be statistical in nature, which limits an experimenter’s knowl-
edge about a given quantum system. Quantum measurement serves as the tool for obtaining this statistical informa-
tion, which can be used for further physical or information theoretic operations on the system. In fact, a large part
of quantum information theory is about finding most suitable quantum measurements in a given scenario, such as
for distinguishing quantum states or designing quantum algorithms. In this backdrop, an elementary but fundamen-
tally important problem is to understand how much information does a measurement statistic reveal about a quantum
system.

This problem was given a firm information theoretic treatment in the seminal work by Winter [1]], building upon
the ideas developed in [2] and the follow-up work [3]. Consider the setting where Alice and Reference share n copies
of a joint pure state |¥) g4 and Alice wishes to communicate to Bob the outcome of a quantum measurement or
POVM A (which is a collection {A.} of positive operators such that A, = I) performed on her registers A”. It
was shown in [1]] that with the aid of shared randomness, the amount of classical communication required by Alice is
the mutual information between Reference and measurement outcomes. This was achieved by showing that instead of
performing the measurement A itself, Alice could consider a decomposition of A in terms of a convex combination of
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POVMs {A7} and send the outcome of the measurement A’ on her registers conditioned on sampling j from shared
randomness.

The work has found important applications in several information theoretic tasks (such as in [4]]) and for distilling
pure states from bi-partite mixed states [5} 16} 7, 18, 9]]. Subsequently its extension with quantum side information was
considered by Wilde, Hayden, Buscemi and Hsieh [10] in the asymptotic setting. Here, Alice, Bob and Reference
share a joint pure state and Alice wishes to transmit the measurement results to Bob. One can expect further compres-
sion in the communication due to the side information with Bob, which was shown to hold in [10]]. This work also
provides a detailed overview of the result in [1] and discusses several related scenarios.
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Figure 1: Quantum measurement compression task. Alice applies a measurement on her register to obtain measurement outcome
in register C. Her task is to communicate the measurement outcome to Bob with the aid of only shared randomness.

We consider the same problem in the one shot setting. One-shot information theory provides a framework for
information processing in the scenarios which go beyond asymptotic and i.i.d. Apart from being relevant for practical
scenarios, this framework also provides insights into the inner workings of information protocols, as the complications
(and conveniences) arising due to many copies of the state are no longer present. Many quantum tasks have been
formulated in their one-shot setting, such as quantum state merging ([[11} [12], originally introduced in [13]) and
quantum state redistribution ([14} 15} [16]], originally introduced in [17, [18]]). In this setting, the task of quantum
measurement compression is as follows (Figure[T)

Quantum measurement compression task: Alice (A4), Bob (B) and Reference (R) share a joint pure state | ¥ 0> RAB-
Alice performs a measurement on her register A, described by the POVM A with POVM elements {A_.}.. Since Alice
also generates the record of the measurement in a register C, the overall transformation on the shared state can be
viewed as

(W) (U0 |rap = VRap = ZP(C)|¢C><¢C|RAB ®|e){clc,

where [)¢) (€| is the post-selected state on the measurement outcome ¢ and p(c) is the probability of this outcome.
An equivalent way of phrasing this is as follows, which shall be crucial in our analysis. Alice attaches ancilla registers
C(C in a standard state and performs a unitary on her side to produce the following state:

V) racop = Z Volo)le)ele)alv®) rab.

Upon tracing out the register C, Alice recovers the desired post-measurement state. The objective is that using shared
randomness and classical communication, Alice should communicate register C' to Bob. In other words, Bob should
produce a register C’ such that the state in registers RABCC" after the protocol is ® g4 po ¢ satisfying

P(®rapccr, ZP e)cle ®le){cler @ [¥) (¥ |raB) <,

where ¢ > 0 is error parameter and P(-, ) represents purified distance. We note that the register C'is not taken into
account in the final state. This makes the present task different from the task of quantum state redistribution. In some
sense, present task is a hybrid between classical source coding and quantum state redistribution.



The work [10] gave the optimal communication rate required to achieve this task in the asymptotic and i.i.d. set-
ting, showing that the communication rate is equal to I(R : C'| B),, and showed that the number of bits of shared
randomness required in the protocol is H(C|RB)y. A related result that involved sending classical message in pres-
ence of quantum side information in the one-shot setting appeared in the work [19].

A natural variant of above task is when the correctness criteria is weakened to

P(@rpor, »_ple)le)(clor @ [9) (V¢ rp) < e.

That is, Alice does not need to hold the outcome of the measurement. This task is known as quantum measurement
compression without feedback, and was first studied in [[L0]. The communication rate and randomness required is now
characterized by an auxillary random variable W, which can be generated by Alice and using which Bob can generate
the actual measurement outcome C. Thus, it suffices for Alice to generate W by some quantum measurement and
then communicate C' to Bob. The work [10] characterized the communication cost and randomness cost of this task
in the asymptotic and i.i.d. setting.

Randomness extraction: Randomness extraction is a fundamental task in the cryptographic setting, where one is
required to extract uniform bits of randomness from a non-uniform source. If there is a party holding side information
about the non-uniform source, then it is desirable to have the uniform extracted bits independent of the party. It is well
known that some additional amount of randomness is required in the task, which acts in a catalytic way (is returned
after use) for strong randomness extractors. The problem of randomness extraction in the presence of quantum side
information has been studied in the many works (see, for example, [20} 21} 22| 23} [24) 25 [26} 27]]) and is closely
related to various other cryptographic primitives such as privacy amplification [28] and information reconciliation
[20]. Performance of a randomness extractor is measured in terms of the number of uniform bits that are extracted
and the number of bits of additional randomness required.

Our results: We consider the task of quantum measurement compression in the one-shot setting (Section ) and
present a protocol with communication upper bounded by

min <Dfnax(‘I/RBc||\I’RB ®oc) — Di (pcl|¥p @ Cfc)) +0 <1og <§>) ;
where o¢ is a classical state (that is, it commutes with U). Above, DZ . (.]|.) is the smooth max-relative entropy
and D‘f; (-]|-) is the quantum hypothesis testing relative entropy. We note that this bound converges to I(R : C'| B),
in the asymptotic and i.i.d. setting. A one-shot converse bound for this task appears in [29, Lemma 4.1], in terms of
the Rényi conditional entropies. We provide a converse result in Section[d.T]in terms of smooth max-relative entropy,
closely following the converse results given in [[14]].

We also consider the shared randomness cost of the protocol. We show that the number of bits of shared ran-
domness consumed by the protocol is given by —DZ .. (Vrpc||Yre ® L), a one shot analogue of the conditional
entropy H(C|RB)g. While our one-shot protocol also requires a small amount of extra randomness to begin with
(which is approximately log |C| bits), this randomness is returned with high fidelity. By reusing it, we find that the
rate of shared randomness required in the asymptotic and i.i.d. setting is equal to H(C|RB)y. This, thus recovers the
results in [10], with a conceptually different proof.

Further, we provide a new protocol for (strong) randomness extraction in presence of quantum side information
(Section[3). Our high level idea is that randomness extraction and quantum measurement compression must be closely
related, as in the former case uniform random bits are gained (that are independent of other quantum systems), whereas
in the latter case, the random bits are consumed. Our protocol for randomness extraction follows from the convex-split
lemma based on pairwise independence (to be discussed below and obtained in Section[3). The number of uniform bits
extracted and the number of bits of initial randomness required are similar to the ‘pairwise independent hash function’
based randomness extractor discussed in [20]. That is, the number of uniform bits extracted is approximately the
conditional min-entropy of the source, and the number of bits of initial randomness is twice the number of bits of the
source (which is much larger than the best known constructions [25]). But we highlight that our construction shifts
from the standard paradigm of hash function based extractors.

An application of our randomness extractor is that, when combined with our protocol for quantum measurement
compression, we obtain a one-shot protocol for quantum measurement compression without feedback (Section [3)).
The protocol runs the quantum measurement compression for W, and then extracts shared randomness from W that
is independent of other relevant registers. We show, in the asymptotic and i.i.d. setting, that the communication



cost and the number of bits of shared randomness required match with that obtained in [[10] (which is optimal, as
already shown in [10]). Again, our protocol is conceptually different, and in fact shows that quantum measurement
compression without feedback is a ‘composition’ of quantum measurement compression and randomness extraction.

Techniques for the achievability result: We use the two techniques of convex-split (introduced in [15]) and position
based decoding (introduced in [30]) for our achievability result for quantum measurement compression. As mentioned
earlier, the task of quantum measurement compression appears to have a close resemblance to the task of quantum
state redistribution where the register to be communicated is classical. However an important difference is that for
quantum state redistribution, the shared resource allowed between Alice and Bob is quantum entanglement whereas in
quantum measurement compression only classical randomness is allowed as a shared resource. This makes this task a
hybrid of classical and quantum state redistribution and requires a careful treatment.

Appealing to this hybrid setting, we use a special hybrid case of Uhlmann’s theorem. In the usual setting
Uhlmann’s theorem is used for bipartite pure quantum states and there is no version of it for for bipartite mixed
quantum states. A reason for this is that in bipartite pure states both the systems carry “full information” about each
other which is not the case with general mixed states. We consider mixed quantum states where mixed states are
classical-pure, that is a classical mixture of pure quantum states and the classical part appears as a copy in both the
systems of the bipartite state. Hence the two systems continue to have ‘full information’ about each other. This hybrid
Uhlmann’s theorem follows naturally from regular Uhlmann’s theorem. Equipped with this version of Uhlmann’s
theorem, we construct the desired protocol as given in Theorem![Il

Optimizing the randomness cost: While above two techniques give an optimal communication rate in the asymptotic
and i.i.d. setting, they do not give the optimal rate of shared randomness required by the protocol. The issue is that
the convex-split lemma uses a large amount of additional quantum states in its statement. We remedy this problem
by proving a new statement for the convex-split lemma for classical-quantum states (Lemma [T, which is one of the
main technical contributions of this work. This statement uses pairwise independent random variables and hence
leads to substantial reduction in the randomness cost (exponentially small in comparison to the statement given in
[[L5]). An interesting aspect of using pairwise independent random variables is that position-based decoding can also
be performed on it, without any reduction in the efficiency.

Convex-split lemma has recently been applied for classical-quantum states in the setting of one-shot private quan-
tum capacity in [31]. Our new statement implies that the codebook required for this protocol requires only pairwise
independent random variables. This considerably simplifies the derandomization task, as the support size of pairwise
independent random variables is exponentially smaller than independent random variables. Similar arguments apply
for the applications of our techniques given in the work [32]], to various network setting in classical information theory.

Connection with Winter’s approach: One of the central techniques used in [[1] was that of Operator-Chernoff bound
(proved in [33]]), to derive the following inequality (below we give a ‘one-shot’ statement, it was originally stated in
asymptotic and i.i.d setting). Let C7, C5 ... C), be independent and identically distributed random variables such that
C; ~pandlet pac := >, p(c)|c)(c| ® pG be a classical quantum state. Then choosing n large enough (as a function
of error parameter €), we have

Lo 1o L.
> pleplea) - plea)ll=pii + 0% + oo —p5 = palli <= M

C1,C2..-Cn

This statement was then used in the construction of the desired decomposition of the measurement operator. We note
that Operator-Chernoff bound used by Winter is a stronger statement than above, as it says that the probability that
Lo% + L1p% + ... Lp% ¢ (1£¢)pa decays exponentially in ne?.

It is possible to see that convex split technique implies Equation [l (as discussed in Corollary [I), leading to a
connection between both approaches on a broader level. On the other hand, convex split technique is stronger than
Equation[T] as it is applicable to coherent setting as well, of which the classical-quantum setting considered above is a
special case.

It is also known that Equation [1] is central in the context of private quantum capacity [34] (also known as the
quantum wiretap channel). Recently, two different works gave one shot bounds for private capacity of a wiretap
channel: the work [31] used the convex split technique, whereas the work [35]] used extensions of Operator-Chernoff
bound. Our discussion above suggests interesting connection between both the approaches.



2 Quantum information theory

For a finite set C, a probability distribution is a function p : C — [0, 1] satisfying ) . p(c) = 1. For a finite set C
and an integer n, the probability distribution p(c1, ca, ... cy) onC X C X ...C is pairwise independent if p(c;,c;) =
p(ci)p(c;) forall 4, j € [n].

Consider a finite dimensional Hilbert space H endowed with an inner product (-, -) (in this paper, we only consider
finite dimensional Hilbert-spaces). The ¢; norm of an operator X on H is || X || := TrvVXTX and {2 norm is
| X2 :== VTrX Xt. A quantum state (or a density matrix or a state) is a positive semi-definite matrix on H with trace
equal to 1. It is called pure if and only if its rank is 1. A sub-normalized state is a positive semi-definite matrix on H
with trace less than or equal to 1. Let |¢) be a unit vector on 4, that is (¢, ) = 1. With some abuse of notation, we
use v to represent the state and also the density matrix |} (1|, associated with |¢)). Given a quantum state p on H,
support of p, called supp(p) is the subspace of H spanned by all eigen-vectors of p with non-zero eigenvalues.

A quantum register A is associated with some Hilbert space 7 4. Define |A| := dim(#H4). Let £(A) represent
the set of all linear operators on # 4 and P(A) represent the set of positive semi-definite operators. We denote by
D(A), the set of quantum states on the Hilbert space H 4. State p with subscript A indicates p4 € D(A). If two
registers A, B are associated with the same Hilbert space, we shall represent the relation by A = B. Composition of
two registers A and B, denoted AB, is associated with Hilbert space H 4 ® H . For two quantum states p € D(A)
and o € D(B), p ® 0 € D(AB) represents the tensor product (Kronecker product) of p and o. The identity operator
on H 4 (and associated register A) is denoted 14.

Let pap € D(AB). We define

pp = Trapap =Y ((i|® Ip)pan(|i) ® Ip),

where {|7) }; is an orthonormal basis for the Hilbert space H 4. The state pp € D(B) is referred to as the marginal
state of p4 . Unless otherwise stated, a missing register from subscript in a state will represent partial trace over that
register. Givena p4 € D(A), a purification of p4 is a pure state pap € D(AB) such that Trgpap = pa. Purification
of a quantum state is not unique. A quantum state pap is classical-quantum with A being the classical register, if
it is of the form pap = Y, p(a)|a)(a|] ® p%, where {|a)}, forms a basis, {p(a)}, is a probability distribution and
p% € D(B). Given such a classical-quantum state p 4 g with A being the classical register, we shall denote the state
on register B conditioned on the value a in register A by p%.

A quantum map & : L(A) — L(B) is a completely positive and trace preserving (CPTP) linear map (mapping
states in D(A) to states in D(B)). A quantum measurement N : £L(A) — L(A’C) is characterized by a collection of
operators { N : H 4 — H 4/} that satisfy > NIN, =14 and is given by

N(pa) = 3" le)elo © NepaDi,

A unitary operator Uy : Ha4 — H4 is such that UJ;UA = UAUL = I4. Anisometry V : Ha — Hp is such that
V1TV = 1I4 and VVT = I5. The set of all unitary operations on register A is denoted by /(A).

We shall consider the following information theoretic quantities. All the logarithms is in base 2. We consider only
normalized states in the definitions below. Let ¢ € (0, 1).

1. Fidelity ([36], see also [37])). For p4,04 € D(A),

def
F(pa,oa) = VpPavoal.
For classical probability distributions P = {p;}, Q = {¢;},

F(P,Q) = Y Vi@

2. Trace distance. For p4,04 € D(A),

def 1
Alpa,04) = Sllpa —oalh.

3. Purified distance ([38])) For pa,04 € D(A),

def

P(pa,0a) = /1 —=F2(pa,04).



10.

11.

12.

13.

14.

15.

e-ball For p4 € D(A),
def

B (pa) = {p}s € D(A)| Ppa, ply) < €}

. Von Neumann entropy ([39]) For p4 € D(A),

S(pa) = —Ti(palogpa).

. Relative entropy ([40]) For p4,04 € D(A) such that supp(p4) C supp(ca),

def
D(palloa) = Tr(palogpa) — Tr(palogoa).
Relative entropy variance. For p4,04 € D(A) such that supp(pa) C supp(ca),

V(pllo) := Tr(p(log p — log 0)*) — (D(p]|0))>.

. Mutual information For p45 € D(AB),

(A : B), " S(pa) + S(p5) — S(pas) = D(paslloa ® ps).

Conditional mutual information For p4pc € D(ABC),

I(A: B|C), ¥ I(A: BC), ~1(A: C),.
Conditional entropy For p4p € D(AB),

H(A|B) = S(paB) — S(ps)-

Max-relative entropy ([41])) For py € D(A) and o4 € P(A) such that supp(pa) C supp(ca),

Dmax(pA”UA) def inf{/\ eR: QAUA > pA}.
Smooth max-relative entropy ([41], see also [42]) For py € D(A) and o4 € P(A) such that supp(pa) C
supp(ca),

Diax (Palloa) & inf  Diax(palloa)

pAEB(pa)

Hypothesis testing relative entropy ([43], see also [44]) For pa,04 € D(A),

e 1
Dg (palloa) o sup log (7) .
H 0<II<I,Tr(Ilpa)>1—e Tr(Iloa)

Conditional min-entropy ([20]) For pap € D(AB),

def .
= — inf Dpnax I, ®0oB).
P oB€D(B) (pan|la 5)

Hpmin (A|B)
Smooth conditional min-entropy ([20]) For p4p € D(AB),

He o (AIB), € sup Huin(A[B), .
o' €B(p)

We will use the following facts.

Fact 1 (Triangle inequality for purified distance, [43]). For states pa,oa,7a € D(A),

P(pa,04) <P(pa,7a) +P(1a,04).

Fact 2 ( Fuchs-van de Graaf inequalities, [46]]). For states pa,o4 € D(A),

A(pa,oa) <P(pa,oa) < 2A(pa,oa).



Fact 3 (Monotonicity under quantum operations, [47],[48]). For quantum states p, o € D(A), and quantum map
E(:): L(A) — L(B), it holds that

P(E(p),E(0)) < P(p,o) and F(E(p).E()) = F(p,o) and D(p]lo) = D(E(P)E(0))-

Fact 4 (Uhlmann’s Theorem, [37]]). Let pa,c4 € D(A). Let pap € D(AB) be a purification of pa and cac €
D(AC) be a purification of o 4. There exists an isometry V : C — B such that,

F(10)(0las, |p){plap) = F(pa,oa),

where |9>AB = (IA ® V)|O'>Ac.
Fact 5 (Gentle measurement lemma,[49,50]). Let p be a quantum state and 0 < A < I be an operator. Then

ApA

Flo. ggingy) = VIHCA%)

Fact 6 (Hayashi-Nagaoka inequality, [44] ). Let 0 < S < I, T be positive semi-definite operators. Then
I—(S+T) 28(S+T) % <2(1—S)+4T.
Fact 7 (Pinsker’s inequality and a stronger statement, [51], [52]]). For quantum states pa, o4 € D(A),
F(pa,o4) > 9=3D(palloa)

This implies
lpa = oall? < 2D(pllo) .

Fact 8 ([53[54]). Let € € (0,1) and n be an integer. Let p®™,c®™ be quantum states. Define ®(x) = [*__ et /2
It holds that

D5 i (0%7]|0®™) = nD(pllo) + /nV(pllo)®@ ' (¢) + O(logn),

D3 (65" [|0%") = nD(pllo) + nv<p|\a><1r1<s>+0<logn>.

42

Fact9. For the function ®(z) = [*_ %dt and ¢ < %, it holds that |27 (e)] < 24/log o=
Proof. We have

—z _—t2/2 oo —(—z—t)%/2 oo —(—t)%/2

ldt — udt < e—%°/2 gdt _ le—fﬁ/?.

—o0o V2w 0 V2T 0 V2T 2

Thus, &1 (€) > —24/log 2%, which completes the proof. O

Fact 10. Let p1 be a quantum state and {E3,Es, ...} be a collection of quantum maps. Define a series of quantum
states {p2, ps, . ..} recursively as p; = E;(p;—1). It holds that

P(pi, p1) < (i = 1) max{P(Ei(pr), p1)}-
Proof. Consider

P(pi, p1) = P(Ei(pi-1), p1) < P(Ei(pi-1), Ei(p1)) + P(Ei(p1), p1) < Plpi-1,p1) + P(Eip1), p1)-
This completes the proof by induction. |

Fact 11. Ler pap be a classical-quantum state with B being the classical register. For every € € (0, 1), it holds that

Df, (pAB PA®

<log|B|.
IBI)



Proof. For some distribution p(b), we have

PAB = p pA®| > |B p pA® B — | |p4® |B|
This 1mphes that

Dmax (pAB pA X

< log|Bl.
IBI)

Since D¢, (pABHpA & %) < Dmax (pABHpA & %) forall e € (0, 1), the proof concludes. O

Following fact was implicitly present in [[12] (see also Lemma 1 in [30]).

Fact 12. For a quantum states pap, o a, 0, it holds that

. 2
inf  Dinax(PapllPa ® 08) < Dhax(paplloa ® op) + 3log —.
P €B*(pan) €

Proof. Let p'i 5 € B*(pap) be quantum state that achieves the optimum in D%, (pag|loa ® o). From [30, Claim
5] (a formal statement of an argument originally given in [12]), there exists a quantum state py 5 € B°(p’} ) such that

2
DmaX(P;&BHp;x ®0p) < Dmax (prB”UA ®op)+3log =

Since p'y 5 € B*(pag), the proof concludes. O

Following fact is about explicit constructions of pairwise independent hash functions.

Fact 13 (Section 3, [55]). Let p be a prime, k be a positive integer and A, A', B, B' be sets of size |A| = |A'| = p*
and |B| = |B'| = p. There exist distinct functions {h.p, : A — B',a € Ab € B} such that for all b},b}, €
B, a},ay e A
1
pk+1 Ha,b:hap(a)) =01 & haplas) =bo}| = —

It leads to the following construction of pairwise independent probability distributions.

Claim 1. Ler C be a set such that |C| is a prime number and n > 1 be an integer. There exists a pairwise independent
probability distribution q(c1, ca, . . . ¢y,), taking values over the set C x C X .. .C (n times) such that g(c¢;) = ﬁfor all

. . _ . def .
i €{1,2,...n} and c; € C. The support size of G is |C|FT1, where k = LL"gg‘Zl—‘. Further, for any i < nandc; € C,
the distribution q(c1,...¢;_1,Ciy1,- .. Cn|ci) is uniform in a support of size |C|*.

Proof. By definition, k is the smallest integer such that n < |C|*. Let A, B be two sets such that |A| = |C|¥ and
|B] = |C]. Let A’ def {1,2,...|C|*} and B’ = C. Let hy : A" — B’ be the function obtained from Fact [[3] for

p = |C|. Define a distribution g over A x B x C™, where C™ ©ex...xcC (n times), as follows.

1

q(a,b) = EER dei,co,...cn ] a,b) =1iff hep(i) = ¢ Vi <n.

Since {h,,p} are distinct functions,
_ 1 .
ger,ea,...0n) = et if 3(a,b) : hap(i) =c¢; Vi<n,

and 0 otherwise. Thus, the support size of ¢ over C" is equal to |C|*+!. Using Fact[I3] we conclude that for all i # j
such thati < n,j <n,

) ) a,b:hap(i) =ci & hap(j) = ¢ 1
qlci,cj) = Zq(a,b) (c1,¢5 | a,b) = it (1) o b(Jj) = ¢} — T

a,b




Thus, § is pairwise independent over the set C™. Finally, fix an ¢ < n, ¢; € C. Consider

_ 1
q(617027 - Ci—1,Ci4 1, - - 'Cn|ci) = m : q(017627 .. -Cn)

= ﬁ if 3(a,b) : hap(i) = ¢ Vi <n,

Again using the fact that {h,_; } are distinct functions, we conclude that §(c1, ca, . . . ¢i—1, Cit1, - - - €pc;) is uniformly
distributed in a support of size |C|¥. This completes the proof. (|

Given above claim, it is easy to construct a pairwise independent random variable ¢ with the marginal distribution
d(c;) equal to a given distribution ¢(c; ), assuming that ¢ takes rational values over C. For this, introduce a sufficiently
large set C’ and consider a function F' : ¢’ — C which takes a probability distribution p over C’ to a probability
distribution F'(p) over C. The set C’ is chosen such that there exists a function F’ that takes the uniform distribution
over C’ to the distribution ¢. If the distribution g over C' x C’ x ...C' is pairwise independent, then the distribution
FxFx...F(q) overCxC x...C is also pairwise independent (as F' x F(q(ci,c;)) = F(g(ci)) - F(G(c;))). Thus,
we obtain the desired construction for a large family of marginal distributions q.

3 A convex-split lemma with limited randomness

The work [15] showed the following statement.

Fact 14 (Convex-split lemma, [15]). Let ppg € D(PQ) and o € D(Q) be quantum states such that supp(pg) C
supp(oq). Let k def Dmax (prgllpp ® 0@). Define the following state

n
def 1
TPQ1Qa-Qu = o Z PPQ; ®0Q, ©0Qy .- R0Q, 1 ®0Q;, - B 0Q,
j=1
onn + 1 registers P,Q1,Q2,...Qn, where ppq, and og; are copies of ppq and oq (for all j < n), respectively.

Then
k

2
D(TPQ1@s...Q.llpP ® 0g, ®0q, ... ®0q,) < log(1 + ;)-

When the quantum state ppq is classical-quantum with register () being classical in the basis of o, that is,
pro = >..p(c)p% @ |e){clg and og = Y. q(c)|c)(c|q, convex-split lemma implies Equation[Il as shown in the
following claim.

Corollary 1. Let ppg € D(PQ) be a quantum state such that
ora = 3 pe)s @ lo)(clo.
Above, {p(c)}. is a probability distribution. Then

Z p(cl)...p(cn)D<%(pf.§ +...0%) pP> < log(1+ %).

C1,-..Cn

This implies

1, . 2k
S° plen) - plea)ll= (0 + - pF) — ppl < 4/ =

C1,...Cn
Proof. We apply Fact[I4l with o = p¢ and consider the classical-quantum state 7pg, g,...q,, - It holds that

C1,..-Cn

1
Th :E(pf.}—i—...pf;‘).

Thus, we conclude from Fact[T4] that

k

Z ]9(01)...]D(Cn)D(%(p}Z1 +...0%) pp> <log(1 + %)

C1,---Cn




Applying Fact[7] this implies that
k

1 Cl ¢ 2 2
— +...0p8)—p < —
”n(pp pP) PHl = )

Z p(er)...plen)

C1,...Cn

and the convexity of the square function leads to

1, . 2k
S° ple)plealll= (0 + - p3) = ppl <4/ =

C1,...Cn
This completes the proof. |

In the following, we will considerably improve upon above result in terms of additional randomness required.
The main motivation is the observation that the proof of the convex-split lemma, as given in [[15], only requires some
max-relative entropy bounds on quantum states involved in pairs of registers.

Lemma 1. Let ppg € D(PQ) and o € D(Q) be quantum states such that

ppQ =Y p()pp @le)(cla, oq = ale)lc)clq

C C

and supp(pq) C supp(oq). Above, {p(c)}e, {q(c)}c are probability distributions. Let

T01Qs...Qn = Z gler...en)ler - en){er ... enl

C1...Cn

be a quantum state that satisfies 6, = oq for all j < n and q is a pairwise independent probability distribution. Let

kDo (ppqllpp ® 0@). Define the following states

n
) _ . def 1 ()
TPJQ1Q2~»QTL - Zp(C)p% ® |C><C|Qﬂ' ® UCCQL»»Qj—lQHlan’ TPQ1Qz.-Qn = n ZTPJQle---Qn
c j=1

onn+ 1 registers P,Q1,Q2,...Qn. Then
k

~ 2
D(7PQ,Qs..Q.llPP ® 0q,..q,) < log(l + ;)-

Proof. Consider the following identity (as shown in [15, Supplementary Material]) which can be verified by direct
calculation.

_ 1 i
D(7pg,..Q.llpp ®5q,..Q.) = gZD(T%le...Qn
j

PP 6Q1~.Qn)

1 .
LY (oo e ) o
J

Define the map R : Q; — Q1Q2 ... Qn as R;([c){clq,) = |c){c|g, ® &51.“@%1@“”.@”. Then

D(Tz(o]g;jHPP®UQj) < D(T%lgz..aanP®‘_’Q1~'Q")
= D(Lr e Ry f),)1r @ R0 2 00,))
< D(Tz%jHPP@UQj)-

Since Tg%j = pp@,, we obtain D (7'1(9%1@2...@7@ HPP & 6@1”@)”) =D (prj HPP ® UQj).
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The second term D (TI(DJ%IQ2an HTPQL,,Q”) is lower bounded by D (Tl(%j HTPQ],) = D (pprq,||Trq,). But
observe that

1 . 1 ./
PQ; = ﬁTz(v%j T Z Tz(vJQ)j
J'#]
1 1 c ¢
= oPre;t o Z ZP(C)PP ®og,
J# e
1 1 .
= oPre;t > ple)pp @ o,
J# e
1 _
= PPQ; T PP BOg,

where second last equality follows since 7, q,, = 0@, ® 0q,, (as  is pairwise independent).

By assumption, ppq, < 2Fpp ® 0q,. Hence 7pg, < (1+ 2ICT’l)pp ® 0q,. Since log(A) < log(B) if A < B
for positive semidefinite matrices A and B (see for example, [56]), we have

D(prq;|[Tre;) = Tr(prg, log pre,) — Tr(ppq; log Trq; )
2k — 1

> Tr(ppq, log prq,) — Tr(ppq, log(pp ® 0q,)) — log(1 +
2k —1
).

=D (prq, HPP ®0q;) — log(1 +
Using in Equation2] we find that

2k — 1

1 1
D(7pqi..q.lpp ®0q:..0.) = — > D(ppq,|pr ®0q,) — - > D(prq, ||lpr @ 0g,) +log(1 + )
J i

ok _1

= log(1+

).

Thus, the lemma follows.

A corollary of Lemmal[Tlis as follows.
Corollary 2. Fixane € (0,1). Let ppg € D(PQ) and o € D(Q) be quantum states such that
pro =y _p()pp @le)(cla,  oq =) ale)lc){clo
and supp(pq) C supp(oq). Above, {p(c)}c, {q(c)}. are probability distributions. Let

T01Qs...Qn = Z gler...en)ler - en){er ... enl

C1...Cn
be a quantum state that satisfies 6, = oq for all j < n and q is a pairwise independent probability distribution. Let
g def Miny,  cBe(ppq) Dmax (p’PQ Hp} ® 0q). Define the following states
n
719%1@2,,,Qn = Zp(c)p% @ |C><C|Qj ® 66021»»»Qj71Qj+1~»Qn’ TPQ1Qz...Qn f %ZTl(gngz...Qn
c j=1

onn + 1 registers P,Q1,Q2, . ..Qn, where Vj € [n] : ppq, = ppq. Foré € (0,1) andn > (?—;1,

P(TPQ10s...0n, PP @ TQr..0,) < 26 4 6.
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Proof. Let p’PQ achieve the minimum in the definition of k. Since the quantum state p’I’DQ, obtained by measuring
Ppg in the eigenbasis of oq, satisfies pg € B (ppq) and Dimax (p’I’DQHp’IQ ®0q) < k (by Fact[3), we can assume
that p’PQ itself is a classical quantum state.

We apply Lemma I to quantum states p’p), 0 to obtain that

_ 2k
D (75q, @s..0. PP ©7q...q.) <log(1 + g) < log(1 + 4%,

where

det 1 g~ () 1)

/ 1€] o / —
TPQ1Q2..Qn = ;) 2.TPQ1Q2.Qn  TPQ1Q2..Qn ZP(C)Plg ®le)(cle; ©0G,..0; 1Qs11.-Qn
J=1 c

Observe that P(Tpg. 0, 0. TPQ1Q2...Qn) < €.
From Pinsker’s inequality (Fact[7) we conclude that F* (75, o, 0.s PpR3Q,..Q.) = H%’ or P(Th0,0,..0. PP
70,...Q.) < d. The lemma concludes by triangle inequality for purified distance. O

4 An achievability bound for quantum measurement compression

We formally introduce the task, starting from the point where Alice has already ‘coherently’ applied the a quantum
measurement on her registers.

Definition 1 (Quantum measurement compression). Fix an € € (0, 1), and consider the state |V)(V|pasccp Of the
form Y. \/p(e)|c)cle)a v rap. An (m, 71,79, €)- quantum measurement compression protocol consists of

e a classical-classical state (or preshared randomness) 0 , g, between Alice (E 4) and Bob (Eg),

e anencoding isometry by Alice V : H ycop, = Maceqrat,> and

e adecoding isometry by Bob W : Hopr, — Hpcrryry, where c'=C

such that
P (Trryrye (WV(¥Rase © 05,5,)V W) Wrapoe: © wrury ) < e,

for some classical-classical state wr,,. The number of bits communicated is m = log |Q|, number of bits of
initial shared randomness is 11 = max(log |El,log|Ep|) and final number of bits of shared randomness is ro =
min(log [T, log|Tx|).

Note that in the above definition, the registers T, T may be arbitrarily correlated with other registers, but they
are discarded and do not count in the randomness gained. The registers 1’4, T’ contain the gained randomness. Note
that the gained randomness is independent of ¥ 4 pcc, which is important since this randomness can be used for
future tasks.

We prove the following theorem for the task in Definition[Il The randomness consumed below is characterized by
Dgox (Y rBC|| Y RE ® 1), which is closely related to HE ;  (C|RB), except that the optimization over register RB is
not present.

Theorem 1. Let |V)(¥U|paccp € D(RACCB) be a pure quantum state of the form Y. \/p(c)|c)c|c) V) raB,
oc € D(C) be a quantum state satisfying supp(¥¢) C supp(oc¢) that commutes with U and € € (0,1/10). There
exists a (m,r1, r2, 10€)- quantum measurement compression protocol with

1
m <D, (Vrpe|Vrp ® o) — D5 (Upe|| Vs ® oc) + Tlog (E) '

If o¢ is chosen to be the uniform distribution, then
8
r1 < 2log|C| +log —
€

and
8
ro > 2log|C|+ D, (Yrec||¥YRE ® 10) + log =

12



Outline of the proof: In the protocol, Alice and Bob pre-share the pairwise independent randomness in n registers
(where n is to be specified below), where the registers are divided into several blocks of size b each (b is again to
be specified below). They start with the quantum state where the measurement has already been performed (that is,
the quantum state |¥) p4o=p) - This step in itself is a point of departure from the proof given in [} [10], where
the POVM was decomposed into a convex combination of other POVMs. On the other hand, in our protocol, Alice
only focuses the post measurement state. Conditioned on a sample from the shared randomness, Alice applies an
appropriate unitary on her registers which correlates the register C' with a location on the shared randomness. If Alice
had communicated this location to Bob, the task would be completed as Bob would be able to pick up the correct
randomness. Instead, she only tells the block number to Bob, who then finds out the correct location by performing
quantum hypothesis testing.

Proof. 'We begin with defining some important quantities for the proof.

1. Quantum states and registers involved in the proof: Let o¢ be of the form oc = ) q(c)|c)(c|c. Let

o . 219 of &2
L def Dfnax (\IJRBC”\IJRB ® 00)7 n def |—8 _5~|, b def (62 . 9P (‘I’BC||‘I’B®<TC)"|'
£
Let
kl déf min Dmax( IRBCH\IJ/RB ® Uc) .

U pc€B%(YrEC)

From Fact[I2] it holds that &’ < k 4 log %. Thus, n > (26121 The assumption that supp(¥¢) C supp(o¢) ensures

that all the above quantities are well defined. By definition of D%z (Upc||¥p ® o¢), there exists a projector Ilpc
such that
Tr(Mlpc¥pe) > 1—¢%, Tr(llpc¥p @ oc) < £2/b.

Let oocr > ale)le){cle @ |c)(c|cr be an extension of o and

50101“.0710; = Z Cj(cl,...Cn)|01,...Cn><cl,...cn|clmcn®|01,...Cn><01,...cn|01m041

C1,---Cn

be the quantum state such that the probability distribution {G(c1, . ..¢p)}es....c,, i pairwise independent and satisfies
d(¢i) = q(c;). Define the quantum states,

def _
§rBCicy..c.cr, = YRBE® OC,0)..cCLs

def _
§raBccc..cn0)..cr, = V) {¥Irapoe ® 0cicy..c.cy,
and
1 &
def _
KRBO\CY...CnC, = ZZP(CW%B ® e, e){e:clojor @ 06,0105 10 CiaClyy Ol

j=1 ¢

Note that Y pp = purp. Consider,

n

1« _
MRBC,CY..Cn 0y = & z; ZP(CW}%B ®|e,e)e,cleor ® TC,CY...Cj-1C_ Cy11Cl . CnC]
J]= c

a

1 — e
- Z ZP(C;‘W}éB ® lejs es)less eiloso @ 0,01 0y 10y 0pmcr,,cac,
J=l ¢

= Z Z P(e))¥Rp @ d(cr, .- cjm1citi . cn | ¢j)ler,cre .. cn en){erscre . cnscaleror. ey,

1 ples) e o -
= _Z Z Cj‘ %B®Q(Cl---Cn)|C1701---Cnacn><01acl---CnaCn|Clci...CnC;l

p(cs) e
qley) )7

n

_ 1
— Z q(01...cn)|cl...cn><cl...cn|cl,,,cn®|cl...cn)<cl...cn|C{mc;® Ezl
j=

13



where (a) follows by renaming ¢ — ¢; and (b) follows from the fact that 0% is the quantum state conditioned on the

value c;. Let

n

~v(e1, ey . Cn § %Z

Jj=1

"@

FQ

CJ

be a normalization parameter. Introducing a new register .J, define the following quantum state for every c;j, ¢y . .. cp:

def
|ger-czen) e |1/) RABIJ)J

RAB —
VY Cl,Cg, \/_ c]

Define an extension of ugrpc,cy..c,c, as,

KRBAJCiCY...ChCl =

Z y(ers.oen) - qler...en)ler...en)(er. . enler..c, ®@ler...en){cr .. cnlor o

C1...Cn

®|0C1...Cn><961...cn |JRAB

Using the Corollary Pland choice of n we have,

P(§rBoycy..o,crs BRBC,CY..CCr) < BE.

Thus, using Claim[4] we find that there exists an isometry depending on ¢y, ¢a, ... cp: U : H o — Hag such

that,

P(( Z ler . en)(cr-..cn| ® Ucl'”c")gRACCBCHC{...CnC;l

C1...Cn,
< Z le1...en)(cr . on| ® Ucl"'C"T)7,URBAJClC{...CnC;L>
C1...Cp
=P(Erpoicy..c.ct s BRBOC)...CC1) < DE. (3

2. The protocol: Consider the following protocol P.

1.

Alice and Bob share the quantum state 5¢, ¢} .., ¢/, » where Alice holds the registers C, Co, ... C;, and Bob
holds the registers C',C5, ... C;,. Alice, Bob and Reference share the quantum state |¥) 4500 between
themselves where Alice holds the registers AC'C', Reference holds the register R and Bob holds the registers B.

Conditioned on the values cj, cs . .. ¢, in registers C1C5 ... Cy,, Alice applies the isometry U:“2--°~ on her
register ACC.

e The resulting state is close to the quantum state prpasc, cy...c,cy, by Equation[3]

. . . ) . . def
. Alice measures the register .J and obtains the measurement outcome j € [n]. She sends the integer j; =

(7 — 1)/b] to Bob in a register J; using classical communication. Let jo 4" j % b be held by Alice in a
register Jo. Here, j % b is equal to j mod b (where mod is the remainder function) if j < b, and is equal to b
otherwise.

Bob swaps the registers Cy ;. 1, Cp 1o, Gy, 4y, With the set of registers C7, C5, . .. Cy in that order. In the
same fashion, Alice swaps the registers Cy.j, 41, Cp.j, 42, - - - Cp.j, +» With the set of registers C1, Cy, ... Cp in
that order.

o If the shared state in step 2 were irp A, 0}, C1, » the joint quantum state in the registers RBA.J> CiCy ..

14
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at this step would be

(2)
KRBAJ,CLCh...CLC,

= Z qlcr...cp)ler...ep){cr...cnloy..o, ®@ler...ep){er .. coley..cp @

Y92) (Y2 |pap @ |j2) (2] 1

S| =
]~
|
—~
O
M

SN— | —

jo=1 q(cjz
1 b
= 7 Zl ZP(CMZ)‘}:{B ® |e, e)e, C|Cj2C;2 ®
J2=1 c

. .
0C10}...Ciy1C) 1 Cig1Cly 4y CiC ® |j2) (2] 72
5. Define,

b
def def
Hj; = IC{ X .. .10;571 (X)HBCJ/_é ®ICJ'-/2+1 . ®IC{7 and II = E Hjé'
Js=1

Bob applies the measurement (the hypothesis testing measurement)

b

Ax) = 3 <\/H-%HJ;H-%) X <\/H_5Ha‘§ﬂ_5> ®15) bl

=1

+ (VIZT0) X (VIZT) @ [0) (01,

where J} is the outcome register and II° is the projector onto the support of II.

6. Upon obtaining the outcome j5 (if not equal to 0), Bob swaps C;.é, C4. If the outcome is equal to 0, Bob
performs no operation. He computes j' = j; - b + j} and stores the value in a register .J'.

7. Alice swaps the registers C,, C';. We note that this step could also be performed after Step 3.

8. Final quantum state is obtained in the registers RABC,C;C2C%.JJ’, where the registers RABC1C] con-
tain the actual output and the registers CoC%.JJ’ contain the returned shared randomness. We represent it

!

as Pp e crcycpa

e If the shared state in step 2 were (irpasc, 0]...c,, C: » let the final quantum state in registers RABC,C1CoCyJ J’

1
be ®papc,croucy
Define

ideal def 1 A =
HrABCC C|CoCLII" = \IJRBACHC{ Y n E |7, 3)(ds g1 X ocycy-
J

We have the following claim.

Claim 2 (Hypothesis testing succeeds well). It holds that P(®', pideel) < \/18e.

Proof. Applying the measurement .4 to the quantum state ng)ax BCyCy...cpcyr WE obtain the quantum state A( Mgﬁ; BCLCY...C0C) ).
Let the conditional probabilities pj; |;, be defined as follows:

Jj2—1

def _1 _1 _
Piljy = Tr (H 21,12 Y ple)vhp ® ) {cler, ®a¢; o C}zﬂ»ncg) ,
C

def _
poj, = Tr ((I —1° Y plo)hip ® le){cler, ® Ucc;...c;zlc;zﬂ...cg) :

c
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Define the quantum state

4y def 1 5
M( o g Z Zp(C)w%B ® |C, C> <C, C|C;2 Cj? ® Uél C{"'Cjz*1cézflcj2+1cjl'2+l"'cbcl,>
J2 c
®|jz2, j2) (2, J2| 12,0
From Claim[3] we find that

F(A( (2) /’L(4) 2 Zp]2|]2
Now using Hayashi-Nagaoka inequality (Fact[@) with ¢ = 1, we obtain
1 2 .
2 pa S 5 2T (- T) Y (s @ Ol
JhF#d2 Jjo2 c
®aélcg...cj2105.210]-2“0;2“...01,01;)

+ bzﬂ( > 1) S pewn 210 e,

J27£J2

—C
®Uclc/...cj2lc;.zlcj2+lc;2+l...cbc')

- bZﬂ (I =1L, ¥per ) bZﬁ > 1y W5 ®oc )

J2 32¢J2
2 _ 5_2 2
< 27+ 4(b 1)b§65.

The equality above uses the pairwise independence of . This implies that
b sz\z - b sz\gg - b Zplbz >1-
1,52 i#j2

Thus,
F2(u*, A(p?)) > (1 —6%)% > 1 — 18¢2

Now, Bob swaps registers C’j’.é and C', controlled on value j in register .J;5, and Alice swaps registers C},, C; con-

trolled on the value j in .Jo. These operations on the quantum state ;* give the quantum state M%E%clc’ CoCyT T in

registers RBAC,C]C2C4JJ', using the pairwise independence of g. The claim now follows by the monotonicity of
purified distance under quantum operations (Fact[3)). O

3. Analysis of the protocol: Since quantum maps (the entire protocol P can be viewed as a quantum map from input
to output) do not decrease fidelity (monotonicity of fidelity under quantum operation, Fact[3), we have,

/
P(‘I)RABclc 1C2CYJ T (I)RA3010{C2C§JJ’) < 5e. “

This implies using Claim [2 and triangle inequality for purified distance [l that
ideal
P(‘I’/RABclc;cgcgJJ/aMRABclc;czc;JJ/) < 10e. ®)
That is, q)/RABCHC{ € Bloe (\IJRABCHC{ ) The number of bits communicated by Alice to Bob in P is upper bounded
by:
2 1
log(n/b) < D% . (Yrec||VrE ®0c) — D (Uee||¥s @ o¢) + 7log (g) .

Randomness required: Let oc be chosen to be 1<, that is, the maximally mixed quantum state. By expanding

1er
the dimension of H¢ from |C] to 2|C| if required, we can assume that |C| is a prime (due to Bertrand’s postulate
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[S7]). The shared randomness ¢, c;c,cy...c,, 2, 1 to be chosen such that for all 4, q(e;) = ICI and for all 4 # j,

d(ci,cj) = I Cl|2 . We construct g using Claim [T} The number of bits of shared randomness required to generate § is

{ logn

og |O|-‘ -log |C| + log |C] < max {logn,log |C|} + log |C].

From the choice of n, we have

1ogn = Drsnax (‘I/RBC

Ic 8 8
Urp ® m) —i—logg—5 <log|C| +1og§.

This leads to the desired bound on the amount of randomness required.

Randomness returned: As concluded in Equation[3]

1 . _
p ‘I)/RBAJJ/Clc;czc;JJ/a‘I’RBAQC{® EZ|37]><37]|JJ’ ®oc,cy < 10e.
J

Thus, log n+1log |C| bits of shared randomness are returned by the protocol with error at most 10¢ in purified distance.
This completes the proof by using the value of n. O

Claims used in the theorem

A few claims were used in the proof that we discuss below. Following claim is well known for classical quantum
states, which we prove for completeness.

Claim 3 (Fidelity between classical quantum states). Let px 4, 0x a be two c-q states of the form

pxA = ZP (@lx ®ph, oxa=Y q@)z)|x @}

x

Then

F(pxa,oxa) = > _ /p@)g(@)F(p%, 0%).

Proof. We have that

F(pxa,oxa)
|

1/2
_ Tr( \/me Nelx ® 5 S ()l elx ® 0% \/zp<x>|x><x|x ® pz>
1/2
= (Z\/ )z x ® /p%)( Z z)(z]x @ 0%) Z\/ )|x) x|X®\/a>
1/2
_ Tr(zp<x>q<x>|x><x|x W pzz)
— o X Vi@l elx @ VATV

= 3 Vi (Ve i)
= > Vp@)a@)F(ph, 0%).

This proves the claim. O

We have used the following classical-quantum version of Uhlmann’s theorem.
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Claim 4 (Classical-quantum Uhlmann’s theorem). Let px ap,0x ac be two c-q states of the form

PXAB = ZP )z (zlx @ [p")(p"[aB, oxac = ZQ($)|$><$|X ® |o”) (o] ac

x

There exists a set of isometries {U* : B — C'} such that

F <<Z |z)(z]x ® T4 ® U””) PXAB <Z |z)(z]x ® [4 ® UIT) ,UXAC> =F(pxa,0x4).

x

Proof. For every x, there exists an isometry U,, : B — C, as guaranteed by Uhlmann’s Theorem[d] such that
F((La®@UT)|p")(p"|ap(La @ U, |0%)(0"|ac) = F(p%, o).

The fact follows from the expression (Fact[3)
F(pxa,oxa) = Y v/p@)a(@)F(ph, %),

and the relation

F ((Z |z} (z|x @ Ia ® Um) PXAB (Z |z} (z]x ® T4 ® Uﬂ) aUXAC>

=Y Vp@)a@)F ((La @ U)[p") (p"|an(la @ UT), [07)(0"|ac) -

x

O

Gentle measurement lemma is used to prove the following claim applied in conjunction with hypothesis testing.

Claim 5 (Pretty good POVM). Consider a quantum state pa = Y, X\;p'y and a map A(X) =, P,XP; ® |i){i|o
such that 0 < P, < 1,5 . P? =1 (O is considered the output register for the measurement A). Define the state

oo def > pipYy @ |i)(ilo and let pm = Tr(P2 /) be the probability of obtaining outcome i on quantum state p’y.

Then it holds that
F(pao: Alpa)) = (O Nipija)*?

Proof. We abbreviate 040 def A(pa). This implies that

ga0 =y APiph Py @ i) (jlo-
4,J

Define

ood def . bad def 1
75 S Y AP e liilo d ok T3, 2 A @ i)l

Then we can decompose g 40 as

d
oA0 = (E Aipii) oo + (1 — E Aipiji) o
1

i

From concavity of fidelity, this gives us
good
F(040,040) > (Z Aipii) F (0557, Pa0)

1 Pip4Pi
= Aipifi) - | —=— Aiy/Difi - F P) |-
(zi: 2 <\/ 2i Nibii 21: - E Pili pA))

Now employing Gentle measurement lemma (Fact[3), we conclude that

F(UA07 pAO 1 / Z /\sz|1 Z Ai \/]Th \/]Th Z /\zpz|z
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4.1 A converse bound

The work [29] provided some converse bounds for the task in Definition[Ilin terms of quantum Rényi entropies. Here,
we provide converse bounds in terms of smooth max-relative entropy. The converse below closely follows the proof
of converse for quantum state redistribution given in [14]].

Corollary 3. Fixe,0 € (0,1), and consider the state |W)(V|paccp of the form Y~ \/p(c)|c)c|e)5|vC) raB. For
any (m,r1, 72, €)- quantum measurement compression protocol for |U) (V| g 1o g, it holds that

m 2 inf DI (Wrpel| VR @ 0B0) — Dy (VrB|UR © Up).
oB

Proof. Let W, be the quantum state achieving the optimum in DS, (Vrp||Wr ® Up). Let [U')(¥'|gap be it’s
purification such that P(U', , 5, W rap) < § (as guaranteed by Uhlmann’s theorem, Fact ). Suppose Alice measures
', 4 p obtaining outcomes in register C C' and runs the protocol on the resulting quantum state. Let Qrpgr,, be the
quantum state with Bob after Alice’s message. Since (Q E'p are classical registers, we have

I
QrBoEs 2 QYR ® ﬁ ®Opg,

as QRBEB = \IJIRB ® HEB- Thus,

s I
QRBQEB < |Q|2Dmax(\PRBII‘1/R®‘1/B)\I/R QUs® ﬁ ® HEB'

Applying Bob’s operation on Qrpor, and tracing out register 75, we obtain a quantum state W', 5, such that
P(¥%per YrBe') < €+6. Let oge be the quantum state obtained after applying Bob’s operation on ¥ 5 ® % ®0E,
and tracing out register 7'5. Then,

S5
kper < |Q|2Pmex(Yrnl YRR Y p @ g,
Thus, we conclude that

inf DR (Vrpel|VR @ 0pe) <10g|Q| + DYy (VrB[ VR ® ¥p).
oB

This completes the proof by setting m = log |Q)|. O

We point out that combining the converse in [29] and the relations between quantum Rényi entropies and smooth
conditional min-entropy [58, Corollary 3.6], we conclude that the following is a converse bound on the classical
communication cost:

i (RIB)y ~ B (RICB), - O (1061 ).

This expression may be incomparable to that obtained in Corollary3l

4.2 Asymptotic and i.i.d. analysis

Now, we discuss the asymptotic and i.i.d. behavior of our bounds, showing the randomness required and communi-
cation cost of the protocol in Theorem[Il We show the following theorem, where we use the shorthand R™ (similarly
for other registers) to represent n copies of the register R. This result is obtained by running the protocol obtained in
Theorem[T] several times and recycling the shared randomness each time.

Theorem 2. Let |V) g acep = .. \/P()|c)clc)a|vC) rap be a quantum state. For every e € (0,1/10) and integer
n > 1, there exists a (Q(n,e),S(n, ), O(y/n), 10¢)- quantum measurement compression protocol for the quantum

state |\IJ>%ZBC(j such that

1 1
lim —Q(n,e) =1I(R: C|B), 1i_>m ES(H’E) =H(C|BR).

n—o00 N,
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Proof. Letm := y/n and ¢’ := ™, We divide the state |¥)%"
Bob pre-share

into 2 blocks of states [¥)2"" racop: Alice and

RACCB
2mlog|C| — =D (V5| V55 © 18™) - 5loge’

bits of shared randomness. Consider,

Wi ) = mog ]+ D (YRR PR 127

DIE‘IldX (W%gc
£ mlog |C] +mD(Yrpe||VYre @ 1)
+ VmV(Urpc||¥rp @ 10)® 1(e') + O(logm)

= mlog|C| — mH(C|RB)y + VmV(¥rpc||¥rp @ 1c)® (') + O(logm),

where (a) uses Fact[8l Combining this with the identity

V3R © i ) = D (Vo |03 917) + mlog C],

Dlsnax (W%EC
we find that the number of bits of randomness initially present with Alice and Bob is
S(n,e) = 2mlog|C|— —Dfmx \If%gc"\lf%g ®IE™) — 5loge’

VV(rpc||¥rs @1c)® ') + O(log(mn/c))

= 2mlog|C|+nH(C|RB)y + T
2mlog |C| + nH(C|RB)y V & me \/v (Vrpel|¥re ® 1) + O(log(mn/<)), (6)

[A\e

where (a) uses Fact[l Similarly, we have

1 n_
S(n,e) > 2mlog|C| + nH(C|RB)y — Lgm V@ rsclVrs ©10) + Ollog(mn/z)) (1)

Alice and Bob run protocol P given in Theorem [Tl on the quantum state W%ZC op With 2mlog |C| — 5loge’ bits of
shared randomness. The protocol P returns

®m

pEm o C
RB ICIm

D (llf%gc ) +mlog|C| = 2mlog|C| + D2, (TS| YEE @ IE™)

bits of shared randomness with error 10¢’. Thus, the protocol consumes _Dmax (\I/%gc ’\I/® ® I®m) bits of shared
randomness. After this, Alice and Bob run the protocol for second block. For this, they add — Dz, (U35 | [ ¥ Eh @ IS™)
bits of shared randomness (to compensate for the amount consumed in previous protocol; note that this quantity is

positive, by Fact[LT). This process continues for all the X blocks.
From Fact[IQl we have that the overall error in terms of purified distance is at most 10%5’ < 10e. The number of

20



bits communicated in the protocol is

om . 1™ w2 om
\I]RB ® T |O|m - DH \IJBC

g 1
®m
Vi |0|m) +61°g( ))

— 2 (Dfu (Ve 17) - DR (v g 1) +olog (5 ) )

Qe = 2 (D (i

a n
< E (mD(\PRBC|\PRB ® Ic) + \/mv(\PRBCH\PRB ® Ic)|(1)71(6/)| + O(log m)

1
— mD(Upc|| Vg @1c) + VmV(Upel|Vp @ 10)|[@ 7 (')] + 6log (E_) >

= n-I(R:C|B)y + %O(log(mn/s))

%wwmn% ©1c) + VV(Wrpc|[Trs ©10))[@ ()]

S n-I(R:C|B)y + —O(log(mn/<))

n./log 2=
+ Tm(\/V(\I/BCH\IJB ®1c) +VV(¥rpel|¥rs @ 1)),

where (a) uses Fact[§ and (b) uses Fact[0l Similarly, we have

n ny/log -
Q(n,e) 2 n-I(R:C|B)y + —O(log(mn/c)) — TE(\/V(‘I’BCH‘I’B ©lc) +VV(¥rpe|Vrp ®1c))
Combining with Equations[6l [71and setting m = /n, we find that
.1
nh_)rrgo ES(n,a) = H(C|RB)y, nh_}rrgo nQ(n e)=I(R:C|B)y.

This completes the proof. |

5 Randomness extraction and quantum measurement compression without
feedback

We formally define the task of a quantum proof (strong) randomness extraction, adapted from [25! Definition 3.2].

Definition 2 (A quantum proof strong randomness extractor). Fixane € (0, 1) and a register C with a basis {|c) L‘i‘l

Let Oy = % be a uniform distribution on register U (the seed). A (k,log|U|,log|V|, ) - quantum proof randomness
extraction protocol consists of a register V, a unitary W : Hc @ Ha @ Huy — Hcor @ Hyv @ Hg for some ancilla
register A, register C' and U = U. It is required that for all classical-quantum states V¢, where C'is the classical
register in the basis {| >}C 1 satisfying Dmax (Yacol|Pe @ Ic) < —k,

D (Trc/W(\I/Gc ®10)(0]4 ® v) WTH\IJG X = |V| ® 9U> <e.

Remark 1. Conditions in the above definition: The error in above definition is measured in terms of relative
entropy, as opposed to trace distance in [25)], making our criteria stronger. The conditional min-entropy criteria
Huin (C|G)y > k in [25] is weakened to —Dmax (Yac ||V @ Ic) > k. But this weakening does not lead to much
difference if one measures the error in trace distance (as done in [23|]) and allows a further error of § € (0,1). For
this, use Fact[I2to observe that

s 4 4
_ : ! l —mi 2 — 2 — —
\I”Gcgllﬁ‘lg(l‘lfcc) Dmax (Vo Ve @ 1c) > min Diax (Yaclloe ®1c) — 3log - 5= Hmm(C|G)\I, 3log 5

Thus, for any quantum state Vg satisfying Hmln ClG)y = k+ 3log 4 5, there exists a quantum state Vi €
B° (V) (which can be assume to be classical-quantum, see Corollary2)) such that —Dax (Vio||[ V5 @ 1c) > k.
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A (k,log|U|,log |V, &) - quantum proof randomness extractor (with associated unitary W) satisfies

Fact[Aimplies that

P (TI’C/W(\I//GC X |O><0|A 4 HU)WT, v & 9U> < \/g

!/
® G
V|
Using triangle inequality for purified distance (Fact[ll), we conclude that

Iy
P <Trc/W(\I/Gc ® |0){0|4 ® 9U)W Vo ® V] & 9U) < Ve + 26
From FactD) it holds that

Iy
A (e W (Fae © 0014 @ )W, Bo & - @ 0y ) < VE+25

Thus, log |V'| bits are extracted with error \/e + 20 in trace distance, whenever Hmm (ClG)g > k+ 3log %.

Remark 2. Shared randomness extraction: A protocol captured by Definition[2l can also be used to obtain shared
randomness in two-party setting. More precisely, if the joint quantum state Yoo =Y. p(c)|e, ¢) (¢, clccr @ Ve is
shared in a manner that Alice holds C, Bob holds C' and G is shared between Alice, Bob and a third party, then Alice
and Bob can jointly run a quantum proof strong randomness extractor protocol, using the shared randomness 0y =
\_11J| > u [ w)(u, uly,ur and gain a shared randomness vy = I_‘lf\ Yoo v, 0) (v, vlv, v It holds that Ty @ Oyy is
almost independent of ¥ i, up to error € in purified distance.

We have the following result.

Theorem 3. Fore € (0,1), a register C with a basis {|c >} 1 and a real number k > 0, there exists a
1 1
k,2log|C| —k+2log -,k —log— —1,¢
5 €

- quantum proof randomness extraction protocol.

Remark 3. Efficiency of the protocol: While we only provide an achievability proof in the information theoretic
sense, it can be observed that the protocol is also efficient. This follows from the fact that the construction of pairwise
independent random variables (as stated in Fact[I3] derived from [53]]) can be done efficiently.

—k
Proof of Theorem[3l Letn def [‘C‘f 1. Let g be the pairwise independent distribution over C x C x ...C (n times)
as constructed in Claim[Il Let C4,...C,, = C be n copies of the register C and o¢,,...c, be the quantum state
obtained from the distribution § in the basis {|c1, . .. ¢,)}. For any quantum state ¥ ¢ satisfying

Do (Weic|[ 06 1 ) = 108101+ Dun(Fec W & Te) < log €] -

invoke Lemmall] with P < G and  + C. From Lemma[l2] it holds that

1 . C (6]
- Z > PV ®e)cle, 08, oy opanon||Ye @00, 0, | <é (8)
Set b & ’Vog\C|‘| let U1 foxCx...C (b times) and .J be a register of dimension n. Let U ¢ UlJ and
Iy I_J
bu = i < -

Protocol: The protocol is as follows, which is constructed only using the value k.

1. Rename the reigster C' with C;. Introduce registers Co, . . . C, in the state ®7_,|1)(1
U1 J in the state 0.
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2. Conditioned on value j in register J, swap C; with C;. The global quantum state at this stage is

1o .. Iy
EZIJ><J|J®\I/GCJ-®I1><1|C1®---I1><1|cj,1®|1><1|cj+1®---|1><1|cn®|711|-
j=1

3. Conditioned on the value j in register J and c; in register C}, apply a unitary I¥; which maps the state

Iy
(e, @ D)o, @ 1) (e, @ ... (e, ® m
to the state
.,
Uczl,...cj,lcjﬂ...cn ® |1><1|U1
This is possible since G(c1, . ..¢j—1,¢j11, - -Cnlc;) is uniform in a support of size |U;| = |C|®, as guaranteed

by Claim[Il The global quantum state at this stage is

1 . - N C (6]
ﬁ Z |]><-]|J ® Zp(c)\IIG ® |C><C|Cj ® Ucl,...ijl,C]‘+1.’...Cn ® |1><1|U1
J=1 c
4. Apply a unitary W3 which maps the quantum state

0Cy,...Cn

to the quantum state

o, . Lo
€] C|

This is possible since 7 is uniform in a support of size |C|**!, as guaranteed by Claim[1l From Equation[8] the
overall quantum state on registers GC1, . .. C,,, Uy is close to

@ 1)1y @ ... 1) (1]c,-

Icl ... ch+1

Vo ® —
“ el C]

® D {1oy, © .. [H{1e, @ 1) (v, .

5. Set " ! JChi1 ...CuU; and choose U, V such that UV e Cpy+1 and |U| = |U| = |Uy||J|. This can
be achieved by dividing C1, . . . Cp41 into smaller registers.

Analysis: We obtain
|C|b+l - |C|b+1 |C|

V= - Ly
\UilJ| el n
Thus,
C 1
log|V| = log% >log(2¥e) —1=Fk — logg —1.
Further,

1
log |U| = log|U1| +log|J| = blog |C| +logn < 2log|C| — k + 2log o

where the inequality holds since log n = log |C| — k + log 1 which implies that (ll(églgl] -log |C| < log|C| + log 2.

This completes the proof. |

Comparison with previous work: It was shown in [59] that a randomness extractor acting on a source with min
entropy k can extract uniform distribution (up to error ¢ in trace distance) on at most k¥ — 2log % + O(1) number of
bits. This bound is achieved, up to additive constants, in [[20, Corollary 5.5.2]. The construction in [25, Corollary
5.4] extracts k — 4 log % bits, but with exponential improvement in the seed size in comparison to Theorem [3or [20,
Corollary 5.5.2]. In our construction in Theorem 3] error of ¢ in relative entropy allows us to extract k — log % -1
number of uniform bits. By Fact[Z] error of ¢ in relative entropy implies an error of 24/ in trace distance, showing
the optimality of our construction in terms of the number of bits extracted.
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5.1 Quantum measurement compression without feedback

A consequence of our result on randomness extraction is that quantum measurement compression can be performed
in the case where Alice does not need to possess the outcome of the measurement. We formally introduce the task.

Definition 3 (Quantum measurement compression without feedback). Fix an ¢ € (0,1), and consider the state
|U)(¥|ga,B- Let N : L(Ao) = L(AC) be a quantum measurement acting as

N(pAo) = Z |C><C|C ® ]\/vcpz‘loj\/vc]L

and Vo def N9 (¥|ra,B)- An (m,T1,72,€)- qUantum measurement compression protocol without feedback

consists of
e a classical-classical state (or preshared randomness) 0g , g, between Alice (E 4) and Bob (E),
e an encoding map by Alice £ : L(AoFE4) — L(QTa), and
e adecoding map by BobD : L(QBEgR) — L(BC'Tg), where C' = C

such that
P (Dg(\IJRABC ® HEAEB)u Yrpor @ WTATB) <e,

for some classical-classical state wr,,. The number of bits communicated is m = log |Q|, number of bits of
initial shared randomness is 11 = max(log|FE4l,log |Eg|) and final number of bits of shared randomness is ro =
min(log T4, log|Tx|).

We have the following one-shot result.

Theorem 4. Fixe,0 € (0,1), a quantum state |V){(V|ra, 5 and a quantum measurement N : L(Ay) — L(AC). Fix
a register W. Let M : L(Ag) — L(AW) be a quantum measurement acting as

M(pAo) = Z |w><w|W ® waAoMJ)

and p(c|w) be a probability distribution conditioned on each w, such that

Nlpa,) =Y _plelw)le)(cle © Mupa, M.

Define the quantum state

VRrBACW def Zp(c|w)|c><c|c ® |w><w|w & Mw\IJRBAUMJ,-

c,w

There exists a (m, 11,72, 10e 4+ 30) - quantum measurement compression protocol without feedback such that

1
m < D (Vrew [P rs @ Iw) — D (¥aw |05 © Iy) + 7log <g) ,
64
r1 < 4log|W]| +logm

and
5

s 8¢
o > 4log |W| + Dg 0 (Vrew W RE ® Iw) — Diax (Y rRBCW ||V RBC ® L) — log o

Proof. LetUpq : Ha, — Ha ® Hw ® Hyy be the isometry acting as

Unmlp)ao = Y _ |w, whyryy @ Mu|p) a,-
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Define |U) g g a7 ef Um|¥)rBa,- Observe that \I/RBAW = >, p(w)|w)(wlw @ ¥y 4, for some probability

distribution p(w). Alice and Bob implement the (m, ], 75, 10¢)- quantum measurement compression protocol as
given in Theorem [ with oy = %,

1
m < Df . (Yrew ||[YrE @ Iw) — Df; (Upwl||¥p @ Iw) + Tlog (g) ,

8
ry < 2log [W| +log —
€

and
8
ry > 2log |[W|+ D% i (Yrew ||V RE @ Iw) + log =

The protocol outputs the quantum state ¥ zp 41w up to error 10¢ in purified distance, where Alice holds the register
W and Bob holds the register W’. Since ¥rpaww: = >, p(w)|w, w)(w, wlw,w & U5 4, Bob can produce the
register C” according to the conditional distribution p(c|w). Then the resulting joint distribution is

Vrpaww cr = Zp clw)p(w)|e){clcr @ |w, w)(w, wlww @ Yipa-

Letk := —ming: _ epswppew) Pmax(Prpow|[Yrpe ® Iw). Following Remark 2l Alice and Bob run the

1
(k,21log |W| —k—4logg,k—2log5 )

-quantum proof randomness extraction protocol as obtained in Theorem 3] with number of initial shared randomness
equal to

1
2log |W| —k—410gg,

such that the number of bits of shared randomness gained by the protocol is at least

1 64
k —log 5 > Dmax(\IJRBCW”\IJRBC ® Iy ) — log 55

This implies that total initial randomness required for the protocol is
64
r1 < 4log|W| + log 5

and the total final randomness obtained is

s Reb
ry > 4log|W|+ D5 (Trew | ¥rs © I) — D2ax (¥ rscw||¥rec © In) — log 5%

The overall error in purified distance is 10¢ + 34, by applying triangle inequality for purified distance (Fact[T) to the
error guarantees in Theorems [I] and 3] (we also apply Fact[7] to Theorem Bl to convert the error guarantee in relative
entropy to error guarantee in purified distance). This completes the proof. |

In the asymptotic and i.i.d. setting, we obtain the following corollary, using the technique of recycling the shared
entanglement as elaborated in Theorem[2l This recovers the corresponding result in [10].

Corollary 4. Let |¥)ga,c be a quantum state and N : L(Ha,) — L(Ha ® Hc) be a quantum measurement. Let
M L(Ha,) = L(Ha @ Hw) be a quantum measurement acting as

M(pa,) Z|w (wlw @ M,pa, M.

and p(c|w) be a probability distribution for each w, such that

N(pa,) ZP clw)le){cle ® Mupa, M.
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Define the quantum state

Vppacw & ZP(C|M)|C><C|C ® |w)(w|w & MW gpay M.

c,w

For every € € (0,1/13) and integer n > 1, there exists a (Q(n,¢),S(n,e),0(y/n), 13¢)- quantum measurement
compression protocol without feedback for |\I}>%ZOC and N'®" such that

1 1

lim —Q(n,e) =I(R: W|B), lim —S(n,e) = H(W|BR) — HW|CBR).
n—oo N, n—oo N

Proof. The proof follows along the lines similar to Theorem[2] by applying the achievability proof given in Theorem

and using Fact[8l O

Conclusion

We have studied the problem of quantum measurement compression with quantum side information in the one-shot
setting. Previously, this task had been studied only in the asymptotic and i.i.d. setting [} [10]. We have discussed
the communication required to achieve such a task and the randomness cost of the protocol. These discussions are
facilitated by a new formulation of the convex-split lemma which allows for a substantial reduction in the randomness
cost. As a result, we obtain optimal rates of communication and randomness cost in the asymptotic and i.i.d. setting,
obtaining a new optimal protocol for this task.

Furthermore, we also obtain a new protocol for the important cryptographic primitive of strong randomness ex-
traction in presence of quantum side information, using the convex-split lemma with limited randomness and obtain
near optimal number of uniform bits (characterized by the conditional min-entropy [20]). An important question in
this direction is if we can reduce the number of bits of initial randomness (the state of the art being much smaller, as
obtained in [25]). Through a composition of our protocol for randomness extraction and quantum measurement com-
pression, we obtain a one-shot protocol for quantum measurement compression without feedback, which converges to
the optimal rate in the asymptotic and i.i.d. setting [[10].

An exciting problem is to use the one-shot quantum measurement compression results (with side information),
for tasks such as one-shot purity distillation [} 16} [7, 8} 9] or simulation of measurements on quantum states shared
between Alice, Bob and Reference. Another important question is if it is possible to reduce the amount of shared
entanglement in protocols that use convex-split and position based decoding techniques, potentially employing a fully
quantum notion of pairwise independence or exploiting the ideas developed in [60]. Present formulation only applies
in the classical-quantum setting with shared randomness, which does not cover all possible quantum information
theoretic scenarios. Along similar lines, it is plausible that our techniques would lead to reduction in the amount of
catalyst used in the works [[61}162]] for the randomness cost of resource destruction in resource theories.
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