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Optimal universal learning machines for

quantum state discrimination
Marco Fanizza, Andrea Mari, Vittorio Giovannetti

Abstract—We consider the problem of correctly
classifying a given quantum two-level system (qubit)
which is known to be in one of two equally probable
quantum states. We assume that this task should be
performed by a quantum machine which does not
have at its disposal a complete classical description of
the two template states, but can only have partial prior
information about their level of purity and mutual
overlap. Moreover, similarly to the classical supervised
learning paradigm, we assume that the machine can
be trained by n qubits prepared in the first template
state and by n more qubits prepared in the second
template state. In this situation we are interested in
the optimal process which correctly classifies the input
qubit with the largest probability allowed by quantum
mechanics. The problem is studied in its full generality
for a number of different prior information scenarios
and for an arbitrary size n of the training data. Finite
size corrections around the asymptotic limit n → ∞

are derived. When the states are assumed to be pure,
with known overlap, the problem is also solved in the
case of d-level systems.

I. INTRODUCTION

Machine Learning (ML) is that branch of com-

puter science which studies how to instruct a com-

puter to solve a specific task by feeding it with a

collection of training data from which it could learn

how to proceed. This approach finds applications in

a variety of practical pattern recognition, decision

and clustering problems where a definite classifica-

tion of the various alternatives are not directly ac-

cessible [1]. Not surprisingly, the interplay between

ML and quantum information is very promising (see
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[2], [3], [4], [5], [6] and references therein). ML

has been proposed as a useful tool to improve the

performances of a variety of quantum information

procedures, e.g. identification of optimal quantum

measurement and estimation procedures, quantum

gate design and quantum dynamics engineering. On

the other hand, it has been shown that quantum

computing can provide speed-ups for ML problems.

Moreover, as originally hinted in Refs. [8], [9],

[10], [11], [12], a drastic departure from classi-

cal data analysis is instead realized in Quantum

Learning (QL), where the “learning from examples”

paradigm is adopted as a new mode of operation of

quantum devices which have access to (not neces-

sarily classical) training data. This setting appears to

be perfectly suited to deal with the specific character

of quantum mechanics where, at variance with

classical models, a fundamental discrepancy exists

between the state of a system and the “knowledge”

one can acquire about it through measurements.

Such discrepancy is a distintive feature of the

theory: ultimately it can be traced back to the no-

cloning theorem [16] and poses intrinsic limitations

on information retrieval processes. Accordingly in

quantum mechanics, the ability of perfectly discrim-

inating alternative configurations, let them being

states or processes, can only be guaranteed under

special conditions (semiclassical limit). Since the

seminal works of Helstrom [13], Holevo [14] and

Yuen et al. [15], developing optimal probabilistic

strategies to face these limitations is a fundamental

problem of quantum information. A standard ex-

ample is provided by quantum state discrimination:

here an agent is presented with a quantum system Q
and asked to identify its state knowing that the latter

was randomly drawn from an ensemble of possible

alternatives which are specified in terms of classical

http://arxiv.org/abs/1805.03477v3
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data that fully characterize them. The QL version of

this problem is obtained by replacing such classical

descriptions with a collection of quantum ancillary

systems initialized into the same template states the

agent has to assign to Q. A universal machine for

optimal discrimination is hence identified as the

quantum device which, by having full access to

Q and the ancillas, allows the agent to solve the

identification task with the smallest probability of

error. The problem has been addressed in various

scenarios in [10], [11], [17], [18], [19], [23], [25],

[24], and has attracted the attention of the commu-

nity as an example of a genuine supervised QL task

[4], [5], [7]. In this article we present results about

universal machines for qubit discrimination, which

can discriminate among any two states, extending

in particular the results of [19] to include a variety

of scenarios. Specifically we focus on hybrid QL

configurations where the agent, beside being pro-

vided with the quantum ancillas, has also access

to some prior classical information on the tem-

plates configurations, such as their purity or their

mutual distance. These scenarios naturally emerge

when, for instance, the training and the target data

are effected by some deteriorating processes (say

dephasing or decoherence transformations) which

the agent cannot prevent from occurring, but whose

operating mechanisms are known to him, or when

the different templates are affected by uncertainties

arising from the absence of a common, shared

reference frame.

The manuscript is organized as follows: notation

and model are introduced in Sec. II. The principal

part of the paper is Sec. III where our results are

explicitly derived in three dedicated subsections. In

the first two paragraphs we extend the results of

the work of Ref. [19]. Specifically in Sec. III-A

we study the case of an optimal universal machines

which is trained to discriminate between two qubit

density matrices of fixed but different purities. In

Sec. III-B instead we focus on the case where

the training data are two generic (possibly) mixed

quantum systems. In Sec. III-C we discuss the

scenario where the training data are pure with fixed

relative overlap, but otherwise unknown. The inter-

est in this last configuration arises when considering

QML processes where, in analogy with the schemes

analyzed in Refs. [26], [27], [28], [30], [29], the

party who is creating the template states does not

share a common reference frame with the party

that is supposed to solve the identification problem.

For this special setting results are extended beyond

the qubit case to include arbitrary d-dimensional

input systems. Finally in Sec. III-D we compare the

optimal machines that leads to the optimal proba-

bility thresholds for the three scenarios, comment-

ing about their compatibility. Section IV presents

an implementation of optimal machines obtained

by exploiting the QISKit software development

kit [35].

The paper ends with conclusions in Sec. V. Tech-

nical material is presented in dedicated appendices.

II. THE MODEL

In a classical supervised learning classification

problem an algorithm receives as input a training

set of labelled data, and outputs a classifier which

can be used to predict the label of new unlabelled

data. In a probabilistic setting one can suppose that

the dataset, made of couples (x, y) of data x ∈ X
and labels y ∈ Y obeys a probability distribution

P : X × Y → [0, 1]. Then, a classifier is a la-

belling rule obeying another probability distribution

C : X → Y . For each P there exists an opti-

mal classifier which minimises the probability of

misclassification; a good learning algorithm should

obtain a classifier that with a misclassification prob-

ability close to the optimal, as the training dataset

becomes large, and with the fewest assumptions on

the distribution P . The assumptions on P can also

be described probabilistically as a prior probability

distribution G over the possible P . Given this prior

G, one can say that an algorithm is optimal if it

attains the lowest probability on average, where the

average is done over all the possible distributions

P , assuming they are distributed according to G. A

straightforward way to generalise classical proba-

bilistic task is to substitute probability distributions

with quantum states: in the problem considered in

this article, we substitute conditional probabilities

P (X |Y ) with quantum states distributed according

a classical prior. More precisely in the scenario we
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have in mind a qubit system X is initialized with

probability 1/2 in one of two possible template

states ρ1 and ρ2. Without having access to the full

classical description of these templates configura-

tions (i.e. without knowing the explicit values of

their associated Bloch vectors r1 and r2, see below),

an external agent is now asked to identify which

of the two alternative actually occurred by only

granting him access to X and to two independent

sets of n ancillary qubits A and B, initialized

respectively into n copies of ρ1 and ρ2. Following

Refs. [10], [11], [19], [23] solutions to this problem

can be assigned in terms of a two-outcome POVM

M̂ ≡ {Π̂1, Π̂2} that acts globally on the full system

AXB formed by the test qubit X and by the two

n-qubits ancillas. In particular, noticing that the

possible states of AXB are the density matrices

τ1 = ρ⊗n
1 ⊗ ρ1 ⊗ ρ⊗n

2 (corresponding to have X in

ρ1) and τ2 = ρ⊗n
1 ⊗ρ2⊗ρ⊗n

2 (X in ρ2), the average

error probability of the procedure can be computed

as

P (n)
err =

∫

dµ(ρ1, ρ2)
Tr[τ1Π̂2] + Tr[τ2Π̂1]

2
, (1)

where Tr[τjΠ̂j ] is the probability of success in the

identifying the j-th configuration, while dµ(ρ1, ρ2)
is a probability measure that gauges the initial

ignorance of the agent about ρ1 and ρ2. Exploiting

then the completeness relation of M̂ this can be

finally recast into

P (n)
err =

1

2
− 1

4
Tr[Θ(Π̂1 − Π̂2)] , (2)

where Θ is the trace-null, Hermitian operator

Θ = α(n) − β(n) , (3)

given by the difference between the following den-

sity matrices of AXB,

α(n) ≡
∫

dµ(ρ1, ρ2)ρ
⊗n
1 ⊗ ρ1 ⊗ ρ⊗n

2 ,

β(n) ≡
∫

dµ(ρ1, ρ2)ρ
⊗n
1 ⊗ ρ2 ⊗ ρ⊗n

2 . (4)

By the Holevo-Helstrom theorem [13], the mini-

mum (2) can now be easily obtained by choosing

an optimal POVM M̂ which has components Π̂1,

Π̂2 respectively projecting on the positive and the

negative eigenspaces of Θ, i.e.

P
(n)
err,min =

1

2
− 1

4
‖Θ‖1 , (5)

with the symbol ‖ · · · ‖1 indicating the trace norm.

Some general properties of P
(n)
err,min can be de-

termined by simple arguments. First of all since the

agent can always discard part of the ancillary states

before attempting to identify Q, for all possible

choices of the measure dµ(ρ1, ρ2), P
(n)
err,min has to

fulfil the inequality

P
(n)
err,min ≤ 1

2
− 1

4
‖
∫

dµ(ρ1, ρ2)(ρ1 − ρ2)‖1 , (6)

and being a decreasing function of n, i.e.

P
(n)
err,min ≥ P

(n+1)
err,min . (7)

Furthermore, by exploting the joint-convexity of the

trace-norm [32] the following lower bound can be

established

P
(n)
err,min ≥ 1

2
− 1

4

∫

dµ(ρ1, ρ2)‖ρ1 − ρ2‖1 , (8)

for all n integers. The term on the right-hand-

side of this inequality corresponds to the average

Helstrom error probability P̄H , i.e. the average

minimum error probability the agent could attain by

providing him/her with a full classical description

of the template states: under this condition in fact,

for each couple of density matrices ρ1 and ρ2,

he/she can taylor a specific POVM on X that it

is optimized to distinguish them. Invoking a full

tomographic reconstruction of ρ1 and ρ2, the gap

between P
(n)
err,min and P̄H (optimal excess risk

function [19], [23]), can be shown to nullify in the

asymptotic regime n→ ∞, i.e.

lim
n→∞

P
(n)
err,min =

1

2
− 1

4

∫

dµ(ρ1, ρ2)‖ρ1 − ρ2‖1
(9)

Apart from the above results explicit expressions

for P
(n)
err,min are known only for a limited set

of configurations. For instance in Ref. [10] the

Authors focus on the case where both ρ1 and ρ2
are pure in general finite dimension, while Ref. [19]

provides the formal solution under the assumption

that ρ1 and ρ2 are density matrices having the same
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assigned purity. The aim of the present work is

to extend these results by expanding the set of

treatable scenarios to include the following cases

i) ρ1 and ρ2 having different assigned purities but

being otherwise arbitrary;

ii) ρ1 and ρ2 being completely arbitrary (not

necessarily pure) density matrices;

iii) ρ1 and ρ2 being arbitrary pure states having

assigned mutual distance.

For these configurations we compute the associated

values of P
(n)
err,min reporting closed analytical ex-

pressions for the higher order contributions of their

asymptotic expansions at large n.

III. DERIVATION

The key ingredient for deriving the above results

is the evaluation of the eigenvalues {λℓ}ℓ of the

operator Θ defined in(3) which allows us to rewrite

(5) as

P
(n)
err,min =

1

2

(

1−
∑

ℓ

+
λℓ

)

, (10)

the sum being restricted on the positive part of

the spectrum. Since Θ = α(n) − β(n), we first

focus on diagonalizing α(n) and β(n) exploiting

their symmetry properties. Then, by noticing the

common symmetries of α(n) and β(n), one can

reduce the problem to a diagonalization of 2 × 2
matrices, as it was already shown in [19]. Here we

outline the procedure, which is common to all the

scenarios that we consider. First of all we choose

a convenient decomposition of the Hilbert space

HAXB of the system AXB.

By Schur-Weyl duality [21] the Hilbert space of

n multiple qubits can be decomposed as

H =
⊕

D

(jD ⊗ µD) (11)

where jD and µD are the irreducible representations

with Young diagram D respectively of SU(2) and

of the symmetric group Sn.

In particular the Hilbert space of the n-qubit

systems A and B can be expressed as

HA = ⊕sH(s)
A , HB = ⊕tH(t)

B , (12)

where the labels s, t are half-integers varying from

0 (if n is even) or from 1/2 (if n is odd) to n/2;

H(s)
A = ⊕iH(s)

Ai
and H(t)

B = ⊕kH(t)
Bk

, respectively,

are the direct sums of copies of the irreducible

representations of SU(2) of dimension 2s+ 1 and

2t + 1, while the indexes i and k resolve their

associated multiplicities, and correspond to a basis

of the irreducible representations of Sn associated

respectively to s, t – the multiplicity is given by Eq.

(19) below.

Accordingly we can then express the joint Hilbert

space HAXB = HA⊗HX⊗HB of our 2n+1 qubits

system AXB as the direct sum over s, t, i and k,

of the spaces

H(s,t)
AiXBk

= H(s)
Ai

⊗HX ⊗H(t)
Bk

. (13)

HAXB also carry a representation of SU(2)
which sends U to Û⊗2n+1. In particular this rep-

resentation is reducible and block diagonal in the

sectors H(s,t)
AiXBk

.

In the cases considered, from the symmetry prop-

erties of α(n) and β(n) one can infer the following

symmetries for Θ:

• [Θ, P̂
(A)
σ ] = [Θ, P̂

(B)
σ′ ] = 0 for every

P̂
(A)
σ , P̂

(B)
σ′ qubit permutations acting respec-

tively on HA and HB .

• [Θ, Û⊗2n+1] for every U ∈ SU(2).

From the first property, Θ cannot have nonzero

matrix elements between states in inequivalent rep-

resentations of the permutations acting indepen-

dently on HA and HB; besides, the first property

also implies that, by Schur’s lemma and Schur-Weyl

duality (11) applied to HA and HB , Θ is block-

diagonal when decomposing HA ⊗ HX ⊗ HB in

terms of the subspaces H(s,t)
AiXBk

, and its matrix

elements do not depend on i and k.

From the second property Θ is a scalar operator

under the action of SU(2), and from Wigner-

Eckart theorem [20], the expectation values of Θ
are further constrained to be of the form

〈l, q,m|Θ|l′, q′,m′〉 = δq,q′δm,m′Θl.l′ , (14)

where |l, q,m〉 are any basis of eigenvectors of the

AXB-total angular momentum operators ~J2
tot, J

z
tot

associated with the full collections of our 2n +
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1 spins, i.e. ~J2
tot|l, q,m〉 = q(q + 1)|l, q,m〉,

Jz
tot|l, q,m〉 = m|l, q,m〉. In particular, in each of

the H(s,t)
AiXBk

blocks the label q span from ||t− s|−
1/2| to t + s + 1/2, while m runs from q to −q.

Θl.l′ is usually called reduced matrix element and

depends only on the additional labels l, l′. Putting

all together, it follows that for each assigned value

of s, t, i, and k, Θ further decomposes in a collec-

tion of 2×2 or 1×1 block diagonal matrices whose

elements exhibit functional dependence only on the

indexes s, t, q. In particular, by first merging Ai and

X and then coupling the two with Bk, a convenient

orthonormal basis of H(s,t)
AiXBk

is provided by the

following list of vectors

{|s′ = s± 1/2, t; q,m〉i,k}q,m (15)

We stress that in the above construction, and in the

remaining of the paper, it is implicit assumed that

|s± 1/2, t; q,m〉i,k is null whenever the parameters

s, t and q do not fit the necessary angular momen-

tum selection rules. This allows us to identify four

different scenarios:

a) q = s+ t+ 1
2 ;

b) q = t− s− 1
2 and t > s;

c) q = s− t− 1
2 and s > t;

d) all s, t, q fitting the selection rules which are

not included in the previous cases.

In the first three cases, only one of the elements of

the couple {|s± 1/2, t; q,m〉i,k} survives: specifi-

cally the s + 1/2 element for a) and b), while the

s − 1/2 element for c). Under such circumstances

the symmetry of Θ forces it to be 1 × 1 block

diagonal, i.e. to admit the associated basis elements

as explicit eigenvectors with eigenvalues λ
(n)
s,t,q that

we can formally compute as

Θ
(s,t,q)
++ =i,k 〈s+ 1/2, t; q,m|Θ|s+ 1/2, t; q,m〉i,k ,

(16)

for the case cases a) and b), and

Θ
(s,t,q)
−− =i,k 〈s− 1/2, t; q,m|Θ|s− 1/2, t; q,m〉i,k ,

(17)

for the c) case. The corresponding multiplicity is

determined instead by the allowed ranges of m, i
and k, i.e.

M
(n)
s,t,q = (2q + 1) #(s, n) #(t, n) , (18)

with (2q + 1) enumerating the possible values

of m, and with #(j, n) representing instead the

multiplicity of the representations of SU(2) with

dimension 2j + 1 in the decomposition of n spins

1/2, i.e.

#(j, n) =
n! (2j + 1)

(

n−2j
2

)

!
(

n+2j
2 + 1

)

!
. (19)

In the scenario d) instead both the elements of

the couple {|s± 1/2, t; q,m〉i,k} survive and the

symmetry of the problem forces Θ to be described

by 2×2 block diagonal terms Θ|s,t,q,mi,k of the form,

Θ|s,t,q,mi,k ≡
[

Θ
(s,t,q)
++ Θ

(s,t,q)
+−

Θ
(s,t,q)
−+ Θ

(s,t,q)
−−

]

, (20)

with Θ
(s,t,q)
++ and Θ

(s,t,q)
−− as in (16) and (17) and

with

Θ
(s,t,q)
+− = [Θ

(s,t,q)
−+ ]∗ = (21)

i,k〈s+ 1/2, t; q,m|Θ|s− 1/2, t; q,m〉i,k .

Accordingly we get a further set of eigenvalues

identified with the functions

λ
(n)
s,t,q(±) =

(

Θ
(s,t,q)
−− +Θ

(s,t,q)
++

2

)

(22)

±

√

(

Θ
(s,t,q)
−− −Θ

(s,t,q)
++

2

)2

+ |Θ(s,t,q)
+− |2 ,

again characterized by multiplicities M
(n)
s,t,q defined

as in Eq. (18). The corresponding eigenvectors are

instead provided by the superpositions

|ψ(±)
s,t;q,m〉i,k = A(s,t,q)(±)|s+ 1/2, t; q,m〉i,k

+B
(n)
s,t,q(±)|s− 1/2, t; q,m〉i,k ,

(23)

with amplitudes A(s,t,q) = Θ
(s,t,q)
+− and

Bs,t,q(±) =

(

Θ
(s,t,q)
−− −Θ

(s,t,q)
++

2

)

(24)

±

√

(

Θ
(s,t,q)
−− −Θ

(s,t,q)
++

2

)2

+ |Θ(s,t,q)
+− |2 ,

which, for easy of notation we present in a non-

normalized form.
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A. Scenario i): Mixed states with fixed purity

Adopting the Bloch sphere representation we

express the template states ρ1 and ρ2 in terms of

their associated Bloch vectors r1 and r2 via the

mapping

ρ1 =
1+ r1 · σ

2
, ρ2 =

1+ r2 · σ
2

, (25)

with σ = (σx, σy, σz) being the Pauli vector.

Assuming then the purity of these density matrices

to be assigned, we keep the modulus r1 ≡ |r1| and

r2 ≡ |r2| constant and use dµ(ρ1, ρ2) to average

over all possible orientations of r1 and r2 by setting

it equal to

dµ(ρ1, ρ2) = dU1dU2 , (26)

with dU representing the Haar measure on the

unitary transformations of SU(2). Accordingly we

rewrite Eq. (4) as

α(n) =

∫

dU1

(

U1ρ1U
†
1

)⊗n+1

⊗
∫

dU2

(

U2ρ2U
†
2

)⊗n

, (27)

β(n) =

∫

dU1

(

U1ρ1U
†
1

)⊗n

⊗
∫

dU2

(

U2ρ2U
†
2

)⊗n+1

. (28)

With this choice both α(n) and β(n), as well as

their difference Θ, become explicitly invariant un-

der unitaries acting in the same way on each qubit,

i.e. U⊗2n+1. Therefore the eigenvectors of each one

of these operators must be also eigenvectors of the

total angular momentum of the total system AXB.

Furthermore, we notice that α(n) and β(n) are also

invariant under separate rotations of partitions of the

system, in particular AX/B for α(n) and A/XB
for β(n). Following Appendix VI-A, for ρ with

Bloch vector of modulus r one has the identity

∫

dU
(

UρU †)⊗n
= ⊕jf

(n)
j (r)1(j), (29)

where

f
(n)
j (r) =

1

2j + 1

(

1− r2

4

)
n
2 −j

×
(

1+r
2

)2j+1 −
(

1−r
2

)2j+1

r
, (30)

This allows us to cast the first of equations (28)

in the following form

α(n) = ⊕s′,tf
(n+1)
s′ (r1)f

(n)
t (r2)1

(s′)
AX ⊗ 1

(t)
B , (31)

where 1
(j)
Q indicates the projector on all the irre-

ducible representations in the system Q with dimen-

sion 2j+1 (i.e. the space H(t)
B of (13) for 1

(t)
B , and

the irreducible representations of dimension 2s′+1

in H(s)
A ⊗HX , with s′ = s±1/2 for 1

(s′)
AX ). Adopting

the basis {|s′ = s± 1/2, t; q,m〉i,k}q,m, defined in

(15) we can then use Eq. (31) to decompose α(n)

as a direct sum of independent contributions acting

on the subspaces H(s,t)
AiXBk

, i.e.

α(n) = ⊕s,t ⊕i,k (⊕q,mα
(n)|s,t,q,mi,k ) , (32)

where, for each s, t, i and k we exploited the fact

that each term further decompose into a direct sum

of either 1× 1 or 2× 2 blocks of the form

α(n)|s,t,q,mi,k = f
(n+1)
s+1/2(r1)f

(n)
t (r2) (33)

|s+ 1/2, t; q,m〉i,k〈s+ 1/2, t; q,m|
+f

(n+1)
s−1/2(r1)f

(n)
t (r2)

|s− 1/2, t; q,m〉i,k〈s− 1/2, t; q,m| ,

where as already mentioned it is implicit assumed

that the vectors |s± 1/2, t; q,m〉i,k nullify when-

ever the parameters s, t and q do not fit the angular

momentum selection rules. In a similar fashion we

have that

β(n) = ⊕s,t′f
(n)
s (r1)f

(n+1)
t′ (r2)1

(s)
A ⊗ 1

(t′)
XB , (34)

where now 1
(s)
A project on H(s)

A of (13) and 1
(t′)
XB

on the irreducible representations t′ in HX ⊗H(t)
B ,

t′ = t ± 1/2. Again this yields the following

decomposition

β(n) = ⊕s,t ⊕i,k

(

⊕q,mβ
(n)|s,t,q,mi,k

)

, (35)
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where now

β(n)|s,t,q,mi,k = f (n)
s (r1)f

(n+1)
t+1/2 (r2) (36)

|s, t+ 1/2; q,m〉i,k〈s, t+ 1/2; q,m|
+f (n)

s (r1)f
(n+1)
t−1/2 (r2)

|s, t− 1/2; q,m〉i,k〈s, t− 1/2; q,m| .

In this expression the elements

{|s, t′ = t± 1/2; q,m〉i,k}q,m , (37)

are obtained by coupling the qubit HX with those of

H(t)
B,k and, as usual, we assume they nullify when-

ever s, t and q do not fulfil the necessary selection

rules. These vectors form a new basis for H(s,t)
AiXBk

connected with {|s′ = s± 1/2, t; q,m〉i,k}q,m via

the following four amplitude probabilities

C
(s,t,q)
++ ≡ i,k〈s+ 1

2 , t; q,m|s, t+ 1
2 ; q,m〉i,k ,

C
(s,t,q)
+− ≡ i,k〈s+ 1

2 , t; q,m|s, t− 1
2 ; q,m〉i,k ,

C
(s,t,q)
−+ ≡ i,k〈s− 1

2 , t; q,m|s, t+ 1
2 ; q,m〉i,k ,

C
(s,t,q)
−− ≡ i,k〈s− 1

2 , t; q,m|s, t− 1
2 ; q,m〉i,k , (38)

which express a unitary transformation between

the two different recouplings (15) and (37) of the

irreducible representations s, t, 12 . This is exactly

the information that the Wigner 6j symbols [20] of

SU(2) encode, and indeed C
(s,t,q)
±± can be written

as

C
(s,t,q)
±± = (−1)±

1
2± 1

2

×
√

(2s± 1 + 1)(2t± 1 + 1)

×
{

t± 1
2 t 1

2
s± 1

2 s q

}

, (39)

which for the particular case at hand gives a closed

analytic expression. Notice that C
(s,t,q)
±± do not

depend on m, by virtue of Wigner-Eckart theorem,

since the unitary transformation that they define

commutes with the action of SU(2) on the space

H(s,t)
AiXBk

.

From Eqs. (32) and (35) it now follows that a

similar decomposition holds also for Θ,

Θ = ⊕s,t ⊕i,k

(

⊕q,mΘ|s,t,q,mi,k

)

, (40)

where for assigned s, t, i and k, Θ|s,t,q,mi,k are the

following 1× 1 or 2× 2 matrices

Θ|s,t,q,mi,k = α(n)|s,t,q,mi,k − β(n)|s,t,q,mi,k . (41)

Invoking the convention established when introduc-

ing Eq. (15) we notice that 1× 1 blocks occur ex-

plicitly in the scenarios detailed in the introductory

part of the section: a) q = s+t+ 1
2 , b) q = t−s− 1

2
and t > s, and c) q = s− t− 1

2 and s > t, yielding

the eigenvalues

λ
(n)
s,t,q = f (n)

s (r1)f
(n)
t (r2) Λ

(n)
s,t,q , (42)

with

Λ
(n)
s,t,q =



























R
(n)
s,+(r1)−R

(n)
t,+(r2) case a),

R
(n)
s,+(r1)−R

(n)
t,−(r2) case b),

R
(n)
s,−(r1)−R

(n)
t,+(r2) case c),

(43)

where we introduced the functions

R
(n)
j,±(r) ≡

f
(n+1)
j±1/2(r)

f
(n)
j (r)

. (44)

For s, t, and q belonging to the remaining case d)

instead, (41) is a 2× 2 matrix of the form (20)
[

Θ
(s,t,q)
++ Θ

(s,t,q)
+−

Θ
(s,t,q)
−+ Θ

(s,t,q)
−−

]

,

with eigenvalues as in (24) with the following

identifications

Θ
(s,t,q)
++ = f (n)

s (r1)f
(n)
t (r2)

[

R
(n)
s,+(r1)

−R(n)
t,+(r2)(C

(s,t,q)
++ )2 −R

(n)
t,−(r2)(C

(s,t,q)
+− )2

]

,

Θ
(s,t,q)
−− = f (n)

s (r1)f
(n)
t (r2)

[

R
(n)
s,−(r1)

−R(n)
t,+(r2)(C

(s,t,q)
−+ )2 −R

(n)
t,−(r2)(C

(s,t,q)
−− )2

]

,

and

Θ
(s,t,q)
+− = −f (n)

s (r1)f
(n)
t (r2)

[

R
(n)
t,+(r2)C

(s,t,q)
++ C

(s,t,q)
−+ +R

(n)
t,−(r2)C

(s,t,q)
+− C

(s,t,q)
−−

]

,

where we used the coefficients C
(s,t,q)
±± (38) to

express the elements of β(n)|s,t,q,mi,k into the basis

{|s′ = s± 1/2, t; q,m〉i,k}q,m. The corresponding
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eigenvalues can also be expressed as in the rescaled

form (42) with

Λ
(n)
s,t,q(±) = a

(n)
s,t ± b

(n)
s,t,q , (45)

the functions as,t and bs,tq being defined as

a
(n)
s,t ≡ R

(n)
s,+(r1)+R

(n)
s,−(r1)−R

(n)
t,+(r2)−R

(n)
t,−(r2)

2 , (46)

b
(n)
s,t,q ≡

√

[Gs(r1)−Gt(r2)]2−4Gs(r1)Gt(r2)(C
(s,t,q)
++ )2

2 ,
(47)

where for ease of notation we introduced

Gj(r) ≡ f
(n+1)
j+1/2(r) − f

(n+1)
j−1/2(r) . (48)

For future reference we observe that from Eq. (39)

the following inequality can be determined

b
(n)
s,t,q ≥ b

(n)
s,t,q=s+t−1/2 , (49)

which in turn can be used to establish useful bounds

for the eigenvalues (45), i.e.

Λ
(n)
s,t,q(+) ≥ Λ

(n)
s,t,q=s+t−1/2(+) , (50)

Λ
(n)
s,t,q(−) ≤ Λ

(n)
s,t,q=s+t−1/2(−) . (51)

Replacing all this into Eq. (10) we can finally

write

P
(n)
err,min =

1

2
(52)

−1

2

∑

s,t,q,ℓ

+
f (n)
s (r1)f

(n)
t (r2)M

(n)
s,t,q Λ

(n)
s,t,q(ℓ) ,

with M
(n)
s,t,q being the multiplicity factor defined in

Eq. (18), the index ℓ assuming the values ± for the

case d), and where the subscript + indicates that

only the positive values of Λ
(n)
s,t,q(ℓ) are allowed into

the sum. In order to get an asymptotic expansion

of Eq. (52) we now notice that for large n the

following expansion holds,

f (n)
s (r)#(s, n) ≈ 1 + r

r

1

1 + n
2 + s

×B(n,
1 + r

2
, n/2 + s) (53)

where B(n, 1+r
2 , n/2+s) is a binomial distribution

for the variable n/2 + s, and the neglected terms

give an exponentially suppressed contribution as n

goes to infinity. The mean of s
n is r

2 and the vari-

ance is 1−r2

4n , the next moments give contribution

O(n−2). The sum on s goes from zero or 1/2 to

n/2, therefore if r is sufficiently greater than 0
we are neglecting in the sum a region where the

binomial distribution in small and the total contri-

bution of the region to the sum is exponentially

suppressed. The second useful observation is that

the eigenvalues and the term outside the binomial

in (53), expanded in the variables s
n and t

n around

their means, show series coefficients that do not

increase in powers of n as one goes to higher terms.

Therefore to get the leading and next to leading

term one needs the expansion only at second order

in these variables.

The expansion in s
n ,

t
n around their means let us

also determine the sign of the eigenvalues in the

relevant region for the sum. In particular for the

four cases analyzed so far we have:

a) Λ
(n)
s,t,q=s+t+1/2 =

r1−r2
2 +O

(

| sn − r1
2 |+ | tn − r2

2 |+ | 1n |
)

,

b) Λ
(n)
s,t,q=t−s−1/2 =

r1+r2
2 +O

(

| sn − r1
2 |+ | tn − r2

2 |+ | 1n |
)

,

c) Λ
(n)
s,t,q=s−t−1/2 =

− r1+r2
2 +O

(

| sn − r1
2 |+ | tn − r2

2 |+ | 1n |
)

,

d) Λ
(n)
s,t,q(+) ≥√
(r1−r2)2

2 +O
(

| sn − r1
2 |+ | tn − r2

2 |+ | 1n |
)

,

Λ
(n)
s,t,q(−) ≤

−
√

(r1−r2)2

2 +O
(

| sn − r1
2 |+ | tn − r2

2 |+ | 1n |
)

,

as s
n → r1

2 , t
n → r2

2 , and n→ ∞.

where in deriving the last two inequalities we

used (50) and (51). The above expressions allows

us to identify the positive terms which, in the

limit of large n, contribute to the sum (52): for

instance taking r1 > r2 we noticed that the positive

eigenvalues are those associated with case a) and

the first of case d), while the case b), which is

also positive, can be ignored because t > s is

not in the relevant region of the sum on s, t. With

this information, the sum on q can now be per-

formed at the relevant order with the second order

of the Euler-MacLaurin expansion (the details are

available in the supplementary Mathematica [33]
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Fig. 1. Scenario i) Minimal probability of error as
a function of n, with r1 =

3

4
and r2 =

1

2
: exact

values (dots), asymptotic expansion Eq. (55) (solid line),
Helstrom probability (dashed line).

notebooks, available at [36]):

b
∑

i=a

f(i) ≈
∫ b

a

f(x)dx +
f(a) + f(b)

2
. (54)

The final result, which takes into account also the

case r1 < r2, is

P
(n≫1)
err,min ≃ 1

2
− 1

24

(r1 + r2)
3 − |r1 − r2|3
r1r2

+
5

24n

(r1 + r2)
3 + |r1 − r2|3
r21r

2
2

− 1

24n

(r1 + r2)
5 − |r1 − r2|5
r31r

3
2

.(55)

which for r1 = r2 reproduce correctly the result

of [19], and which in agreement with (9) exhibits

a leading order that corresponds to the average of

the Helstrom probabilities, i.e.

P̄H =
1

2
− 1

4

∫

sin θdθ

√
(r1−r2 cos θ)2+r2 sin2 θ

2

=
1

2
− 1

24

(r1 + r2)
3 − |r1 − r2|3
r1r2

.

(56)

In Figure 1 we show the comparison between the

exact values of P
(n)
err,min (52) and the asymptotic

expansion (55).

B. Scenario ii): Mixed states with hard sphere prior

In the scenario ii) we are interested in considering

the case where ρ1 and ρ2 are arbitrary (possibily)

mixed density matrices. This corresponds to replace

(26) with

dµ(ρ1, ρ2) = dU1dµ(r1)dU2dµ(r2) , (57)

where again dU represents the Haar measure of

SU(2) while dµ(r) is a measure that gauges our

ignorance about the purity of the template states,

i.e. the length of their associated Bloch vectors.

Accordingly the only difference with the previ-

ous paragraph is that now, in the expression of

α(n) = ⊕s,t ⊕i,k (⊕q,mα
(n)|s,t,q,mi,k ) and β(n) =

⊕s,t⊕i,k

(

⊕q,mβ
(n)|s,t,q,mi,k

)

given in Eqs. (59) and

(60) we have now to replace the functions f
(n)
j (r)

with their averaged values, i.e.

f
(n)
j (r) → f

(n)
j ≡

∫

dµ(r)f
(n)
j (r) , (58)

such that

α(n)|s,t,q,mi,k = f
(n+1)
s+1/2f

(n)
t (59)

|s+ 1/2, t; q,m〉i,k〈s+ 1/2, t; q,m|
+f

(n+1)
s−1/2f

(n)
t

|s− 1/2, t; q,m〉i,k〈s− 1/2, t; q,m| ,
and

β(n)|s,t,q,mi,k = f (n)
s f

(n+1)
t+1/2 (60)

|s, t+ 1/2; q,m〉i,k〈s, t+ 1/2; q,m|
+f (n)

s f
(n+1)
t−1/2

|s, t− 1/2; q,m〉i,k〈s, t− 1/2; q,m| .
As a choice for dµ(r) we take the hard sphere prior

measure, i.e.

dµ(r) = 3r2dr (61)

which yields

f
(n)
j = 6

(

n
2 − j

)

!
(

1 + n
2 + j

)

!

(n+ 3)!
. (62)

The associated eigenvalues of Θ can then be ex-

pressed as in (42) with the rescaled quantities Λ
(n)
s,t,q

such that the eigenvalues λ
(n)
s,t,q are

λ
(n)
s,t,q = f (n)

s f
(n)
t Λ

(n)
s,t,q ,
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Λ
(n)
s,t,q are obtained as in (43),(45), with the terms

R
(n)
s,±(r) being replaced by

R
(n)
s,+ ≡

f
(n+1)
s+1/2

f
(n)
s

=
2 + n

2 + s

n+ 4
,

R
(n)
s,− ≡

f
(n+1)
s−1/2

f
(n)
s

=
1 + n

2 − s

n+ 4
, (63)

and the same for R
(n)
t,±(r) .

As a result, for the cases a), b), c), and d), we

get the following solutions,

a) Λ
(n)

s,t,q=s+t+
1
2

= s−t
n+4 ,

b) Λ
(n)

s,t,q=t−s− 1
2

= 1+s+t
n+4 ,

c) Λ
(n)

s,t,q=s−t− 1
2

= − 1+s+t
n+4 .

d) Λ
(n)
s,t,q(±) = ±

√
3−4q(1+q)+8s(1+s)+8t(1+t)

2(n+4) ,

which shows that only terms entering in the ex-

pression (52) for P
(n)
err,min are those of a) with

s > t, those of b), and the Λ
(n)
s,t,q(+) term of d).

Accordingly we can write

P
(n)
err,min =

1− S(n)

2
, (64)

with

S(n) =
∑

s>t

f (n)
s f

(n)
t M

(n)

s,t,s+t+
1
2

Λ
(n)

s,t,s+t+
1
2

+
∑

t>s

f (n)
s f

(n)
t M

(n)

s,t,t−s− 1
2

Λ
(n)

s,t,t−s− 1
2

+
∑

s,t

f (n)
s f

(n)
t

s+t− 1
2

∑

q=|s−t|+1
2

M
(n)
s,t,q Λ

(n)
s,t,q(+),

(65)

with M
(n)
s,t,q the multiplicity factors of defined in

Eq. (18) which allow for a simplification of the

resulting formula thanks to the identity

f (n)
s f

(n)
t M

(n)
s,t,q =

36(2s+1)(2t+1)(2q+1)
(n+1)2(n+2)2 . (66)

To get to the final result at order O
(

1
n

)

one can

still exploit the Euler McLaurin formula (54) for

each of the three sums, and the details are available

�� �� �� ��� ��� ��� ���
�

��

����

����

���	

����

Fig. 2. Scenario ii) Minimal probability of error as a
function of n: exact values (dots), asymptotic expansion
Eq. (67) (solid line), Helstrom probability (dashed line).

in the supplementary Mathematica notebooks. The

result is

P
(n≫1)
err,min ≃ 17

70
+

18

35n
, (67)

which in n→ ∞ agrees with the average Helstrom

probability P̄H = 17/70 that in the present case

can be obtained by integrating (56) with respect

to r1 and r2 with the corresponding hard sphere

measures. In Figure 2 we show the comparison

between the exact values of P
(n)
err,min (64) and the

asymptotic expansion (67).

C. Scenario iii): Pure states at fixed overlap

We now consider the case where the templates

states ρ1 = |ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2| are pure

and characterized by a mutual overlap which is

known a priori. No information about the absolute

orientation of the couple is instead assumed. As

anticipated in the introductory section this model

appears to be well suited to characterize a scenario

where for instance the machine is asked to discrim-

inate between two possible configurations on the

basis of templates generated by an external party

which does not share a common reference frame

with the machine itself. Without loss of generality

we can model this problem by setting

|ψ1〉 = |↑〉 , |ψ2〉 = U0|↑〉 , (68)
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with a fixed unitary U0, and then average on the

action of a unitary transformation U on both ρ1, ρ2.

With this choice the states (4) become

α(n) =

∫

dU
(

U |↑〉〈↑|U †)⊗n+1

⊗
(

UU0|↑〉〈↑|U †
0U

†
)⊗n

(69)

β(n) =

∫

dU
(

U |↑〉〈↑|U †)⊗n

⊗
(

UU0|↑〉〈↑|U †
0U

†
)⊗n+1

(70)

where once more dU is the Haar measure of SU(2).
As in the cases analyzed before α(n) and β(n), as

well as their difference Θ(n) are invariant under

U⊗2n+1. Furthermore, since on both the AX and

the B partition α(n) is described by pure vectors

which are completely symmetric under permuta-

tions, the only elements of the basis (15) on which it

can have support are those with maximum values of

s′ and t, i.e. s′ = (n+1)/2, t = n/2. As explicitly

derived in (VI-B), these states are also eigenstates

for α(n), i.e.

α(n)|n+1
2 , n2 ; q,m〉 = Φ(n)(q, U0)|n+1

2 , n2 ; q,m〉,
(71)

with eigenvalues Φ(n)(q, U0) given by

Φ(n)(q, U0) =

n/2
∑

h=−n/2

D
n
2

h,n2
(U0)D

n
2
n
2 ,h(U

†
0 )

× 1

2q + 1
C

q, n+1
2 +h

n+1
2 ,n+1

2 ,n2 ,h
C

q,n+1
2 +h

n+1
2 ,n+1

2 ,n2 ,h
,

(72)

where the symbol Dj
mm′(U) represent the ma-

trix elements of the irreducible representations of

U ∈ SU(2) with dimension 2j + 1, and Cq,l
j,m,j′,m′

being the Clebsch-Gordan coefficients. (Notice that

in the above analysis we dropped the multiplicity

labels i and k in writing the elements of the basis

(15) because for the s′ = (n + 1)/2, t = n/2
no degeneracy of the representation is present,

#(n/2, n) = 1). Analogous properties applies for

β(n) when expressed into the basis (37). Therefore

as in the previous cases Θ can be expressed as

a direct sum of 1 × 1 and 2 × 2 block matrices.

In the present case, however due to the special

restriction on s and t instead of the four possible

cases observed in the previous section, only a) and

d) may occur. It turns out that for the case a) the

associated eigenvalues is always null. For d) instead

we have

λ
(n)
s=n/2,t=n/2,q(±) = ±Φ(n)(q, U0) (73)

×|C(s=n/2,t=n/2,q)
+− |,

and the eigenvectors are the same that we obtain

for r1 = r2 = 1 in the case of completely random

orientations: for pure states, the optimal POVM

in the fixed overlap case is the same. Therefore,

writing the eigenvalues in a simpler notation as

λ
(n)
q (±), we have

Θ(n) =
∑

q

(

λ(n)q (+)Πq,+ + λ(n)q (−)Πq,−
)

,

(74)

where Πq+ and Πq− are the projectors on eigen-

vectors with total angular momentum q and respec-

tively positive and negative eigenvalues.

Replacing all this into Eq. (10) we can finally

write

P
(n)
err,min =

1

2
− 1

2

∑

q

(2q + 1) λ(n)q (+) , (75)

where we used the fact that M
(n)
s=n/2,t=n/2,q = 2q+

1 and that only the + elements of the couples (73)

are positive. To proceed further, without loss of

generality, we write U0 = exp(−iσy(π − θ)/2)
obtaining

D
n
2

h,n2
(U0)D

n
2
n
2 ,h(U

†
0 ) =

n!

(n
2 +h)!(n

2 −h)!
(76)

×
(

cos2
(

π−θ
2

))
n
2 +h (

sin2
(

π−θ
2

))
n
2 −h

,

which is a binomial distribution in the variable n
2 +

h ∈ {0, n}. We also notice that

(

C
q, n+1

2 +h
n+1
2 ,n+1

2 ,n2 ,h

)2

=
2(n

2 −h)!(n+1)!

(n
2 +h)!

× (n
2 +h+q+ 1

2 )!
(q− 1

2−n
2 −h)!(n−q+ 1

2 )!(n+q+ 3
2 )!
, (77)
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is also a probability distribution in the variable q ∈
{n
2 +h, n+

1
2}. Then the terms entering in the sum

of Eq. (75) rewrite explicitly as

(2q + 1)λ
(n)
q (+) =

∑

h
n!

(n
2 +h)!(n

2 −h)!

×
(

cos2
(

π−θ
2

))
n
2 +h (

sin2
(

π−θ
2

))
n
2 −h

× 2(n
2 −h)!(n

2 +h+q+ 1
2 )!(n+1)!

(n
2 −h+q− 1

2 )!(
n
2 +h)!(n−q+ 1

2 )!(n+q+ 3
2 )!

× 1
2

√

2(3/2+q+n)(1/2−q+n)
(n/2+1/2)(n+1) . (78)

As usual we focus on the limit of large n ≫ 1 for

P
(n)
err,min. In this case we notice that in order to get

up to the order O( 1
n2 ) for the resulting expression,

one can expand |C(s=n/2,t=n/2,q)
+− | around the mean

of the q distribution and consider contributions up to

the fourth central moment (see Appendix VI-C and

supplementary Mathematica notebooks), expand the

result around the mean of the h distribution and cal-

culate the contributions up to the relevant moment

(not more than the fourth). The result is

P
(n≫1)
err,min ≃ 1

2

(

1− | cos θ
2 |
)

+ 3+cos θ
8
√
2
√
1+cos θ

1

n

+ 1−60 cos θ−5 cos 2θ
128

√
2(1+cos θ)3/2

1

n2
, (79)

where, as expected, the first contribution corre-

sponds to the corresponding averaged Helstrom

probability P̄H – see also Figure 3. We notice that

for small deviations from orthogonality, one has

P
(n≫1)
err,min ≃ θ2

16
+

1

4n
− 1

8n2

(

1− θ2

4

)

, (80)

The expansion around coincident states is instead

singular, but the formula is still valid when the

states are not coincident and n(π − θ) ≫ 1. Since

the optimal POVM is the same of the totally random

pure state scenario, averaging over θ before doing

the asymptotic expansion gives the result of (55)

when r1 = r2 = 1. Integrating at the end gives

also the same result up to first order, while the

order n−2 is not integrable. This is not inconsistent:

one can see that the averaged P
(n)
err,min displays a

n− 3
2 dependence which is not recoverable from this

expansion (and also not exactly computable with the

Euler-MacLaurin approximation), which at fixed n
works only in the region n(π − θ) ≫ 1.
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�
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���
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����
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-	*��
-�
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-�

Δ����

Fig. 3. Scenario iii) Minimal probability of error as a
function of n,with θ =

π
3

: exact values (dots), asymptotic
expansion Eq. (79) (solid line), Helstrom probability
(dashed line). In the inset we show the second order
correction.

1) Generalisation in finite dimension d: For the

special setting of the present scenario we present

also a generalization to higher dimension. For this

purpose we now consider |ψ1〉 and |ψ2〉 as states

in a d dimensional Hilbert space. Accordingly,

substituting |↑〉 with |e〉, we can write the analogue

of (69), (70) as

α
(n)
d =

∫

SU(d)

dU
(

U |e〉〈e|U †)⊗n+1

⊗
(

UU0|e〉〈e|U †
0U

†
)⊗n

(81)

β
(n)
d =

∫

SU(d)

dU
(

U |e〉〈e|U †)⊗n

⊗
(

UU0|e〉〈e|U †
0U

†
)⊗n+1

. (82)

By the invariance of the Haar measure, one can in-

sert for free an integration over an SU(2) subgroup

of SU(d) which act non-trivially only on the space

E generated by |e〉 and U0|e〉, and write

α
(n)
d =

∫

SU(d)

dU

∫

SU(2)

dV
(

UV |e〉〈e|V †U †)⊗n+1

⊗
(

UV U0|e〉〈e|U †
0V

†U †
)⊗n

=

=

∫

SU(d)

dUU⊗2n+1α
(n)
2 U †⊗2n+1

, (83)
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β
(n)
d =

∫

SU(d)

dU

∫

SU(2

dV
(

UV |e〉〈e|V †U †)⊗n

⊗
(

UV U0|e〉〈e|U †
0V

†U †
)⊗n+1

=

=

∫

SU(d)

dUU⊗2n+1β
(n)
2 U †⊗2n+1

, (84)

with α
(n)
2 and β

(n)
2 defined as in (69), (70), but

supported on E⊗2n+1. By the same token, one has

Θd = α
(n)
d − β

(n)
d =

∫

SU(d)

dUU⊗2n+1(α
(n)
2 − β

(n)
2 )U †⊗2n+1

=

∫

SU(d)

dUU⊗2n+1Θ2U
†⊗2n+1

. (85)

Since Schur-Weyl duality holds also for SU(d),
the Hilbert space of 2n + 1 multiple systems still

admits a decomposition

H =
⊕

D

(γD ⊗ µD) (86)

where γD and µD are the irreducible representations

of SU(d) and the symmetric group S2n+1 with

Young diagram D.

Nonetheless, E⊗2n+1 can be decomposed as

E⊗2n+1 =
⊕

D jD ⊗ µD with jD, µD irreducible

representations of SU(2) and S2n+1 with Young

diagram D. In particular it follows that jD ⊆ γD.

From (74) we know that Θ2 has the form

Θ2 =
∑

q

(

λq(+)Π
(E)
q,+ + λq(−)Π

(E)
q,−

)

, (87)

with Π
(E)
q,± projecting on vectors of the form |q,m〉⊗

|±〉, with |q,m〉 ∈ jq, |±〉 ∈ µq , with q being the

associated Young diagram.

Therefore, calling Πq,+ the projector on γq ⊗
|+〉〈+| and Πq,− the projector on γq ⊗ |−〉〈−|, we

have

Θd =

∫

SU(d)

dUU⊗2n+1Θ2U
†⊗2n+1

=
∑

q

λq(+)

∫

SU(d)

dUU⊗2n+1Π
(E)
q,+U

⊗2n+1

+
∑

q

λq(−)

∫

SU(d)

dUU⊗2n+1Π
(E)
q,−U

⊗2n+1

=
∑

q

2q + 1

g
(d)
q

(λq(+)Πq,+ + λq(−)Πq,−) , (88)

where we used the Peter-Weyl theorem [22] in the

last equality, where now g
(d)
q is the dimension of the

representation γq . Finally, since Tr[Πq,±] = g
(d)
q ,

the probability of error in the d dimensional case is

still (79):

P
(n≫1)
err,min,d ≃ 1

2

(

1− | cos θ
2 |
)

+ 3+cos θ
8
√
2
√
1+cos θ

1

n

+ 1−60 cos θ−5 cos 2θ
128

√
2(1+cos θ)3/2

1

n2
, (89)

with sin θ
2 = |〈e|U0|e〉|. Also in this case one can

get the probability of error of the optimal learning

machines for Haar random pure states by integrating

over the probability distribution of the overlap c =
sin2 θ

2 , which for Haar random |ψ〉1 and |ψ2〉 is

known (e.g. [31]) and equal to P (c) = (d− 1)(1−
c)d−2. At the next to leading order the result is

P
(n≫1)
err,min,d ≃ 1

2
− d− 1

2d− 1
+

(d− 1)2

3 + 4d(d− 2)

1

n
. .(90)

which agrees with the zeroth order result in [10].

The asymptotic correction that we find can be also

directly calculated by following the approach in

[10], the interested reader can find the calculations

in the supplementary Mathematica notebooks.

D. Compatibility between optimal machines

In the previous subsections we have analysed

three different scenarios, which in principles give

rise to different optimal machines. However, addi-

tional symmetries make some of the optimal ma-

chines compatible, in the sense that it exists a mea-

surement that is optimal for different scenarios. In
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particular, if ŜAB is the swap operator between HA

and HB , one can verify that ŜABα
(n)Ŝ†

AB = β(n)

in scenario (ii), (iii) and also (i) when r1 = r2.

If this happens then ŜABΘŜ
†
AB = −Θ; it follows

that if |λ〉 is an eigenvector of Θ with eigen-

value λ, then also ŜAB|λ〉 is an eigenvector, with

eigenvalue −λ. Since ŜAB|s+ 1/2, s; q,m〉i,k =
|s, s+ 1/2; q,m〉i,k, ŜAB|s− 1/2, s; q,m〉i,k =

|s, s− 1/2; q,m〉i,k, in the spaces H(s,s)
AiXBk

the

eigenvectors are automatically determined as the

orthogonal vectors |λ+〉,|λ−〉 in H(s,s)
AiXBk

such as

ŜAB|λ+〉 = |λ−〉.
In particular, since the the relevant subspace in

scenario (iii) is only H(n
2 ,n2 )

AiXBk
, the optimal machine

for scenario (i) when r1 = r2, or the one for

scenario (ii), are also optimal for scenario (iii).

IV. IMPLEMENTATION OF THE OPTIMAL POVM

From the knowledge of the eigenvectors (23)

one can reconstruct the optimal POVM. Since it

is a projective measurement, it can be realized

by a change of basis from the the eigenvectors

to the computational basis, followed by a local

measurement. In the following we consider the

implementation of the optimal machine of scenario

iii), for the case n = 1. The change of basis is:

|ψ 1
2 ,

1
2 ,;

3
2 ,

3
2
〉 → |↑↑↑〉 (C)

|ψ 1
2 ,

1
2 ,;

3
2 ,

1
2
〉 → |↑↑↓〉 (C)

|ψ(−)
1
2 ,

1
2 ,;

1
2 ,

1
2

〉 → |↓↑↑〉 (B)

|ψ(+)
1
2 ,

1
2 ,;

1
2 ,

1
2

〉 → |↑↓↑〉 (A)

|ψ(+)
1
2 ,

1
2 ,;

1
2 ,−

1
2

〉 → |↓↑↓〉 (A)

|ψ(−)
1
2 ,

1
2 ,;

1
2 ,−

1
2

〉 → |↑↓↓〉 (B)

|ψ 1
2 ,

1
2 ,;

3
2 ,−

1
2
〉 → |↓↓↑〉 (C)

|ψ 1
2 ,

1
2 ,;

3
2 ,−

3
2
〉 → |↓↓↓〉 (C)

(91)

where A (B) means that the result of the mea-

surement is interpreted as X = A (X = B),

while for C we ”flip a coin” to decide. In the

computational basis the unitary rotation reads
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, (92)

and the probability of error as a function of θ is

P
(1)
err,min =

1

2
− 1 + cos θ

4
√
3

. (93)

These kind of operations are suitable for all pro-

grammable devices which are based on the circuit

model of quantum computation, as for example the

recent quantum chips developed by IBM [34]. By

using the software development kit QISKit [35], we

have determined a circuit that realises the POVM

for the n = 1 case with input pure states and

checked its performance with the IBM simulator.

The number of gates of our implementation is 61
single qubit operations and 60 CNOT, with a depth

of 43 operations. Given that the failure probability

of a CNOT on real machines is about 5 ∗ 10−2,

the failure probability of the circuit is at least

1 − 0.9560 ≈ 0.954. Indeed we tried to remotely

perform the experiment on the real physical chip,

without any significant results. This fact underlines

the importance of gate optimisation and error cor-

rection for the proper operation of future quantum

computers. However, with the simulation tools of

QISKit Aer, we were able to simulate the circuit

with an error model consisting in depolarising errors

(Fig. 4) and thermal relaxation errors (Fig. 5): de-

creasing the depolarising probability and increasing

the relaxation times we can show how the circuit is

sensitive to this kind of noises, and that we recover

the expected behaviour for small noise.

V. CONCLUSIONS

In this work we have discussed the performances

of optimal universal learning quantum machines

that aim at discriminating the states of a qudit

starting from a collection of templates states in the
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Fig. 4. Simulation of the optimal machine with QISKit Aer,
with depolarising error modeled after the gate average
infidelity of each gate: pf are the depolarising probability
for the 16 qubit machine (Melbourne) if all the infidelity
is due to a depolarising channel. Frequency of misclassi-
fication errors with 256 repetitions for each θ, compared
with the predicted minimum error function (solid line).
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Fig. 5. Simulation of the optimal machine with QISKit
Aer, with thermal relaxation times T1 = T2 = T equal for
each qubit. Gate times are set to 200ns for 1 qubit gates
and 800ns for CNOT. Frequency of misclassification
errors with 256 repetitions for each θ, compared with
the predicted minimum error function (solid line).

hybrid, yet realistic scenario, where at least some

global information on the training set is classically

available. As a matter of fact, it is not hard to

identify situations for which this kind of approach

could provide a realistic modelisation. Indeed, while

absolute information about quantum states is typi-

cally not accessible, some structural properties are

more likely to be available. For instance this is what

happens in quantum communication [32] where the

receiving party does not know the particular state is

going to receive, but has classical knowledge on the

code the sender is using. Like classical supervised

learning is a fundamental tool with classical data,

arguably quantum learning machines will be impor-

tant for dealing with quantum data with quantum

processors. Indeed, given that quantum tomography

is very expensive in terms of resources, dealing

with quantum data requires to study alternatives

which need little information about the data, make

use of the full power of quantum mechanics, and

extract only the relevant information for the prob-

lem at hand. Our work extends the previous results

considering more general scenarios. An interesting

observation is that the optimal machine that does

not assume any kind of information about the

template state, scenario (ii), it is also optimal for

scenario (iii), where the template states are assumed

to be pure. It is therefore a very general machine,

which can be seen as the most convenient learning

algorithm.
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VI. APPENDIX

In this appendix we present the explicit derivation

of some important identities which are used in the

main text. We recall that the Haar measure dU of

SU(2) satisfies the identity

∫

dU F(LU) =

∫

dU F(U) =

∫

dU F(UR) ,

for all L,R ∈ SU(2) and for all functions F acting

on SU(2), and that it induces a Hilbert product on

L2[U, dU ] via the identification

(f, g) ≡
∫

dU f∗(U)g(U) .

Furthemore, indicating with Dj
m,m′(U) the matrix

elements of the irreducible representations of U ∈
SU(2) with Casimir j(j+1), we recall that via the

Peter-Weyl theorem they fulfil the identities
∫

dU
(

Dj1
m1,m′

1
(U)
)∗
Dj2

m2,m′
2
(U) (94)

=
1

2j1 + 1
δj1j2δm1m2δm′

1m
′
2
.

A. Derivation of Eq. (31)

Let ρ a qubit density matrix characterized by

Bloch vector of length r which, without loss of gen-

erality we shall assume to be oriented in the positive

ẑ direction, i.e. ρ =
(

1+r
2

)

|↑〉〈↑| +
(

1−r
2

)

|↓〉〈↓|
with |↑〉, |↓〉 being the eigenvectors of σz . We notice

that its n-th tensor power can be expressed as

ρ⊗n =

n
∑

l=0

(

1 + r

2

)l (
1− r

2

)n−l

B
(n)
l ,

with

B
(n)
l ≡

∑

π

Sπ

(

|↑〉〈↑|⊗l ⊗ |↓〉〈↓|⊗n−l
)

S†
π ,

the sum being performed over the set of permuta-

tions operators Sπ of n elements. By construction

B
(n)
l is the projector on the eigenspace at fixed total

angular momentum Jz , therefore it is diagonal in

every basis of eigenvectors of J2, Jz . In particular

its support is given by the vectors |j, l − n
2 〉i in each

representation with Casimir number J2 = j(j + 1)
and l ∈ {n

2 − j, · · · , n2 + j}, the index i labelling

accounting for the multiplicity of the representation,

i.e.

B
(n)
l = ⊕j≥|l−n

2 | ⊕i |j, l − n
2 〉i〈j, l − n

2 | . (95)

Consider then the operator

γ(n) ≡
∫

dU
(

UρU †)⊗n
(96)

=

n
∑

l=0

(

1 + r

2

)l(
1− r

2

)n−l

P
(n)
l ,
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with

P
(n)
l ≡

∫

dUU⊗nB
(n)
l U †⊗n

. (97)

Invoking the identity (94) we can conclude that

P
(n)
l = ⊕j≥|l−n

2 |
1
(j)

2j + 1
, (98)

where now 1
(j) is the projector on all irreducible

representation with principal quantum number j.
Accordingly we have

γ(n) = ⊕j

n
2 +j
∑

l=
n
2−j

(

1 + r

2

)l(
1− r

2

)n−l
1
(j)

2j + 1

= ⊕jf
(n)
j (r)1(j), (99)

with f
(n)
j (r) as in (30). Equation (31) finally fol-

lows from by a direct application of (99) to the

terms
∫

dU
(

Uρ1U
†)⊗n+1

and
∫

dU
(

Uρ2U
†)⊗n

that enter in the definition of the operator α(n) of

Sec. III-A.

B. Derivation of Eq. (72)

To derive (72) let us first expand |n+1
2 , n2 ; q,m〉

into the angular momentum basis given by the

tensor product states |n+1
2 ,m′〉 ⊗ |n2 ,m−m′〉 as-

sociated with the AX/B partition, i.e.

|n+1
2 , n2 ; q,m〉 =

∑

m′

Cq,m
n+1
2 ,m′,n2 ,m−m′ (100)

×|n+ 1

2
,m′〉 ⊗ |n

2
,m−m′〉 ,

where Cq,m
n+1
2 ,m′,n2 ,m−m′ are the corresponding

Clebsch-Gordan coefficients. Then observing that

in this basis the state |↑〉⊗n+1 ⊗ |↑〉⊗n corresponds

to the element |n+1
2 , n+1

2 〉 ⊗ |n2 , n2 〉, we write the

operator α(n) as

α(n) =

∫

dUU⊗n+1|n+1
2 , n+1

2 〉〈n+1
2 , n+1

2 |U †⊗n+1

⊗(UU0)
⊗n|n2 , n2 〉〈n2 , n2 |(U

†
0U

†)⊗n ,

and observe that

α(n)
(

|n+1
2 ,m′〉 ⊗ |n2 ,m−m′〉

)

=

=
∑

l,l′

∫

dUD
n+1
2

l,n+1
2

(U)D
n+1
2

n+1
2 ,m′(U

†)

× D
n
2

l′,n2
(UU0)D

n
2
n
2 ,m−m′(U

†
0U

†)|n+1
2 , l〉 ⊗ |n2 , l

′〉

=
∑

h,k

D
n
2

h,n2
(U0)D

n
2
n
2 ,k(U

†
0 )

×
∑

l,l′

∫

dUD
n+1
2

l,n+1
2

(U)D
n+1
2

n+1
2 ,m′(U

†)

× D
n
2

l′,h(U)D
n
2

k,m−m′(U
†)|n+1

2 , l〉 ⊗ |n2 , l
′〉 ,(101)

where in the first identity the matrix elements

D
n+1
2

m1,m2(U) = 〈n+ 1

2
,m1|U⊗n+1|n+ 1

2
,m2〉,

and

D
n
2
m1,m2(U) = 〈n

2
,m1|U⊗n|n

2
,m2〉,

represent the action of the unitary U into the

selected basis, while in the second we used the

composition rules of SU(2) to factorize the con-

tributions of U0 from the rest. This equation can

be further simplified by exploiting once more the

Clebsch-Gordan mapping (100) to merge together

D
n+1
2

l,n+1
2

(U) with D
n
2

l′,h(U), and D
n+1
2

n+1
2 ,m′(U

†) with

D
n
2

k,m−m′(U †). As a result the previous expression

becomes

α(n)
(

|n+1
2 ,m′〉 ⊗ |n2 ,m−m′〉

)

=
∑

h,k

D
n
2

h,n2
(U0)D

n
2
n
2 ,k(U

†
0 )

×
∑

l,l′,q,q′

∫

dUDq

l+l′,n+1
2 +h

(U)Dq′

n+1
2 +k,m

(U †)

×Cq,l+l′

n+1
2 ,l,n2 ,l′

C
q, n+1

2 +h
n+1
2 ,n+1

2 ,n2 ,h

×Cq′,m
n+1
2 ,m′,n2 ,m−m′C

q′,n+1
2 +k

n+1
2 ,n+1

2 ,n2 ,k
|n+1

2 , l〉 ⊗ |n2 , l
′〉

=
∑

l,q

1

2q + 1

∑

h

D
n
2

h,n2
(U0)D

n
2
n
2 ,h(U

†
0 )

×Cq,m
n+1
2 ,m′,n2 ,m−m′C

q,n+1
2 +h

n+1
2 ,n+1

2 ,n2 ,h

×Cq,n+1
2 +h

n+1
2 ,n+1

2 ,n2 ,h
Cq,m

n+1
2 ,l,n2 ,m−l

|n+1
2 , l〉 ⊗ |n2 ,m− l〉 ,
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where in the second identity we exploit the Peter-

Weyl theorem, see Eq. (94), to evaluate the integral

in U , obtaining that the nonzero terms in the sum

have to satisfy q = q′, l+ l′ = m, h = k. Multiply-

ing this by Cq,m
n+1
2 ,m′,n2 ,m−m′ while summing over

m′, the latter equation finally gives us

α(n)|n+1
2 , n2 ; q,m〉

=
∑

l,m′,q′

1

2q′ + 1

∑

h

D
n
2

h,n2
(U0)D

n
2
n
2 ,h(U

†
0 )

×Cq,m
n+1
2 ,m′,n2 ,m−m′C

q′,m
n+1
2 ,m′,n2 ,m−m′

×C
q′,n+1

2 +h
n+1
2

,n
2
,n
2
,h
C

q′,n+1
2 +h

n+1
2

,n+1
2

,n
2
,h

×Cq′,m
n+1
2 ,l,n2 ,m−l

|n+1
2 , l〉 ⊗ |n2 ,m− l〉 ,

=
1

2q + 1

∑

h

D
n
2

h,n2
(U0)D

n
2
n
2 ,h(U

†
0 )

×C
q,n+1

2 +h
n+1
2 ,n+1

2 ,n2 ,h
C

q, n+1
2 +h

n+1
2 ,n+1

2 ,n2 ,h
|n+1

2 , n2 ; q,m〉 ,
(102)

which coincides with (72). Here in the second

equality we used the orthogonality of the Clebsch-

Gordan coefficients to select only the term q′ = q
in the sum.

C. Central momenta of the distributions

Here we report the central momenta of the dis-

tributions used for computing (79).

Putting h = ns
2 and 1+r

2 = cos
(

π−θ
2

)

we notice

that the distribution

P
(n)
θ (s) ≡ D

n
2

h,n2
(U0)D

n
2
n
2 ,h(U

†
0 ) , (103)

defined in Eq. (76) has momenta

µ1 = E[s] = r ,

µ2 = E[(s− µ1)
2] =

1− r2

n
,

µ3 = E[(s− µ1)
3] = 2r

1− r2

n
,

µ4 = E[(s− µ1)
4]

=
(−1 + r2)(2− 6r2 + 3n(−1 + r2))

n3
.

Instead, setting h = ns
2 , we notice that the momenta

of the distribution

P
(n)
h (q) ≡ 2(n

2 −h)!(n+1)!

(n
2 +h)!

× (n
2 +h+q+ 1

2 )!
(q− 1

2−n
2 −h)!(n−q+ 1

2 )!(n+q+ 3
2 )!

,

(104)

defined in (77), can be expressed in terms of Euler

gamma functions as follows

µ1 = E[q]

= −1

2
+

Γ(1/2 + h+ n/2)Γ(2 + n)

Γ(1 + h+ n/2)Γ(3/2 + n)

=
n
√
1 + s√
2

− 1

2

+
11 + 5s

8
√
2
√
1 + s

+
9 + 14s− 23s2

128
√
2n(1 + s)3/2

+ O

(

1

n2

)

,

(105)

µ2 = E[(q − µ1)
2]

=
1

2
(1 + n)(2 + 2h+ n)

− Γ(3/2 + h+ n/2)2Γ(2 + n)2

Γ(1 + h+ n/2)2Γ(3/2 + n)2

=
1

8
n(1− s) +

−1 + 2s− s2

64(1 + s)
+O

(

1

n

)

(106)

µ3 = E[(q − µ1)
3]

= −(8+2h(5+4n)+n(11+4n))Γ(3/2+h+n/2)Γ(2+n)
Γ(1+h+n/2)Γ(3/2+n)

+ 8Γ(3/2+h+n/2)3Γ(2+n)3

4Γ(1+h+n/2)3Γ(3/2+n)3

= (−1+s)2n

32
√
2
√
1+s

+O (1) ,

(107)
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µ4 = E[(q − µ1)
4]

= (1+n)(4+10n+4h2n+6n2+n3+4h(1+3n+n2))
4

− 3Γ(3/2+h+n/2)4Γ(2+n)4

Γ(1+h+n/2)4Γ(3/2+n)4

+ (2+2n+n2+2h(2+n))π2Γ(2+2h+n)2Γ(3+2n)2

43+2h+3nΓ(1+h+n/2)4Γ(3/2+n)4

= 3
64(1− 2s+ s2)n2 +O (n) .

(108)


	I Introduction
	II The model
	III Derivation
	III-A Scenario i): Mixed states with fixed purity
	III-B Scenario ii): Mixed states with hard sphere prior
	III-C Scenario iii): Pure states at fixed overlap
	III-C1 Generalisation in finite dimension d

	III-D Compatibility between optimal machines

	IV Implementation of the optimal POVM
	V Conclusions
	References
	VI Appendix
	VI-A Derivation of Eq. (??)
	VI-B Derivation of Eq. (??)
	VI-C Central momenta of the distributions 


