arXiv:1806.00496v2 [csIT] 7 Mar 2019

On the Sub-Packetization Size and the Repair
Bandwidth of Reed-Solomon Codes

Weiqi Li, Zhiying Wang, Hamid Jafarkhani
Center for Pervasive Communications and Computing (CPCC)
University of California, Irvine, USA

{weiqil4, zhiying, hamidj} @uci.edu

Abstract

Reed-Solomon (RS) codes are widely used in distributed storage systems. In this paper, we study the
repair bandwidth and sub-packetization size of RS codes. The repair bandwidth is defined as the amount of
transmitted information from surviving nodes to a failed node. The RS code can be viewed as a polynomial
over a finite field GF(q") evaluated at a set of points, where £ is called the sub-packetization size. Smaller
bandwidth reduces the network traffic in distributed storage, and smaller ¢ facilitates the implementation of
RS codes with lower complexity. Recently, Guruswami and Wootters proposed a repair method for RS codes
when the evaluation points are the entire finite field. While the sub-packization size can be arbitrarily small,
the repair bandwidth is higher than the minimum storage regenerating (MSR) bound. Tamo, Ye and Barg
achieved the MSR bound but the sub-packetization size grows faster than the exponential function of the
number of the evaluation points. In this work, we present code constructions and repair schemes that extend
these results to accommodate different sizes of the evaluation points. In other words, we design schemes that
provide points in between. These schemes provide a flexible tradeoff between the sub-packetization size and

the repair bandwidth. In addition, we generalize our schemes to manage multiple failures.

I. INTRODUCTION

Erasure codes are ubiquitous in distributed storage systems because they can efficiently store data
while protecting against failures. Reed-Solomon (RS) code is one of the most commonly used codes
because it achieves the Singleton bound and has efficient encoding and decoding methods, see,
e.g., [2l], [3]. Codes matching the Singleton bound are called maximum distance separable (MDS)
codes, and they have the highest possible failure-correction capability for a given redundancy level. In

distributed storage, every code word symbol corresponds to a storage node, and communication costs

http://arxiv.org/abs/1806.00496v2

between storage nodes need to be considered when node failures are repaired. In this paper, we study
the repair bandwidth of RS codes, defined as the amount of transmission required to repair a single
node erasure, or failure, from all the remaining nodes (called helper nodes).

For a given erasure code, when each node corresponds to a single finite field symbol over F =
GF(q"), we say the code is scalar; when each node is a vector of finite field symbols in B = GF(q)
of length /, it is called a vector code or an array code. In both cases, we say the sub-packetization size
of the code is /. Here ¢ is a power of a prime number. Shanmugam et al. considered the repair of
scalar codes for the first time. Recently, Guruswami and Wootters [5] proposed a repair scheme for
RS codes. The key idea of both papers is that: rather than directly using the helper nodes as symbols
over I to repair the failed node, one treats them as vectors over the subfield B. Thus, a helper may
transmit less than ¢ symbols over B, resulting in a reduced bandwidth. For an RS code with length n
and dimension & over the field F, denoted by RS(n, k), [3] achieves the repair bandwidth of n — 1
symbols over B. Moreover, when n = ¢* (called the full-length RS code) and n—k = ¢‘~!, the scheme
provides the optimal repair bandwidth. Dau and Milenkovic [6] improved the scheme such that the
repair bandwidth is optimal for the full-length RS code and any n — k = ¢°,1 < s <log,(n — k).

For the full-length RS code, the schemes in [5] and [6] are optimal for single erasure. However, the
repair bandwidth of these schemes still has a big gap from the minimum storage regenerating (MSR)
bound derived in [7]. In particular, for an arbitrary MDS code, the repair bandwidth b, measured in
the number of symbols over GF'(q), is lower bounded by

l(n—1)
bz T 1

An MDS code satisfying the above bound is called an MSR code. In fact, most known MSR codes are
vector codes, see [8], [9], [10], [11]], [12], [13], [14]. For the repair of RS codes, Ye and Barg proposed
a scheme that asymptotically approaches the MSR bound as n grows [[I5] when the sub-packetization
size is £ = (n — k)™. Tamo et al. [16] provided an RS code repair scheme achieving the MSR bound
when the sub-packetization size is ¢ ~ n".

The repair problem for RS codes can also be generalized to multiple erasures. In this case, the
schemes in and work for the full-length code, [19] and work for centralized repair, and
[21]] proposed a scheme achieving the multiple-erasure MSR bound.

Motivation: A flexible tradeoff between the sub-packetization size and the repair bandwidth is an
open problem: Only the full-length RS code with high repair bandwidth and the MSR-achieving RS

code with large sub-packetization are established. Our paper aims to provide more points between the

two extremes — the full-length code and the MSR code. One straightforward method is to apply the
schemes of [5] and [6] to the case of ¢ > log,n with fixed (n, k). However, the resulting normalized
repair bandwidth ﬁ grows with ¢, contradictory to our intuition that larger ¢ implies smaller
normalized bandwidth.

The need for small repair bandwidth is motivated by reducing the network traffic in distributed
storage [7]], and the need for the small sub-packetization is due to the complexity in field arithmetic
operations, discussed below. It is demonstrated that the time complexity of multiplications in larger
fields are much higher than that of smaller fields [22]. Moreover, multiplication in Galois fields are
usually done by pre-computed look-up tables and the growing field size has a significant impact on
the space complexity of multiplication operations. Larger fields require huge memories for the look-up
table. For example, in GF'(2'%), 8 GB are required for the complete table, which is impractical in most
current systems [23]. Some logarithm tables and sub-tables are used to alleviate the memory problems
for large fields, while increasing the time complexity at the same time [23]], [24]], [25]. For example,
in the Intel SIMD methods, multiplications over GF(2'%) need twice the amount of operations as
over GF(2%), and multiplications over GF(23?) need 4 times the amount of operations compared to
GF(28), which causes the multiplication speed to drop significantly when the field size grows .

To illustrate the impact of the sub-packetization size on the complexity, let us take encoding for
example. To encode a single parity check node, we need to do & multiplications and & additions
over GF(q"). For a given systematic RS(n, k) code over GF(q"), we can encode kflog, q bits of
information by multiplications of (n — k)k¢log, ¢ bits and additions of (n — k)kllog, ¢ bits. So, when
M bits are encoded into RS(n,k) codes, we need M/(kllog,q) copies of the code and we need
multiplications of M (n — k) bits and additions of M (n — k) bits in GF(q*) in total. Although the total
amount of bits we need to multiply is independent of ¢, the complexity over a larger field is higher
in both time and space. For a simulation of the RS code speed using different field sizes on different
platforms, we refer the readers to [26]. The results suggest that RS codes have faster implementation
in both encoding and decoding for smaller fields.

Besides the complexity, the small sub-packetization level also has many advantages such as easy
system implementation, great flexibility and bandwidth-efficient access to missing small files [27]],
[28]], which makes it important in distributed storage applications.

As can be seen from the two extremes, a small sub-packetization level also means higher costs

in repair bandwidth, and not many other codes are known besides the extremes. For vector codes,

Guruswami, Rawat and Li, Tang provided small sub-packetization codes with small repair
bandwidth, but only for single erasure. Kralevska et al. also presented a tradeoff between the
sub-packetization level and the repair bandwidth for the proposed HashTag codes implemented in
Hadoop. For scalar codes, Chowdhury and Vardy extended Ye and Barg’s MSR scheme [[13]] to
a smaller sub-packetization size, but it only works for certain redundancy r and single erasure.
Contributions: In this work, we first design three single-erasure RS repair schemes, using the cosets
of the multiplicative group of the finite field [F. Note that the RS code can be viewed as n evaluations
of a polynomial over F. The evaluation points of the three schemes are part of one coset, of two
cosets, and of multiple cosets, respectively, so that the evaluation point size can vary from a very
small number to the whole field size. In the schemes designed in this paper, we have a parameter a

that can be tuned, and provides a tradeoff between the sub-packetization size and the repair bandwidth.

« For an RS(n, k) code, our first scheme achieves the repair bandwidth £(n — 1)(a — s) for some
a,s such that n < ¢, 7 2 n —k > ¢° and a divides ¢. Specifically, for the RS(14,10) code used
in Facebook [32]], we achieve repair bandwidth of 52 bits with ¢ = 8, which is 35% better than

the naive repair scheme.

l+a

o Our second scheme reaches the repair bandwidth of (n—1)=

for some a such that n < 2(¢*—1),
a divides ¢ and £ < a.

o The first realization of our third scheme attains the repair bandwidth of £(n+1+ (r—1)(¢* —2))
when n < (¢* — 1) log, £. Another realization of the third scheme attains the repair bandwidth of
Ein—1+(r—1)(¢*—2)) where { ~ af

to any d helpers, for £ < d <n — 1.

qa"_l)(q“nfl). The second realization can also be generalized

We provide characterizations of linear multiple-erasure repair schemes, and propose two schemes for
multiple erasures, where the evaluation points are in one coset and in multiple cosets, respectively.

Again, the parameter a is tunable.
o We prove that any linear repair scheme for multiple erasures in a scalar MDS code is equivalent
to finding a set of dual codewords satisfying certain rank constraints.
o For an RS(n,k) code with e < ﬁ\/@ erasures, our first scheme achieves the repair
bandwidth £(n — e)(a — s) for some a,s such that n < ¢°,7 = n — k > ¢* and a divides
l.

o For an RS(n, k) code, our second scheme works for ¢ < n — k erasures and n — e helpers.

The repair bandwidth depends on the location of the erasures and in most cases, we achieve

TABLE 1

Comparison of different schemes for single erasure. When a = ¢, our scheme in one coset is the scheme in [3]], [6]. When a = 1, our

schemes in multiple cosets is the schemes in [13], [16].

repair bandwidth code length restrictions
Schemes in [3], [6] (n—1)(¢ —s) n<dq’ ¢ <r
Scheme in <itm+1) n = log, £
Scheme in fin—1) n" ~{
Our scheme in P)
<z(h—1(a—s) n<(¢"—1) g <rall
one coset
Our scheme in
<(n—1)4= n<2(¢*—1) £ <a,alt
two cosets
Our scheme in lla =r™
<EnA1+(r=1"-2) | n<(¢"—m /
multiple cosets 1 for some integer m
Our scheme in p . l/a =~ m™
Fn=1+(—-1)(¢"=2) | n<(¢"=1)m
multiple cosets 2 for some integer m

TABLE II

Comparison of different schemes for multiple erasures. When a = £ and s = £ our scheme in one coset is the scheme 1 in [18]. When

a = 1, our schemes in multiple cosets is the scheme in [21].

repair bandwidth

code length

restrictions

in multiple cosets

n—=k

(n—e+(n—k+e)(q®—2)

Scheme 1 in [18]] g(n_e)e_e(e;;@*” n<d q571§T76<\/W
Scheme 2 in < gl;g((n (A Uogq(%”)) n<qt
Scheme in deie n" =~/
Our schemé for multiple erasures < %(n _e)a—s) n< (g —1) ¢ <ralle < ﬁ —logq —
in one coset
Our scheme for multiple erasures e l/a =~ m™m

for some integer m

el
d—k+e

(n—e+(n—k+

e)(q* — 2)) where ¢ =~ a(

n
qa_

1

)@=1) and a divides /.

« We demonstrate that repairing multiple erasures simultaneously is advantageous compared to

repairing single erasures

separately.

The comparison of our schemes, as well as the comparison to previous works, are shown in Tables [

and [[1 and are discussed in more details in Sections [II-Dl and [V-DI

The paper is organized as follows. In Section II, we briefly review the linear repair of RS codes

and provide the preliminaries used in this paper. In Section III, we present three RS repair schemes

for single erasure. Then, we discuss the repair schemes for multiple erasures in Section IV. In Section
V, we provide the conclusion.

Notation: Throughout this paper, for positive integer i, we use [i] to denote the set {1,2,...,i}.
For integers a, b, we use a | b to denote that a divides b. For real numbers a,, b,, which are functions
of n, we use a =~ b to denote lim,,_, Z—Z = 1. For sets A C B, we use B/A to denote the difference
of A from B. For a finite field IF, we denote by F* = [F/{0} the corresponding multiplicative group.
We write E < F for E being a subfield of F. For element 8 € F and E as a subset of [F, we denote
BE = {Bs,Vs € E}. AT denotes the transpose of the matrix A.

II. PRELIMINARIES

In this section, we review the linear repair scheme of RS code in [5], and provide a basic lemma
used in our proposed schemes.

The Reed-Solomon code RS(A,k) over F = GF(q") of dimension k with n evaluation points
A=Aaj,ay,...,a,} CF is defined as

RS(A k) = {(f(an), flaa), ..., flaw)) : | € Fla], deg(f) <k -1},

where deg() denotes the degree of a polynomial, f(z) = ug + uix + ugx® + -+ - + up_12*~1, and
u; € F,i =0,1,...,k — 1 are the messages. Every evaluation symbol f(a),a € A, is called a code
word symbol or a storage node. The sub-packetization size is defined as ¢, and r = n — k denotes the
number of parity symbols.

Assume e nodes fail, ¢ < n — k, and we want to recover them. The number of helper nodes are
denoted by d. The amount of information transmitted from the helper nodes is defined as the repair
bandwidth b, measured in the number of symbols over GF(q). All the remaining n — e = d nodes are

assumed to be the helper nodes unless stated otherwise. We define the normalized repair bandwidth

b

25> Which is the average fraction of information transmitted from each helper. By [71, [33], the

as
minimum storage regenerating (MSR) bound for the bandwidth is

eld
>
“d—k+e

As mentioned before, codes achieving the MSR bound require large sub-packetization sizes. In this

b 2)

section, we focus on the single erasure case.
Assume B < [, namely, B is a subfield of F. A linear repair scheme requires some symbols of the

subfield B to be transmitted from each helper node [5]]. If the symbols from the same helper node

are linearly dependent, the repair bandwidth decreases. In particular, the scheme uses dual code to
compute the failed node and uses trace function to obtain the transmitted subfield symbols, as detailed
below.

Assume f(a*) fails for some o* € A. For any polynomial p(z) € Flz] of which the degree is
smaller than r, (vip(aq), vap(as), ..., vap(ay,)) is a dual codeword of RS(A, k), where v;,i € [n]
are non-zero constants determined by the set A (see for example [[I, Thm. 4 in Ch.10]). We can thus

repair the failed node f(a*) from

n

varp(0)fa) = = 37 viplan) f(en) 3)

i=1,a; #a*

The summation on the right side means that we add all the ¢ elements from 7 = 1 to ¢ = n except
when «; # a*.
The trace function from [onto B is defined as

1

tres(B) = B+ B +---+ 87, 4)

where § € F, B = GF(q) is called the base field, and ¢ is a power of a prime number. It is a linear

mapping from F to B and satisfies

tTF/B(Oéﬁ) = OétT’F/]B(ﬁ) (5)

for all a € B.

We define the rank rankg ({71, 72, .., 7:}) to be the cardinality of a maximal subset of {~1, V2, ..., 7:}
that is linearly independent over B. For example, for B = GF'(2) and « ¢ B, rankg({1, o, 1+a}) =2
because the subset {1, a} is the maximal subset that is linearly independent over B and the cardinality
of the subset is 2.

Assume we use polynomials p;(x), j € [{] to generate ¢ different dual codewords, called repair

polynomials. Combining the trace function and the dual code, we have

n

tregp(Vapi (@) f(a) == Y trem(vip;(cs) (o). (6)

i=1,a; #a*

In a repair scheme, the helper f(«;) transmits

{tre/m(vip;(0q) f(ew)) : j € (€]} (7
Suppose {vap1(a*), varpe(a®), ..., vape(a®)} is a basis for F over B, and assume {1, o, . - ., fie}

is its dual basis. Then, f(«*) can be repaired by

¢
Fa) =" pitress(vapi(a®) f(a")). ®)

J=1

Since v,~ is a non-zero constant, we equivalently suppose that {p;(a*),...,p,(a*)} is a basis.
In fact, by [5] any linear repair scheme of RS code for the failed node f(a*) is equivalent to
choosing p;(z),j € [¢], with degree smaller than r, such that {p;(a*),...,p,(a*)} forms a basis for

I over B. We call this the full rank condition:

rankg({p1(a”), pa(”), ..., pe(@”)}) = L. ©)

The repair bandwidth can be calculated from (7) and by noting that v; f(«;) is a constant:
b= > ranks({pi(a),pa(c),. ... pi(e)}). (10)
acAata*
We call this the repair bandwidth condition.

The goal of a good RS code construction and its repair scheme is to choose appropriate evaluation
points A and polynomials p;(z), j € [¢], that can reduce the repair bandwidth in (I0) while satisfying
©).

The following lemma is due to the structure of the multiplicative group of [, which will be used for
finding the evaluation points in the code constructions in this paper. Similar statements can be found

in [2, Ch. 2.6].

14

Lemma 1. Assume E < F = GF(¢%), then F* can be partitioned to ¢t = “fg‘__ll cosets: {E*, BEE*,

BPE*, ..., B7'E*}, where [is a primitive element of F.

Proof: The ¢ — 1 elements in F* are {1,3,3% ..., "2} and E* C F*. Assume that ¢ is the
smallest nonzero number that satisfies 3! € E*, then we know that ¥ € E* if and only if t|k.

Also, % # %2 when ky # ky and ki, ko < ¢ — 2. Since there are only |E| — 1 nonzero distinct

elements in E* and 87! = 1, we have ¢ = &3—__11 and the t cosets are E* = {1, 8¢, %, ..., BUEI=2)t},
ﬁE* — {ﬁ, 5t+1,ﬁ2t+1, o ,ﬁ(|]E|_2)t+1}, o ﬁt_lE* — {ﬁt_l, 52t—1’ﬁ3t+1’ o ,ﬁ(“E'_l)t_l}. m

III. REED-SOLOMON REPAIR SCHEMES FOR SINGLE ERASURE

In this section, we present our schemes in which the evaluation points are part of one coset, two
cosets and multiple cosets for a single erasure. From these constructions, we achieve several different
points on the tradeoff between the sub-packetization size and the normalized repair bandwidth. The
main ideas of the constructions are:

(1) In all our schemes, we take an original RS code, and construct a new code over a larger finite

field. Thus, the sub-packetization size ¢ is increased.

(i1) For the schemes using one and two cosets, the code parameters n, k are kept the same as the
original code. Hence, for given n,r = n — k, the sub-packetization size ¢ increases, but we show that
the normalized repair bandwidth remains the same.

(ii1) For the scheme using multiple cosets, the code length n is increased and the redundancy r is
fixed. Moreover, the code length n grows faster than the sub-packetization size ¢. Therefore, for fixed
n,r, the sub-packetization ¢ decreases, and we show that the normalized repair bandwidth is only

slightly larger than the original code.

A. Schemes in one coset

Assume E = GF(q%) is a subfield of F = GF(q*) and B = GF(q) is the base field, where ¢ is
a prime number. The evaluation points of the code over [that we construct are part of one coset in
Lemma [Il

We first present the following lemma about the basis.

Lemma 2. Assume {&1,&,, ..., &} is a basis for F = GF(q") over B = GF(q), then {¢7 ¢4, ... €7},

s € [(] is also a basis.

Proof: Assume {7, ¢4, ... €7}, s € [{] is not a basis for F over B, then there exist nonzero

(o, g, ...), a; € Bi € [¢], that satisfy

18 + @pfd 4 4l

=0
=(a1&1 + as&o + -+ + wéo)?, (1)
which is in contradiction to the assumption that {1, &s, ..., &} is a basis for F over B. [|

The following theorem shows the repair scheme using one coset for the evaluation points.

Theorem 1. There exists an RS(n, k) code over F = GF(¢") with repair bandwidth b < £(n—1)(a—s)

symbols over B = GF(q), where ¢ is a prime number and «, s satisfy n < ¢%,¢* < n — k, all.

Proof: Assume a field F = GF(q") is extended from E = GF(q%), a | ¢, and 3 is a primitive

element of F. We focus on the code RS(A, k) of dimension k& over F with evaluation points A =

0 . . .
{ag, g, ..., a,} C B™E* for some 0 < m < Za—j, which is one of the cosets in Lemma [Il The base

field is B = GF(q) and (6) is used to repair the failed node f(a*).

10

Construction I: Inspired by [3], for s = a — 1, we choose

tres(&i(- 5)

pj(l’) T a* aj € [a]> (12)
B B
where {{1,&s,...,&,} is a basis for E over B. The degree of p,(x) is smaller than 7 since ¢° < r.

When z = o*, by @) we have

pi(a’) =& (13)
So, the polynomials satisfy
ranks({p1(a”), p2(a”), ..., pa(a”)}) = a. (14)
When = # o, since trE/B(Sj(ﬁim — gn)) € B, and ﬁ% — gn is a constant independent of j, we have
rankg({p1(x),p2(2), ..., pa(2)}) = 1. (15)
Let {n1,72,73,...,7/a} be a basis for F over [E, the ¢ repair polynomials are chosen as
{mp;(x),n2p;(2), - 1ejapi(x) : j € [al}- (16)

Since p;(z) € E, we can conclude that

rankg({mp;(a”), nep;(@”), .. mejapi(@”) 2 j € [a]})

B grankﬁ({pl(a*%m(ﬁ)’ o Daa)}) =4)

satisfies the full rank condition, and for z # o*

ranks({mp;(x), n2p; (), . .., eap;(z) © j € [a]})

14 4
= —rankg({p1(2), p2(2), ..., pa(2)}) = —. (18)
From (I0) we can calculate the repair bandwidth
b= Lo (19)
= - ,

Construction II: For s < a — 1, inspired by [6], we choose

q°—1 «
zw@:@IIQ%—(%;w@%Q)JeM, 0)

i=1

11

where {&1,&s,...,&} is a basis for E over B, and W = {wy = 0,wy,ws, ..., we—1} is an s-
dimensional subspace in E, s < a,¢® < r. It is easy to check that the degree of p;(x) is smaller

than r since ¢° < r. When x = o, we have

q°—1

— e] wi™ @1
i=1

¢°—1
Since [] w; !'is a constant, from Lemma] we have
i=1

rankg({p1(a”), p2(a”), ..., pa(a™)}) = a. (22)

For x # o, set 2/ _B_m_B_WEE we have

o= (- (7))

q°—1
=¢; H (w;'&; — ')
i=1
-1 -1
:ng _1,H§jx_wl
i=1 i=1
s_ qs 1
H &x—m) (23)
q°—1
By p- 41, 9(y) =][(y — w;) is a linear mapping from E to itself with dimension a — s over B.

i=0
q°—1

Since (z/)" H (w; ') is a constant independent of j, we have

ranks({pi(x), p2(2),...,pa(r)}) < a—s. (24)

Let {n1,72,73,...,7M/a} be a basis for F over E, then the ¢ polynomials are chosen as {np;(z),
n2p; (%), ... Mesap;(x), j € [a]}. From @I and 23) we know that p;(z) € E, so we can conclude that

ranks({mp;(a”®), np;i(@”), ... neap;i(a) - j € lal})
= gmnk‘ﬂ({pl(a*),pg(a*), o pa(@)}) =4 (25)
satisfies (9), and for x # o*
rankg({mp; (), n2p;(), nejaps(x) -

= “ranks ({1 (2),po(e). - pa(e)}) < la— 9) 26)

12

Now from (I0) we can calculate the repair bandwidth

1
b< —(n—1)(a—s). (27)
a
Combining (I9) and 27) will complete the proof of Theorem [l [|

Rather than directly using the schemes in and [6], the polynomials (I2) and (20) that we use
are similar to and [6]], respectively, but are mappings from E to B. Moreover, we multiply each
polynomial with the basis for F over E to satisfy the full rank condition. In this case, our scheme
significantly reduces the repair bandwidth when the code length remains the same. Our evaluation
points are in a coset rather than the entire field I as in [5]] and [6]]. It should be noted that a here can
be an arbitrary number that divides ¢ and when a = ¢, our schemes are exactly the same as those in
[3] and [6]. Note that the normalized repair bandwidth ﬁ decreases as a decreases. Therefore, our

scheme outperforms those in [5] and [6] when applied to the case of £ > log, n.

Example 1. Assume ¢ =2,/ =9,a=3and E= {0,1,0,0?, ...,a%}. Let A=FE*, n="T7,k =5 so
r =n —k = 2. Choose s = log,” =1 and W = {0, 1} in Construction II. Then, we have p;(z) =
Ei(x—ar+&)). Let {&, &, &) be {1, a, a?}. Tt is easy to check that ranks ({p1(a*), pa(a*), p3(a*)}) =
3 and rankg({p1(x), p2(z), p3(z)}) = 2 for x # . Therefore the repair bandwidth is b = 36 bits as
suggested in Theorem [Il For the same (n,k, (), the repair bandwidth in [6] is 48 bits. For another
example, consider RS(14,10) code used in Facebook [32]], we have repair bandwidth of 52 bits for

¢ = 8, while [6] requires 60 bits and the naive scheme requires 80 bits.

Remark 1. The schemes in [5] and [6] can also be used in an RS code over [E with repair bandwidth

(n —1)(a — s), and with ¢/a copies of the code. Thus, they can also reach the repair bandwidth of
‘

~(n —1)(a — s). It should be noted that by doing so, the code is a vector code, however our scheme
constructs a scalar code. To the best of our knowledge, this is the first example of such a scalar code

in the literature.

B. Schemes in two cosets

Now we discuss our scheme when the evaluation points are chosen from two cosets. In this scheme,
we choose the polynomials that have full rank when evaluated at the coset containing the failed node,

and rank 1 when evaluated at the other coset.

Theorem 2. There exists an RS(n, k) code over F = GF(¢) with repair bandwidth b < (n — 1)¢

symbols over B = GF'(q), where ¢ is a prime number and a satisfies n < 2(¢* — 1), all, ﬁ <n-—k.

13

Proof: Assume a field F = GF(q") is extended from E = GF(¢?) and f3 is the primitive element
of F. We focus on the code RS(A, k) over F of dimension & with evaluation points A consisting
of n/2 points from "™ E* and n/2 points from "2E*, 0 < m; < my < ;’2:1 and my — my; = ¢°,

1
s€{0,1,...,¢%

s ale

In this case we view E as the base field and repair the failed node f(a*) by

n

treje(vaspi (@) f(a) = — Y tram(vip;(es) f(as)). (28)

i=1,0; #a*
Inspired by [l Theorem 10], for j € [£], we choose
(35)i7L, if a* € BmE",
pilw) =4 """ (29)
(5%1)3‘1, if a* € gmE*.
The degree of p;(x) is smaller than » when 5 < r. Then, we check the rank in each case.

When o* € f™E*, if ¢ = ™y € f™E", for some v € E*,

r 7! »
pj(x)=<) =~ (30)

B
50
ranks({pi(x), p2(x), ..., pe(x)}) = 1. (31)
If z = "2y € p™E*, for some v € E*,
pilx) = (;m)j_l = (B ™y Ty (32)

Since my —my = ¢° and {1, 3, 5% ... ,55_1} is the polynomial basis for IF over E, from Lemma

we know that

rankg({p1(z), p2(z), ... ,pg(x)}) = g (33)

When o* € g™ E*, if v = ™~ € f™ME*, for some v € E*,

n = (5i2)j_1

— (5m1—m2)j—1,yj—1

= (BT Ia (e ey (34)

Since (8™2~™1)!1=% is a constant, from Lemma [we know that

ranks({ps(2), pa(a), .. pe (@)}) = = (39)

a

14

If x = ™y € p™E", for some v € E*,

r \'7! -
pj(r) = <5m2) =1, (36)

SO

rankg({p1(z), p2(z), . .. Dz ()}) =1. 37)

Therefore, {p;(a*),j € [£]} has full rank over E, for any evaluation point o* € A. For x from the
coset containing o, the polynomials have rank ¢/a, and for = from the other coset, the polynomials

have rank 1. Then, the repair bandwidth in symbols over B can be calculated from (I0) as

‘. n n
b= 5(5 —1)log, |E| + B) log, |E|
:(n_1)€+a_€—a
2 2
14
<(n-1) ;“. (38)
Thus, the proof is completed. u

Example 2. Take the RS(14,11) code over F = GF(2'?) for example. Let 3 be the primitive element
inF,a=4,s=/{/a=3and A=E"UPpSE" Assume o* € SE*, then {p;(x),j € [3]|} is the set
{1,z,2°}. Tt is easy to check that when z € BE* the polynomials have full rank and when z € E*
the polynomials have rank 1. The total repair bandwidth is 100 bits. For the same (n, k, ¢), the repair
bandwidth of our scheme in one coset is 117 bits. For the scheme in [5]], which only works for //a = 2,

we can only choose a = 6 and get the repair bandwidth of 114 bits for the same (n, k, £).

C. Schemes in multiple cosets

In the schemes in this subsection, we extend an original code to a new code over a larger field and
the evaluation points are chosen from multiple cosets in Lemma [l to increase the code length. The
construction ensures that for fixed n, the sub-packetization size is smaller than the original code. If
the original code satisfies several conditions to be discussed soon, the repair bandwidth in the new
code is only slightly larger than that of the original code. Particularly, if the original code is an MSR
code, then we can get the new code in a much smaller sub-packetization level with a small extra repair
bandwidth. Also, if the original code works for any number of helpers and multiple erasures, the new
code works for any number of helpers and multiple erasures, too. We discuss multiple erasures in

Section V]

15

We first prove a lemma regarding the ranks over different base fields, and then describe the new

code.

Lemma 3. Let B = GF(q),F' = GF(¢"),E= GF(q%), F = GF(¢"),{ = al'. a and ¢ are relatively

prime and ¢ can be any power of a prime number. For any set of {;,72,...,7»} C F' <T, we have

TankE({fyh Y25 -0y Vf’})

=rankg ({71, 2, ..., Yo' })- (39)

Proof: Assume rankg({7y1,72, ...,V }) = ¢ and without loss of generality, {v1, 72, ..., 7.} are lin-
early independent over B. Then, we can construct {7, 1,7, 9, ..., Y} € F' to make {71, 72, ..., Yes Vor1s
Yeios .- Yy} form a basis for F over B.

Assume we get [F by adjoining /3 to B. Then, from Theorem 1.86] we know that {1, 3, 32, ..., 3~}
is a basis for both F over E, and " over B. So, any symbol 3 € I can be presented as a linear combina-
tion of {1, 3, 3%, ..., 65"1} with some coefficients in [E. Also, we know that there is an invertible linear
transformation with coefficients in B between {71, Y2, .., Yes Vei1, Voros - Vo } @nd {1, B, 82, ..., 87711,
because they are a basis for ' over B. Combined with the fact that {1, 3, 5%, ..., 5”‘1} is also a basis

for ¥ over [E, we can conclude that any symbol y € [F can be represented as
y=o1m +T2Y2 + ... + TeYe + xc+172+1 +.ot 1’5’72/ (40)

with some coefficients x; € [E, which means that {v1, 72, ..., Ve, Voy1, Voras --» Yo} 18 also a basis for

F over E. Then, we have that {71, 7, ...,7.} are linearly independent over E,

Tank]E({th Y25 ey Vf’})

>c

:rankB({%ﬁg,...,wz}). (41)

Since B < [E, we also have

Tank]E({th V25 e ryf’})

<ranks({y1,72, .-, Ve })- (42)

The proof is completed. u

Theorem 3. Assume there exists a RS(n’, k') code & over F' = G'F(q") with evaluation points set

A’. The evaluation points are linearly independent over B = G F'(q). The repair bandwidth is &’ and the

16

repair polynomials are p/;(x). Then, we can construct a new RS(n, k) code & over F = GF(¢"),(= al'
with n = (¢ — 1)n’, k = n —n’ + k' and repair bandwidth of b = ab/(¢* — 1) + (¢* — 2)¢ symbols
over B = G'F(q) if we can find new repair polynomials p;(x) € Flz], j € [¢'], with degrees less than
n — k that satisfy

rankg({p1 (), p2(x), ..., pe(2)})
=rankg({p}(a),ph(a),...,pu(a)}) (43)

for all o« € A’ x € aE*, where E = GF(q%).

Proof: We first prove the case when a and ¢ are necessarily relatively prime using Lemma [3]
the case when a and ¢ are not relatively prime are proved in Appendix A. Assume the evaluation
points of & are A" = {ay,as,...,a,}, then from Lemma [3] we know that they are also linearly
independent over [E, so there does not exist v;,7; € E* that satisfy «a;7; = «;7;, which implies that

{1 E*, aplE*, ... «a,yE*} are distinct cosets. Then, we can extend the evaluation points to be
A={E", k", ... a,E}. (44)

and n = (¢ — 1)n’. We keep the same redundancy r = n’ — k' for the new code so k =n —r.
For the new code &, we use p;(z) € F[z], j € [¢'] to repair the failed node f(a*)
trie(vaspj(a®) f(a¥)) = — Z tre/e(vap;(a) f(a)). (45)
acA,aFa*
Assume the failed node is f(a*) and a* € o;E*. Then, for the node = € «,;E*, because the original

code satisfies the full rank condition, we have
ranke({p1(z), p2(2), ..., pe(z)})
:Tanklﬁ%({p/l (Oéi>,p/2(0éi), LR 7p/£’ (al)}) = 6/7 (46)

then we can recover the failed node with p;(x), and each helper in the coset containing the failed
node transmits ¢ symbols over [E.

For a helper in the other cosets, = € a E*, € # i, by (3),

rankg({p1(z), p2(z), ..., pe(z)})

=ranks({p1(ac), py(e), - . pr(ad)}), 47)

then every helper in these cosets transmits —— symbols in E on average.

n/—1

17

The repair bandwidth of the new code can be calculated from the repair bandwidth condition (L)

as

(0" =1DE-a+ ([E| - 1) -a

= abl(¢" — 1) + (¢" — 2)! (48)

which completes the proof. []
Note that the calculation in (@8]) and (38) are similar in the sense that a helper in the coset containing
the failure naively transmits the entire stored information, and the other helpers use the bandwidth
that is the same as the original code.
As a special case of Theorem [3 when b’ = %(n’ — 1) matching the MSR bound (), we get
b= 1)+ -1), (49)

,
where the second term is the extra bandwidth compared to the MSR bound.

Next, we apply Theorem [3] to the near-MSR code and the MSR code [16]. The first realization
of the scheme in multiple cosets is inspired by [13]].

Theorem 4. There exists an RS(n, k) code over F = GF(¢") of which n = (¢* — 1)log, £ and alt,
such that the repair bandwidth satisfies b < —--[n + 1+ (n — k — 1)(¢® — 2)], measured in symbols

over B = GF(q) for some prime number q.

Proof: We first prove the case when a and ¢’ are relatively prime using Lemma [3] the case when

a and (' are not necessarily relatively prime are proved in Appendix A. We use the code in [13] as

the original code. The original code is defined in F' = GF(¢") and ¢ = 7". The evaluation points
are A" ={p,5", B, 57’”/71} where [is a primitive element of ',

In the original code, for ¢ =0,1,2,...,¢' — 1, we write its r-ary expansion as ¢ = (¢, Cp—1...¢1),

where 0 < ¢; < r — 1 is the i-th digit from the right. Assuming the failed node is f(3"" '), the repair

polynomials are chosen to be
pi(x) = %, c;=0,s=0,1,2,...,r = L,z € F. (50)

Here ¢ varies from 0 to ' —1 given that ¢; = 0, and s varies from 0 to »— 1. So, we have ¢’ polynomials
in total. The subscript j is indexed by ¢ and s, and by a small abuse of the notation, we write j € [¢'].

In the new code, let us define E = GF'(¢*) of which a and ¢ are relatively prime. Adjoining 3 to
E, we get F = GF(q"),¢ = al'. The new evaluation points are A = {SE*, 3"E*, BE*, ... ,ﬁT’"LlE*}.

18

Since A’ is part of the polynomial basis for F' over B, we know that {3, /", B, 6’"”,71} are
linearly independent over B. Hence, we can apply Lemma [3| and the cosets are distinct, resulting in
n =4 = (¢ — 1)log, *.

In our new code, let us assume the failed node is f(a*) and o* € ETHC, and we choose the

polynomial p;(z) with the same form as p/(z),
pi(z) = g% ¢;=0,5=0,1,2,....,r— 1,z €F. (51
For nodes corresponding to z = 7'y € 5" E*, for some ~ € E*, we know that
pi(x) = Ba* = (B)* = v*p(B"). (52)
Since p}(ﬁ"t) € I/, from Lemma 3] we have

rankg({7°py(B™), ¥ Dh(B™). ... v P (B7)})
=ranke({p) (5"), po(B"). .. pu(B")})
:Tankﬂ({pll(ﬁrt)apé(ﬁrt)a s 7p/£’(ﬁrt)})7 (53)

which satisfies (43)). Since the repair bandwidth of the original code is b' < (n/ + 1)%’, from (48) we

can calculate the repair bandwidth as
b=ab'(¢"— 1)+ (¢“ — 2)¢
< é[n+1+(r—1)(q“—2)], (54)
where the second term is the extra bandwidth compared to the original code. []

Example 3. We take an RS(4,2) code in GF(2'%) as the original code and extend it with a =
3,|E*| = 7 to an RS(28,26) code in GF(2*®) with normalized repair bandwidth of ﬁ < 0.65. The
RS(28,26) code in [15] achieves the normalized repair bandwidth of ﬁ < 0.54, while it requires
¢ = 2.7 x 10%. Our scheme has a much smaller ¢ compared to the scheme in while the repair

bandwidth is a bit larger.

In the above theorem, we extend [15] to a linearly larger sub-packetization and an exponentially
larger code length, which means that for the same code length, we can have a much smaller sub-
packetization level.

Next, we show our second realization of the scheme in multiple cosets, which is inspired by [16]].

Different from the previous constructions, this one allows any number of helpers, £ < d < n — 1. The

19

n/

sub-packetization size in the original code of [16] satisfies ¢ ~ (n’)"™ when n’ grows to infinity, thus

. . . / .
in our new code it satisfies ¢ ~ a(n/)" for some integer a.

Theorem 5. Let ¢ be a prime number. There exists an RS(n, k) code over F = GF(q*) of which

{ = asqiqy...q_»_, where g; is the i-th prime number that satisfies s|(¢; — 1),s = d — k + 1 and

qa

a is some integer. d is the number of helpers, k¥ < d < (n — 1). The average repair bandwidth is

b= m[n — 1+ (d — k)(¢* — 2)] measured in symbols over B = GF'(q).

Proof: We first prove the case when a and ¢’ are relatively prime using Lemma [3] the case when
a and (' are not necessarily relatively prime are proved in Appendix A. We use the code in [16]
as the original code, where the number of helpers is d’. We set n — k = n’ — &k’ and calculate the
repair bandwidth for d helpers from the original code when d’ = d — k + k’. Let us define F ()
to be the field obtained by adjoining « to the base field B. Similarly, we define F (a1, oo, ..., ay)
for adjoining multiple elements. Let «; be an element of order ¢; over B. The code is defined in the
field I/ = GF(¢") = GF(g°*®%%), which is the degree-s extension of F,(ay, s, ...,). The
evaluation points are A" = {ay, g, ..., }.
Assuming the failed node is f(«;) and the helpers are chosen from the set R, |R'| = d’, the
base field for repair is F’;, defined as F; = F,(a;,j € [n'],j # i). The repair polynomials are
{mpj(),t € la], j € [s]}, where

pi(x) =2/ g'(x),j € [s],x € F, (55)

g (x) = H (r —a),z e F. (56)

acA/(R'U{a;})
and 1, € ', t € [g;], are constructed in [16] such that {np)(c;),t € [¢;],j € [s]} forms the basis for

F” over F';. The repair is done using

trp e, (Vo () /(i) = = Y tre g, (vemp (o) £ (a)- (57)
e=1,e#i

For x ¢ R'U{a;}, pj(z) = 0, so no information is transmitted. The original code reaches the MSR

repair bandwidth

— Z Tanle'i({Utp;(O‘e) cte gl gelslt)
eER’
d/g/
“ TR -

20

In our new code, we define E = GF(¢*) = F,(a,,+1) where a and ¢’ are relatively prime, and o, is
an element of order a over B. Adjoining the primitive element of ' to E, we get F = GF(¢"),(= al'.
The new code is defined in F. We extend the evaluation points to be A = {;E*, apE*, ... a,v/E*}.
Since {a1, s, ..., } are linearly independent over B, we can apply Lemma [3 and the cosets are
distinct. So, n = |A| = (¢* — 1)n’.

Assuming the failed node is f(a*) and a* € o;E* and the helpers are chosen from the set R,
|R| = d, the base field for repair is F;, which is defined by F; £ F (a;,j € [n+1],j # i), for i € [n].
We define the repair polynomials {mp;(z),t € [¢:],j € [s]}., where

pi(z) =2""'g(x),j € [s],x €F, (59)
gx)=] (x—a)zeF, (60)
acA/(RU{a*})

and 7, is the same as that in the original code. Then, we repair the failed node by

trigr, (Vo (@) (@) = = Y tregm, (vamep; (@) f(@)). (61)

acA,a#a*

For x € alE*, o« € A’, we have
pi(x) =~""ta’g(x),5 € [s], (62)

for some v € E*. If ¢ RU {a*}, since g(z) = 0, no information is transmitted from node x. Next,
we consider all other nodes.
For © = ay,a € A', since g(x) is a constant independent of j, v € E C [F; and 7, o; € F', from

Lemma 3] we have

rankg, ({nep1 (), nep2(2), .., mps(2) : ¢ € [¢i]})
=ranke, {0, nye, ...,y Tt € [gi]})
=rankg,({ne, ma, ..., ma* ™t € [q¢]})
=ranke, ({0, mer, ..., t € [q]})
=rankg, ({mp) (@), nipy(a), ..., mpl(a) : t € [q]}), (63)

which satisfies (@3).

21

When k < d < n— 1, assuming the helpers are randomly chosen from all the remaining nodes, the

average repair bandwidth for different choices of the helpers can be calculated as

ba n—1—-(¢“—-2) , q*—2
—q122. 4= 4
b=d 7 p— +la 1 (64)
d d ¢)
e S ey | L CRl) 65)

Here in (64) the second term corresponds to the helpers in the failed node coset, the first term
corresponds to the helpers in the other cosets, and in (63) we used d' — k' = d — k. []
In the case of d = n — 1, the repair bandwidth of the code in Theorem [3 can be directly calculated

from (48)) as

b=ab(¢" — 1)+ (¢" — 2)¢

= L=+ - 1) - 2)] (66)

r

In (63) and (66), the second term is the extra repair bandwidth compared to the original code.

In Theorems 4land[3] we constructed our schemes by extending previous schemes. However, it should
be noted that since we only used the properties of the polynomials p’ (x), we have no restrictions on
the dimensions k&’ of the original codes. So, in some special cases, even if &’ is negative and the
original codes do not exist, our theorems still hold. Thus, we can provide more feasible points of

(n, k) using our schemes. This is illustrated in the example below.

Example 4. Let us take the RS(12,8) code as an example. We set g = 2,s =4,¢; = 5,q2 = 9,¢3 = 13
and @ = 7. Then, ¢ = 2340 and ¢ = 16380. Assuming the failed node is f(a*) and a* € oyC,
then we repair it in F; and set the polynomials in (39). We can easily check that when = € «;C,
rankg, ({mp1(z), epa(x), ..., mps(z) : t € [5]}) = 20 and when x in other cosets, ranky, ({n:p1(z),
mp2(z),...,mps(x) : t € [5]}) = 5. Therefore, we transmit 100 symbols in F;, which can be
normalized to ﬁ = 0.4545. Compared with the scheme in [16], which need ¢ = 2.4 x 10
and Fbl)é = 0.25, we provide a tradeoff between ¢ and b.

It should be noted that in this example, the RS (12, 8) code needs to be extended from an RS(3, —1)

code, which does not exist. However, since we only used the properties of the polynomials p;(z) and

p;(z), the new RS(12,8) code still works.

D. Numerical evaluations and discussions

In this subsection, we compare the existing and the proposed schemes. Table [l shows the repair

bandwidth and the code length of each scheme. For the comparison, we first show in Figures [Tl and 2l the

22

performance of each scheme when the sub-packetization changes, given (n, k) = (12,10) and (12,38),

respectively. We only consider n — 1 helpers. Two single points (log,(¢) = 53.5, —=; = 0.50) in

b
(n=1)¢

RS(12,10) codes and (log,(¢) = 64.4, —2— = 0.25) in RS(12,8) codes are not shown in the figures,

(n—1)¢

they can be achieved by both our second realization in multiple cosets and [[16]. We make the following

observations.

oo 1

08/ ,

0.7 1

0.6 ||~ — —Scheme in one coset 4
Scheme in two cosets
Scheme in multiple cosets 1

—+—— Scheme in multiple cosets 2

05 ¢ Full-length code Scheme by Ye and Barg 1
| | | \

Normalized repair bandwidth (b/[(n-1)I])

2 4 6 8 10 12 14 16
Sub-packetization size (log2(l))

Fig. 1. Comparison of 3 schemes, ¢ = 2,n = 12, k = 10, r = 2, x-axis is the log scale sub-packetization size, y-axis is the normalized

repair bandwidth.

1)

2)

3)

4)

For a fixed (n, k), we compare the normalized repair bandwidth b/[(n — 1)¢] in different sub-
packetization sizes. In our schemes in multiple cosets, we have a parameter a to adjust the sub-
packetization size. From Theorems [l and [5] we know that for the two schemes, ¢ = a - ra-1 and

(=~ a(

pro)(q%l), respectively, which means that increasing a will decrease the sub-packetization
£. In our schemes in one coset and two cosets, the parameter a is determined by code length
n, and will not be changed by increasing ¢, neither will the normalized repair bandwidth. When
q = 2, a =1, the two schemes in multiple cosets coincides with and [16]], respectively.
The scheme in also achieves one tradeoff point in Figure 2l which can be viewed as a special
case of our scheme in multiple coset 1.

For fixed n, k, our schemes are better than the full-length code in [5] and [6] for all ¢, except
when ¢ = 4, for which our scheme in one coset is identical to the full-length code.

While the repair bandwidth of the full-length code grows with ¢, our schemes in one coset and

two cosets have a constant normalized bandwidth, and our schemes in multiple cosets have a

23

n=12,k=8
T T
1r I 4
/
a.\ 09 / 1
z /
S 08r]
Z Scheme by Chowdhury and Vardy
S L J
s 0.7
S
g
o 06 B
g
005 TSN T T T
k=l
Q
N o04r 1
g — — — Scheme in one coset
S 03 Scheme in two cosets i
z 7 Scheme in multiple cosets 1 /
—+— Scheme in multiple cosets 2 Scheme by Ye and Bar
0.2 Full-length code 4 9 1

o

5 10 15 20 25
Sub-packetization size (log2(l))

Fig. 2. Comparison of 3 schemes, ¢ = 2,n = 12, k = 8,r = 4, x-axis is the log scale sub-packetization size, y-axis is the normalized
repair bandwidth. The scheme by Chowdhury and Vardy is in [31]], the scheme by Ye and Barg is in [13]], and the full-length code is
in [3] and [6].

decreasing normalized bandwidth with /.

5) For small /: the schemes in one coset and two cosets are better than those in multiple cosets;
when n = 12,k = 10,4 < ¢ < 48, the scheme in two cosets provides the lowest bandwidth;
when n = 12,k = 8,4 < ¢ < 768, one can show that the scheme in one coset has the smallest
bandwidth.

6) For large (: the first realization in multiple cosets has better performance than the second real-

ization in multiple cosets, but our second realization works for any number of helpers.

IV. REED-SOLOMON REPAIR SCHEMES FOR MULTIPLE ERASURES

In this section, we first present two definitions of the repair schemes for multiple erasures in a MDS
code: linear repair scheme definition and dual code repair definition. We prove the equivalence of the
two definitions. Then, we present two schemes for repairing multiple erasures in Reed-Solomon codes,

where the evaluation points are in one coset and multiple cosets, respectively.

A. Definitions of the multiple-erasure repair

Let us assume a scalar MDS code & over F = GF(q") has dimension k and code length n.

Let a codeword be (C1, (s, ...C},). Without loss of generality, we assume {C1, (s, ..., C.} are failed,

24

e < n — k, and we repair them in the base field B = GF'(q), where ¢ can be any power of a prime
number. We also assume that we use all the remaining d = n — e nodes as helpers. The following

definitions are inspired by [5] for single erasure.

Definition 1. A linear exact repair scheme for multiple erasures consists of the following.
1) A set of queries); C F for each helper C;,e + 1 <t < n. The helper C; replies with {vC},~v €
Q1 }-

2) For each failed node C;,i € [e], a linear repair scheme that computes

L

where {1, fti2, ..., pie } is a basis for F over B and coefficients \;,, € B are B-linear combinations

of the replies

Aim = > > Bimyt - trem(7CY), (68)

t=e+1 ’yEQt
with the coefficients [3;,,,; € B. The repair bandwidth is

14

b= Y ranks(Q:). (69)

t=e+1
In the following definition, we consider e/ dual codewords of &, and index them by ¢ € [e], j € [/],

denoted as (C/.,,C! ., Cj;p). Since they are dual codwords, we know that))" | C;C};, = 0.

g1y g2y iyn

Definition 2. A dual code scheme uses a set of dual codewords {(C};,, Cls, ..., Cl;,) 2 i € [e], j € [{]}

g1
that satisfies:

1) The full rank condition: Vectors

V (Czljh 01/327 . Czlje) [6],j S [6]7 (70)
are linearly independent over B.
2) The repair bandwidth condition:
b= Z rankg({Cl;, 1 € [e], 5 € [(]}). (71)

t=e+1

We repair nodes [e] from the linearly independent equations

Ztrm e Z treys(CL,CL) i € el j € [0 (72)

t=e+1

25

Here we use the same condition names as the single erasure case, but in this section, they are

defined for multiple erasures.
Theorem 6. Definitions [I] and 2] are equivalent.

The equivalence of Definitions [Il and 2] follows similarly as arguments in [5]], except that we need
to first solve e failed nodes simultaneously and then find out the form of each individual failure (67)).
The detailed proof of Theorem [6] is shown in Appendix Bl part of which uses Lemma M in Section
IV-B.

Remark 2. In this paper, we focus on repairing RS code and apply Theorem [to RS code. From [1,
Thm. 4 in Ch. 10] we know that with the polynomial p;;(x) € F[z]| for which the degrees are smaller
than n — &, (vipij(on), vapij(aa), . .., Uypij () is the dual codeword of RS(n, k), where v;,i € [n]
are non-zero constants determined by the evaluation points set A. So, in RS code, Definition 2l reduces
to finding polynomials p;;(z) with degrees smaller than n— k. In what follows we use p;; (o) to replace
the dual codeword symbol C};, in Definition 2] for RS code. One can easily show that the constants

v, 1 € [n] do not affect the ranks in the full rank condition and the repair bandwidth condition.

B. Multiple-erasure repair in one coset

There are several studies about the multiple erasures for full-length RS codes and [18]]. Inspired
by these works, we propose our scheme for multiple erasures in one coset.

From Theorem [6] we know that finding the repair scheme for multiple erasures in RS code is
equivalent to finding dual codewords (or polynomials) that satisfy the full rank condition and repair
bandwidth condition. Given a basis {1, &, ..., &} for F over B, we define some matrices as below.
They are used to help us check the two rank conditions according to Lemmas [and [5] whose proofs
are shown in Appendices C and D, respectively. Let the evaluation points of an RS code over [be

A=A{ai,...,an}. Let p;j(x),i € [e], j € [¢], be polynomials over I, and B a subfield of F. Define

-trF/B(flpil(at)) e trem(Eepin(on))

trijp(&ipio(ar)) -+ trem(Eepio(ay)) 73)

[trejp(&apie(an)) -+ trem(Eepie(an))]

26

(S5 Sy - Sie)
S S e S .

se |7 T . (74)
Sel 562 e See

Lemma 4. The following two statements are equivalent:
1) Vectors V;; = (pij(a1), pij(ca), ..., pij(ae)),@ € [e], 7 € [¢] are linearly independent over B.
2) Matrix S in (74) has full rank.

Lemma 5. For t € [n], consider S;; in ([Z3),

rank(:) = rankg({pi;(aw) 17 € [e], j € [{]}). (75)

Theorem 7. Let ¢ be a prime number. There exists an RS(n, k) code over F = GF(q") of which
n < ¢% ¢* < r and a|/, such that the repair bandwidth for e erasures is b < £ (n —¢)(a — s) measured
e(e—1)

in symbols over B, for e satisfying a > <~ (a — s)°.

Proof: We define the code over the field F = GF(q") extended by E = GF(q*), where 3 is
the primitive element of F. The evaluation points are chosen to be A = {aj,as,...,a,} C E*,
which is one of the cosets in Lemma [Il Without loss of generality, we assume the e failed nodes are
{a1,9,...,a.}. The base field is B = GF(q).
Construction III: We first consider the special case when s = a — 1. In this case, inspired by
Proposition 1], we choose the polynomials

o;t B (1 — oy
) = GO gy e 76

where {11, o, . . ., pta} is the basis for E over B, and §; € E, i € [e], are coefficients to be determined.

From Theorem 3], we know that for a > 6(62_ Y there exists d;,i € [¢] such that pij(x) satisfy

the full rank condition: the vectors V;; = (pi;(a1), pij(az), ..., pij(ce)),t € [e],j € [a] are linearly

independent over B and the repair bandwidth condition:

> ranks({pij(ay) i € [e],j € [a]}) = (n— e)e — ele - 1;@ mid) (77)

t=e+1

27

Then, let {11,792, ...,M.} be a set of basis for IF over EE; we have the e/ polynomials as {7,,p;;(z) :
w € [l/a],i € [e],j € [a]}. Since {n1,7m2,..., M} are linearly independent over E and for any
bijw € B, bijwpij(x) € E, we have

12
). (78)

by

Zbijwnw‘/ij =0 = Zbijwvij =0,Vw €
ij,w i,J
Also, we know that there does not exist nonzero b;;,, € B that satisfies) . jbijwVij = 0, so we

have that vectors {n,,V;;, w € [(/a],i € [e],j € [a]} are also linearly independent over B. So, from

Definition 2l we know that we can recover the failed nodes and the repair bandwidth is
b =ranks({mpi;(x), n2pi; (€), - - -, Mesapij(x) 2 0 € [e],j € [a]})

:érank]ﬂg({pij(ﬂf),i S [d,j € [a]})

- {(n e~ e Ma= ”] | (79)

Construction IV: For s < a — 1, consider the polynomials

q¢°—1
pis(x) =67 i I (x - (0%‘ - we_l%)) ,J € [al, (80)

e=1
where {/i1, fta, ..., pto} is the basis for E over B, W = {wy = 0, wy, wa, . .., wg—_1 } is an s-dimensional
subspace in E, s < a,¢®* <r, and 0; € E,i € [e], are coefficients to be determined.

When = = «;, we have

q°—1
pij(ai) = p? T wi™. (81)
e=1
-1
Since [] wZ 1 is a constant, from Lemma [2] we have
e=1
TGnkB({pu(Oéi)apiz(Oéi), <. 7Pm(04i)}) = a. (82)

For = # «, set ' = «a; — x, we have

q°—1
pis(x) =0 ' I <w€_1% - $/>

e=1
q°—1 q°—1 "
= 53 _1MJ H(we_lx/) J, — We
e=1 e=1 52:(:
o

q°—1 q°—1 ‘
= (:2')" 1_1 (w:") (S0 wa) . (83)

28

¢°—1
By p- 41, 9(y) =]] (y — w.) is a linear mapping from E to itself with dimension a — s over B.
e=0

Since (0;2")7 H (wZ!') is a constant independent of j, we have

rankg({pi1(x), pie(z), ..., pi(z)}) < a—s, (84)

which means that p;;(x) can be written as

pij(x) = 0 Zp]v v (85)

where {\1, \g, ..., \,_s} are linearly independent over B, p,, € B, and they are determined by ¢;, j;
and r — o;.

From Lemma @ we know that if the matrix S in (74) has full rank, then we can recover the e
erasures. It is difficult to directly discuss the rank of the matrix, but assume that the polynomials above
satisfy the following two conditions:

1) Si,i € [e] are identity matrices.

2) For any fixed 7 € [e],
Sit * Sty = 0pxe, @ >,y > ¢ (86)

Then, it is easy to see that through Gaussian elimination, we can transform the matrix S to an upper
triangular block matrix, which has identity matrices in the diagonal Hence S has full rank.
s qS_l
Here, we choose {£;,&,, ..., &} to be the dual basis of {u? H wot, pd H wt ol T wot),
e=1

SO

0,m # j,
tre/s(Empij () = (87)

1,m=7.

Therefore, S;;,i € [e] are identity matrices. We set 6; = 1, and recursively choose 0; after choosing

{61,09,...,0,_1} to satisfy @Bd). Define 9, = e

7 0

and ¢, to be the (m,p)-th element in S, for

m,p € [a]. @@) can be written as

Z Cmpt’f’]F/]B(gmpU at Z Crmp ijvt'r]F/lB gmé A) =0 v.] S [] (88)

m=1

where \,, v € [a — s], are determined by 0;, ¢t; and oy — ;. Equation (B8) is satisfied if

a

Z CoplTr /B (EmOiN,) = 0,0 € [a — 5], p € [a]. (89)

m=1

29

As a special case of Lemma [3 we have

rank(Sy,) = rankg({p;(ay), 7 € [(]}). (90)

Then, from (84) we know that the rank of Sy, is at most a — s, which means in (89) we only need to
consider p corresponding to the independent a — s columns of S;,. So, (89) is equivalent to (a — s)?

linear requirements. For §; € E, we can view it as a unknowns over B, and we have

2% —i)(i — 1 1
(€ Z)(Z)(CL—S)2 S 6(6)(CL—S)2 (91)
2 2
linear requirements over B according to (86). Also knowing 0/, we can solve 0; = 6/1[= 5’,-‘1[75.
Therefore, we can find appropriate {01, s, ..., d.} to make matrix S full rank when
—1
a> 6(62)(a — 5)%. 92)

Then, let {91,792, ...,7¢/q} be a basis for FF over E, we have the el polynomials as {7,pi;(z), w €
[0/a),i € le],j € [a]}. Similar to Construction III, we know that vectors {n,V;;, w € [{/a],i €
le], j € [a]} are linearly independent over B. Therefore, we can recover the failed nodes and the repair

bandwidth is
b =rankg({mpi;(x), nepi;(z), ... 777£/apij($) ci € e, € lal})

:grank]g({pij(x) NS [e]aj S [a]}>

l
<Z(n—e)a—s). (93)
a
Thus, the proof is completed. []

In our scheme, we have constructions for arbitrary a, s, such that a | £, s < a— 1, while the existing

schemes in and [18]] mainly considered the special case ¢ = a. It should be noted that the scheme

in can also be used in the case of s = a — 1 over E with repair bandwidth (n — e)e — %.
And, with ¢/a copies of the code, it can also reach the same repair bandwidth of our scheme. However,

by doing so, the code is a vector code, but our scheme constructs a scalar code.

C. Multiple-erasure repair in multiple cosets

Recall that the scheme in Theorem [3 for a single erasure is a small sub-packetization code with
small repair bandwidth for any number of helpers. When there are e erasures and d helpers, e <
n—k,k <d<n—e, we can recover the erasures one by one using the d helpers. However, inspired

by [21]], the repaired nodes can be viewed as additional helpers and thus we can reduce the total repair

30

bandwidth. Finally, for every helper, the transmitted information for different failed nodes has some
overlap, resulting in a further bandwidth reduction.

The approach we take is similar to that of Section [II-Cl We take an original code and extend it to
a new code with evaluation points as in (44). If a helper is in the same coset as any failed node, it
transmits naively its entire data; otherwise, it transmits the same amount as the scheme in the original
code. After the extension, the new construction decreases the sub-packetization size for fixed n, and
the bandwidth is only slightly larger than the original code.

The location of the e erasures are described by h;,i € [e], where 0 < h; < e, hy > hy > ... > he,
> ¢, hi = e. We assume the erasures are located in h; cosets, and after removing one erasure in each
coset, the remaining erasures are located in hy cosets. Then, for the remaining erasures, removing one
in each coset, we get the rest of erasures in h3 cosets, and so on. Figure [l also shows the erasure

locations described above.

Coset 1 Coset 2 .. Coset hy

h, © o o
\ J
|

h, failures, each coset contains one failure

hz Oll e JO
[

h, failures. each coset contains one failure

h, O le)

T)

h, failures, each coset contains one failure

Fig. 3. Location of the erasures. e erasures are located in hi cosets. For i € [e], we set 0 < h; < e,h1 > ha > ... > he and

i hi=e.

In our scheme, we first repair h; failures, one from each of the h; cosets. Then, for 2 < i < e, we
repeat the following: After repairing hy, ho, ..., h;_1 failures, we view these repaired nodes as helpers
and repair next h; failures, one from each of the h; cosets.

The repair bandwidth of the scheme is showed in the following theorem.

Theorem 8. Let ¢ be a prime number. There exists an RS(n, k) code over F = GF(q") for which

{ = asqiqs...q_»_, where g; is the i-th prime number that satisfies s|(¢; —1),s = (n — k)! and a is

q@

31

an integer. For e erasures and d helpers, e < n — k,k < d < n — e, the average repair bandwidth
measured in symbols over B is
arl ¢ h
hi(¢g* —1) —e)+ (n—hi(¢* =1 —
] A R R G U D D~

where h;, i € [e] are the parameters that define the location of erasures in Fig. B

b<

; (94)

Proof: We first prove the case when a and ¢’ are relatively prime using Lemma [3] the case when
a and ¢ are not necessarily relatively prime are proved in Appendix A. We use the code in [21]]
as the original code. Let F,(«) be the field obtained by adjoining « to the base field B = GF'(q).
Similarly let F, (a1, s, ..., a,) be the field for adjoining multiple elements. Let «; be an element of
order ¢; over B and h be the number of erasures in the original code. The original code is defined
in the field F' = GF(q") = GF(g*n9%), which is the degree-s of extension of F,(ay, as, . ..).
The evaluation points are A" = {1, as,...a, }. The subfield F', is defined as F') = Fy(oy,j =
h+1,h+2,...,n'), and F'; is defined as F (o, j # 4,5 € [n']).
In the original code, we assume without loss of generality that there are h failed nodes f’(ay),
(), ..., f'(an). Consider the polynomials for failed node f'(a;),1 <1i < h, as
pii(z) = v lgl(x),j € [s],x €T, (95)
where
gi(x) = H (r—a),z e, (96)
a€A’/(R'U{ i, iq1,ean)
for ' C A’,|R'| = d’ being the set of helpers. The set of repair polynomials are {7;p;;(),i € [h],j €
[si], t € [5E]}, where 1, € F’ are constructed in to ensure that {n;pj; (o), NiuPia (i), - - - NiuPis, () }
forms the basis for F’ over ;.
Then, the failed nodes are repaired one by one from
tT]F’/]F’i(Uainitp;j(ai)f,(ai)) == Z tT]F’/]F’i(Uenitp;j(QE)f/(QE))' 97)
e=1,ei
For x ¢ R'U{a, aiy1, ... an}, pi;(x) = 0 and no information is transmitted. Once f'(c;) is recovered,

it is viewed as a new helper for the failures ¢ + 1,2+ 2,..., h.

32

Since F’ n < [F’;, the information transmitted from the helper a, can be represented as

tre e, (Venupi;(ae) f'(ae))
4

=tre g, | Eim Z trer, ey (Venie§imPy; (ce) ()

m=1

q

= Z Sz{mtTF’/F’[;L] (Usnitgimp;j(ae)f/(ae))> (98)

m=1

where ¢, = mqf}%"h, {&i1, Gizs - G} and {&1, &, -+ ,qug} are the dual basis for '; over F',;. We
used the fact that tTIF’/IF’Z-(tTIF’i/IF’[;L](')) = tTIF’/IF’[h]('), for F,[h} <F,<F.
The original code satisfies the full rank condition for every ¢ € [h], and each helper «. transmits

rantar ({mintty(0) s € 3 € st € [2,m €)

)

. 54;
—ranks (Ut 1€ 1)1 € E2m € g}
_ L (99)
@ K5 W) e

symbols over 'y, which achieves the MSR bound.

In our new code, we extend the field to F = GF(q"), ¢ = al’, by adjoining an order-a element o,
to F. We set d — k = d’ — k’. The new evaluation points consist of A = {a;E*, axE*, ... o/ E*} E =
GF(q") = Fy(an41). The subfield Fp,) is defined by adjoining ;41 to F'p;, and F; is defined as
Foloy, j #1i,5 € [n+1]).

Assume first that each coset contains at most one failure, and there are h failures in total. We assume
without loss of generality that the evaluation points of the A failed nodes are in {a; E*, axE*, ... o, E*},
and they are a7y, agva, . . ., a7y, for some v, € E, w € [h]. Let the set of helpers be R C A, |R| =d.
We define the polynomials

pij(z) = 27 gi(x),j € [s;],x € F, (100)
where

gi(z) = H (r—a),z €F. (101)

a€A/{RU{aii,0tig 1Vig15---0n Vi }

33

The set of repair polynomials are {n;p;;(z),i € [h],j € [si].t € [ZE]}, where 1, € F' are the same
as the original construction. We use field [F; as the base field for the repair.
treys, (Voo atpig (i) fleam) = = Y trigm, (Vamiupis(@) f () (102)
a€A,aFa;
If v € RU{a;Vi, ®it1%it1, - - - @pYn}» Pij(2) = 0 and no information is transmitted. Next, we consider
all other nodes.

If z = oy for some v € E*, we have

pij(z) =7l gi(). (103)

Since 7, «; € F' and g;(z) is a constant independent of j, we have
5qi
ranky, ({nipir (T), iePia(T), - - Mitpis; (7) 1 T € [— 4 1)

54
=rankg, ({0t N, - - -, ;1 € | sq. Ih

54,
=rankg; ({0 (), P (), - - - by, (i) 1 1 € | Sq 1Y) (104)

which indicates the full rank. Note that the last equation follows from Lemma[3l As a result we can
recover the failed nodes and each helper in the cosets containing the failed nodes transmit ¢ symbols
in B.

For x = a7y, e > h, since [} is a subfield of FF; and from Lemma 3 we know that {&;1, &0, - . - ,giqg}

and {&;, &y, - .., &/} are also the dual basis for F; over F, then, similar to (98), we have
4
UrE/F, (Vanipij(z) f(x)) = Z fgmtTIF/IF[,L] (Veniimpij () f (). (105)
m=1

Using the fact that g;(x) is a constant independent of j, = € Fi) and 1;&im € ', from Lemma [3 we
know that

rankg, ({mt&mpij(ﬂf) ri€[h],j€lsi),t €] SQZ] m e [qz]})

)

:ran]{;F[h] ({mt&m RS [h],t c [Ssql] m € [qz]})

)

:TankIF’ ({mtgzm B]7t € [Ssq;] m e [qz]})
:Tanklﬁ" <{nzt§zmpz] ae S [h]>] € [Sz] te [Sq;] m e [ql]})

) (106)
(- k+h) [

34

where the last equality follows from (Q9) and d' — ¥ = d — k. So, each helper in the other cosets

h{
d—k+h

transmits symbols over B.

Using the above results, we calculate the repair bandwidth in two steps.
Step 1. We first repair h, failures, one from each of the h; cosets. From (I04), we know that in the A,

cosets containing the failed nodes, we transmit ¢ symbols over B. By (106]), for each helper in other

hit

cosets, we transmit d—kth,

symbols over B.

Step 2. For 2 < i < ¢, repeat the following. After repairing hy, ho, ..., h;_; failures, these nodes can be
i—1

viewed as helpers for repairing next h; failures, one from each of the h; cosets. So, we have d+ > h,
v=1

helpers for the h; failures. For the helpers in the h; cosets containing the failed nodes, we already

transmit ¢ symbols over B in Step 1 and no more information needs to be transmitted. For each helper

hit
d—k+320—1 ho

Thus, we can repair all the failed nodes. The repair bandwidth can be calculated as (94). [|

in other cosets, we transmit symbols over B.

Suppose that e failures are to be recovered. Compared to the naive strategy which always uses
d helpers to repair the failures one by one, our scheme gets a smaller repair bandwidth since the
recovered failures are viewed as new helpers and we take advantage of the overlapped symbols for
repairing different failures similar to [21]].

In the case when n > e(¢® — 1), or when we arrange nodes with correlated failures in different
cosets, we can assume that all the erasures are in different cosets, h; = e, hy = hy3 = ... = h, = 0. For
example, if correlated failures tend to appear in the same rack in a data center, we can assign each

node in the rack to a different coset. Under such conditions, we simplify the repair bandwidth as

d el "
bgn_ed_k+6(n—e+(d—/€)(q —2)). (107)

Indeed, one can examine the expression of (94]). With the constraint that Zle h; = e, the first term

e hi.
=1 d_k—"_ZZ/:l hy

is a decreasing function of h;. Under the assumption that n is large, the second term dominates,

hi(q®—1) —e) is an increasing function of h; and the second term (n—hy(¢*—1)) >

and increasing h; reduces the total repair bandwidth b. Namely, h; = e corresponds to the lowest
bandwidth for large code length.
In particular, when d = n — e, h; = e, we have

el el

b:n—k(n_e)+n—k

(n—k—e)(q"—2), (108)

where the second term is the extra repair bandwidth compared with the MSR bound.

35

TABLE III

Repair bandwidth of different schemes for e erasures.

repair bandwidth number of helpers
Single-erasure repair
g P Lin—1)(a—s) n—1
in one coset (separate repair)
Multiple-erasure repair
P P Ln—e)(a—s) n—e
in one coset (simultaneous repair)
Single-erasure repair
& P nefk[n—1+(n—/<:—1)(qa—2)] n—1
in multiple cosets (separate repair)
Multiple-erasure repair o0 N
nik[n—e—k(n—k—e)(q —2)] n—e
in multiple cosets (simultaneous repair)

D. Numerical evaluations and discussions

In this subsection, we compare our schemes for multiple erasures with previous results, including
separate repair and schemes in [[I8] and [21]].

We first demonstrate that repairing multiple erasures simultaneously can save repair bandwidth
compared to repairing erasures separately. Let us assume e failures happen one by one, and the rest of
n — 1 nodes are available as helpers initially when the first failure occurs. We can either repair each
failure separately using n — 1 helpers, or wait for e failures and repair all of them simultaneously with
n — e helpers. Table [II shows the comparison. For our scheme in one coset, separate repair needs

a repair bandwidth of £(n — 1)(a — s) symbols in B, simultaneous a repair requires bandwidth of
et

helpers with the bandwidth of

(n — e)(a — s). For our scheme in multiple cosets, we can repair the failures separately by n — 1

ne_ék [n—1+4+(n—Fk—1)(¢g" —2)], and with simultaneous repair we can

achieve the bandwidth of -%-[n — e + (n — k — €)(¢® — 2)]. One can see that in both constructions,
simultaneous repair outperforms separate repair.

Nest we compare our scheme for multiple erasures with the existing schemes. Figure 4] shows the
normalized repair bandwidth for different schemes when n = 16,k = 8, ¢ = 2, ¢ = 2. Table [V] shows

the comparison when n = 64, k = 32,e = 2, ¢ = 2. We make the following observations:
1) For fixed (n,k) and our scheme with multiple cosets, we use the paremeter a to adjust the
sub-packetization size. From Theorem [8] we know that ¢ ~ a - (qaL_l)(q‘;—il), which means that
increasing a will decrease the sub-packetization ¢. In our schemes with one coset and two cosets,

the parameter a is determined by the code length n, so increasing ¢ will not change a or the

n=16,k=8,e=2

0.6

05

0.4 r

Scheme 1 by Mardia, Bartan and Wootters

Scheme by Ye and Barg

Normalized repair bandwidth (b/[(n-1)I])

03 r — 4
Our scheme in one coset
0.2 | | —+— Our scheme in multiple cosets 1
Scheme 2 by Mardia, Bartan and Wootters
01 | | | | | I I I
0 10 20 30 40 50 60 70 80

Sub-packetization size (log2(l))

90

36

Fig. 4. Comparison of the schemes, ¢ = 2,n = 16,k = 8, e = 2, x-axis is the log scale sub-packetization size, y-axis is the normalized

repair bandwidth. The scheme by Mardia, Bartan and Wootters is in [I8], and the scheme by Ye and Barg is in [21]]

b

TABLE 1V

Normalized repair bandwidth(——) for different schemes when n = 64,k = 32,e = 2,q = 2. o can be also achieved by Scheme 1

in 18] and = is also achieved by [21].

(n—e)t

for our scheme in multiple cosets

=6 |0=7|(=8|¢=9 £=36x10% | £=33x 10" | £=3.9x 10"*°
Normalized bandwidth

0.42 0.50 0.52 0.52 0.52 0.52 0.52
for Scheme 1 in [18]]
Normalized bandwidth

0.49° 0.49 0.49 0.49 0.49 0.49 0.49

for our scheme in one coset
Normalized bandwidth
0.52 0.48 0.0625*

normalized repair bandwidth. When ¢ = 2, our code with a = 1 coincides with that of [21]].

2) For small ¢ and full-length code (¢ = log,n), the scheme in has the smallest normalized

repair bandwidth. (Our scheme in one coset also achieves the same point as Scheme 1 in

when ¢ = log, n.)

3) When ¢ grows larger (4 < ¢ < 2.1 x 107 in Figure d, 6 < ¢ < 3.3 x 10! in Table [[V)), our scheme

in one coset has the smallest repair bandwidth.

4) For extremely large ¢ (¢ > 2.1 x 107 in Figure 4 ¢ > 3.3 x 10'! in Table [V)), our scheme in

multiple cosets has the smallest repair bandwidth.

5) The scheme in [21] also achieves one point in both Figure 4 and Table [V] which can be viewed

37

as a special case of our scheme in multiple cosets.

V. CONCLUSION

In this paper, we designed three Reed-Solomon code repair schemes to provide a tradeoff between
the sub-packetization size and the repair bandwidth. Our schemes choose the evaluation points of the
Reed-Solomon code from one, two, or multiple cosets of the multiplicative group of the underlying
finite field. For a single erasure, when the sub-packetization size is large, the scheme in multiple
cosets has better performance, it approaches the MSR bound. When sub-packetization size is small,
the scheme in one coset has advantages in repair bandwidth. The scheme in two cosets has smaller
repair bandwidth with certain parameters in between the other two cases. For multiple erasures, our
scheme in one coset has constructions for arbitrary redundancy n — k£ and our scheme in multiple
cosets reduced the sub-packetization size of an MSR code. The two schemes together provided a set
of tradeoff points and we observe similar tradeoff characteristics as in the single erasure case. In spite
of several tradeoff points we provided in this paper, the dependence of the sub-packetization size

versus the repair bandwidth is still an open question.

APPENDIX A

PROOF OF SCHEMES IN MULTIPLE COSETS FOR THE CASE OF ARBITRARY a AND /'

In this section, we first introduce a lemma similar to Lemma [3 that does not require a and ¢’ to be
relatively prime. By applying this lemma, our constructions in multiple cosets for single and multiple
erasures can be generalized when a and ¢’ are arbitrary integers.

We note that a finite field F = GF(q¢") is also a vector space over GF(q). Let E be a sub-
space of F. Define the subspace spanned by a set of elements {7vi,72,...,7} C F over E as
spang {71, V2, ..., Vi} = {Zézl bjv; : b; € E}. The rank rankg({v:,72,...,7:}) is defined to be

the cardinality of a maximal subset of {7, 72, ...,7;} that is linearly independent over [E.

Lemma 6. Let B = GF(q),F' = GF(¢"), F = GF(q¢"),{ = al', and ¢ be any power of a prime
number. Define the subspace E = spang{/, o, ..., Ba}, Where {/31, Bo, ..., 8.} is a basis for F over
F’. For any set of {v1,72,...,7¢} C F' <TF, we have

rankg ({7, 72, .., Yo' })

:T@nk]&({ﬁa%a ---a’YZ’})- (109)

38

Proof: Assume rankg({7y1,72, ..., }) = ¢ and without loss of generality, {v1, 72, ..., 7.} are lin-
early independent over B. Then, we can construct {.,,,7. o, ..., 7} € F" to make {v1,72, .., Ve, Vo1
Veios - Yy} form a basis for F over B.

Since {31, B2, ..., .} is the basis for IF over [, we know that {571, 872, -, Bives BiYes1,8Veras -
Bivy i € [a]} is the basis for F over B. Then, we have F = spang{y1, 72, ..., Ve, Voi1s Vorar - Vor b
namely, {71,72, -, Ve, Veq1s Vogos - Yy is a basis for F over E, hence {71,72,...,7.} are linearly

independent over [E,

rankg ({1, 72, - Ve })

>c
=rankg({71,72, - 70 })- (110)

Since B C [E, we also have

Tank]E({th Y25 ey Vf’})

<ranky({v1,72, - Ve })- (111)

The proof is completed. u

For the schemes in multiple cosets when a and ¢’ are not relatively prime, we just use the subspace
E = spang{ /1, B, ..., Ba} to replace the subfield GF'(¢*). We denote by E* = E\{0} for the subspace
E. The evaluation points of the new code are {yE* : v € A’} where A’ C F’ is the set of evaluation
points for the original code. In the proofs, we use Lemma [@] instead of Lemma 3 For example, from
Lemma [6] we know that the new evaluation points are all distinct if the elements in A’ are linearly

independent over B.

APPENDIX B

PROOF OF THEOREM

In this section, we prove the equivalence of Definitions [I] and 2l We first show that the dual code
scheme in Definition 2] reduces to a linear repair scheme as in Definition [l in Lemma [7l Then, we

show that Definition [I] reduces to Definition 2] in Lemma [§] and Lemma

Lemma 7. The dual code scheme can be reduced to the linear repair scheme in Definition [

39

Proof: In the dual code scheme, we repair nodes [e] from the linearly independent equations

> trem(CipCo) = =) trepm(CiuC),i € [el, g € [0, (112)
v=1 t=e+1
Here, Cj;; can be written as
¢
Ciie =Y Emtre/s(EmCisy), (113)
m=1

where {&1,&,...,&} and {&], &, ..., &} are the dual basis for F over B. Then, we can rewrite (I12))

in matrix form as

[trs/5(€1C.) [tre/5(¢1C.)
c tr LC, n tr 5O,
3 S, s 3 Su GO e, (114)
v=1 : t=e+1 :
tTF/]B(gécv) _tTF/]B(gécv)_
where S;; € B is called the repair matrix defined as
[tre/s(€Ch,) -+ tregm(€Ch,)]
oo |TRECt) (et ws)
Ltrem(§C) - trem(&Cly) |
Let
[tre/m([Ch) |
tr 5Cw
X, 2 m@) Jw € [n]. (116)
| trp/B(€Cw) |
We want to solve X, i € [e], which can be used to recover the e failed nodes Cy, (s, ..., C.. Define
matrix S as
-511 Sip - 515-
So1 Saa e Soe

S=| "7 T (117)

Sel Se2 See_

40

Then, (I14) can be represented as

Xl Slt
X " |s
S ==Y |77 x. (118)
: t=e+1 :
Xe _Set_

Thus, from Lemma 4] we know that if the full rank condition satisﬁe, S has full rank so we can

solve X;,i € [e]. Then, C;,i € [e] can be repaired from

4
Ci =Y &mtre/s(§,Ch), (119)
m=1

Now, set fim = &m, We get N, = tres(£,C;), which can be solved from (I18). Note that the right
side of (LI8) is equal to the right side of (I12), we get the queries Q; = {C};;,7 € [e],j € [(]} and
the coefficients 3;,,,,+ come from matrix S.

Then, we can get the repair bandwidth condition:

n)4
b= Y ranks({Clj, i€ el je[(}) =Y ranks(Qy). (120)
t=e+1 t=e+1
|
Lemma 8. A linear repair scheme in Definition [I] can be represented in the form below:
pCi= > 0:Chyi € [e], j € [0, (121)

t=e+1
where {1y, iy, ..., i}, } is the dual basis of {ju;1, ftia, ..., ftie}, and 65, € spang(Q), e+1 <t <mn,i €

le], j € [¢] are some coefficients in F. The repair bandwidth is

n

b= ranks({6i; :i € [e],j € [(]}). (122)

t=e+1

Proof: By (67) and (68)) we have

S trem(Bigae - vC) = Nij = treys (i}, Ch). (123)

t=e+1 ’yEQt

"We use Lemma B while in Lemma B we use the polynomials p;; () as part of the elements in the defined matrix S;;. However, in
Lemma [we just view the polynomials p;;(x) as a symbol, change them to the dual codeword symbol C;;, will not have effects on

the results of the lemma.

41

Set 0,5 = ZVth Bijt - 7. Then, we have 0;;; € spang(Q;). Hence,

Z tre/s(0::Ct) = Z tTF/}B(Z Bijyt - 7Ct) = tTIF/IB%(/JéjCi)- (124)

t=e+1 t=e+1 YEQ
Equations (I23) and (124) hold for all f € F[z]. Since the RS code is a linear code, they also hold
for 4, - f € Flx] for all §,, € F. In particular, let d,,, m € [¢], be a basis for F over B, Then,

tre/g(Om - /J/;]'Ci) = tre/B(0m - Z 0:;:Cy),Ym € [(], (125)

t=e+1
which in turn implies that 6,;; also satisfies (I21)). []

Note that the repair bandwidth (I22)) also satisfies

n

b= Z rankg (0 21 € [e], 7 € [(])

t=e+1

< Z rankg(Qy), (126)

t=e+1

since 0,;; € spang(Q;). However, for any linear scheme L in Definition [I] if (I26) holds with strict
inequality, we can improve the linear scheme L by setting (), such that spang(Q;) = spang({6;;¢,? €
le],j € [€]}), for all e+ 1 <t < n. Hence, the linear scheme L and the scheme in Lemma [§] have
identical bandwidth.

Lemma 9. The scheme in Lemma [8] can be represented by the dual code scheme in Definition

Proof: By (I21), (0, . . ., ftij; - - -5 0, 0ijes1, - - -, Oijn) is a dual codeword, where 4;; is the i-th entry.
= —pij» Cij, = 0,0 € [e],v # i and Cf;, = Oij,e +1 <

Then, for j € [{], we set Cj;; such that Cj; v

t < n. The full rank condition follows because {/i;, fi}, ..., pt,} is the basis for F over B, and the

repair bandwidth condition follows from (I26). Thus, we obtain the dual code scheme in Definition

APPENDIX C

PROOF OF LEMMA @]

Proof: Vectors V;;,i € [e], j € [¢] are linearly independent over B is equivalent to that there is no

nonzero b;; € B, i € [e],j € [(] that satisfy

> bigpij(aw) = 0,¥v € [e]. (127)
4,

4

Here, p;;(x) can be written as

pzy Zg tTIF/]B gmpm()) (128)

m=1

where {&1,&,...,&} and {&],&5,...,&} are the dual basis for F over B. So, it is equivalent to that

there is no nonzero b;; € B, i € [e], j € [¢] that satisfy

Z bi; Z & trem(Empij () = 0,0 € [e]. (129)
m=1
Since {&1,&),...,&,} are linearly independent over B. Therefore, there is no nonzero b;; € B,i €
le], j € [¢] that satisfy
D bijtress(Enpii()) = 0,0 € [e],m € [£], (130)
.3
which is equivalent to S has full rank. []

APPENDIX D
PROOF OF LEMMA
Proof: Assume rankg({pij(cu).i € [e],j € [¢]}) = ¢ and {p;;(ow), (i,) € I} are linearly inde-
pendent over B, || = c. Define Sj(j) as the vector for the j-th row in Si: Si(j) = (tre/m(§1pi(ow)),
tri/s(&apij(ow)), -, triys(&ij(ar))). We first prove {Si(j), (i,j) € I} are linearly independent and
then prove S (j'),7" € le],5’ € [{],(7,j) ¢ I can be represented as B-linear combinations of
{Si(4), (4,5) € I} .
If {Sit(j), (4,j) € I} are linearly dependent over B, then there exists some nonzero b;; € B, (i,) € I
that satisfies

> biiSalh) (131)
(¢,9)el
and we have
> bigtrsm(Empii(a)) = 0,Ym € [(]. (132)

(¢,9)el

Multiplying the above equation by &/ and summing over all m € [¢] result in

> waﬁ tre/m(Empij () = (133)

(¢,5)el m=1

43

Then, from (I28) we know that b;; satisfies

> bipijlar) =0, (134)

(3,9)€l

which is contradictory to the statement that {p;;(c), (i,7) € I} are linearly independent over B.

Therefore, {S;(j), (¢,7) € I} are linearly independent over B.

Let us assume p;;(ay), 7 € [e], j' € [€], (7, 5) ¢ I can be represented as

pirjr (o) = Z b;;pij(ay), for some bj; € B. (135)

(3,9)€l

Then, for m € [¢],

tre/e(Empiry(ar)) = tresm | &m Z b;jpij@‘t)

(i,9)€l

=) btress(Empis(or), (136)

(1,9)el

which means that for i’ € [¢], j' € [(], (i, 7') ¢ I,

Sin(7') = > V;Sulj) (137)

(i,5)el
is the B-linear combination of {S;(j), (¢,7) € I}. [

REFERENCES

(1]
(2]
(3]
(4]

(3]
(6]

(7]

(8]

(9]

[10]

F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. Elsevier, 1977.

W. Ryan and S. Lin, Channel codes: classical and modern. Cambridge University Press, 2009.

V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometric codes,” in Foundations of Computer
Science, 1998. Proceedings. 39th Annual Symposium on. IEEE, 1998, pp. 28-37.

K. Shanmugam, D. S. Papailiopoulos, A. G. Dimakis, and G. Caire, “A repair framework for scalar MDS codes,” IEEE Journal
on Selected Areas in Communications, vol. 32, no. 5, pp. 998-1007, 2014.

V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,” IEEE Transactions on Information Theory, 2017.

H. Dau and O. Milenkovic, “Optimal repair schemes for some families of full-length Reed-Solomon codes,” in Information Theory
(ISIT), 2017 IEEE International Symposium on. 1EEE, 2017, pp. 346-350.

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Network coding for distributed storage systems,”
IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 45394551, 2010.

K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating codes for distributed storage at the MSR and MBR
points via a product-matrix construction,” IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 5227-5239, 2011.

D. S. Papailiopoulos, A. G. Dimakis, and V. R. Cadambe, “Repair optimal erasure codes through hadamard designs,” IEEE Trans.
Inf. Theory, vol. 59, no. 5, pp. 3021-3037, 2013.

I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes with optimal rebuilding,” IEEE Trans. Inf. Theory, vol. 59,
no. 3, pp. 1597-1616, March 2013.

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

44

Z. Wang, 1. Tamo, and J. Bruck, “Explicit minimum storage regenerating codes,” IEEE Transactions on Information Theory,
vol. 62, no. 8, pp. 4466-4480, Aug 2016.

A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath, “Progress on high-rate MSR codes: Enabling arbitrary number of helper nodes,”
in Information Theory and Applications Workshop (ITA), 2016. 1EEE, 2016, pp. 1-6.

S. Goparaju, A. Fazeli, and A. Vardy, “Minimum storage regenerating codes for all parameters,” IEEE Transactions on Information
Theory, vol. 63, no. 10, pp. 6318-6328, 2017.

M. Ye and A. Barg, “Explicit constructions of optimal-access MDS codes with nearly optimal sub-packetization,” IEEE Transactions
on Information Theory, vol. 63, no. 10, pp. 63076317, Oct 2017.

——, “Explicit constructions of MDS array codes and RS codes with optimal repair bandwidth,” in Information Theory (ISIT),
2016 IEEE International Symposium on. 1EEE, 2016, pp. 1202-1206.

[. Tamo, M. Ye, and A. Barg, “Optimal repair of Reed-Solomon codes: achieving the cut-set bound,” arXiv preprint
arXiv:1706.00112, 2017.

H. Dau, . Duursma, H. M. Kiah, and O. Milenkovic, “Repairing reed-solomon codes with multiple erasures,” IEEE Transactions
on Information Theory, 2018.

J. Mardia, B. Bartan, and M. Wootters, “Repairing multiple failures for scalar MDS codes,” IEEE Transactions on Information
Theory, 2018.

M. Zorgui and Z. Wang, “Centralized multi-node repair regenerating codes,” IEEE Transactions on Information Theory, 2019.
——, “On the achievability region of regenerating codes for multiple erasures,” in 2018 IEEE International Symposium on
Information Theory (ISIT). 1EEE, 2018, pp. 2067-2071.

M. Ye and A. Barg, “Repairing Reed-Solomon codes: universally achieving the cut-set bound for any number of erasures,” arXiv
preprint arXiv:1710.07216, 2017.

S. B. Gashkov and I. S. Sergeev, “Complexity of computation in finite fields,” Journal of Mathematical Sciences, vol. 191, no. 5,
pp. 661-685, 2013.

K. M. Greenan, E. L. Miller, and S. T. J. Schwarz, “Optimizing galois field arithmetic for diverse processor architectures and
applications,” in Modeling, Analysis and Simulation of Computers and Telecommunication Systems, 2008. MASCOTS 2008. IEEE
International Symposium on. 1EEE, 2008, pp. 1-10.

J. S. Plank, K. M. Greenan, and E. L. Miller, “Screaming fast galois field arithmetic using intel simd instructions.” in FAST, 2013,
pp- 299-306.

J. Luo, K. D. Bowers, A. Oprea, and L. Xu, “Efficient software implementations of large finite fields GF(2™) for secure storage
applications,” ACM Transactions on Storage (TOS), vol. 8, no. 1, p. 2, 2012.

J. S. Plank, J. Luo, C. D. Schuman, L. Xu, Z. Wilcox-O’Hearn et al., “A performance evaluation and examination of open-source
erasure coding libraries for storage.” in Fast, vol. 9, 2009, pp. 253-265.

V. Guruswami and A. S. Rawat, “MDS code constructions with small sub-packetization and near-optimal repair bandwidth,” in
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied
Mathematics, 2017, pp. 2109-2122.

0. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang, “Rethinking erasure codes for cloud file systems: minimizing /O
for recovery and degraded reads.” in FAST, 2012, p. 20.

J. Li and X. Tang, “A systematic construction of mds codes with small sub-packetization level and near optimal repair bandwidth,”
arXiv preprint arXiv:1901.08254, 2019.

K. Kralevska, D. Gligoroski, R. E. Jensen, and H. @verby, “HashTag erasure codes: from theory to practice,” IEEE Transactions
on Big Data, vol. 4, no. 4, pp. 516-529, 2018.

(31]

(32]

[33]

[34]
[35]

45

A. Chowdhury and A. Vardy, “Improved schemes for asymptotically optimal repair of MDS codes,” arXiv preprint
arXiv:1710.01867, 2017.

M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali, S. Chen, and D. Borthakur, “Xoring elephants: Novel
erasure codes for big data,” in Proceedings of the VLDB Endowment, vol. 6, no. 5. VLDB Endowment, 2013, pp. 325-336.

V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh, “Asymptotic interference alignment for optimal repair of
MDS codes in distributed storage,” IEEE Transactions on Information Theory, vol. 59, no. 5, pp. 2974-2987, 2013.

D. Goss, Basic structures of function field arithmetic. Springer Science & Business Media, 2012.

R. Lidl and H. Niederreiter, Introduction to finite fields and their applications. Cambridge university press, 1994.

	I Introduction
	II Preliminaries
	III Reed-Solomon repair schemes for single erasure
	III-A Schemes in one coset
	III-B Schemes in two cosets
	III-C Schemes in multiple cosets
	III-D Numerical evaluations and discussions

	IV Reed-Solomon repair schemes for multiple erasures
	IV-A Definitions of the multiple-erasure repair
	IV-B Multiple-erasure repair in one coset
	IV-C Multiple-erasure repair in multiple cosets
	IV-D Numerical evaluations and discussions

	V Conclusion
	Appendix A: Proof of schemes in multiple cosets for the case of arbitrary a and '
	Appendix B: Proof of Theorem ??
	Appendix C: Proof of Lemma ??
	Appendix D: Proof of Lemma ??
	References

