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Abstract

This work addresses two problems in the context of two-party communication com-
plexity of functions. First, it concludes the line of research which can be viewed as
demonstrating qualitative advantage of quantum communication in the three most com-
mon communication “layouts”: two-way interactive communication; one-way communica-
tion; simultaneous message passing (SMP). We demonstrate a functional problem c̃EqT ,
whose communication complexity is O

(
(log n)2

)
in the quantum version of SMP and

Ω̃(
√
n) in the classical (randomised) version of SMP.

Second, this work contributes to understanding the power of the weakest commonly
studied regime of quantum communication – SMP with quantum messages and without

shared randomness (the latter restriction can be viewed as a somewhat artificial way of

making the quantum model “as weak as possible”). Our function c̃EqT has an efficient so-
lution in this regime as well, which means that even lacking shared randomness, quantum
SMP can be exponentially stronger than its classical counterpart with shared randomness.

1 Introduction

Communication complexity is among the most interesting computational realms so far: Being
one of the strongest where we can establish non-trivial (often tight) hardness statements –
lower bounds; at the same time, it is one of the weakest that is capable to “accommodate”
rather involved algorithms – protocols. As of today, communication complexity is one of the
very few computational scenarios where both upper and (non-speculative) lower bounds play
central roles in the research.

We address two questions, related to the most basic communication complexity setting –
the regime of two parties, solving a functional problem.

Two-way, one-way and SMP. The three most commonly studied bipartite communication
“layouts” are: two-way (interactive) communication, one-way communication and simultaneous
message passing (SMP). These models involve two players, Alice and Bob, who receive one

∗Institute of Mathematics, Czech Academy of Sciences, Žitna 25, Praha 1, Czech Republic. Partially funded
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“portion” of the input each: Alice gets X and Bob gets Y (which we view as random variables).
Their goal is to use the allowed type of communication (as determined by the “layout”, see
below) in order to compute the value of f(X,Y ), where f is a two-argument function defining
the computational problem that the players have to solve.

• In the model of two-way communication the players can exchange messages, until one
of them outputs the answer.

• In the one-way model Alice can send one message to Bob, who then produces the answer,
based on this message and his portion of the input.

• In the model of simultaneous message passing both Alice and Bob send one message
each to the third participant – the referee – who has to produce the answer, based
on these two messages only (unlike the players, the referee doesn’t directly receive any
portion of the input).

In all three regimes we say that a communication protocol computes a Boolean function
f if for every pair (x, y) from the support of f , when the players receive (X,Y ) = (x, y), they
output f(x, y) with probability at least 2/3. The participants are “all powerful” in terms of
their local computational abilities, and the only resource considered for determining the cost
of a protocol is the “amount of communication” that it consumes.

• When the communication model is randomised, the participants can send (classical) bits,
the correctness condition must hold with respect to the random choices made by them
and the complexity of a protocol is the (maximum) total number of bits sent during its
execution.

• When the model is quantum, the participants can send qubits and perform arbitrary
quantum measurements, the correctness condition must hold with respect to these quan-
tum operations and the complexity of a protocol is the (maximum) total number of
qubits sent during its execution.

It is known (and easy to see) that for virtually any type of communication “primitive”
(i.e., classical randomised; classical deterministic; quantum; ...), the two-way layout is the
most powerful, one-way is intermediate and SMP is the weakest.

Demonstrating advantage of quantum over classical communication in a weaker regime
(say, one-way) could – in principle – turn out to be either less or more challenging than in a
stronger one (say, interactive): While in the latter case one would have to prove a stronger
lower bound, at the same time the communication problem being used for the separation
would likely be harder, and therefore easier to prove a lower bound for.

The history of research seems to suggest that separating models on the “lower levels”
– namely, one-way communication, and even more so SMP – is more challenging than un-
der the stronger setting of interactive communication. In 1999 Raz [Raz99] demonstrated a
function that had an efficient1 quantum two-way protocol, but no efficient classical two-way
protocol. In 2004 Bar-Yossef, Jayram and Kerenidis [BYJK04] demonstrated a relation that
had an efficient quantum one-way protocol, but no efficient classical one-way protocol. Note
that the original separation from [Raz99] was demonstrated via a functional problem; on the
other hand, the result of [BYJK04] used a relation – a more general class of problems and
a stronger model-separating tool.2 In the same work it has been asked whether it was pos-

1 We call efficient communication protocols whose complexity is poly-logarithmic in the input length.
2 There are known cases where a quantum communication model can be separated from a classical one via a
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sible to demonstrate similar qualitative advantage of quantum one-way communication via a
functional problem, which was answered affirmatively in 2008 in a joint work with Kempe,
Kerenidis, Raz and de Wolf [GKK+08].

The work [BYJK04] has also demonstrated a relation that had an efficient quantum SMP
protocol, but no efficient classical SMP protocol, and – similarly to the one-way case – it has
been left open whether there existed a functional problem, easy for quantum and hard for
classical SMP.

In the meantime, separations “against classical two-way” have been strengthened in a
sequence of works [Gav08, KR11, Gav16] that subsumed earlier separations: e.g., in 2010
Klartag and Regev demonstrated a function with an efficient quantum one-way protocol, but
no efficient classical two-way protocol. On the other hand, it has remained open till now
whether a function could witness quantum superiority in the case of SMP.3

This work presents a functional problem c̃EqT , whose communication complexity is O
(
(log n)2

)

in the quantum version of SMP and Ω̃(
√
n) in the classical (randomised) version of SMP.

Weakening the weak: SMP without shared randomness. The second aspect of this
work is related to understanding the power of, arguably, the weakest commonly studied regime
of quantum communication – SMP with quantum messages and without shared randomness.

We will write Q‖ and R‖ for, respectively, the quantum and the classical version of the
model SMP without shared randomness. To denote the corresponding standard counterparts
– those equipped with (unlimited) shared randomness – we will write, respectively, Q‖,pub and
R‖,pub . For any model M and a problem P, we will write M(P) to denote the complexity of
P in M.

Both Q‖ and R‖ (i.e., the versions lacking shared randomness) can be viewed as “pur-
posely weakened”, somewhat artificial versions of SMP – as opposed to the standard Q‖,pub

and R‖,pub .4 The families of efficiently-computable tasks in Q‖ and in R‖ are not closed
with respect to mixed strategies5, and the usual minimax principle does not hold for these
models: for example, the equality function (Eq) has R‖-complexity O(1) over any fixed input
distribution, but its worst-case R‖-complexity is Ω(

√
n), due to [NS96].

Von Neumann, who proved the minimax principle for the case of 2-player zero-sum games
with mixed strategies in 1928, later remarked: “As far as I can see, there could be no theory
of games [...] without that theorem.” The question of determining the complexity of a given
communication problem can be phrased in the language of 2-player zero-sum games, and the

relation, but a functional separation is provably impossible (see [Aar04, GRdW08]). In particular, [GRdW08]
showed that the class of functional problems, efficiently computable in “quantum-classical SMP” – the regime
where Alice could send a quantum message but Bob was classical (or vice versa) – was equal to the correspond-
ing class of the “fully classical” SMP regime; on the other hand, a relational separation between these two
models followed from [BYJK04]. As in this work we are only concerned with super-polynomial separations via
functional problems, for us the model of SMP with both players being quantum is the weakest (non-trivial)
regime of quantum communication.

3 The result in [Gav16] implied existence of a function, hard for classical SMP (and even for classical two-way
protocols), but easy for the model of quantum SMP with shared entanglement – a significantly strengthened
version of quantum SMP, where the players could share an arbitrary (input-independent) quantum state of
finite dimension.

4 Note that in the context of “Two-way, one-way and SMP” we only referred to the “natural” models Q‖,pub

and R‖,pub .
5 R‖,pub – the “unrestricted” randomised SMP – can be defined as the “closure” of R‖ with respect to mixed

strategies, and similarly for Q‖,pub and Q‖.
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case of SMP without shared randomness is probably the only commonly studied one that goes
“without that theorem”. Although we have seen some non-trivial results both in Q‖ and in
R‖, these models still lack the aesthetic appeal and the cognitive depth of those obeying the
minimax principle.

So, the model of SMP with quantum messages and without shared randomness (Q‖) indeed
can be viewed as the weakest commonly studied quantum model in communication complexity.
Prior to this work, Q‖ was known to be stronger than R‖: in 2001 Buhrman, Cleve, Watrous
and de Wolf [BCWdW01] demonstrated that there existed a Q‖-protocol for the function Eq
of complexity O(log n); as we already mentioned, it had been known that R‖(Eq) ∈ Ω(

√
n).

Till now it has remained open whether Q‖ was capable to do more than that – in particular,
to solve efficiently any problem that was hard for the “natural closure” of R‖, namely R‖,pub .

We show that the main communication problem studied in this work – the function c̃EqT
– has an efficient protocol in Q‖ as well. Due to the same lower bound of Ω̃(

√
n) on its R‖,pub -

complexity, this demonstrates exponential advantage of Q‖ over R‖,pub in solving a functional
problem.

One obvious question that remains open is whether there is a bipartite communication
problem – even a relational one – that admits an efficient solution in Q‖, though not in R.6

Further historical background and some open questions can be found in Section 7.

Why this is interesting technically. As a part of this work, R‖,pub -hardness is argued
for a communication problem, which is easy for virtually any model stronger than R‖,pub .
Therefore the argument has to be tuned rather accurately in order to distinguish between
R‖,pub and some other models of communication that are “just slightly stronger” (like R1 ).

On the other hand, the complexity of the analysed communication task must also be tuned,
as it has to be easy for Q‖ and hard for R‖,pub , which is “just slightly weaker” (sometimes
even incomparable7). In particular we cannot use a problem with worst-case hardness in
spite of average-case easiness (like Eq), as R‖,pub allows for mixed strategies.

It may be for these reasons that this work is built around several ad hoc ideas.8 Some of
them will be informally discussed in Section 3.

6 As a black-box statement, demonstrating a functional problem with those properties (whose existence
one may question: even a relational separation like that is not presently known) would subsume the current
work, as well as [Gav16]. On the other hand, here we demonstrate a lower bound in R‖,pub for a functional
problem that is, intuitively, very close to being within the reach of this model (as witnessed, in particular,
by the fact that the problem is easy for Q‖). The aesthetic appeal of the quest of finding an appropriate
fine-tuned analytic approach has been the author’s main motivation for addressing this question.

7 There are known examples, where R‖,pub is exponentially stronger than Q‖ for relational problems,
see [GKRdW09].

8 Let us remark that technically this work is very different from [Gav16] – except for the definitions of the
core communication tasks that are considered, which share a few obvious structural similarities (e.g., both the
problems are naturally viewed as “distant derivatives” from the equality problem). We do not know whether
Shape – the core task of [Gav16] – admits an efficient Q‖-, or even Q‖,pub-protocol (and conjecture that it

doesn’t); on the other hand, the core task of the current work – c̃EqT – is trivial not only for R, but even for
R1 (see Sect. 3.1).
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2 Preliminaries

For x ∈ {0, 1}n and i ∈ [n] = {1, . . . , n}, we will write xi or x(i) to address the i’th bit of x
(preferring “xi” unless it may cause ambiguity). Similarly, for S ⊆ [n], let both xS and x(S)
denote the |S|-bit string, consisting of (naturally-ordered) bits of x, whose indices are in S.
For a set (or a family) A, we will write A|i and A|S to address, respectively,

{
xi
∣∣x ∈ A

}
and{

xS
∣∣x ∈ A

}
. We will use similar notation in all cases when x can be viewed naturally as an

element of X1 × · · · × Xn.
For x, y ∈ {0, 1}n, let |x| denote the Hamming weight of x and x⊕ y denote the bit-wise

XOR operation.
For a (discrete) set A and k ∈ N, we denote by Pow(A) the set of A’s subsets and by

(A
k

)

the set
{
a ∈ Pow(A)

∣∣|a| = k
}
. We write “A △ B” to denote the symmetric difference between

the two sets and “A∪· B” to denote the union when A and B are disjoint (i.e., writing “A∪· B”
implies that A ∩B = ∅).

We write UA to denote the uniform distribution over the elements of A. Sometimes (e.g.,
in subscripts) we will write “⊂∼ A” instead of “∼ UA”. We will sometimes emphasise that a
distribution on {0, 1}2n is “viewed as bipartite” (i.e., assumed to be the joint distribution of
two random variables, containing n bits each) by addressing it as a distribution on {0, 1}n+n;
similarly, we will write “(X,Y ) ∈ {0, 1}n+n”, etc.

For (discrete) distributions µ1 and µ2, their relative entropy is

dKL

(
µ1

∥∥µ2

) def
=

∑

x∈supp(µ1)∪supp(µ2)

µ1(x) · log
(
µ1(x)

µ2(x)

)
,

where the logarithm is base-2. It follows readily from the strict concavity of log that

dKL

(
µ1

∥∥µ2

)
≥ 0,

where the equality holds if and only if µ1 ≡ µ2.
We will use the Chernoff bound in the following form.

Fact 1 (tail-estimating inequalities). For n ∈ N, let X̄ = (X1, . . . ,Xn) ∼ µ be mutually
independent random variables, satisfying EEEµ[Xi] ≡ p ∈ [0, 1]. Then for any α ∈ Ω(1):

PrPrPr
µ

[
n∑

i=1

Xi ≥ (p + α) · n
]
, P rPrPr

µ

[
n∑

i=1

Xi ≤ (p− α) · n
]

∈ 2−Ω(n).

Let µ′ be any distribution, satisfying ‖µ− µ′‖1 ≤ β, then

PrPrPr
µ′

[
n∑

i=1

Xi ≥ (p+ α) · n
]
, P rPrPr

µ′

[
n∑

i=1

Xi ≤ (p − α) · n
]

∈ 2−Ω(n) +
β

2
.

Let Sn denote the group of permutations of [n], and let σi ∈ Sn be the i’th cyclic shift
(i.e., σi(j) = i + j if i+ j ≤ n and i + j − n otherwise). For x ∈ {0, 1}n and τ ∈ Sn, denote
by τ(x) the element of {0, 1}n, whose τ(i)’th position contains xi for each i – in particular,
σj(x) is the j-bit cyclic shift of x.

For functions f, g : {0, 1}n → R, we define

〈f , g〉 def
= 2−n ·

∑

x∈{0,1}n
f(x) · g(x) = EEE

X⊂∼{0,1}n
[f(X) · g(X)]
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and ‖f‖2
def
=
√

〈f , f〉. For s ⊆ [n] and x ∈ {0, 1}n, let χs(x)
def
= (−1)|xs| and f̂(s)

def
= 〈f , χs〉.

The Fourier transform f → f̂ is a norm-preserving linear mapping in the following sense:
‖f‖22 =

∑
s f̂(s)

2 (Parseval’s identity). The vectors χs form an orthonormal basis of R2n and

f(x) =
∑

s⊆[n]

f̂(s) · χs(x)

for every x ∈ {0, 1}n.

Definition 1 (small-bias spaces). For ε ≥ 0, we call T ⊆ {0, 1}n an ε-bias space if∣∣∣∣ EEEτ∈T [χs(τ)]

∣∣∣∣ ≤ ε

for every s ⊆ [n], s 6= ∅.
Being a small-bias space is a “pseudorandom property”: it holds for random subsets of

{0, 1}n almost always, and there are efficient constructions.

Fact 2 ([NN93]). For ε > 0, an ε-bias space can be constructed deterministically in time
poly(n/ε). Every pair of elements τ1 6= τ2 of the constructed space satisfies |τ1 ⊕ τ2| ∈ n

2 ±o(n).

The main communication problem studied in this work (c̃EqT ) will be constructed using
a small-bias space. In order to argue the model separations, we do not need the definition
of the problem to be explicit; nevertheless, we remark that our construction will be explicit
in a rather strong sense: namely, c̃EqT (x, y) will be computable in time poly(n) for any
x, y ∈ {0, 1}n. This is due, in particular, to the complexity guarantees of Fact 2.

2.1 Communication complexity

For an excellent survey of classical communication complexity, see [KN97]. Quantum commu-
nication models differ from their classical counterparts in two aspects: the players are allowed
to send quantum messages (accordingly, the complexity is measured in qubits) and to perform
arbitrary quantum operations locally.

Of central importance to this work is the model of simultaneous message passing (SMP),
where there are 3 participants: players Alice and Bob, and the referee. An SMP-protocol for
computing a Boolean function f(X,Y ) has the following structure: Alice receives X and sends
her message to the referee; at the same time, Bob receives Y and sends his message to the
referee; the referee uses the content of the two received messages to compute the answer. The
answer is correct when it equals f(X,Y ) (the input is always such that f(X,Y ) is defined).
We will consider the following variations of SMP:

1. In D‖
µ,ε (sometimes written as D‖

ε if µ is irrelevant or clear from the context) the players
and the referee are deterministic, and the answer must be correct with probability at
least 1− ε when (X,Y ) ∼ µ.9

2. In R‖ the players and the referee can use local randomness, and the answer must be
correct with probability at least 2/3 for every valid input.

3. R‖,pub is similar to R‖, but the players and the referee can use shared randomness.
4. In Q‖ the players can send quantum messages and the referee can apply any quantum

measurement to compute the answer that must be correct with probability at least 2/3
for every valid input.

9 In this work we will only deal with binary-valued functions; accordingly, we always assume that ε < 1/2.
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2.1.1 Variations of equality

The communication problem that we use for our separation is a function that can be viewed
as a variation of the equality problem.

The equality function (viewed as a communication problem) is the following total10 bipar-
tite function. Let u ⊆ [n] (for technical reasons, we consider a “projected version” of equality),
then

Equ : {0, 1}n+n → {0, 1},

Equ(x, y)
def
=

{
1 if xu = yu;

0 otherwise.

We write Eq for Eq [n]. Define input distributions for Equ :

• for a ∈ {0, 1}, let µa
Equ

be the uniform distribution over Eq−1
u (a);

• let µEqu

def
= 1

2 ·
(
µ0
Equ

+ µ1
Equ

)
.

The next problem intuitively corresponds to asking whether Equ(X ⊕ τ, Y ) = 1 for some
τ from a predetermined set T ⊆ {0, 1}n, usually of size poly(n) (in our analysis T will be a
small-bias space).

Equ,T : {0, 1}n+n → {0, 1},

Equ,T (x, y)
def
=

{
1 if (x⊕ τ)u = yu for some τ ∈ T ;

0 otherwise.

Define input distributions for Equ,T :

• for τ ∈ T , let µτ
Equ

be the distribution of (X,Y ) when (X ⊕ τ, Y ) ∼ µEqu
;

• let µEqu,T

def
= 1

|T | ·
∑

τ∈T µτ
Equ

.

Next we define a “noisy” (or gapped) version of EqT :

ẼqT : {0, 1}n+n → {0, 1};

ẼqT (x, y)
def
=





1 if |x⊕ y ⊕ τ | ≤ 6n
15 for some τ ∈ T

and |x⊕ y ⊕ τ | 6∈ (6n15 ,
7n
15 ) for every τ ∈ T ;

0 if |x⊕ y ⊕ τ | ≥ 7n
15 for every τ ∈ T ;

undefined otherwise.

Intuitively, ẼqT (x, y) “asks” whether x ⊕ τ is close to y with respect to one of the “per-
mitted” bit-negations τ ∈ T . The promise is that x⊕ τ must be either far enough from y (at
distance ≥ 7n

15 ) or close to it (at distance ≤ 6n
15 ) for every τ ∈ T – otherwise the function is

undefined.
Define input distributions for ẼqT :

• let µ
ẼqT

def
= 1

( n
n/3)

·∑
u∈( [n]

n/3)
µEqu,T

.

10 A functional problem in communication complexity is called total when it is supported on the product
set of the players’ individual sets of input.
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We are ready to introduce the main communication problem considered in this work – a
function that can be viewed as a “cyclic version” of Equ,T :

c̃EqT : {0, 1}n+n → {0, 1},

c̃EqT (x, y)
def
=





1 if |σj(x)⊕ y ⊕ τ | ≤ 6n
15 for some τ ∈ T and j ∈ [n]

and |σj(x)⊕ y ⊕ τ | 6∈ (6n15 ,
7n
15 ) for every τ and j;

0 if |σj(x)⊕ y ⊕ τ | ≥ 7n
15 for every τ and j;

undefined otherwise.

The intuition behind this definition is very similar to that behind ẼqT (x, y), but the
question here is whether σj(x) + τ ≈ y with respect to some cyclic shift σj and one of the
bit-negations τ ∈ T .

Define input distributions for c̃EqT :

• for j ∈ [n], let µj

c̃EqT
be the distribution of (X,Y ) when (σj(X), Y ) ∼ µ

ẼqT
;

• let µ
c̃EqT

def
= 1

n ·∑j∈[n] µ
j

c̃EqT
.

Let us also define the variants of our input distributions, where in the construction
U{0,1}n+n replaces µ0

Equ
= UEq−1

u (0). For every u ∈
([n]
n/3

)
, τ ∈ T and j ∈ [n]:

• let µEqu

def
= 1

2 ·
(
U{0,1}n+n + µ1

Equ

)
.

• let µτ
Equ

be the distribution of (X,Y ) when (X ⊕ τ, Y ) ∼ µEqu
;

• let µEqu,T

def
= 1

|T | ·
∑

τ∈T µτ
Equ

.

• let µ
ẼqT

def
= 1

( n
n/3)

·∑
u∈( [n]

n/3)
µEqu,T

.

• let µj

c̃EqT
be the distribution of (X,Y ) when (σj(X), Y ) ∼ µ

ẼqT
;

• let µ
c̃EqT

def
= 1

n ·∑j∈[n] µ
j

c̃EqT
.

The above variants will be only used in the analysis, in which context they have a significant
structural advantage: U{0,1}n+n is much more symmetric than µ0

Equ
. At the same time, these

distributions are very close to their µ0
Equ

-based originals, as formalised by the following claim.

Claim 1.

∀u ∈
(
[n]
n/3

)
, τ ∈ T, j ∈ [n] :

∥∥µEqu
− µEqu

∥∥
1
,
∥∥∥µτ

Equ
− µτ

Equ

∥∥∥
1
,
∥∥∥µEqu,T

− µEqu,T

∥∥∥
1
,

∥∥∥µ
ẼqT

− µ
ẼqT

∥∥∥
1
,
∥∥∥µj

c̃EqT
− µj

c̃EqT

∥∥∥
1
,
∥∥∥µ

c̃EqT
− µ

c̃EqT

∥∥∥
1
∈ 2−Ω(n).

The validity of the above claim follows readily by the Chernoff bound (Fact 1).

3 Intuition behind the new separation

Recall that we are looking for a functional communication problem, easy for quantum but
hard for classical SMP (naturally, equipped with shared randomness). The initial inspiration

8



comes from the observation that the most obvious quantum SMP protocol for equality with
gap (Ẽq) has certain “robustness” that seems impossible to achieve in a classical protocol.

Let

Ẽq(x, y)
def
=





1 if |x⊕ y| ≤ n
5 ;

0 if |x⊕ y| ≥ 2n
5 ;

undefined otherwise.

A natural Q‖-solution to this problem would be for Alice to send 1√
n
·∑i|i〉|Xi〉, for Bob to

send 1√
n
·∑i|i〉|Yi〉 and for the referee to perform the swap test [BCWdW01] – a quantum

measurement with two possible outcomes, “pass” and “fail”, where the probability of passing

for states |α〉 and |β〉 equals 1
2 +

|〈α|β〉|2
2 . In our case the passing probability is 1

2 +
(n−|X⊕Y |)2

2n2 ,
so estimating it with sufficient constant precision allows the referee to give the correct answer
with constant-bounded error, thus solving the problem.11

Note that the same pair of messages sent by the players can be used by the referee for
solving

Ẽq(π(X)⊕ τ, Y )

for any π ∈ Sn and τ ∈ {0, 1}n: Upon receiving the messages and before performing the swap
test, the referee would have to apply the obvious unitary transformation to the message from
Alice (namely, permuting the indices and negating some bit values).

Let S ⊂ Sn, T ⊂ {0, 1}n and |S|, |T | ∈ poly(n). Using the above intuition, we conclude
that there exists an efficient quantum protocol for the problem

ẼqS ,T (x, y)
def
=





1 if |π(x)⊕ τ ⊕ y| ≤ n
5 for some π ∈ S and τ ∈ T ;

0 if |π(x)⊕ τ ⊕ y| ≥ 2n
5 for every π ∈ S and τ ∈ T ;

undefined otherwise.

To solve it in Q‖, both Alice and Bob send O(log n) copies of their messages from the Ẽq-

protocol described above, which allows the referee to solve any instance of Ẽq(π(X) ⊕ τ, Y )
with error 1/poly(n) (arbitrarily small). In particular, this means that he can “reuse” the

messages and test Ẽq(π′(X) ⊕ τ ′, Y ) for every π′ ∈ S and τ ′ ∈ T with polynomially-small
error, thus solving the problem.

One can see that the main communication task studied here – c̃EqT – is an instance of

ẼqS ,T with different constants, S being the set of cyclic bit-shifts and T being a small-bias
space.

3.1 Towards the lower bound

Proving a strong lower bound for the R‖,pub -complexity of c̃EqT is interesting for several
reasons. One of them is the technical challenge: rather fine tuning of the method is required.

The bound has to distinguish between the models R‖,pub and R1 , whose respective

strengths are rather close to each other. Indeed, not only c̃EqT (X,Y ), but any ẼqS ,T (X,Y )
is easy for (randomised) one-way protocols: Alice can send to Bob a number of randomly
selected pairs (i,Xi), letting him estimate, with sufficient confidence and accuracy, the values

11 For simplicity, in this informal overview we only require that a protocol solves a Boolean problem with
error 1/2 − Ω(1). The definitions made in this part are not used elsewhere.
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of |π(x) ⊕ τ ⊕ y| for every π ∈ S and τ ∈ T . Sending O(log n) pairs for uniformly-chosen i-s

would suffice, and therefore R1 (c̃EqT ) ∈ O
(
log2(n)

)
.

Ignoring some technical details, our lower-bound argument for R‖,pub(c̃EqT ) can be out-
lined as follows.

First of all, we need a convenient characterisation of efficient protocols for Ẽq. It will
be based on the observation that if a random input satisfying X ≈ Y is given to an R‖,pub -
protocol for Ẽq(X,Y ), then the two messages received by the referee are likely to “witness”
that fact. After some technical manipulations, this idea will lead to

EEE
i

[
∆i

α ·∆i
β

]
∈ Ω

(
1

n

)
, (1)

where ∆i
α is the “bias” of the referee’s knowledge about Xi, gained from Alice’s message Al(X),

and ∆i
β is defined similarly with respect to Y and Bob’s message Bo(Y ).

Next we take T into account. We will use its small-bias properties to conclude that a
protocol for ẼqT (X,Y ) must satisfy

EEE
i

[
III
[
Xi : Al(X)

]
· III
[
Yi : Bo(Y )

]]
∈ Ω

(
1

n

)
. (2)

The bound in (2) is significantly stronger than that in (1): Both Xi and Yi are uniformly-
random bits, so “bias” γ > 0 in the referee’s knowledge, say, about Xi corresponds to Θ

(
γ2
)

bits of information. The “quadratic improvement” from (1) to (2) captures the “added hard-

ness” in the transition from Ẽq to ẼqT – at least, from the point of view of our analysis.
Finally, we add cyclic shifts in order to “disconnect” III

[
Xi : Al(X)

]
from III

[
Yi : Bo(Y )

]
.

We will show that any protocol for c̃EqT (X,Y ) must satisfy

EEE
i

[
III
[
Xi : Al(X)

]]
·EEE
j

[
III
[
Yj : Bo(Y )

]]
∈ Ω

(
1

n

)
, (3)

and this gives the desired lower bound, as at least one ofEEEi

[
III
[
Xi : Al(X)

]]
andEEEj

[
III
[
Yj : Bo(Y )

]]

must be Ω(1/
√
n) in order to satisfy (3).

4 Solving c̃EqT with simultaneous quantum messages

Here we construct a protocol for solving c̃EqT in Q‖. First we consider the following simpler
problem.

For any τ ∈ T and j ∈ [n], let

Ẽq j ,τ (x, y)
def
=





1 if |σj(x)⊕ y ⊕ τ | ≤ 6n
15 ;

0 if |σj(x)⊕ y ⊕ τ | ≥ 7n
15 ;

undefined otherwise.

A protocol for Ẽq j ,τ . Upon receiving the input, Alice and Bob send, respectively,

|φAl〉 def
=

1√
n
·

n∑

i=1

|i〉|Xi〉 and |φBo〉 def
=

1√
n
·

n∑

i=1

|i〉|Yi〉

10



to the referee. The referee then applies σj to the first register of |φAl〉 and τ(σj(i))-controlled
negation to the second, thus transforming the state into

∣∣φ′
Al

〉
=

1√
n
·

n∑

i=1

|σj(i)〉|Xi ⊕ τ(σj(i))〉.

Note that the above transformation is orthogonal (in particular, reversible), and therefore can
be performed, preserving the superposition.

At this point the referee can apply the swap test to the states |φ′
Al〉 and |φBo〉, which

would “pass” with probability

1 + |〈φ′
Al|φBo〉|2
2

=
1

2
+

(n− |σj0(X) ⊕ τ0 ⊕ Y |)2
2n2

{
> 2

3 if Ẽq j ,τ (x, y) = 1;

< 29
45 if Ẽq j ,τ (x, y) = 0.

For any ε > 0, let Pε
j,τ denote the protocol that repeats the above procedure O

(
log 1

ε

)

times in parallel (in particular, the players send that many copies of, respectively, |φAl〉 and
|φBo〉), outputs “1” if at least 59

90 -fraction of the swap tests have passed and “0” otherwise –

the number of performed repetitions is chosen so that the resulting Pε
j,τ solves Ẽq j ,τ (X,Y )

with error less than ε. The resulting communication cost of Pε
j,τ is O

(
log n · log 1

ε

)
.

Let (Πε
j,τ , I − Πε

j,τ ) be the 2-outcome projective measurement that the referee applies
in Pε

j,τ to the received messages in order to determine the answer (with the outcome Πε
j,τ

corresponding to answering “Ẽq j ,τ (x, y) = 1”), and let this be the only step performed by the
referee.12

Note that execution of Pε
j,τ doesn’t require from either Alice or Bob the knowledge of

either j or τ – only the referee has to know these values in order to apply (Πε
j,τ , I − Πε

j,τ ).
This makes Pi,ε a perfect “building block” for solving the original problem.

A protocol for c̃EqT . Let Alice and Bob send their messages to the referee, as prescribed
by Pε′

j,τ for some ε′ to be fixed soon (recall that these messages do not depend on the values

of j and τ). The referee sequentially measures the received messages with (Πε′
j,τ , I −Πε′

j,τ ) for

all τ ∈ T and j ∈ [n]. If at least one outcome Πε′
j,τ has been obtained, the referee answers

“ c̃EqT (X,Y ) = 1”; otherwise, “ c̃EqT (X,Y ) = 0”.

Call the above protocol P. Assume without loss of generality that c̃EqT (X,Y ) ∈ {0, 1}
(i.e., the input fulfils the promise). To analyse the error of P, note that the protocol can
return the wrong answer only if for some (j, τ) the outcome of the corresponding measurement

(Πε′
j,τ , I−Πε′

j,τ ) is wrong – that is, the outcome is Πε′
j,τ while Ẽq j ,τ (X,Y ) = 0, or vice versa. Note

that while the probability of the outcome of the first performed measurement being wrong
is bounded above by ε′ (as follows trivially from the error bound of Pε′

j,τ ), at the subsequent
rounds the state being measured may have been “distorted” by the earlier measurements,
which, in turn, may increase the error probability.

It is known (e.g., see Lemma 2 in [Aar04]) that if a sequence of m quantum measurements
of the same state is performed, such that in every measurement the most likely outcome would
occur with probability at least 1− ε′ if the measurement were performed on the “clean” state,
then such ε′ ∈ poly(1/m) can be chosen, that all the m obtained outcomes will be the most
likely ones with probability at least 2/3 (or any other constant less than 1).

12 Putting it differently, the measurement (Πε
j,τ , I − Πε

j,τ ) incorporates all the steps taken by the referee
according to Pε

j,τ .
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For the protocol P to be correct, it is enough for the measurement corresponding to every
τ ∈ T and j ∈ [n] to return the most likely value. Accordingly, choosing ε′ ∈ 1/poly(n·|T |)
is sufficient for the resulting P to solve c̃EqT (X,Y ) with error at most 1/3. The respective
protocol’s communication complexity is, therefore, O

(
(log n)2 + log n · log |T |

)
.

Corollary 1. For every T ⊆ {0, 1}n,
Q‖(c̃EqT ) ∈ O

(
(log n)2 + log n · log |T |

)
.

5 A probabilistic interlude

Here we prove several claims addressing the behaviour of non-independent random variables.
The statements are rather intuitive, though we are not aware of previously published proofs.

5.1 Optimistic inequalities

Claim 2 (Optimistic chain inequality). Let X1, . . . ,Xm be random variables, where each Xi

is supported on (finite) Gi ∪· Bi. Let µ denote the joint distribution of X = (X1, . . . ,Xm),
then

PrPrPr
X∼µ




m∧

j=1

Xj ∈ Gj


 =

m∏

i=1

PrPrPr
X∼µ


Xi ∈ Gi

∣∣∣∣∣∣

i−1∧

j=1

Xj ∈ Gj


 (4)

=

m∏

i=1

EEE
X′∼µ


 PrPrPr
X∼µ


Xi ∈ Gi

∣∣∣∣∣∣

i−1∧

j=1

Xj = X ′
j



∣∣∣∣∣∣

i−1i−1i−1∧

j=1

X ′
j ∈ Gj




≤
m∏

i=1

EEE
X′∼µ


 PrPrPr
X∼µ


Xi ∈ Gi

∣∣∣∣∣∣

i−1∧

j=1

Xj = X ′
j



∣∣∣∣∣∣

mmm∧

j=1

X ′
j ∈ Gj


,

where X ′ = (X ′
1, . . . ,X

′
m) and X are independent from one another, unless conditioned

explicitly. Moreover,

log


 PrPrPr

X∼µ




m∧

j=1

Xj ∈ Gj




 (5)

≤
m∑

i=1

EEE
X′∼µ


log


 PrPrPr

X∼µ


Xi ∈ Gi

∣∣∣∣∣∣

i−1∧

j=1

Xj = X ′
j





∣∣∣∣∣∣

m∧

j=1

X ′
j ∈ Gj


.

The equalities in (4) correspond to the standard “chain” decomposition (included here
for convenience). In comparison to the standard decomposition, the inequality offers a more
symmetric upper bound on PrPrPr[∧Xj ∈ Gj ] at the expense of tightness.13

We call the above claim optimistic, viewing the subsets Gi as good, Bi-s as bad and in-
terpreting the statement of (4) as saying that the estimated probability of m good outcomes
doesn’t decrease as a result of making the estimation “optimistically biased”: instead of con-

ditioning the expectation on
[∧i−1

j=1X
′
j ∈ Gj

]
(which would give the actual probability of all

13 The statement of Claim 2 can probably be made tight via expressing the difference between the two sides
of (5) as a sum of relative entropies, cf. Claim 3.
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good outcomes), the right-hand side of the above inequality uses more “good-oriented” (and

more restricting) condition
[∧m

j=1X
′
j ∈ Gj

]
.

Moreover, the right-hand side of (5) is likely to have grown as a result of making the ex-

pectations “optimistically biased” (i.e., conditioning it on
[∧m

j=1X
′
j ∈ Gj

]
): due to the strict

concavity of log, the statement wouldn’t hold if the condition
[∧m

j=1X
′
j ∈ Gj

]
were replaced by

[∧i−1
j=1X

′
j ∈ Gj

]
, unless the quantities under the expectations are constant (that is, unless ev-

ery event [Xi ∈ Gi] is independent from the values of X1, . . . ,Xi−1, subject to
[∧i−1

j=1Xj ∈ Gj

]
).

Note also that the inequality in (4) isn’t necessarily true “element-wise”: there may exist
a situation, where for some i0 ∈ [m]:

PrPrPr
X∼µ


Xi0 ∈ Gi0

∣∣∣∣∣∣

i0−1∧

j=1

Xj ∈ Gj


 = EEE

X′∼µ


 PrPrPr
X∼µ


Xi0 ∈ Gi0

∣∣∣∣∣∣

i0−1∧

j=1

Xj = X ′
j



∣∣∣∣∣∣

i0−1∧

j=1

X ′
j ∈ Gj




> EEE
X′∼µ


 PrPrPr
X∼µ


Xi0 ∈ Gi0

∣∣∣∣∣∣

i0−1∧

j=1

Xj = X ′
j



∣∣∣∣∣∣

m∧

j=1

X ′
j ∈ Gj


.

The following statement implies that the above inequality might hold only for i0 < m.

Claim 3 (Optimistic conditioning). Let X1 and X2 be random variables, each Xi supported
on (finite) Gi ∪· Bi, and let µ be the joint distribution of X = (X1,X2). Then

log

(
PrPrPr
X∼µ

[
X2 ∈ G2

∣∣X1 ∈ G1

])
= log

(
EEE

X′∼µ

[
PrPrPr
X∼µ

[
X2 ∈ G2

∣∣X1 = X ′
1

]∣∣∣∣X ′
1 ∈ G1

])

= EEE
X′∼µ

[
log

(
PrPrPr
X∼µ

[
X2 ∈ G2

∣∣X1 = X ′
1

])∣∣∣∣X ′
1 ∈ G1,X

′
2 ∈ G2

]
− dKL

(
β
∥∥α
)

≤ EEE
X′∼µ

[
log

(
PrPrPr
X∼µ

[
X2 ∈ G2

∣∣X1 = X ′
1

])∣∣∣∣X ′
1 ∈ G1,X

′
2 ∈ G2

]
,

where X ′ = (X ′
1,X

′
2) is independent from X (unless conditioned explicitly), and α and β

denote the distributions of X1, conditioned, respectively, on [X1 ∈ G1] and on [X1 ∈ G1,X2 ∈
G2].

The statement of Claim 3, similarly to (5), witnesses the qualitative “benefit” of optimistic
conditioning: since log is strictly concave, whenever [X2 ∈ G2] depends on X1 (subject to
[X1 ∈ G1]), the above inequality wouldn’t hold if the expectation were not subject to [X ′

2 ∈
G2].

Proof of Claim 3. For every c ∈ G1, let pc
def
= PrPrPr[X1 = c] and qc

def
= PrPrPr

[
X2 ∈ G2

∣∣X1 = c
]
.

Then

PrPrPr
X∼µ

[X1 ∈ G1] =
∑

d∈G1

pd,

α(c) = PrPrPr
X∼µ

[
X1 = c

∣∣X1 ∈ G1

]
=

pc∑
d∈G1

pd
,
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and

PrPrPr
X∼µ

[X1 = c,X2 ∈ G2] = pcqc,

P rPrPr
X∼µ

[X1 ∈ G1,X2 ∈ G2] =
∑

d∈G1

pdqd,

β(c) = PrPrPr
X∼µ

[
X1 = c

∣∣X1 ∈ G1,X2 ∈ G2

]
=

pcqc∑
d∈G1

pdqd
.

Let

k
def
=

∑
d∈G1

pdqd∑
d∈G1

pd
≡ α(c)

β(c)
· qc (for any c ∈ G1),

then

log

(
PrPrPr
X∼µ

[
X2 ∈ G2

∣∣X1 ∈ G1

])
= log


∑

d∈G1

α(d) · qd


 = log


∑

d∈G1

k · β(d)


 = log(k)

=
∑

d∈G1

β(d) · log
(
k · β(d)

α(d)

)
−
∑

d∈G1

β(d) · log
(
β(d)

α(d)

)

=
∑

d∈G1

β(d) · log(qd)− dKL

(
β
∥∥α
)

= EEE
X′∼µ

[
log

(
PrPrPr
X∼µ

[
X2 ∈ G2

∣∣X1 = X ′
1

])∣∣∣∣X ′
1 ∈ G1,X

′
2 ∈ G2

]
− dKL

(
β
∥∥α
)
,

as required (the stated inequality follows from the non-negativity of relative entropy). �Claim 3

Proof of Claim 2. Let us first consider the case of two variables (Y1, Y2) ∼ ν, supported,
respectively, on G1 ∪· B1 and G2 ∪· B2:

log
(
PrPrPr
ν
[Y1 ∈ G1, Y2 ∈ G2]

)
(6)

= log
(
PrPrPr[Y1 ∈ G1]

)
+ log

(
PrPrPr
[
Y2 ∈ G2

∣∣Y1 ∈ G1

])

≤ log
(
PrPrPr[Y1 ∈ G1]

)
+ EEE

(Y ′
1 ,Y

′
2)∼ν

[
log
(
PrPrPr
[
Y2 ∈ G2

∣∣Y1 = Y ′
1

])∣∣∣Y ′
1 ∈ G1, Y

′
2 ∈ G2

]
,

as follows from Claim 3.
Let µ′ denote the distribution of (X1, . . . ,Xm) ∼ µ, conditioned upon [

∧m
j=1Xj ∈ Gj ]; in

other words,

µ′(x1, . . . , xm)
def
=

{
µ(x1,...,xm)

µ(G1×···×Gm) if
∧m

j=1 xj ∈ Gj ;

0 otherwise.

Note that

log


 PrPrPr

X∼µ




m∧

j=1

Xj ∈ Gj






≤ log

(
PrPrPr
X∼µ

[X1 ∈ G1]

)
+ EEE

X′∼µ


log


 PrPrPr

X∼µ




m∧

j=2

Xj ∈ Gj

∣∣∣∣∣∣
X1 = X ′

1





∣∣∣∣∣∣

m∧

j=1

X ′
j ∈ Gj
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= log

(
PrPrPr
X∼µ

[X1 ∈ G1]

)
+ EEE

X′∼µ′


log


 PrPrPr

X∼µ




m∧

j=k+1

Xj ∈ Gj

∣∣∣∣∣∣
X1 = X ′

1








holds for k = 1, as a direct application of (6).
Inequality (5) follows by induction on k. 14 Assume that

log


 PrPrPr

X∼µ




m∧

j=1

Xj ∈ Gj




 ≤ EEE

X′∼µ′




k∑

i=1

log


 PrPrPr

X∼µ


Xi ∈ Gi

∣∣∣∣∣∣

i−1∧

j=1

Xj = X ′
j






 (7)

+ EEE
X′∼µ′


log


 PrPrPr

X∼µ




m∧

j=k+1

Xj ∈ Gj

∣∣∣∣∣∣

k∧

j=1

Xj = X ′
j








= EEE
X′∼µ′




k∑

i=1

log


 PrPrPr

X∼µ


Xi ∈ Gi

∣∣∣∣∣∣

i−1∧

j=1

Xj = X ′
j








+
∑

x′∈{0,1}m
µ′(x′) · log


 PrPrPr

X∼µ




m∧

j=k+1

Xj ∈ Gj

∣∣∣∣∣∣

k∧

j=1

Xj = x′j






︸ ︷︷ ︸
⊛

holds for some k ≥ 1.
For any x′ ∈ {0, 1}m, let ν

(k)
x′ denote the distribution of (Xj)

m
j=k+1 when (Xj)

m
j=1 ∼ µ,

conditioned upon
∧k

j=1Xj = x′j ; in other words,

ν
(k)
x′ (xk+1, . . . , xm)

def
=

µ(x′1, . . . , x
′
k, xk+1, . . . , xm)∑

x′′
k+1,...,x

′′
m
µ(x′1, . . . , x

′
k, x

′′
k+1, . . . , x

′′
m)

.

Next we inspect ⊛.

∀x′ : log


 PrPrPr

X∼µ




m∧

j=k+1

Xj ∈ Gj

∣∣∣∣∣∣

k∧

j=1

Xj = x′j




 = log


 PrPrPr

X∼ν
(k)

x′




m∧

j=k+1

Xj ∈ Gj




 (8)

≤ log

(
PrPrPr

X∼ν
(k)

x′

[Xk+1 ∈ Gk+1]

)

+ EEE
X′′∼ν

(k)

x′


log


 PrPrPr

X∼ν
(k)

x′




m∧

j=k+2

Xj ∈ Gj

∣∣∣∣∣∣
Xk+1 = X ′′

k+1





∣∣∣∣∣∣

m∧

j=k+1

X ′′
j ∈ Gj


,

where “X ∼ ν
(k)
x′ ” stands for (Xk+1, . . . ,Xm) ∼ ν

(k)
x′ , X ′′ = (X ′′

k+1, . . . ,X
′′
m) and the inequality

is an application of (6).
Consider the following distribution.

• Let X ′ ∼ µ′; denote by x′ the value taken by X ′;

• let X ′′ ∼ ν
(k)
x′ , subject to

[∧m
j=k+1X

′′
j ∈ Gj

]
.

14 We could have started from the trivial case of k = 0 and handle k = 1 as a generic inductive step; we
treat the latter as the base case in order to present the main idea behind the induction in a somewhat simpler
form.
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We claim that the resulting distribution of (X ′
1, . . . ,X

′
k,X

′′
k+1, . . . ,X

′′
m) is simply µ′:

∀(x1, . . . , xm) ∈ G1 × · · · ×Gm :

µ′(x1, . . . , xm) =
µ(x1, . . . , xm)

µ(G1 × · · · ×Gm)
;

PrPrPr
[
(X ′

1, . . . ,X
′
k) = (x1, . . . , xk)

]
=

∑

(x′′
k+1,...,x

′′
m)∈Gk+1×···×Gm

µ(x1, . . . , xk, x
′′
k+1, . . . , x

′′
m)

µ(G1 × · · · ×Gm)
.

∀(x′k+1, . . . , x
′
m) ∈ Gk+1 × · · · ×Gm :

PrPrPr
[
(X ′

1, . . . ,X
′
k,X

′′
k+1, . . . ,X

′′
m) = (x1, . . . , xk, x

′
k+1, . . . , x

′
m)
]

= PrPrPr
[
(X ′

1, . . . ,X
′
k) = (x1, . . . , xk)

]
· ν

(k)
x1,...,xk(x

′
k+1, . . . , x

′
m)

ν
(k)
x1,...,xk(Gk+1 × · · · ×Gm)

=
PrPrPr[(X ′

1, . . . ,X
′
k) = (x1, . . . , xk)] · ν(k)x1,...,xk(x

′
k+1, . . . , x

′
m)

PrPrPrX∼µ

[∧m
j=k+1Xj ∈ Gj

∣∣∣
∧k

j=1Xj = xj

] ;

PrPrPr
[
(X ′

1, . . . ,X
′
k) = (x1, . . . , xk)

]
· ν(k)x1,...,xk

(x′k+1, . . . , x
′
m)

=

∑
(x′′

k+1,...,x
′′
m)∈Gk+1×···×Gm

µ(x1, . . . , xk, x
′′
k+1, . . . , x

′′
m)

∑
x′′
k+1,...,x

′′
m
µ(x1, . . . , xk, x

′′
k+1, . . . , x

′′
m)

· µ(x1, . . . , xk, x
′
k+1, . . . , x

′
m)

µ(G1 × · · · ×Gm)

=
PrPrPrX∼µ

[∧k
j=1Xj = xj ∧

∧m
j=k+1Xj ∈ Gj

]

PrPrPrX∼µ

[∧k
j=1Xj = xj

] · µ′(x1, . . . , xk, x
′
k+1, . . . , x

′
m)

= PrPrPr
X∼µ




m∧

j=k+1

Xj ∈ Gj

∣∣∣∣∣∣

k∧

j=1

Xj = xj


 · µ′(x1, . . . , xk, x

′
k+1, . . . , x

′
m);

PrPrPr
[
(X ′

1, . . . ,X
′
k,X

′′
k+1, . . . ,X

′′
m) = (x1, . . . , xk, x

′
k+1, . . . , x

′
m)
]

= µ′(x1, . . . , xk, x
′
k+1, . . . , x

′
m),

where we have somewhat abused the notation by writing “ν
(k)
x1,...,xk ” (note that ν

(k)
x′ indeed

depends only on the first k bits of x′).

Accordingly, it follows from (8) and from the definition of ν
(k)
x′ that

∑

x′∈{0,1}m
µ′(x′) · log


 PrPrPr

X∼µ




m∧

j=k+1

Xj ∈ Gj

∣∣∣∣∣∣

k∧

j=1

Xj = x′j






︸ ︷︷ ︸
⊛

≤
∑

x′

µ′(x′) · log
(

PrPrPr
X∼ν

(k)

x′

[Xk+1 ∈ Gk+1]

)

+
∑

x′

µ′(x′) · EEE
X′′∼ν

(k)

x′


log


 PrPrPr

X∼ν
(k)

x′




m∧

j=k+2

Xj ∈ Gj

∣∣∣∣∣∣
Xk+1 = X ′′

k+1





∣∣∣∣∣∣

m∧

j=k+1

X ′′
j ∈ Gj
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=
∑

x′

µ′(x′) · log


 PrPrPr

X∼µ


Xk+1 ∈ Gk+1

∣∣∣∣∣∣

k∧

j=1

Xj = x′j






+
∑

x′

µ′(x′)

· EEE
X′′∼ν

(k)

x′


log


 PrPrPr

X∼µ




m∧

j=k+2

Xj ∈ Gj

∣∣∣∣∣∣

k∧

j=1

Xj = x′j ∧Xk+1 = X ′′
k+1





∣∣∣∣∣∣

m∧

j=k+1

X ′′
j ∈ Gj




= EEE
X′∼µ′


log


 PrPrPr

X∼µ


Xk+1 ∈ Gk+1

∣∣∣∣∣∣

k∧

j=1

Xj = X ′
j








+ EEE
X′′∼µ′


log


 PrPrPr

X∼µ




m∧

j=k+2

Xj ∈ Gj

∣∣∣∣∣∣

k+1∧

j=1

Xj = X ′′
j






.

Substituting it to (7) gives

log


 PrPrPr

X∼µ




m∧

j=1

Xj ∈ Gj




 ≤ EEE

X′∼µ′




k∑

i=1

log


 PrPrPr

X∼µ


Xi ∈ Gi

∣∣∣∣∣∣

i−1∧

j=1

Xj = X ′
j








+ EEE
X′∼µ′


log


 PrPrPr

X∼µ


Xk+1 ∈ Gk+1

∣∣∣∣∣∣

k∧

j=1

Xj = X ′
j








+ EEE
X′∼µ′


log


 PrPrPr

X∼µ




m∧

j=k+2

Xj ∈ Gj

∣∣∣∣∣∣

k+1∧

j=1

Xj = X ′
j








= EEE
X′∼µ′



k+1∑

i=1

log


 PrPrPr

X∼µ


Xi ∈ Gi

∣∣∣∣∣∣

i−1∧

j=1

Xj = X ′
j








+ EEE
X′∼µ′


log


 PrPrPr

X∼µ




m∧

j=k+2

Xj ∈ Gj

∣∣∣∣∣∣

k+1∧

j=1

Xj = X ′
j






,

thus completing the induction step; for k = m− 1 the above reads:

log


 PrPrPr

X∼µ




m∧

j=1

Xj ∈ Gj




 ≤ EEE

X′∼µ′




m∑

i=1

log


 PrPrPr

X∼µ


Xi ∈ Gi

∣∣∣∣∣∣

i−1∧

j=1

Xj = X ′
j








= EEE
X′∼µ




m∑

i=1

log


 PrPrPr

X∼µ


Xi ∈ Gi

∣∣∣∣∣∣

i−1∧

j=1

Xj = X ′
j





∣∣∣∣∣∣

m∧

j=1

X ′
j ∈ Gj


,

which is precisely (5); (4) follows by the concavity of log. �Claim 2

As a side note, we give the following generalisation, where the i’th “goodness criterion”
may depend not only on the value taken by Xi, but also on the values of X1, . . . ,Xi−1, as
long as the condition is “monotone non-increasing” (e.g., the value of (X1,X2) cannot be good
when that of X1 is bad).
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Corollary 2. Let X1, . . . ,Xm be random variables, so that for each i ∈ [n] the tuple (Xj)
i
j=1

is supported on (finite) Gi ∪· Bi and for all i1 < i2 it holds that Gi2 projected to the first i1
coordinates is a subset of Gi1. Let µ denote the joint distribution of X = (X1, . . . ,Xm), then

PrPrPr
X∼µ

[X ∈ Gm] ≤
m∏

i=1

EEE
X′∼µ


 PrPrPr
X∼µ


(Xj)

i
j=1 ∈ Gi

∣∣∣∣∣∣

i−1∧

j=1

Xj = X ′
j



∣∣∣∣∣∣
X ′ ∈ Gm


,

where X ′ = (X ′
1, . . . ,X

′
m) and X are independent from one another, unless conditioned ex-

plicitly.

Proof. For every i ∈ [m], let Yi be a random variable that takes value (Xi, Qi), where

Qi =

{
1 if (Xj)

i
j=1 ∈ Gi;

0 otherwise.

Let Gi
def
= supp(Xi) × {1} and apply Claim 2 to the case of random variables Yi and “good”

sets Gi. �

5.2 Confidence-weighted accuracy of Boolean prediction

Claim 4. Let X and Y be random variables, X being supported on {0, 1}. Then

EEE
X′,Y ′

[
PrPrPr
X,Y

[
X = X ′∣∣Y = Y ′]

]
− 1

2
= 2 · EEE

Y=y

[(
EEE
X

[
X
∣∣Y = y

]
− 1

2

)2
]
,

where (X ′, Y ′) are distributed independently and identically to (X,Y ).
In particular, if X ∼ U{0,1}, then

EEE
X′,Y ′

[
PrPrPr
X,Y

[
X = X ′∣∣Y = Y ′]− 1

2

]
∈ Θ

(
III
[
X : Y

])
.

Intuitively, if we view X as unknown, Y as known, and try to predict the former using the
latter, then the expectation of PrPrPr

[
X = X ′∣∣Y = Y ′] − 1/2 can be interpreted as confidence-

weighted accuracy when X ∼ U{0,1}.15 It can be opposed to the standard notion of confidence:

EEE
Y=y

[∣∣∣∣EEEX
[
X
∣∣Y = y

]
− 1

2

∣∣∣∣
]
= EEE

X′,Y ′

[∣∣∣∣PrPrPr
X,Y

[
X = X ′∣∣Y = Y ′]− 1

2

∣∣∣∣
]
∈ Θ

(√
III
[
X : Y

])
.

The qualitative difference between the two quantities is witnessed by the claim.

Proof of Claim 4. Let g(y)
def
= PrPrPr

[
X = 0

∣∣Y = y
]

for every y ∈ supp(Y ), then

EEE
X′,Y ′

[
PrPrPr
X,Y

[
X = X ′∣∣Y = Y ′]

]

= EEE
Y ′=y′

[
PrPrPr
[
X ′ = 0

∣∣Y ′ = y′
]
· g(y′) +PrPrPr

[
X ′ = 1

∣∣Y ′ = y′
]
· (1− g(y′))

]

= EEE
Y ′

[
g(Y ′) · g(Y ′) + (1− g(Y ′)) · (1− g(Y ′))

]

= 2 ·EEE
Y

[(
g(Y )− 1

2

)2
]
+

1

2
= 2 · EEE

Y=y

[(
EEE
X

[
X
∣∣Y = y

]
− 1

2

)2
]
+

1

2
.

15 Interpret the pair (X ′, Y ′) as the “actual outcome” of the experiment, then PrPrPr
[
X = X ′

∣∣Y = Y ′
]

measures
“how likely” the value of X was to equal X ′, conditioned upon the value of Y being Y ′.
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If X ∼ U{0,1}, then

H (X)−H
(
X
∣∣Y = y

)
= 1−H

(
X
∣∣Y = y

)
∈ Θ

((
EEE
[
X
∣∣Y = y

]
− 1

2

)2
)

for every y ∈ supp(Y ), and therefore,

III
[
X : Y

]
= EEE

Y=y

[
H (X)−H

(
X
∣∣Y = y

)]
∈ Θ

(
EEE

Y=y

[(
EEE
X

[
X
∣∣Y = y

]
− 1

2

)2
])

,

as required. �Claim 4

6 The R‖,pub-complexity of c̃EqT – a lower bound

Definition 2 (protocols in D‖
ε). Let P be a protocol in D‖

ε , where both Alice and Bob send
r bits to the referee.

• Let Al : {0, 1}n → {0, 1}r be the “message function” of Alice, according to P – i.e.,
Al(x) is sent when she receives input x;

• let α : {0, 1}n → Pow({0, 1}n) be the “neighbourhood function” corresponding to Al(·)
– i.e., α(x)

def
=
{
x′
∣∣Al(x′) = Al(x)

}
;

• define Bo(y) and β(y) similarly.

Note that α(·) and β(·) naturally correspond to partitions of, respectively, Alice’s and
Bob’s input spaces: every possible message sent by a player corresponds to an element of his
partition which is the set of input values corresponding to this message. These partitions are
fully determined by the message functions Al(·) and Bo(·) and, in some sense, they reveal

“all that matters” about a protocol in D‖
µ,ε, as we can always consider (in the context of lower

bounds, assume) an “optimal” referee – the one who outputs a most likely guess regarding
f(X,Y ) with respect to µ, given the messages Al(X) and Bo(Y ) from the players.

To analyse the complexity of c̃EqT , we reason as follows.

• We identify a useful property of all sufficiently accurate protocols for Equ (cf. Corol-
lary 3).

• We consider protocols for Equ,T and see that a more rigid form of the above property
must hold if T is a so-called “small-bias space” (cf. Lemma 4).

• We view ẼqT as “Equ,T on a random subset u” – accordingly, a protocol for ẼqT must
satisfy the above characterisation with respect to “random projections”, which leads to
a more symmetric criterion (cf. Lemma 5).

• We observe that a protocol for c̃EqT must, in a sense, simultaneously solve n “rotated

instances” of ẼqT – therefore, such a protocol must satisfy the n “rotated versions” of
the above characterisation, which in turn leads to an even more symmetric criterion
(cf. Lemma 6) and then to the desired complexity lower bound (cf. Corollary 4).

6.1 Characterising protocols for Equ

To characterise protocols that solve the equality problem, we use the following idea: Suppose
for simplicity that u = [n] (i.e., the protocol solves the standard Eq). If the partitions of {0, 1}n
defined by α(·) and β(·) are suitable for solving Eq, then with respect to X = Y ⊂∼ {0, 1}n,
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the pair of subsets (α(X), β(Y )) will (typically) be such that [X = Y ] is “likely”, given the
messages – namely,

PrPrPr
(X′,Y ′)⊂∼α(X)×β(X)

[
X ′ = Y ′]≫ PrPrPr

(X′,Y ′)⊂∼{0,1}n+n

[
X ′ = Y ′] = 1

2n
.

Applying the optimistic chain inequality (Claim 2) with respect to the event [X ′ = Y ′] =
[
∧

iX
′
i = Y ′

i ] and integrating over the rectangles of the form α(x) × β(x) will lead to a
convenient protocol characterisation.

Definition 3 (protocols for Equ). Fix some u ⊆ [n] and let P be a protocol that solves Equ
in D‖

µEqu
,ε. In addition to Al(·), Bo(·), α(·) and β(·) defined earlier, we will use the following

variations: Let z ∈ {0, 1}|u|, then

• denote by Al∗(z) the distribution over {0, 1}r, corresponding to Al(X ′) when X ′ is
chosen uniformly at random from

{
x′ ∈ {0, 1}n

∣∣x′u = z
}
;

• denote by α∗(z) the distribution over Pow({0, 1}n), corresponding to
{
x′
∣∣Al(x′) = m0

}

when m0 is the value taken by M ∼ Al∗(z) (alternatively, α∗(z) can be defined as the dis-
tribution of α(X ′) when X ′ is chosen uniformly at random from

{
x′ ∈ {0, 1}n

∣∣x′u = z
}
);

• define Bo∗(z) and β∗(z) similarly.

We will argue that the following type of objects are, in a sense, “typical for P” (that will
be the technical core of our characterisation).

Definition 4 (good rectangles). Let A,B ⊆ {0, 1}n. We call the rectangle A×B ⊆ {0, 1}n+n

good if

PrPrPr
(X′,Y ′)⊂∼A×B

[
X ′

u = Y ′
u

]
≥ 1

4
√
ε+ 2−|u| ·

1

2|u|
.

Our first step in this part is characterising good rectangles in a technically-convenient
manner. We need the following.

Definition 5 (delta-properties of sets and partitions). Let W ⊆ {0, 1}n, i ∈ [|u|] and

z ∈ {0, 1}|u|. Then

δu,iW (z)
def
= PrPrPr

X⊂∼W

[
Xu(i) = zi

∣∣Xu([i− 1]) = z[i−1]

]
− 1

2
,

∆u,i
α (z)

def
= PrPrPr

X⊂∼α∗(z)

[
Xu(i) = zi

∣∣Xu([i− 1]) = z[i−1]

]
− 1

2

{
= EEE

A∼α∗(z)

[
δu,iA (z)

]}
,

and similarly for ∆u,i
β (z).

Lemma 1. Let A,B ⊆ {0, 1}n. If the rectangle A×B is good, then

EEE
Z




|u|∑

i=1

δu,iA (Z) · δu,iB (Z)


 ≥ 1

4
· ln
(

1

4
√
ε+ 2−|u|

)
,

where Z is distributed as Xu when (X,Y ) ⊂∼ A×B conditioned on [Xu = Yu].
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Proof. By the definition of good rectangles,

1

4
√
ε+ 2−|u| ·

1

2|u|
≤ PrPrPr

(X′,Y ′)⊂∼A×B

[
X ′

u = Y ′
u

]
= PrPrPr




|u|∧

i=1

X ′
u(i) = Y ′

u(i)




≤
|u|∏

i=1

EEE
(X′,Y ′)⊂∼A×B

[
⊛
∣∣X ′

u = Y ′
u

]

=

|u|∏

i=1

EEE
Z

[
PrPrPr

(X,Y )⊂∼A×B

[
Xu(i) = Yu(i)

∣∣Xu([i− 1]) = Yu([i− 1]) = Z[i−1]

]]
,

where the second inequality is the optimistic chain inequality (Claim 2), ⊛ stands for

PrPrPr
(X,Y )⊂∼A×B

[
Xu(i) = Yu(i)

∣∣Xu([i − 1]) = X ′
u([i− 1]), Yu([i − 1]) = Y ′

u([i− 1])
]

and Z is distributed as X ′
u when (X ′, Y ′) ⊂∼ A×B conditioned on [X ′

u = Y ′
u].

On the other hand, for every i ∈ [|u|] and z ∈ {0, 1}|u|:
PrPrPr

(X,Y )⊂∼A×B

[
Xu(i) = Yu(i)

∣∣Xu([i− 1]) = Yu([i− 1]) = z[i−1]

]

= PrPrPr
[
Xu(i) = Yu(i) = zi

∣∣Xu([i− 1]) = Yu([i − 1]) = z[i−1]

]

+PrPrPr
[
Xu(i) = Yu(i) = 1− zi

∣∣Xu([i− 1]) = Yu([i− 1]) = z[i−1]

]

= PrPrPr
X⊂∼A

[
Xu(i) = zi

∣∣Xu([i− 1]) = z[i−1]

]
· PrPrPr
Y⊂∼B

[
Yu(i) = zi

∣∣Yu([i− 1]) = z[i−1]

]

+ PrPrPr
X⊂∼A

[
Xu(i) = 1− zi

∣∣Xu([i− 1]) = z[i−1]

]
· PrPrPr
Y⊂∼B

[
Yu(i) = 1− zi

∣∣Yu([i− 1]) = z[i−1]

]

=
1

2
+ 2 ·

(
PrPrPr
X⊂∼A

[
Xu(i) = zi

∣∣Xu([i− 1]) = z[i−1]

]
− 1

2

)

·
(

PrPrPr
Y⊂∼B

[
Yu(i) = zi

∣∣Yu([i− 1]) = z[i−1]

]
− 1

2

)

=
1

2
+ 2 · δu,iA (z) · δu,iB (z).

Therefore,

1

4
√
ε+ 2−|u| ·

1

2|u|
≤

|u|∏

i=1

(
1

2
+ 2 ·EEE

Z

[
δu,iA (Z) · δu,iB (Z)

])
,

where Z is distributed as Xu when (X,Y ) ⊂∼ A×B conditioned on [Xu = Yu].
So,

ln

(
1

4
√
ε+ 2−|u| ·

1

2|u|

)
≤

|u|∑

i=1

(
ln

(
1

2

)
+ ln

(
1 + 4 ·EEE

Z

[
δu,iA (Z) · δu,iB (Z)

]))

≤ |u| · ln
(
1

2

)
+ 4 ·

|u|∑

i=1

EEE
Z

[
δu,iA (Z) · δu,iB (Z)

]
,

as required. �Lemma 1

Next we will “look inside” P, for which we need the following.
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Definition 6 (random variables corresponding to [Xu = Yu]).

• Let Z ∼ U{0,1}|u|.

• Let the pair of Pow({0, 1}n)-valued variables (A,B) be distributed as (α∗(Z), β∗(Z)).
• Let Z ′ be distributed as Xu when (X,Y ) ⊂∼ A× B conditioned on [Xu = Yu].

Intuitively, the variable Z corresponds to sampling the protocol input from µ1
Equ

: think of
it as drawing uniformly-random (X,Y ), subject to Xu = Yu = Z. Then the rectangle A× B
can be viewed as the knowledge that the referee obtains from the players’ messages regarding
the input pair. View Z ′ as a “sibling of Z”, used in the proof for technical reasons.

Note two Markov chains that correspond to these random variables:

A ↔ Z ↔ B and Z ↔ (A,B) ↔ Z ′,

in other words, A and B are independent when conditioned on Z, and Z and Z ′ are indepen-
dent when conditioned on (A,B).

We claim that the latter chain is symmetric in the following sense:

Lemma 2. The marginal distributions of ((A,B), Z) and of ((A,B), Z ′) are the same.

Proof. Let (a, b) ∈ supp(A,B) and denote by [(a, b)] the event that (A,B) = (a, b), by [a] the

event that A = a and by [b] the event that B = b. Let z0 ∈ {0, 1}|u|, then

PrPrPr
[
(a, b)

∣∣Z = z0
]
= PrPrPr

[
a
∣∣Z = z0

]
·PrPrPr

[
b
∣∣Z = z0

]

= PrPrPr
[
Z = z0

∣∣a
]
· PrPrPr[a]

PrPrPr[Z = z0]
·PrPrPr

[
Z = z0

∣∣b
]
· PrPrPr[b]

PrPrPr[Z = z0]

= PrPrPr
[
Z = z0

∣∣a
]
·PrPrPr[a] ·PrPrPr

[
Z = z0

∣∣b
]
·PrPrPr[b] · 22|u|.

On the other hand,

PrPrPr[a] = PrPrPr
Z⊂∼{0,1}|u|

[α∗(Z) = a] = PrPrPr
X⊂∼{0,1}n

[α(X) = a] =
|a|
2n

,

P rPrPr
[
Z = z0

∣∣a
]
= PrPrPr

[
Z = z0

∣∣α∗(Z) = a
]
= PrPrPr

[
Xu = z0

∣∣α(X) = a
]
= PrPrPr

X⊂∼a

[Xu = z0],

and similarly for PrPrPr[b] and PrPrPr
[
Z = z0

∣∣b
]
. Accordingly,

PrPrPr
[
(a, b)

∣∣Z = z0
]
= PrPrPr

X⊂∼a

[Xu = z0] · PrPrPr
Y⊂∼b

[Yu = z0] · |a| · |b| · 22|u|−2n.

Therefore,

PrPrPr[[(a, b)] ∧ Z = z0] = PrPrPr[Z = z0] ·PrPrPr
[
(a, b)

∣∣Z = z0
]

(9)

= PrPrPr
X⊂∼a

[Xu = z0] · PrPrPr
Y⊂∼b

[Yu = z0] · |a| · |b| · 2|u|−2n

and

PrPrPr[(a, b)] =
∑

z

PrPrPr[Z = z] · PrPrPr
X⊂∼a

[Xu = z] · PrPrPr
Y⊂∼b

[Yu = z] · |a| · |b| · 22|u|−2n (10)

= PrPrPr
X⊂∼a

Y⊂∼b

[Xu = Yu] · |a| · |b| · 2|u|−2n.
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On the other hand,

PrPrPr
[
[(a, b)] ∧ Z ′ = z0

]
= PrPrPr

[
Z ′ = z0

∣∣(a, b)
]
·PrPrPr[(a, b)]

=
PrPrPrX⊂∼a [Xu = z0] ·PrPrPrY⊂∼b [Yu = z0]

PrPrPrX⊂∼a

Y⊂∼b

[Xu = Yu]
·PrPrPr[(a, b)]

= PrPrPr
X⊂∼a

[Xu = z0] · PrPrPr
Y⊂∼b

[Yu = z0] · |a| · |b| · 2|u|−2n

= PrPrPr[[(a, b)] ∧ Z = z0],

where the last two inequalities follow from (10) and (9), respectively. �Lemma 2

Our characterisation of P will be based on the following structural observation.

Lemma 3.

PrPrPr
A,B

[A× B is a good rectangle] > 1− 2ε− 2
√
ε.

Proof. Let (a, b) ∈ {0, 1}r+r be a pair of players’ messages and

err(a, b)
def
= PrPrPr

(X,Y )∼µEqu

[
P(X,Y ) makes an error

∣∣Al(X) = a,Bo(Y ) = b
]
.

By the correctness assumption,

PrPrPr
(X,Y )∼µEqu

[
err(Al(X), Bo(Y )) >

√
ε
]
<

√
ε.

Call a pair of messages (a, b) ∈ {0, 1}r+r bad if err(a, b) >
√
ε and good otherwise.

Recall that µEqu
is the “uniform mixture” of µ0

Equ
and µ1

Equ
. Accordingly, from the cor-

rectness assumption it follows that with respect to (X,Y ) ∼ µ1
Equ

,

• P accepts (that is, produces output “1”) with probability at least 1− 2ε;
• (Al(X), Bo(Y )) is a bad message with probability at most 2

√
ε.

Note that sampling (Al(X), Bo(Y )) when (X,Y ) ∼ µ1
Equ

is the same as sampling (Al∗(Z), Bo∗(Z))
when Z ∼ U{0,1}|u| – therefore, (Al∗(Z), Bo∗(Z)) is a good pair of messages accepted by the

referee with probability at least 1− 2ε− 2
√
ε.

We will see next that a good pair of messages accepted by the referee defines a good
rectangle (Def. 4); this will imply the lemma, as the rectangle corresponding to the pair of
messages (Al∗(Z), Bo∗(Z)) under Z ∼ U{0,1}|u| is distributed the same way as A× B.

Suppose that (a, b) is a good pair of messages accepted by the referee and let [(a, b)] denote
the event [(Al∗(Z), Bo∗(Z)) = (a, b)]. Then

PrPrPr
(X,Y )⊂∼{0,1}n+n

[
(a, b)

∣∣Xu 6= Yu

]
= PrPrPr

µEqu

[
(a, b)

∣∣Xu 6= Yu

]

= PrPrPr
µEqu

[
Xu 6= Yu

∣∣(a, b)
]
·

PrPrPrµEqu
[(a, b)]

PrPrPrµEqu
[Xu 6= Yu]

≤ 2
√
ε · PrPrPr

µEqu

[(a, b)],

as PrPrPrµEqu
[Xu 6= Yu] = 1/2. Similarly,

PrPrPr
(X,Y )⊂∼{0,1}n+n

[
(a, b)

∣∣Xu = Yu

]
≥ 2(1−√

ε) · PrPrPr
µEqu

[(a, b)].

23



So,

PrPrPr
(X,Y )⊂∼{0,1}n+n

[
(a, b)

∣∣Xu 6= Yu

]
≤

√
ε

1−√
ε
· PrPrPr
(X,Y )⊂∼{0,1}n+n

[
(a, b)

∣∣Xu = Yu

]

and

PrPrPr
(X,Y )⊂∼{0,1}n+n

[(a, b)] ≤ PrPrPr[Xu = Yu] ·PrPrPr
[
(a, b)

∣∣Xu = Yu

]
+PrPrPr

[
(a, b)

∣∣Xu 6= Yu

]

≤
(

1

2|u|
+

√
ε

1−√
ε

)
·PrPrPr

[
(a, b)

∣∣Xu = Yu

]
.

Finally,

PrPrPr
(X,Y )⊂∼{0,1}n+n

[
Xu = Yu

∣∣(a, b)
]
=

PrPrPr
[
(a, b)

∣∣Xu = Yu

]

PrPrPr[(a, b)]
·PrPrPr[Xu = Yu] (11)

≥ 1
1

2|u|
+

√
ε

1−√
ε

· 1

2|u|
>

1

4
√
ε+ 2−|u| ·

1

2|u|
,

as ε < 1/2. The result follows from the definition of good rectangles. �Lemma 3

We are ready for the main statement of this part.

Corollary 3. Let P be a protocol that solves Equ in D‖
µEqu

,ε, with ∆u,i
α and ∆u,i

β as defined
earlier. Then

|u|∑

i=1

〈
∆u,i

α , ∆u,i
β

〉
>

1

4
· ln
(

1

4
√
ε+ 2−|u|

)
− 2

√
ε · |u|.

Proof. We analyse the quantity

EEE
(A,B), Z′




|u|∑

i=1

δu,iA (Z ′) · δu,iB (Z ′)


.

On the one hand,

EEE
(A,B), Z′




|u|∑

i=1

δu,iA (Z ′) · δu,iB (Z ′)




≥ PrPrPr[A×B is a good rectangle] · 1
4
· ln
(

1

4
√
ε+ 2−|u|

)

+
(
1−PrPrPr[A× B is a good rectangle]

)
· min
A,B,z





|u|∑

i=1

δu,iA (z) · δu,iB (z)





>

(
1

4
−√

ε

)
· ln
(

1

4
√
ε+ 2−|u|

)
−√

ε · |u|

≥ 1

4
· ln
(

1

4
√
ε+ 2−|u|

)
− 2

√
ε · |u|,
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where the first inequality is Lemma 1 and the second one is Lemma 3. On the other hand,

EEE
(A,B), Z′




|u|∑

i=1

δu,iA (Z ′) · δu,iB (Z ′)


 = EEE

Z, (A,B)




|u|∑

i=1

δu,iA (Z) · δu,iB (Z)




=

|u|∑

i=1

EEE
Z⊂∼{0,1}|u|

[(
EEE

A∼α∗(Z)

[
δu,iA (Z)

])
·
(

EEE
B∼β∗(Z)

[
δu,iB (Z)

])]

=

|u|∑

i=1

EEE
Z⊂∼{0,1}|u|

[
∆u,i

α (Z) ·∆u,i
β (Z)

]
=

|u|∑

i=1

〈
∆u,i

α , ∆u,i
β

〉
,

where the first equality is Lemma 2. �Corollary 3

6.2 Characterising protocols for Equ,T

Lemma 4. Let T be a δ-biased space for some δ > 0 and assume that P solves Equ,T (X,Y )

in D‖
µEqu,T

,ε. Then
∑

i∈u
III

X⊂∼{0,1}n
[
Xi : Xu\{i}, Al(X)

]
· III
Y⊂∼{0,1}n

[
Yi : Yu\{i}, Bo(Y )

]

∈ Ω

(
ln

(
1

|T | · (ε+ 2−|u|)

))
−O

((√
|T | · ε+ δ

)
· |u|

)
.

Proof. From the definition of µEqu,T
and the correctness assumption it follows that for any

τ ∈ T , if (X + τ, Y ) ∼ µEqu
, then P solves Equ(X + τ, Y ) with error at most

εT
def
= |T | · (ε+ 2−|u|).

Let Tu
def
=
{
τ ′
∣∣∣τ ′u ∈ T |u, τ ′[n]\u = 0̄

}
– in other words, Tu contains the elements of T with

bits outside u set to 0. To keep the notation simple, assume that |Tu| = |T | 16, and therefore,

Tu|u ⊆ {0, 1}|u| is a δ-biased space.
Observe that for any τ ∈ T and the corresponding τ ′ ∈ Tu, it holds that Equ(X + τ, Y ) ≡

Equ(X + τ ′, Y ) and (X + τ, Y ) ∼ µEqu
whenever (X + τ ′, Y ) ∼ µEqu

. Accordingly, P solves
Equ(X + τ ′, Y ) when (X + τ ′, Y ) ∼ µEqu

with error at most εT .
Corollary 3 implies that

EEE
τ ′⊂∼Tu




|u|∑

i=1

〈
∆u,i

α,τ ′ , ∆
u,i
β

〉

 >

1

4
· ln
(

1

4
√
εT + 2−|u|

)
− 2

√
εT · |u|

16 This assumption does not cause any loss of generality: without it we would view Tu as a “multiset”.
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for ∆u,i
α,τ ′(z)

def
= ∆u,i

α (z ⊕ τ ′u) for every z ∈ {0, 1}|u| and τ ′ ∈ Tu. For any i ∈ [|u|]:

EEE
τ ′⊂∼Tu

[〈
∆u,i

α,τ ′ , ∆
u,i
β

〉]
= EEE

τ ′


 ∑

s⊂[|u|]

̂
∆u,i

α,τ ′(s) · ∆̂
u,i
β (s)




=
∑

s⊂[|u|]
EEE
τ ′

[
∆̂u,i

α (s) · χs(τ
′
u) · ∆̂u,i

β (s)

]

=
∑

s⊂[|u|]

(
∆̂u,i

α (s) · ∆̂u,i
β (s) ·EEE

τ ′

[
χs(τ

′
u)
])

≤ ∆̂u,i
α (∅) · ∆̂u,i

β (∅) + 1

4
·max

s 6=∅

{
EEE
τ ′

[
χs(τ

′
u)
]}

≤ ∆̂u,i
α (∅) · ∆̂u,i

β (∅) + δ

4
,

where the first two equalities are basic properties of the Fourier transform (see Sect. 2), the

first inequality follows from the Parseval’s identity and the fact that
∣∣∣∆u,i

α (z)
∣∣∣,
∣∣∣∆u,i

β (z)
∣∣∣ ≤ 1/2

for every z, and the ultimate step utilises the crucial property of Tu|u ⊆ {0, 1}|u| being a
δ-biased space. So,

|u|∑

i=1

∆̂u,i
α (∅) · ∆̂u,i

β (∅) > 1

4
· ln
(

1

4
√
εT + 2−|u|

)
−
(
2
√
εT +

δ

4

)
· |u|. (12)

Let us take a closer look at ∆̂u,i
α (∅).

∆̂u,i
α (∅) = EEE

Z⊂∼{0,1}|u|
[
∆u,i

α (Z)
]

= EEE
Z

[
PrPrPr

X⊂∼α∗(Z)

[
Xu(i) = Zi

∣∣Xu([i − 1]) = Z[i−1]

]
− 1

2

]

= EEE
Z

A∼α∗(Z)

[
PrPrPr
X⊂∼A

[
Xu(i) = Zi

∣∣Xu([i− 1]) = Z[i−1]

]
− 1

2

]
.

By the definition of α∗ (Def. 3), the “chain”

Z ⊂∼ {0, 1}|u| → A ∼ α∗(Z) → X ⊂∼ A

results in the same distribution of (Z,A,X) as

X ⊂∼ {0, 1}n → A = α(X) → X ′ ⊂∼ A → Z = X ′
u.

Therefore,

∆̂u,i
α (∅) = EEE

X⊂∼{0,1}n

[
PrPrPr

X′⊂∼α(X)

[
Xu(i) = X ′

u(i)
∣∣Xu([i− 1]) = X ′

u([i− 1])
]
− 1

2

]
.

Moreover, the marginal distributions of (A,X) and of (A,X ′) are the same: we can sample
(X,A,X ′) by first drawing A according to its distribution17, followed by mutually-independent

17 This is the distribution where the probability of A = a is proportional to |a|.
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selecting X ⊂∼ A and X ′ ⊂∼ A. Accordingly,

∆̂u,i
α (∅) = EEE

A


 PrPrPr

X⊂∼A
X′⊂∼A

[
Xu(i) = X ′

u(i)
∣∣Xu([i− 1]) = X ′

u([i− 1])
]
− 1

2




= EEE
A

X′⊂∼A

[
PrPrPr
X⊂∼A

[
Xu(i) = X ′

u(i)
∣∣Xu([i− 1]) = X ′

u([i− 1])
]
− 1

2

]

= EEE
A′

X′⊂∼A′


 PrPrPr

A
X⊂∼A

[
Xu(i) = X ′

u(i)
∣∣Xu([i− 1]) = X ′

u([i− 1]),A = A′]− 1

2


,

where A′ is distributed identically to A.
Denote W = (A,Xu([i− 1])) and W ′ = (A′,X ′

u([i− 1])). As the marginal distribution of
X is uniform, we can apply the second part of Claim 4 with respect to W and Xu(i):

∆̂u,i
α (∅) = EEE

W ′,X′
u(i)

[
PrPrPr

W,Xu(i)

[
Xu(i) = X ′

u(i)
∣∣W = W ′]− 1

2

]

∈ Θ
(
III
[
Xu(i) : W

])

= Θ
(
III
[
Xu(i) : α(X),Xu([i− 1])

])

= Θ

(
III

X⊂∼{0,1}n
[
Xu(i) : Al(X),Xu([i− 1])

])
.

Applying similar reasoning to ∆̂u,i
β (∅) and plugging into (12) leads to

|u|∑

i=1

III
X⊂∼{0,1}n

[
Xu(i) : Al(X),Xu([i− 1])

]
· III
Y⊂∼{0,1}n

[
Yu(i) : Bo(Y ), Yu([i− 1])

]

∈ Ω

(
ln

(
1

εT + 2−|u|

))
−O((

√
εT + δ) · |u|).

By monotonicity of mutual information,∑

i∈u
III

X⊂∼{0,1}n
[
Xi : Al(X),Xu\{i}

]
· III
Y⊂∼{0,1}n

[
Yi : Bo(Y ), Yu\{i}

]

∈ Ω

(
ln

(
1

εT + 2−|u|

))
−O((

√
εT + δ) · |u|),

as required. �Lemma 4

6.3 Characterising protocols for ẼqT

Lemma 5. For sufficiently large n, some δ ∈ Θ
(
1
n

)
, any δ-biased space T of size 2o(n) and

some ε ∈ Θ
(

1
|T |·n3

)
, any protocol P that solves ẼqT (X,Y ) in D‖

µ
ẼqT

,ε satisfies

n∑

i=1

EEE
u1

[
III

X⊂∼{0,1}n
[
Xi : Xu1 , Al(X)

]]
·EEE
u2

[
III

Y⊂∼{0,1}n
[
Yi : Yu2 , Bo(Y )

]]
> log n,

where u1, u2 ⊂∼
([n]\{i}

2n/3

)
.
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Proof. Suppose that a protocol solves ẼqT with respect to µ
ẼqT

with error at most ε′, and

let ε′u be the error that the same protocol makes in solving Equ,T with respect to µEqu,T
.

By the definition of the two distributions (Sect. 2.1.1),

µ
ẼqT

= EEE
u⊂∼( [n]

n/3)

[
µEqu,T

]
.

Therefore, (X,Y ) ∼ µ
ẼqT

can be sampled by first choosing u ⊂∼
([n]
n/3

)
, followed by (X,Y ) ∼

µEqu,T
. Then∣∣∣∣∣∣

EEE
u⊂∼( [n]

n/3)

[
ε′u
]
− ε′

∣∣∣∣∣∣
≤ EEE

u⊂∼( [n]
n/3)

[
PrPrPr

(X,Y )∼µEqu,T

[
ẼqT (X,Y ) 6= Equ,T (X,Y )

]]

≤ EEE
u⊂∼( [n]

n/3)

[
PrPrPr

(X,Y )∼µEqu,T

[
ẼqT (X,Y ) 6= Equ,T (X,Y )

]]
+ 2−Ω(n),

where the latter inequality is Claim 1. As our construction of T is such that |τ1 ⊕ τ2| ∈ n
2±o(n)

for every τ1 6= τ2 ∈ T (cf. Fact 2), it follows from the Chernoff bound (Fact 1) that

PrPrPr
u⊂∼( [n]

n/3)

[
|(τ1 ⊕ τ2)u| ∈

(
9n

60
,
11n

60

)]
∈ 1− 2−Ω(n),

and, on the other hand, it follows by the same Fact 1 from the definitions of µEqu,T
, ẼqT and

Equ,T that

|(τ1 ⊕ τ2)u| ∈
(
9n

60
,
11n

60

)
=⇒ PrPrPr

(X,Y )∼µEqu,T

[
ẼqT (X,Y ) 6= Equ,T (X,Y )

]
∈ 2−Ω(n).

Accordingly,

EEE
u⊂∼( [n]

n/3)

[
ε′u
]
≤ ε′ + 2−Ω(n).

From Lemma 4, our assumption about |T | and the concavity of log(1/x), there exist choices
of ε and δ in the range given by our statement, so that

EEE
u⊂∼( [n]

n/3)

[∑

i∈u
III

X⊂∼{0,1}n
[
Xi : Al(X),Xu\{i}

]
· III
Y⊂∼{0,1}n

[
Yi : Bo(Y ), Yu\{i}

]
]
≥ 2 log n,

and therefore for sufficiently large n,

EEE
u1,u2⊂∼( [n]

2n/3)

[ ∑

i∈u1∩u2

III
X

[
Xi : Al(X),Xu1∩u2\{i}

]
· III
Y

[
Yi : Bo(Y ), Yu1∩u2\{i}

]
]

≥ PrPrPr
u1,u2⊂∼( [n]

2n/3)
[|u1 ∩ u2| ≥ n/3] · 2 > log n.

By the monotonicity of mutual information,

log n < EEE
u1,u2⊂∼( [n]

2n/3)

[ ∑

i∈u1∩u2

III
X

[
Xi : Al(X),Xu1\{i}

]
· III
Y

[
Yi : Bo(Y ), Yu2\{i}

]
]

≤
n∑

i=1

EEE
u1,u2⊂∼([n]\{i}

2n/3 )

[
III
X

[
Xi : Al(X),Xu1

]
· III
Y

[
Yi : Bo(Y ), Yu2

]]
,

as required. �Lemma 5
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6.4 Characterising protocols for c̃EqT

Lemma 6. For sufficiently large n, some δ ∈ Θ
(
1
n

)
, any δ-biased space T of size 2o(n) and

some ε ∈ Θ
(

1
|T |·n3

)
, any protocol P that solves c̃EqT (X,Y ) in D‖

µ
c̃EqT

,ε satisfies

EEE
i1,u1

[
III

X⊂∼{0,1}n
[
Xi1 : Xu1 , Al(X)

]]
· EEE
i2,u2

[
III

Y⊂∼{0,1}n
[
Yi2 : Yu2 , Bo(Y )

]]
>

log n

2n
,

where i1, i2 ⊂∼ [n], u1 ⊂∼
([n]\{i1}

2n/3

)
and u2 ⊂∼

([n]\{i2}
2n/3

)
.

Proof. Suppose that a protocol solves c̃EqT with respect to µ
c̃EqT

with error at most ε′.

By the definition of the input distributions (Sect. 2.1.1),

µ
c̃EqT

= EEE
j∈[n]

[
µj

c̃EqT

]
.

Therefore, with probability at least 1/2 with respect to j ⊂∼ [n], the same protocol solves c̃EqT
with error at most 2ε′ with respect to µj

c̃EqT
and – according to Claim 1 – with error at most

2ε′ + 2−Ω(n) with respect to µj

c̃EqT
. Let J ⊆ [n] be the set of indices j for which the above

holds, then |J | ≥ n/2.

Let j0 ∈ J . It follows by the Chernoff bound (Fact 1) from the definitions of µj

c̃EqT
, c̃EqT

and ẼqT that

PrPrPr
(X,Y )∼µ

j0

c̃EqT

[
c̃EqT (X,Y ) 6= ẼqT (σj0(X), Y )

]
∈ 2−Ω(n),

and therefore our protocol solves ẼqT (σj0(X), Y ) with error at most 2ε′+2−Ω(n) with respect

to (X,Y ) ∼ µj0

c̃EqT
, which corresponds to (σj0(X), Y ) ∼ µ

ẼqT
. Via another application of

Claim 1, this means that the protocol solves ẼqT (σj0(X), Y ) with error at most 2ε′ + 2−Ω(n)

with respect to (σj0(X), Y ) ∼ µ
ẼqT

.

Accordingly, Lemma 5 implies that for some choices of ε and δ in the range allowed by
our statement the following holds:

EEE
j∈[n]

[
n∑

i=1

EEE
u1

[
III

X⊂∼{0,1}n
[
Xi : Xu1 , Al(X)

]]
·EEE
u2

[
III

Y⊂∼{0,1}n

[
Yσj(i) : Yσj(u2), Bo(Y )

]]]

≥ 1

2
· EEE
j∈J

[
n∑

i=1

EEE
u1

[
III

X⊂∼{0,1}n
[
Xi : Xu1 , Al(X)

]]
·EEE
u2

[
III

Y⊂∼{0,1}n

[
Yσj(i) : Yσj(u2), Bo(Y )

]]]

>
log n

2
,

where u1, u2 ⊂∼
([n]\{i}

2n/3

)
. That is,

log n

2n
< EEE

i1,i2⊂∼[n]

[
EEE
u1

[
III
X

[
Xi1 : Xu1 , Al(X)

]]
·EEE
u2

[
III
Y

[
Yi2 : Yu2 , Bo(Y )

]]]
,

where u1 ⊂∼
([n]\{i1}

2n/3

)
and u2 ⊂∼

([n]\{i2}
2n/3

)
, as required. �Lemma 6
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Corollary 4. There exists a family T = T1, T2, . . . , where every Ti ⊆ {0, 1}i can be con-

structed deterministically in time poly(i), such that for the corresponding c̃EqT it holds that

R‖,pub(c̃EqT ) ≥ D‖
µ
c̃EqT

, 1
3

(c̃EqT ) ∈ Ω

(√
n

log n

)
.

Proof. Let n be sufficiently large, δ ∈ Θ
(
1
n

)
be sufficiently small, T be a δ-biased space of size

poly(n/δ) (as guaranteed by Fact 2) and ε ∈ 1
poly(n) be sufficiently small, so that Lemma 6

guarantees that for any protocol P solving c̃EqT in D‖
µ
c̃EqT

,ε it holds that

EEE
i1,u1

[
III

X⊂∼{0,1}n
[
Xi1 : Xu1 , Al(X)

]]
· EEE
i2,u2

[
III

Y⊂∼{0,1}n
[
Yi2 : Yu2 , Bo(Y )

]]
>

log n

2n
.

Without loss of generality, assume that

EEE
i1,u1

[
III

X⊂∼{0,1}n
[
Xi1 : Xu1 , Al(X)

]]
>

√
log n

2n

for i1 ⊂∼ [n] and u1 ⊂∼
([n]\{i1}

2n/3

)
, then

∃u ∈
(
[n]
2n/3

)
:
∑

i 6∈u
III

X⊂∼{0,1}n
[
Xi : Xu, Al(X)

]
>

n

3
·
√

log n

2n
,

and therefore the complexity of P is at least

III
X⊂∼{0,1}n

[
Al(X) : X

∣∣Xu

]
>

√
n · log n

6
.

If, on the other hand, a protocol solves c̃EqT in D‖
µ
c̃EqT

, 1
3

, then repeated k times in parallel

for a sufficient k ∈ O(log n), it would solve c̃EqT with error at most ε. �Corollary 4

7 Conclusion

From Corollaries 4 and 1:

Corollary 5. There exists a family T = T1, T2, . . . , where every Ti ⊆ {0, 1}i can be con-

structed deterministically in time poly(i) and for the corresponding c̃EqT it holds that

Q‖(c̃EqT ) ∈ O
(
(log n)2

)
and R‖,pub(c̃EqT ) ∈ Ω

(√
n

log n

)
.

The landscape of quantum superiority and further questions. One of the main
questions related to quantum communication complexity is “When can quantum outperform
classical? ” – formally, for which pairs of quantum and classical communication models the
former is super-polynomially18 more efficient than the latter in solving a specific problem.

There are three main types of communication problems used for model separations: func-
tions, total functions and relations. Functions – probably, the most natural class of communi-
cation problems – are a special case of relations. Total functions are a restricted special case
of functions, where the support is required to be the product set of the players’ individual

18 All known super-polynomial separations are, in fact, exponential.
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sets of input.19 There are known cases where a quantum communication complexity class
can be separated from a classical one via a relation, while a functional separation is provably
impossible (see [Aar04, GRdW08]).

The history of (super-polynomial) separations that showed advantage of quantum commu-
nication can be briefly outlined as follows.

• In 1999 Raz [Raz99] demonstrated a function that had an efficient quantum two-way
protocol, but no efficient classical two-way protocol.

• In 2001 Buhrman, Cleve, Watrous and de Wolf [BCWdW01] demonstrated a total func-
tion (namely, the equality) that had an efficient quantum simultaneous-messages proto-
col without shared randomness, but no efficient classical simultaneous-messages protocol
without shared randomness.

• In 2004 Bar-Yossef, Jayram and Kerenidis [BYJK04] demonstrated a relation that had
an efficient quantum simultaneous-messages protocol without shared randomness, but no
efficient classical one-way protocol.

• In 2007 in a joint work with Kempe, Kerenidis, Raz and de Wolf [GKK+08] a function
was demonstrated, that had an efficient quantum one-way protocol, but no efficient
classical one-way protocol.

• In 2008 a relation was demonstrated [Gav08] with an efficient quantum one-way protocol,
but no efficient classical two-way protocol.

• In 2010 Klartag and Regev [KR11] demonstrated a function with an efficient quantum
one-way protocol, but no efficient classical two-way protocol.

• In 2016 a function was demonstrated [Gav16] with an efficient quantum simultaneous-
messages protocol with entanglement, but no efficient classical two-way protocol.

• This work presents a function with an efficient quantum simultaneous-messages protocol
without shared randomness, but no efficient classical simultaneous-messages protocol with
shared randomness.

Is it the case that “everything separable” has already been discovered – in other words,
that for the pairs of a quantum and a classical model, where we do not yet have an example
of quantum superiority, such examples do not exist? Our current knowledge of “limitations to
separability” is very limited: in particular, virtually nothing is known in this respect regarding
the models considered in this work.

To summarise what is known and what is still missing, let us consider the three “canonical”
randomised models: two-way (R), one-way (R1 ) and SMP (R‖,pub), and add to our picture
the “purposely weakened” SMP (R‖). We are interested in their “strength relationship” with
the quantum counterparts – both the closest (e.g., R vs. Q) and “topologically” weaker (e.g.,
R vs. Q‖).

• If we only allow functions and only consider the closest pairs, then our knowledge has
been completed by this work:

R‖ < R‖,pub < R1 < R
∧ ∧ ∧ ∧
Q‖ < Q‖,pub < Q1 < Q

(we have just seen that Q‖,pub > R‖,pub , the rest has been known for some time).

19 To emphasise the distinction from total functions in the context of communication complexity, the term
partial functions is often used to address the unrestricted functions.
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• As for “diagonal” relationship via functions, it has been known that Q1 can be stronger
than R and we have just seen that Q‖ can be stronger than R‖,pub .

Question1. Can some of
{
Q‖,Q‖,pub} be stronger than some of

{
R1 ,R

}
with respect

to a function? 20

• If we allow relational problems, then one additional “diagonal” separation is known: Q‖

can be stronger than R1 .

Question 2. Can Q‖ or Q‖,pub be stronger than R with respect to a relation?

As we mentioned earlier, looking for the weakest quantum model that can outperform
R and for the strongest classical model that can be outperformed by Q‖ are, probably,
the two most natural approaches towards understanding the strength and the limits
of quantum communication. Ultimately, we would like the two approaches to “meet” –
that is, to find a communication problem (even a relational one), easy for Q‖ but hard
for R.

• For the case of total functions our current lack of understanding is almost perfect. We
know nothing about “diagonal” relationship and nearly nothing about the closest pairs:

R‖ < R‖,pub < R1 < R
∧ ? ? ?

Q‖ < Q‖,pub < Q1 < Q

Question 3. In the case of total functions, can Q‖,pub be stronger than R‖,pub? How
about Q1 vs. R1? Q vs. R?
Can Q‖, Q‖,pub or Q1 be stronger than R? Can Q‖ be stronger than R‖,pub or R1?

Lastly, we would like to mention

Question4. What is the complexity of our c̃EqT in the model of classical SMP with shared
entanglement (R‖,ent)?

If it has an efficient solution, that would imply a functional separation between R‖,ent and
R‖,pub , which we do not have yet (a relational separation is known); if, on the other hand,

c̃EqT is hard for R‖,ent , that would imply the possibility of qualitative advantage of Q‖ over
R‖,ent , which is currently not known even for relational problems.
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