arXiv:1807.03422v3 [csIT] 30 Sep 2019

Capacity of Two-Way Channels

with Symmetry Properties

Jian-Jia Weng', Student Member, IEEE, Lin Song?, Fady Alajaji', Senior
Member, IEEE, and Tamas Linder!, Fellow, IEEE

Abstract

In this paper, we make use of channel symmetry properties to determine the capacity region of three
types of two-way networks: (a) two-user memoryless two-way channels (TWCs), (b) two-user TWCs
with memory, and (c) three-user multiaccess/degraded broadcast (MA/DB) TWCs. For each network,
symmetry conditions under which a Shannon-type random coding inner bound (under independent
non-adaptive inputs) is tight are given. For two-user memoryless TWCs, prior results are substantially
generalized by viewing a TWC as two interacting state-dependent one-way channels. The capacity of
symmetric TWCs with memory, whose outputs are functions of the inputs and independent stationary
and ergodic noise processes, is also obtained. Moreover, various channel symmetry properties under
which the Shannon-type inner bound is tight are identified for three-user MA/DB TWCs. The results
not only enlarge the class of symmetric TWCs whose capacity region can be exactly determined but

also imply that interactive adaptive coding, not improving capacity, is unnecessary for such channels.
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Fig. 1: Block diagrams of the two-way networks considered: (a) point-to-point memoryless
TWC with two channel inputs X; and X, and two channel outputs Y; and Y5; (b) point-to-
point TWC with memory, where F} and F), are deterministic functions and (Z;, 7Z) is a time-
correlated channel noise pair generated from a joint stationary and ergodic process; (c) three-user
memoryless MA/DB TWC, where X; and Y; respectively denote channel input and output at
user j for j =1,2,3.

I. INTRODUCTION

Shannon’s two-way channel (TWC) [3]], which allows two users to exchange data streams in
a full-duplex manner, is a basic component of communication systems. To mitigate the inter-
ference incurred from two-way simultaneous transmission, TWCs are often used in conjunction
with orthogonal multiplexing [4]]. With increasing demands for fast data transmission, many
industrial standards have enabled the use of non-orthogonal multiplexing to accommodate more
users [5]], [6]. From an information-theoretic viewpoint, the challenge is how each user can
effectively maximize its individual transmission rate over the shared channel and concurrently
provide sufficient feedback to help the other users’ transmissions. These competing objectives
impose on each user the challenging task of optimally adapting their channel inputs to the
previously received signals of the other users. As finding such an optimal coding procedure is
still elusive, the exact characterization of the capacity region of general TWCs remains open
[71, Section 17.5].

This paper revisits this open problem by finding larger classes of TWCs whose capacity region
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can be exactly obtained. Our approach is to identify channel symmetry properties under which a
Shannon-type random coding inner bound (under independent non-adaptive inputs) is tight, thus
directly determining the capacity region. As a result, we identify TWCs for which interactive
adaptive coding is useless in terms of improving the users’ transmission rates. In particular,
we focus on three two-way networks which we depict in Fig. [Il The two-user (point-to-point)
memoryless TWC in Fig. [[(a) models device-to-device communication [9]. The simplified TWC
with memory in Fig. [I(b)} which is a generalization of additive-noise TWC in [1]], can capture
the effect of time-correlated channel noise which commonly arises in wireless communications.
The three-user memoryless multiaccess/degraded broadcast (MA/DB) TWC in Fig.
models the communication between two mobile users and one base station, where the shared
channel in the users-to-base-station (uplink) direction acts as a multiple-access channel (MAC)
while the reverse (downlink) direction acts as a degraded broadcast channel (DBC). For these
networks, we derive conditions under which the Shannon-type inner bound is optimal in terms of
achieving channel capacity. Such a result also has a practical significance since communication

without adaptive coding simplifies system design.

A. Capacity Bounds for TWCs

We briefly review some general results on the capacity of TWCs. In [3]], Shannon derived
inner and outer capacity bounds in the form of a single-letter expression for two-user memoryless
TWCs. The inner bound is obtained via random coding where the users’ channel inputs are
independent (and non-adaptive), while the inputs are allowed to have arbitrary correlation in the
outer bound. In general, the two bounds do not coincide. Follow-up work in [10]-[13]] was devoted
to improving Shannon’s inner bound by using adaptive coding. Two novel outer bounds [14]],
[15]], which restrict the dependency among channel inputs, were proposed to refine Shannon’s
result. Moreover, methods to efficiently utilize TWCs were investigated by studying the role
of feedback [16]]. In [17], directed mutual information [[18]], which is widely used in the study
of one-way channels with feedback [[19]]-[23]], was used to characterize the capacity of TWCs,
but the obtained multi-letter expressions are often not computable. Recently, the Shannon-type
random coding scheme was shown to be optimal in several deterministic multi-user TWC settings
[24] such as MA/BC, Z, and interference TWCs, hence finding the channel capacity in these
cases. The channel capacity for a variant of these multi-user TWCs, called three-way channels,

was also investigated in different network setups such as three-way multi-cast finite-field or
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phase-fading Gaussian channels [26] and three-way Gaussian channels with multiple unicast
sessions [27]]. An additional capacity result for deterministic interference TWCs was derived in
[23]. For TWCs with memory, Shannon provided a multi-letter capacity characterization in [3|

Section 16] which in general is incalculable.

B. Related Work

Channel symmetry properties, which are extensively investigated to simplify the computation
of the capacity of one-way channels, play a key role in determining the capacity region for TWCs.
The first channel symmetry property for TWCs was proposed by Shannon Section 12]. Let
[Py, va|x1,x5(, -]+, -)] denote the channel transition matrix of a two-user discrete memoryless
TWC, where X; and Y; denote the channel input and output at user j, respectively. Shannon
gave two permutation invariance conditions on [Py, y,|x, x, (-, *|-, -)] which guarantee the equality
of his inner and outer bounds (see Propositions 1 and 2 in Section II for details). A recent work
[28]] by Chaaban, Varshney, and Alouini (CVA) presented another tightness condition, where the
channel symmetry property is given in terms of conditional entropies for the marginal channel
distribution [Py;|x, x,(-|-,-)] (see Proposition 3).

The above conditions delineate classes of two-user memoryless TWCs for which Shannon’s
capacity inner bound is tight, hence exactly yielding their capacity region. Examples include
Gaussian TWCs [13]], ¢-ary additive-noise TWCs [[Il], and more general channel models such as
injective semi-deterministic TWCs (ISD-TWCs) [28]], Cauchy [28] and exponential family type
TWCs [29]. It is worth mentioning that Hekstra and Willems [15] also presented a condition
under which Shannon’s inner bound is tight. However, their result is only valid for single-output
memoryless TWCs.

For three-user MA/BC memoryless TWCs, Cheng and Devroye investigated a class of
symmetric TWCs. In particular, they considered deterministic, invertible, and alphabet-restricted
MA/BC TWCs, proving that the Shannon-type inner bound is tight for that class of channels.
However, to the best of our knowledge, symmetry properties for TWCs beyond these have not
been investigated. It is also important to point out that two-user TWCs with memory are not

well understood either.
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C. A Motivational Example and Proposed Approach

Consider a point-to-point binary-input and binary-output memoryless TWC with transition

probability matrix (see Section [I-Bl for the formal description of the channel model)

00 01 10 11

00 0.783 0.087 0.117 0.013
011 0.0417 0.3753 0.0583 0.5247
101 0.261  0.609 0.039  0.091
11\ 0.2919 0.1251 0.4081 0.1749

[PY1,Y2|X1,X2(" '|'a )] -

where the rows and columns are indexed by the channel inputs and outputs, respectively. The

corresponding marginal channel transition matrices are

0.9 0.1 0.1 0.9
[PY2|X17X2("'70>] = ) [PYz\X1,X2('|'71)] =
0.3 0.7 0.7 0.3
and
0.87 0.13

[Pyiix1,x: (-0, )] = [Pryjx,x, (|1, )] =
0.417 0.583

A thorough examination reveals that for this TWC Shannon’s inner bound is actually exact due
to the symmetric structures of the channel’s marginal transition matrices. However, none of the
previously proposed symmetry conditions in the literature are satisfied.

We address this problem by viewing a TWC as two state-dependent one-way channels [3],
[30]. Taking the two-user setting as an example, the state-dependent one-way channel from
users 1 to 2 has input X, output Y5, state Xy, and transition matrix given by [Py, x, x,(-|",-)];
similarly, the one-way channel [Py, |x, x,(-|-, )] in the reverse direction has input X5, output Y7,
and channel state X;. Note that this Viewpoin\d may also be useful for all previously mentioned

two-way networks. Another useful tool is the rich set of symmetry concepts for single-user one-

way ChannelsH From this perspective, the two one-way channels now interact with each other

! Another viewpoint for two-user TWCs is based on compound MACs, see Problem 14.11] and [32].

2Channel symmetry properties for single-user one-way memoryless channels can be roughly classified into two types. One
type focuses on the structure of the channel transition probability such as Gallager symmetric channels [33]], weakly symmetric
and symmetric channels [34], and quasi-symmetric channels [33]. The other type aims at the invariance of information quantities

including T'-symmetric channels [36] and channels with input-invariance symmetry [37].
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through the channel states. Clearly, this interaction could improve bi-directional transmission
rates by making use of adaptive coding.

Our approach is to study symmetry properties for state-dependent one-way channels that
imply that the capacity cannot be increased with the availability of channel state information
at the transmitter (in addition to the receiver). Such properties can potentially render interactive
adaptive coding useless in terms of enlarging TWC capacity. In the two-user memoryless set-
ting, we develop the following two important channel symmetry notions. The common optimal
input distribution condition identifies a state-dependent one-way channel that has an identical
capacity-achieving input distribution for all channel states. The invariance of input-output mutual
information condition then identifies a state-dependent one-way channel that produces the same
input-output mutual information for all channel states under any fixed input distribution. If a
TWC satisfies both conditions, one for each direction of the two-way transmission, the optimal
transmission scheme of one user is irrelevant to the other user’s transmission scheme, implying
that the interaction between the users does not increase their transmission rates and hence channel
capacity. In fact, the preceding motivational example illustrates this. More formally, we can prove
that under certain symmetry properties (identified by the derived conditions), any rate pair inside
Shannon’s outer bound region is always contained in the inner bound region, implying that the
latter bound is tight.

Furthermore, it should be expected that validating generalized channel symmetry properties
can be a very complex procedure. However, we show that such a verification can be greatly
simplified for some TWCs. For instance, the channel transition matrices [Py,|x, x,(-|-,0)] and
[Py, |x,,x, (|-, 1)] in the above example are column permutations of each other and the matrices
[Py 1x1,x5(+]0,-)] and [Py |x, x,(-|1, -)] are identical. It turns out (as we will see later) that these
two symmetry properties imply that Shannon’s inner bound is tight. Therefore, we not only seek

general conditions but also look for conditions which are simple to verify.

D. Summary of Contributions

Most of the conditions that we establish in this paper comprise two parts, one for each direction
of the two-way transmission. Our contributions are summarized as follows.
e Point-to-Point Memoryless TWCs: six sufficient conditions (Theorems [[H4] and Corollaries [T+
2) guaranteeing that Shannon’s inner and outer bounds coincide are derived. Three of these are

shown to be substantial generalizations of the Shannon and CVA conditions (in Theorems BH7));
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Fig. 2: The relationships between the results yielding the equality of Shannon’s capacity bounds
in point-to-point memoryless TWCs. Here, A — B indicates that result A subsumes result B,
and B - A indicates that result B does not subsume result A. For example, Prop. 3 — Prop. 1
and Prop. 1 - Prop. 3 mean that the CVA result in Prop. 3 is more general than the Shannon

result in Prop. 1.
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Fig. 3: The relationships between the results for point-to-point TWCs with memory. Here,
A <™ S5 B indicates that results A and B are combined in Theorem C to determine the

capacity region.

our simplest condition can be verified by only observing the channel marginal distributions.
Moreover, the capacity region of g-ary additive-noise TWCs with erasures, which subsume
several classical TWCs, is fully characterized by our conditions. Several examples illustrating the
difference between these conditions are provided. We also refine Shannon’s result to show that the
CVA condition is a strict generalization of the Shannon condition (Theorem [8), thus answering a

question raised in [28]]. Implications among our results (and prior results) are depicted in Fig.
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e Point-to-Point TWCs with Memory: a Shannon-type inner bound and an outer bound for the
capacity of TWCs with memory under certain invertibility, one-to-one mapping, and alphabet
size constraints are derived (Lemmas and Corollaries BH3). Two sufficient conditions for
the tightness of the bounds are given (Theorems [9] and [I0). The first condition is derived for
TWCs with strict invertibility and alphabet size constraints, characterizing channel capacity in
single-letter form. The other condition is specialized for injective semi-deterministic TWCs with
memoryH The obtained results are related as shown in Fig. Bl We also illustrate via a simple
example that when the channel’s memory is strong, the Shannon-type random coding scheme
does not achieve capacity and adaptive coding is useful.
e Three-User Memoryless MA/DB TWCs: we establish a Shannon-type inner bound and
an outer bound for the capacity region of MA/DB TWCs (Theorems [I1] and [12)) where both
bounds admit a common rate expression but have different input distribution requirements. Three
sufficient conditions (based on different techniques) for these bounds to coincide are established
(Theorems [I3HI3). The first condition involves the existence of independent inputs that can
achieve the outer bound (similar to the CVA approach). The second condition is derived from
the viewpoint of two interacting state-dependent one-way channels. The last one focuses on
the permutation invariance structure of the channel transition matrix (mirroring the Shannon
symmetry method). The obtained results extend the results in [24] and readily provide the
capacity region for a larger class of MA/DB TWCs. While the channel model here is admittedly
simplified, we note that our intention is to illustrate a potential methodology for determining the
capacity regions of multi-user two-way channels and to motivate future work in this area.

The rest of the paper is organized as follows. In Section [, point-to-point memoryless TWCs
are investigated. TWCs with memory are studied in Section [II, and memoryless MA/DB TWCs

are examined in Section [Vl Concluding remarks are given in Section [Vl

II. POINT-TO-POINT MEMORYLESS TWCSs

In this section, we study two-user memoryless two-way networks. We first formally describe
the general model for point-to-point TWCs (not necessarily memoryless) in Section[[I-Al and then

review the prior results for the memoryless case in Section [[I-Bl New symmetry conditions are

*ISD-TWC model with memoryless noise were introduced in [28]. Here, we merely extend this setting by allowing noise

processes with memory.
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derived in Section [I-C], and we demonstrate how to apply these conditions to finding the channel
capacity in Section [[I-DI Comparisons between prior results and our conditions are presented
in Section [[I-El and the relationship between Shannon’s condition and the CVA condition is

examined in Section [I=Fl

A. General Channel Model

In point-to-point two-way communication as shown in Fig. [ two users exchange messages
M; and M> via n channel uses. Here, M; and M5 are assumed to be independent and uniformly
distributed on the finite sets M; = {1,2,...,2"1} and My £ {1,2, ..., 2"}, respectively, for
some %, Ry > 0. Let X; and ); be the channel input and output alphabets, respectively for
Jj=1,2.Fort=1,2,...,n,let X;, € X; and Y}; € ); denote the channel input and output of
user j at time ¢, respectively. The joint probability distribution of all random variables for the

entire transmission period is given by

n
PMlvM%X?ngleanzn - PM1 ‘ PM2 ‘ (H PX1,¢|M17Y1il>
i=1

n n
' HPXz,i\M%YzFl ' HPYl,sz,iIXi'vXé'va*lszifl )
i=1

i=1
where X! £ (X1, Xj,,...,X;;) and Y] £ (Y} 1,Y]o,...,Y};) for j = 1,2. The n transmissions
over a point-to-point TWC can be then described by the sequence of conditional probabilities
{PYM,Y%\X;‘,X;’,Yf*l,ygfl}?:1-

Definition 1: An (n, Ry, Rs) code for a TWC consists of two message sets M; = {1,2,...,
27 Y and My = {1,2,...,2"%2}, two sequences of encoding functions f7* £ (fi1, fi,-- - fin)
and fI' 2 (fo1, fo2, - - fo.n) such that

Xig = fia(My), X = fra(M, Yy,

Xy = for(Ma), Xoi= fo, (M3, Y5,
for ¢+ = 2,3,...,n, and two decoding functions ¢g; and g, such that M2 = ¢1(M;,Y]") and
My = go( My, Y.

When messages M and M, are encoded via an (n, Ry, Ry) channel code, the probability of
decoding error is defined as Pe(n)(fln, f2 g1, g2) = Pr{M; # My or My # M,}.

Definition 2: A rate pair (R, Ry) is said to be achievable if there exists a sequence of

(n, Ry, Ry) codes with lim,, .o P\ = 0.
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Fig. 4: The information flow of point-to-point two-way transmission.

Definition 3: The capacity region C of a point-to-point TWC is defined as the closure of the

convex hull of all achievable rate pairs.

B. Prior Results for Memoryless TWCs

A point-to-point TWC is said to be memoryless if its transition probabilities satisfy

PYM,YM|X;‘,X;,Yf*1,Y;*1 = PYl,Yz\Xl,Xz

for some Py, v,|x,,x, and all i > 1. For a memoryless TWC with transition probability Py, v, |x, x,
and input distribution Py, x,, let R(Px, x,, Py v»|x,,x,) denote the set of all rate pairs (R, R;)

constrained by
Ry < I(Xy;Ya|Xs) and Ry < (X3 Y| Xy). (1)

In [3]], Shannon showed that the capacity region of a discrete memoryless point-to-point TWC

is inner bounded by

C(Pyyxix) 200 | | R(Px, P, Priyvaixix) |

Px,,Px,

and outer bounded by

ColPrivaixixs) 20| | R(Px,x0 Priyaixixs) |-

Pxq.x;
where ¢0(-) denotes taking the closure of the convex hull. In general, C; and Co are not matched
to each other, but if they coincide, then the exact capacity region is obtained. Our objective is
to develop general conditions under which the two bounds coincide.

In the following, the Shannon [3] and CVA [28] conditions that imply the equality of C;
and Co are summarized. In short, the Shannon condition focuses on the permutation invariance
structure of the channel transition matrix [Py, v,|x,,x, (-, |-, )], while the CVA condition involves
the existence of independent inputs which can achieve the outer bound. Throughout the paper,

we use 1 (X;;Y;|X;) and HY(Y;|X,, X3) to denote the conditional mutual information and
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the conditional entropy evaluated under input distribution P)(Q x, for j, k= 1,2 with j # k. For
P)((lz X, = P)((lj) . P)& y, with j # k, the conditional entropy H (" (Y;|X;) is evaluated using the
marginal distribution Pg)‘xj(yﬂxj) =2 P)((li‘xj(:):ﬂxj) - Py, 1x, x,,(yj|7;, 7x). Also, for a finite
set A, let 7 : A — A denote a permutation (bijection), and for any two symbols @’ and a” in
A, let T(;‘,"a,, : A — A denote the transposition which swaps a’ and a” in A, but leaves the other
symbols unaffected. Finally, let P(X;) denote the set of all probability distributions on X, and
define P}gj as the uniform probability distribution on X for j = 1,2.

Proposition 1 (Shannon’s One-Sided Symmetry Condition [3]]): For a memoryless TWC with
transition probability Py, v, x, x,, we have that C = C; = Co if for any pair of distinct input
symbols '}, ¥ € X}, there exists a pair of permutations (7 [z}, 2], 7¥2[z}, z]]) on ) and V%,

respectively, (which depend on 2/ and z!) such that for all z1, z2, y1, Yo,

Py yaix1,%: (U1, 211, 02) = Pryajx,x (17 [2, 2] (), w2 [, @) (o) 70 o (21), 22). ()

Under this condition, the capacity region is given by

C:% UR(P}YJl'PX27PY1,Y2\X1,X2) . (3)

Px,

In [3]], the proof of Proposition [1 is only sketched. To make the paper self-contained and
facilitate the understanding of a technique used to derive one of our results (Theorem [13), we
provide a full proof in Appendix [Al Note that Proposition [ describes a channel symmetry
property with respect to the channel input of user 1, but an analogous condition can be obtained
by exchanging the roles of users 1 and 2. The proposition below immediately follows from
Proposition 1.

Proposition 2 (Shannon’s Two-Sided Symmetry Condition [3]]): For a memoryless TWC with
transition probability Py, y,|x, x,, we have that C = C; = Co if the TWC satisfies the one-sided
symmetry condition with respect to both channel inputs. In this case, the capacity region is
rectangular and given by C = R(PY,-Py,, Py, v/ x1,X,)-

Proposition 3 (CVA Condition [28]): For a memoryless TWC with transition probability
Py, v,|x,,x,> We have that C = C; = Co if H(Y;|X1,X5), j = 1,2, does not depend on Px,|x,

for any fixed Px, and Py, x, x,, and for any P)((li Xy = P)(é) - PY  there exists pxl € P(A)

X1]|X2
such that HW(Y;]X;) < H®(Y;|X;) for j = 1,2, where P)(QXQ = Py, ~P)((12).
Thus, if a TWC satisfies any one of the above conditions, the capacity region can be determined

by considering independent inputs: Px, x, = Px, - Px,. This result implies that adaptive coding,
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where channel inputs are generated by interactively adapting to the previously received signals,
cannot improve the users’ achievable rates and that Shannon’s random coding scheme is optimal.
The class of memoryless ISD-TWCs [28] satisfies the CVA condition (but do not necessarily sat-
isfy the Shannon condition) and hence adaptive coding is useless for such channels. A TWC with
independent g-ary additive noise [[I]] is an example of a channel that satisfies both the Shannon
and CVA conditions. Although the CVA condition does not require any permutation invariance
on the channel marginal distribution Py;|x, x,, the invariance requirement of H(Y;| X1, X5)’s in
Proposition 3| does in fact impose a certain symmetry constraint on Py, x, x,. More details about

these conditions will be provided in the proof of Theorem [7] and Section [I-Fl

C. Conditions for the Tightness of Shannon’s Inner and Outer Bounds

In this section, we present conditions that guarantee the tightness of Shannon’s inner bound
by considering a TWC as two interacting state-dependent one-way channels. For example, the
state-dependent one-way channel from user 1 to user 2 is governed by the marginal distribution
Py, x, x, (derived from the channel probability Py, v, x, x,), Where X; and Y, are respectively
the input and the output of the channel with state X.

Let Px and Py|x be probability distributions on X and ), respectively. To simplify the
presentation, we use

Pyx(ylz)
> Px () Pyix (yla')’

as an alternative way of writing the mutual information /(X ;Y") between input X (governed by

I PX>PY|X ZPX PY\X y|x) log

Px) and corresponding output Y of a channel with transition probability Py x. A useful fact is
that Z(-, -) is concave in the first argument when the second argument is fixed. Moreover, the con-
ditional mutual information I(X;;Y5| X, = x2) can be expressed as Z(Px,|x,=zs5 Pys| X1, Xo=22)-

Since the TWC is viewed as two state-dependent one-way channels, each of the following
theorems consists of two conditions, one for each direction of the two-way transmission. By
symmetry, these theorems are valid if the roles of users 1 and 2 are swapped.

Theorem 1: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then C; = Co.

(i) There exists Py, € P(A1) such that
argmax [ (X1; Ys| Xy = x5) = Py,
Pxy1xy=ay

for all x4 € A%;

October 2, 2019 DRAFT



13

(i) Z(Px,, Pyi|x,=z:,x,) does not depend on z; € &; for any fixed Px, € P(A5).

Proof: For any P\ = P{). P{"

)P tet POy = Py - P, where Py s given by (i),

In light of (i), we have

IV(X1; Yol Xs) = Z Py (22) - IV (X Ya| Xo = ) @
< ZP)((l2 (x2) { max [(Xq;Ys|Xo = x9) 5
Pxy1x5=ay
= ZP)((lg 1’2 'I P;(1’PY2|X17X2=902) (6)
= ZPQQ ®(X1; Ya| Xp = ) (7
= I( (X415 Ya|Xa). 3

Moreover,

[(1)(X27Y'1|X1 — ZP(l) xl) . [(1)(X27}/1|X1 = l’l)

—ZPX1 (1) - Z(PL) s Pl i=an. x2)

- ZP i1 (21) >(<2)\x1 w10 Prilxi=a),x2) &)

<7 (Z P)((.ll)(xl)P)((l X (562\561)7PY1|X1=95'1,X2> (10)
=

= I(P)(clz)’ PY1|X1:x’1,X2)

=" P;,(2h)  Z(PY), Prjxi—a) xa) (11)

= I9(Xy V1| X0), (12)

where (@) holds by the invariance assumption in (i) and 2z} € X is arbitrary, (I0) holds
since the functional Z(-,-) is concave in the first argument, and (II)) is obtained from the
invariance assumption in (ii). Combining the above yields R(P)((ll X, Privalxi x,) © R(P%, -
P Py, v, x,.x,)» which implies that Co C Ci and hence Cy = Co. m

Instead of relying on the permutation invariance (row, column, or both) of the channel transition
matrix, the symmetry property in the theorem is characterized by a combination of two symmetry
properties for state-dependent one-way channels in terms of mutual information: (1) common

capacity-achieving input distribution; (2) invariance of input-output mutual information. A special
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case where condition (i) of Theorem [l trivially holds is when each one-way channel Py, x1 Xo=s>
Ty € Xy, is T-symmetrid] [36]]; in this case we have Py, = P}(Jl.
We next apply condition (ii) of Theorem [Il for both directions of the two-way transmission.
Theorem 2: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then C; = Co.
(i) Z(Px,, Pyy|x,,xo=2,) does not depend on x5, € &, for any fixed Px, € P(X1);
(i) Z(Px,, Py;|x,=x:,x,) does not depend on z; € &; for any fixed Py, € P(X5).

Proof: From conditions (i) and (ii), we know that maxpy ¢ . I(X1;Y2| Xy = 22) has a
common maximizer Py, for all 7, € A and that maxpy ¢ . I(Xs; Y] X, = x1) has a common
maximizer P, for all 71 € X;. Forany Py = P{).PU)  let PP = Py - Py, Using the
same argument as in (4)-(8) and applying condition (ii) to (@), we conclude that IV (X1; Y5|X5) <
I(X,; Yol Xy) and I (X, Y| X) < I®(Xo; V1] Xy). Thus, R(PY) ), Privajxixs) € R(PE,-
P%,, Pyi vs/x1,x.,)» Which yields C; = Co. [ |

To verify condition (i) in Theorem [Il one should find optimal input distributions for the
one-way channel from users 1 to 2 for each state zo € A5, say, via the Blahut-Arimoto
algorithm [38]. This process can sometimes be simplified by testing whether the uniform input
distribution is optimal via the Karush-Kuhn-Tucker (KKT) conditions for one-way channel
capacity [33]]. However, verifying condition (i) in Theorem [Il may necessitate the evaluation
of Z(Px,, Py, x,,x, (|71, -)) for all Px, € P(X,) and x; € X;. In practice, such a verification
is often complex, especially when the size of the input alphabet is large. Similar difficulties
arise when ascertaining the conditions of Theorem [2l In the following results, conditions that

are easier to check are presented.

Theorem 3: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then C; = Co.

(i) There exists Py, € P(A1) such that

argmax [ (X1; Ys| Xy = x5) = Py,
Pxq|Xo=as
for all x5 € A5 and Z(P%,, Py,|x, x,—z,) does not depend on z; € Aj;
(ii) There exists Py, € P(A%) such that
argmax [(Xy; Y1|X; = x1) = Px,

Pxy)xy =2,

*A point-to-point one way channel is called 7-symmetric if the optimal input distribution (that maximizes the channel’s

mutual information) is uniform.
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for all z; € X} and Z(P%,, Py;|x,=2,,x,) does not depend on z; € X.

Proof: For any P.>(<11), X, = P)((1 : -P)((ll)| x,» consider P)((Zl), x, = Px, - Px,, where Py and Py, are
given by (i) and (ii), respectively. Following the same steps as in @)-(8)) and using the second
part of condition (i), we obtain that 1™V (X,; Y5|X,) < I®(X1;Ys|X,). By a similar argument,
we obtain the inequality 1™ (X5; Y| X;) < I®(Xy; V1| X1). Hence, R(P§1)7X2,Py17y2|xl7x2) C
R(P%, P, Pvi v2|x:,x,) Which implies C; = Co. u

Unlike condition (ii) of Theorem [I] and the conditions in Theorem 2] Theorem [3 only requires
checking the existence of a common maximizer and testing whether Z(P% , Py,x; Xo—z,) 18
invariant with respect to o € X5 and 7 (P)*Q, Py, x,=1, X,) is invariant with respect to x; € X7,
thus significantly reducing the validation computational complexity vis-a-vis Theorems [I] and

The next two corollaries provide even simpler conditions. Let [Py,|x, x,(-|-, #2)] denote the
transition matrix of the channel from users 1 to 2 when the input of user 2 is fixed to be z5. The
matrix [Py, x, x, (|, z2)] has size |X;| x |)»| and its entry at the z;th row and y,th column is
Py, x,,x,(y2|71, 22). Similarly, let [Py, x, x, (|21, )] denote the transition matrix of the channel
from users 2 to 1 when the input of user 1 is fixed to be x;.

Corollary 1: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then C; = Co.
(i) The channel with transition matrix [Py, |x, x, (|-, 22)] is quasi—symmetricH for all zy € Ay
(ii) The matrices [Py, x, x,(-|71,)], 1 € X}, are column permutations of each other.

Proof: 1t suffices to show that conditions (i) and (ii) imply the conditions of Theorem [II
Under condition (i), we obtain a common maximizer given by Py, = P}(Jl since the optimal
input distribution for a quasi-symmetric channel is the uniform distribution [33]; this implies
condition (i) of Theorem [Il Furthermore, we observe that Z(Px,, Py, |x, x,(-|z1,)) is invariant
with respect to column permutations of the transition matrix Py, x, x,(-|71,-) for given Px,.
Since the matrices [Py,|x, x,(-|71,-)], #1 € Aj, are column permutations of each other, we
conclude that Z(Px,, Py,|x,=2,,x,) does not depend on z; € &) for any fixed Px, € P(A5),
which is the second condition of Theorem [Il [ ]

Corollary 2: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then C; = Co.

(i) The matrices [Py, x, x, (|-, %2)], v2 € &,, are column permutations of each other;

A discrete memoryless channel with transition matrix [Py x (:]-)] is said to be weakly-symmetric if the rows are permutations
of each other and all the column sums are identical [34]. A discrete memoryless channel is said to be quasi-symmetric if its

transition matrix [Py |y (+|-)] can be partitioned along its columns into weakly-symmetric sub-matrices [33].
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(i) The matrices [Py, x, x,(-|71,)], 1 € X}, are column permutations of each other.

Proof: It suffices to show that conditions (i) and (ii) imply the conditions of Theorem
This can be done using a similar argument as in the second part of the proof of Corollary [Il
and hence the details are omitted. [ |

If the transition probability Py, y;x, x, satisfies conditions (i) and (ii) of Theorem [1l the

capacity region is given by

C =Co U R(P;(l'PX27 PY17Y2‘X1,X2> ’ (13)

Px,
where Py is given by condition (i). For example, condition (i) trivially holds when each one-
way channel with fixed state x5 € X5 from users 1 to 2 is 7T-symmetric. In this case, we have

Py, = P}él and the capacity region becomes

C=co U R(P/‘[’(Jl'PXga PY17Y2\X17X2) : (14)

Px,

In fact, this is also the capacity region for memoryless TWCs which satisfy Corollary [I] because
condition (ii) of Corollary [Il implies condition (ii) of Theorem [ (this follows from the proof
of Corollary [I)). Moreover, the proof of Theorem 2] demonstrates that a common maximizer
exists for each direction of the two-way transmission under the conditions of Theorem [2l Let
argmaxp, . I(X1;Y5| Xy = x3) = Py, forall 75 € A, and arg maxp, o I(Xy; V1| Xy =
x1) = P%, for all xy € Ay A TWC which satisfies the conditions of Theorem [2l has the capacity
region

C= R(P)*Q'P)*(g» PY17Y2\X1,X2)' (15)

The region is rectangular which suggests that such a two-way transmission inherently comprises
two independent one-way transmissions. A memoryless TWC that satisfies the conditions in
either Theorem [3] or Corollary 2] also has a capacity region given by (I13).

To end this section, we remark that it is possible to combine different conditions to determine
the capacity region of a broader class of memoryless TWCs as shown below.

Theorem 4: For a memoryless TWC, if both of the following conditions are satisfied, then
C = C; = Co with C given by (13):

(i) There exists Py, € P(A1) such that
argmax [(X1; Ys| Xy = x5) = Py,

Pxy1x5=ay
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for all z9 € Aj;

(i) H(Y1|X1,X3) does not depend on Px,x, given Px, and Py, x, x,, and Py, given in (i)
satisfies /1D(V1|Xy) < HO(Y1|Xy) for any Py, = Py P where PO =
Py, - Py

Here, condition (i) is directly from Theorem [I} condition (ii) is obtained by extracting the CVA

condition related to the channel from user 2 to user 1. In order that the two conditions jointly

determine the capacity region, the PXl required by the CVA condition is forced to be Py, .
Proof of Theoremd}: Given any P)((li X, = P)(é) -P)((ll)‘ x,» let P.>(<21 )7 x, = Px, -P)((lz). Invoking the

same argument as in (@)-(8), we obtain that 1™V (X ;Y| Xy) < I®(X; Y| X,) using condition

(i). Moreover, condition (ii) implies that 7™ (X5; V1| X,) = HO(Y1]|X;) — HO(YV1] X1, X,) <

H®(Y11X,) — H®(Y1| X1, X3) = I®(X5;Y1]X;). Combining the above then completes the

proof. [ ]

D. Examples

We next illustrate the proposed conditions via examples.
Example 1 (Memoryless Binary Additive-Noise TWCs with Erasures): Let X1 = Xy = {0,1}
and Y, = Vo = Z = {0,1,E}, where E denotes channel erasure. A binary additive noise TWC

with erasures is defined by the channel equations

Yii= (X1 B2 Xo; B2 Z1,)1{Z1; # E} + E-1{Z,; = E},
Yo, = (X1 B2 Xo; B2 Z2,)-1{Z2; # E} + E-1{Zy; = E},

where @, denotes modulo-2 addition, {(Z; ;, Z5;)}$, is a memoryless joint noise-erasure process
that is independent of the users’ messages and has components 7 ;, Z,; € Z such that Pr(Z;,; =
E) =¢; and Pr(Z;; = 1) = a;, where 0 < ¢; + «; < 1 for j = 1,2, and 1{-} denotes the
indicator function. Here, we adopt the convention E - 0 = 0 and E - 1 = E to simplify the
representation of the channel equationsH The channel equations yield the following transition

matrices for the one-way channels:

1—69—ay (0%} €2
[PY2|X17X2('|30)] - s
Q9 l—ey—ay &

SStrictly speaking, X1,; @2 X2 @2 Z;,; is undefined when Z;; = E, but we set (X1,; 2 X2,; B2 E) -0 = 0.
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(&%) 1-— Eo — Qg &2

[PY2|X17X2('|"1)] - )
1—60—an Qo €2
l—e1—m Qaq €1

[PY1|X17X2('|O>')] - )
(6%} 1-— g1 — 01 &1
(6%} 1— g1 — 01 &1

[PY1|X17X2('|1>')] - )
1l—e—m Qaq €1

where the rows are indexed by 0 and 1 (from top to bottom) and the columns are indexed by
0, 1, and E (from left to right). As all our proposed conditions are only based on the marginal
transition probabilities, the relationship between Z;,; and Z,; can be arbitrary. By Corollary
2l we obtain that the optimal channel input distribution is Py, - Py, = Py - Py since the
marginal channel transition matrices not only exhibit column permutation properties but also are

quasi-symmetric. The capacity region is given by

C = {(Rl,Rz) c Ry < (1 —52)'<1 - Hb<1 %52))’

o= () )

where H,(-) denotes the binary entropy function. One can verify that this TWC also satisfies

the conditions of Theorems [TH3] and Corollary [Il
Remark 1: Various TWCs are special cases of this TWC model:

1) If oy = ap = 0, then the memoryless binary additive TWC with erasures is recovered:
Yii= (X1, ®2 Xo,:)U{Z1; #E} + E-1{Z,; = E},
Yo, = (X1 @2 Xo,)- 1{Zs, # E} + E-1{Z,, = E}.
The capacity region is given by
C={(R1,Rs) :R1 <1—¢69,Ry <1—¢1}.
2) If e; = g9 = 0, then the memoryless binary additive-noise TWC is obtained:

Yii=X1,DP2 Xo; Do Z1,

Yo, = X1, P2 Xo; @2 Zo;.
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The capacity region of this channel is given by
C= {(Rl, Rg) : Rl S 1— Hb(a2), Rg S 1— Hb(al)}.

3) If e =65 =0 and a1 = ay = 0, then we obtain the memoryless binary additive TWC
given by Y1; = X;,; @2 Xo; and Y;; = X;; @2 Xy,;. The capacity region is given by
C={(R1,Rs): Ry <1,Ry <1} [3], [24].

Remark 2: Example 1 can be generalized to a non-binary setting: for some integer ¢ > 2,
X =X={0,1,...,g—1}and Yy = Yo = Z=1{0,1,...,q — 1, E}, the g-ary channel model
obeys the same equations as in Example 1 with modulo-2 addition replaced with the modulo-
q operation @,. Furthermore, the channel noise-erasure variables have marginal distributions
given by Pr(Z;;, = E) = ¢; and Pr(Z;;, = 2) = /(¢ — 1) for z = 1,2,...,q — 1, where
0<aj+e¢e; <1 forj=1,2. By Corollary 2] we directly have that C; = Co, and

. {(Rl’Rz) <= (om0 (it ) )

Ry < (1—¢) <log2q—Hq ((q_ 1;1(11 —81))) }’

where H,(z) £ z-logy(q — 1) — z-logy x — (1 — x)-log,(1 — ).

Example 2 (Data Access TWCs): Let ¢ = 2™ for some integer m > 1 and consider the
alphabets X} = A, =X ={0,1,...,q— 1}, V1= ={0,1,...,¢—1,E}, and Z = {0, 1, 2}.
A data access TWC linking two storage devices is described by

}/l,i - (Xl,i EEq Xg,i) . 1{Z1,Z‘ - 0}+((q - 1) EEq Xl,i EEq Xg,i)'l{ZLi - 1} + El{ZLZ - 2},
Yrgﬂ' = (Xl,i Eﬂq X2,i) . 1{Z2,i = 0}—|—((q — 1) Eﬂq Xl,i Eﬂq X2J)'1{Zg7i = ]_} + E]_{ZQJ = 2},

where aH,b denotes bit-wise addition for the length-¢ standard binary representation of a,b € X,
and {(Z1,, Z2,)}32, is a memoryless joint noise-erasure process that is independent of the stored
messages and has components Z; ;, Z,; € Z such that Pr(Z;; = 1) = oj and Pr(Z;; = E) = ¢},
where 0 < a; +¢; < 1 for j = 1,2. This channel model can capture the effect of user signal
superpositions (when Z;; = 0), bit-level burst errors which flip all bits of X ; B, X5; (when
Zj; = 1), and data package losses (when Z;; = 2).

For this channel, an application of Corollary 2] immediately gives the capacity region:

C= {(31,32) LRy < (1—ey)- (m—Hb (1f2€2)),
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ws-a (oo (525))}

The next example redervies a known result in based on our approach.
Example 3 (Memoryless Injective Semi-Deterministic TWCs [28)]): Let T; and Z; denote finite
sets. A memoryless ISD-TWC is defined in by the channel equations

Yii = hj(X;:, Tj) and Tj; = hj( X, Z;) (16)

for j,k = 1,2 with j#k, where h; : X; x T; — )); is invertible in 7; and 71]- Xy X Z5 = T
is invertible in Z;, i.e., for every x; € &;, h;(x;,t;) is one-to-one in ¢; € 7; and for every

xy, € Xy, hj(xy, ;) is one-to-one in z; € Z;. Here, {(Z,,, Z>,)}:2, is a memoryless joint noise

process that is independent of users’ messages. For this channel, we have
(X5 Ya| Xy = 29) < ngaXH(ilz(Xh Z5)) — H(Zs).
X1

This upper bound does not depend on X5, and hence a common maximizer exists, i.e., Py, =
arg maxpy H(ﬁg(Xl, Z5)). Moreover, the value of maxpy I(X71; Y5 Xy = x9) is identical for all
9 € X,. We immediately observe that condition (i) in Theorem [3| holds. By a similar argument,
condition (ii) in Theorem [3 also holds, implying that Shannon’s inner and outer bounds coincide.
The capacity region is given by

C = {(Rl, RQ) : Rl < maXH(hz(Xl, Z2)) - H(ZZ)>

Px,

Px,

Ry < max H(hy(Xy, Zy)) — H(Zl)}.

Example 4: Consider the TWC with X; = X5 = ) = ), = {0, 1} and transition probability

00 01 10 11
00 0.783 0.087 0.117 0.013
011 0.36279 0.05421 0.50721 0.07579
[PY1,Y2|X17X2] =
10 0.261 0.609 0.039 0.091
11\ 0.173889 0.243111 0.243111 0.339889

The one-way channel marginal distributions are

0 1
009 0.1

[Pyz\Xl,X2("'7O>] =
1\03 0.7
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Fig. 5: The capacity region of the point-to-point memoryless TWC in Example 4.

and
0 1

0Of 087 0.13
[PY2\X1,X2('|'> 1)] =
1\ 0417 0.583

with [Py x5, (4]0, )= [Prijxs,x (1, ) =[Prajxi x (- 1))

Shannon’s symmetry condition in Proposition [Tl does not hold for this channel since there are
no permutations of )y and ), which can result in @)). Furthermore, since H(Y5|X; = 0, X5 =
0) = Hy(0.1) and H(Y5|X; = 1, X, = 0) = Hy(0.3), H(Y>|X;, X;) depends on Py, |y, for fixed
Px,. Thus, the CVA condition in Proposition [3| does not hold either. However, the conditions
of Theorem [ are satisfied since a common maximizer exists for the one-way channel from
users 1 to 2 given by P (0) = 0.471, and condition (ii) trivially holds. By considering all input
distributions of the form Px, x, = P, - Px,, where Px, € P(A3), one can compute the capacity
region as shown in Fig. [Sl We note that, with some extra effort, one can show that the conditions
of Theorem [M] also hold [2]].

Finally, we point out (without proof) that the channels in the examples in Fig. 2 & Table
II] and Section IV-B] satisfy the conditions of Theorem [l

E. Comparison with Prior Results

In this section, we show that Theorems[Iland 2 generalize the Shannon results in Propositions[I]

and 2] respectively, and that Theorem ] subsumes the CVA result in Proposition 3] as a special
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case.
Theorem 5: A TWC that satisfies the Shannon’s one-sided symmetry condition of Proposition 1]
must satisfy the conditions of Theorem [l
Proof: If a TWC satisfies the Shannon condition in Proposition [I} the capacity-achieving
input distribution is of the form Py, x, = Py, - Px, for some Py, € P(X>) [3]]. This implies that
condition (i) of Theorem [l is satisfied because a common maximizer exists for all x5 € X and
is given by Py = P}gl. To prove that condition (ii) is also satisfied, we consider the transition
matrices [Py, x, x,(-|2],-)] and [Py,|x, x,(-|27,-)] for arbitrary 27,2} € &; and show that these
are column permutations of each other and hence Z(Px,, Py |x,=«,x5) = Z(Pxy, Pyijx1=a? x5)-

The first claim is true because
Py, (1117, w2) = Py, 06, (7 [2), 21 (1) |73 (21), 22) (17)
= PY1|X17X2 (71.3)1 [I/lv xll/] (yl)‘xll/v *T?)a

where ([I7) is obtained by marginalizing over Y5 on both sides of (2). For the second claim, we

have
I(PX27 PYﬂXl:m’l,Xg)
Py 1x, 5, (1|77, 29)
= Px,(x2) - Pyix,,x,(y1] 2}, 22)- log - =
ggyjl ’ A ! 25;2 PX2 ($2)'PY1|X1,X2 (y1|x’1, 1’2)
=) Px,(22) - Pryjx, xo (7 2, 2] (1) |2, 22)
xr2,Y1
-log PY1\X1,X2(7T)}1 [x’l,x’l’](yl)|x’1’,x2) (18)
Z:’ig PX2 (*%2>'PY1|X1,X2 (71-3)1 [Illv xlll] (yl)‘xlllv j2)
N Py, |X1,X (?Jl\ffﬁz)
= Py, (x5) - P 1|2y, x2)- log LA K - _
QUQZ’yH X2( 2) Y1|X17X2( 1| 1 2) 252 PX2 ($2)'PY1\X1,X2<y1|$/1/7$2>
= I(PX27 PY1|X1:x’1’,X2)7
where (I8) holds by the first claim. [ |

Remark 3: Since the optimal input distribution of user 1 in Theorem [ is not necessarily
uniform as illustrated in Example 4, Theorem [I] is more general than Proposition [1l

Theorem 6: A TWC that satisfies the Shannon two-sided symmetry condition of Proposition 2
must satisfy the conditions of Theorem
This theorem is immediate, and hence the proof is omitted. Together with Example 5 given in

the next section, Theorem [2] is shown to be more general than Proposition 2l We next show that
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the symmetry properties identified by the conditions of Theorem H] are more general than those
in the CVA condition.
Theorem 7: A TWC that satisfies the CVA condition in Proposition [3| must satisfy the
conditions in Theorem [l
Proof: Suppose that the condition of Proposition [3] is satisfied. To prove the theorem, we
show that for j = 1,2, H(Y;|X; = 2], Xo = x9) = H(Y;| Xy = 2, Xy = x,) for all 2/, 2] € &)

and x5 € X,. Given arbitrary pairs (x), z2) and (z/, x2), consider the probability distributions

1 ifCL—.CL’/ and b =z
P 1 ) 1 2,
)((1),X2( l’ b) .
O, OthCI‘WlSC,

and
1, if a=2] and b= z,,

PP (a,b) =
0, otherwise.

Noting that P{) = P{), we have H(Y;| X1 = 2/, Xo = x5) = HO(V;| X1, Xa) = HO(Y}| X1, Xa)
= H(Y;|X; = «f, Xy = x), where the first and last equality are due to the definitions of
P)((ll)7 x, and P)(fl), x,» respectively, and the second equality follows from the CVA condition since
P)%) = P)(é). Thus H(Y;| Xy = 21, X2 = x4) does not depend on x; for fixed x5 as claimed. Also,
since H(Y;| X1, Xo = 29) = le Px,x,(21]22) - H(Y;| X1 = 21, Xo = 29), H(Y}| X1, Xo = 25)
does not depend on Py, |x,—z,-

Next, we show that condition (i) of Theorem [] holds by constructing a common maximizer
from the CVA condition. For fixed zo € X5, let

Py, xyms, = argmax [(Xy;Ya| Xy = x5)
Pxy1Xo=as

— arg max <H(Y2|X2 — 20) — H(Y3| X1, X = x2)>,

Pxy|xy=ay
and define P)((-IR’X2 = P)((IQ) - Py, |x, for some P)%) € P(Ay). Since H(Y;|X1,Xs = x) does
not depend on Px,|x,—z,, P)*<1| Xo—z, 1S in fact a maximizer of H (Y3| X5 = x5). Note that the
maximizer P;ﬁ\ X,—a, 18 DOt necessarily unique, but any choice works for our purposes. Now for

P)((II{XQ, by the CVA condition, there exists Px, € P(X;) such that H® (Y5 X5) < H® (Ys] X5),

where P.>(<21 )7 Xy = Py, - P)((lz). Since Py |y,—,, is the maximizer for H(Y5|Xs = x5), we have

HO (%3] X) = ZP“ ) - HO (Y] X5 = 2)
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—ZP)((2 (x2) { max H(Y3|Xs = z3)

Pxy|xp=a
> ZP}Q (22) - H?(Ya| X5 = 5)
= H?(Y;|Xy)
Thus, HV (Y| X,) = H?(Y5|X5), ie

ZPX2 ) HO (Y] Xy = 22)= Y P (22)- HO (Y] Xy = ).

2
Since H®) (Y5| Xy = 25) < HW(Y5| Xy = 15) for each x5 € s, we obtain HW (V5| X, = x5) =
H® (Y| X, = x), ie., Px, achieves the same value for H(Y5|X, = ) as P 1 xy=s, Tor all
x9 € X,. Consequently, Py, is a common maximizer and thus condition (i) of Theorem M is
satisfied. Moreover, since the common maximizer f’Xl i1s from the CVA condition, we have that
W(v1|X1) < H?(Y1]|X1), which together with the fact that H(Y;| X1, X5) does not depend
on Px,x, given Py, and Py, x, x, (guaranteed by the CVA condition) implies that condition
(i1) of Theorem [ holds. [ |
Remark 4: As illustrated by Example 4, a TWC that satisfies the conditions of Theorem [
does not necessarily satisfy the CVA condition in Proposition 3l Therefore, Theorem Ml is a more
general result than Proposition Bl We note that the main difference between Theorem [ and

Proposition 3] lies in the fact that we allow H(Y5|X;, X,) to depend on Px,|x,, given Py,.

F. Connection Between the Shannon and CVA Conditions

In this section, we connect Shannon’s result to the CVA condition. First, the proof in Ap-
pendix [Al shows that Shannon’s symmetry conditions are more than sufficient for C; and Cq to
coincide. In fact, assume that the marginal channels Py, x, x,’s (derived from Py, v, x, x,) satisfy
the following extended Shannon’s symmetry condition: for any pair of distinct input symbols 2,
r € Xy, there exists a pair of permutations (7 [x}, 2], 72z}, z]) on ) and )%, respectively,

(which depend on 2/ and z7) such that for all =1, z2, y1, Yo,

Py x,0x (1]a1, 22) = Prjx, o (04 2, 2] (90) 7)) (21), 2), (19)
Py jxy,xa (Y2l1, 22) = Prajxy o, (0221, 2] (y2) |7 o (21), 22),
then C; = Co = C with C given by ().
The extended Shannon’s symmetry conditions are more general than their original versions

since (2)) implies (I9) but the reverse implication is not true as shown below.
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Example 5: Consider the TWC with X; = X5 = ) = ), = {0, 1} and transition probability
00 01 10 11
00 0.25 0.5 0.25 0

01] 0.375 0375 0.125 0.125

[Py, yalX1,50) =
101 0.125 0.125 0.375 0.375

11\ 0.125 0.125 0.375 0.375

The marginal distributions are

0 1
00/ 0.75 0.25
01] 0.75 0.25
[Pyi|x1,x) =
10| 0.25 0.75
11\0.25 0.75
and
0 1
00/ 0.5 0.5
01] 0.5 0.5
[Pya|x1,x2) =
101 0.5 0.5
11\0.5 0.5

Clearly, neither of the Shannon conditions in Proposition Il or 2l holds, but the extended condition
in (19) holds.

We now show that the above extended symmetry condition implies the CVA condition.

Theorem 8: A TWC that satisfies the condition in (I9) must satisfy the CVA condition of
Proposition [3

Proof: If the marginal channels Py,|x, x, and Py, x, x, satisfy the extended one-sided

symmetry condition, then H (Y;|X; = x1, Xy = x5) does not depend on z; € X, for any fixed
Ty € X; since the rows of [Py, x, x, (|-, 72)] are permutations of each other. Hence, H (Y| X1, X5)
does not depend on Pk, x, given Py, € P(AX;) as required by the CVA condition.

Next, for any given joint distribution P)((—li Xy = P)((IQ) ~P)(<11)| x,» We show that P)(fl )7 Xy = Px, ~P)((12)
with the choice f’Xl = P}gl meets the remaining requirements of the CVA condition in Proposi-

tion 3l Since the TWC satisfies the extended Shannon condition, Lemma [6] in Appendix [Al gives

October 2, 2019 DRAFT



26

the two inequalities: I (X1; Y| X5) < I (X1; Ya|Xs) and 1 (Xy; V1| X)) < I@(Xy; V1| XY).
Observing that IV (X1; Y5| Xz) = HW (Ya| Xo)—HM (Ya] X1, Xs) = HV (Vo] X,)—H® (V2| X1, Xo),
we immediately obtain that 1M (Y| Xy) < H® (V3] X5) since I (X1; Ya|Xy) < T3 (X1 V5| Xo).
Moreover, since HV (V1| X1, Xy) = H® (Y1 X1, Xy) and TW (Xy; V1| X)) < TP (Xy; Y1 X1), we
have that HW (Y1 X)) < H®(Y;|X,). Thus, the CVA condition is fulfilled. |
Remark 5: In [28], the existence of examples showing that the Shannon and CVA results are
not equivalent was posed as an open question. The example below shows that the CVA condition
is more general than the extended (one-sided) Shannon’s symmetry condition (I9). Together with
Example 5, we conclude that the CVA result is more general than the Shannon result.
Example 6: Consider the TWC with X; = ); = ), = {0, 1,2} and X, = {0, 1} and marginal

distributions given by

0 1 2

003 02 05
[Pyviix,x,(-],0)]= 1] 05 03 0.2
2002 05 0.3

with [Py;x,,x, (-], 1)]=[Pyaixi,x, (|5 0)][=[Pyapx x. (- 1)]=[Pyi x,1, x5 (|-, 0)]. Clearly, there are
no relabeling functions for ), and ), which recover [Py, |x, x, (|, 0)] after exchanging the labels
of X; =0 and X; = 1, so that the extended one-sided symmetry condition does not hold. To
check the CVA condition, we first observe that H(Y;|X; = x1, Xy = x2) does not depend on
r1 € Xy and zo € Ab; thus H(Y;| X, X3) does not depend on Pk, y, for j = 1,2. Furthermore,
for any given P)((—li Xy = P P)((.1 x,» consider P)((2 ) X = Px, -P(l) with Py, = PY. . Then, we have
ID0(X13Y2]X0) = 32, P;g (w2) - TV (X13 V2| Xy = w2) < 32, Py (2) - T2 (X13Ya| X = r2) =
I®)(X1;Y2|X,), where the inequality follows from the fact that Py, is the capacity-achieving
input distribution for all one-way channels from users 1 to 2. On the other hand, since the matrices
[Py x,, x5 (-|71,7)], @1 € A}, are column permutations of each other, Z(Px,, Py;|x,=z;,x,) does
not depend on z; € X, for any fixed Py, € P(A5). One can then follow the proof of Theorem [II
to obtain that 7™M (Xy; V1| X;) < I (X,; Y1|X,). Now, since H(Y;| X1, X;) does not depend on
the input distribution, we conclude that HM(Y;|X;) < H®(Y;|X;) for j = 1,2, and thus the
CVA condition is satisfied.

Remark 6: The channel in the above example in fact also satisfies the conditions of Theorem [IL

Nevertheless, the connection between the conditions of Theorem [I] and the CVA condition is
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still unclear.

We close this section by noting that the symmetry properties induced by our proposed condi-
tions are not necessarily specific to two-user memoryless TWCs as we will see in Section IV. It
is also worth mentioning that the proposed conditions can be used to investigate whether or not
Shannon-type random coding schemes (under independent and non-adaptive inputs) provide tight
bounds for other classical communication scenarios such as MACs with feedback and one-way
compound channels. In particular, our conditions can be used to identify compound channels
where the availability of channel state information at the transmitter (in addition to the receiver)

cannot improve capacity.

III. TWO-WAY SYMMETRIC CHANNELS WITH MEMORY

We here consider point-to-point TWCs with memory whose inputs and outputs are related via

functions F; and F5 as follows:

}/l,i = Fl(Xl,i7 X2,i7 Zl,i>7 (20)
Yo = Fo(Xu14, Xo4, Z24), 2D

where {(Z1;, Z>;)}2, is a stationary and ergodic noise process which is independent of the users’
messages M7 and M. Note that this model is a special case of the general model introduced in
Section [I-AL it is also a generalization of the discrete additive-noise TWC considered in [1].

We first state (without proof) an inner bound for arbitrary (time-invariant) functions F; and F5.
The bound can be proved via Shannon’s standard random coding scheme (under non-adaptive
independent inputs) for information stable one-way channels with memory, applied in each
direction of the two-way transmission.

Lemma 1 (Inner Bound): For the channel described in (20) and (2I), a rate pair (Ry, R»)
is achievable if there exist two sequences of codes (f',g1) and (f3,g2) with message sets

M =1{1,2,...,2"1} and My = {1,2,...,2"F2} respectively, such that

1
Ry < lim —T(X75 V5[ X5),

n—oo N,

1

n—oo N
where the mutual information terms are evaluated under a sequence of product input probability

distributions { Pxn-Pxp};2, and the inputs X' are independent of {(Zy;, Z2;)}iey, j = 1,2.

October 2, 2019 DRAFT



28

We say that F;(X;, Xy, Z;) is invertible in Z; if F;(x1,x9,-) is one-to-one for any fixed
r1 € X1 and 2o € AX,. Under this invertibility condition, we obtain the following corollary.

Corollary 3: If F} is invertible in Z; for j = 1,2, a rate pair (R;, R) is achievable if

1 _

Ry < lim EH(Yzﬂin) — H(Z), (22)
1 _

Ry < lim EH(YHX?) — H(Zy), (23)

oo
n=1>

for product distributions {Pxn-Pxp} where F(Z;) denotes the entropy rate of the noise
process {Z;;}32, and the inputs X7 are independent of {(Z1, Z2,)}i-y, j = 1,2.

Proof: The proof follows from the fact that
(XT3 [X5) = H(Y3'[X3) — H(Y'| XY, X5)
= H(Y;'|X3) — H(Z3|XT, X3)
= H(Y;'|X3) — H(Z3),

where the second equality holds since F; is invertible in Z, and the last equality holds since
the channel inputs are generated independently of the noise process {(Z21, Z2,)}52,. Applying
a similar argument to /(X7 Y5"| XZ) completes the proof. [

Let F; ' denote the inverse of Fj for fixed (z1, 1) so that z; = F '(x1,22,55), j = 1,2.
If we further assume that z; = Fj_l(:cl, T2,Y;) is one-to-one in x; for any fixed z; € X; and
y; € V;, where j,j' = 1,2 with j # j/, and impose cardinality constraints on the alphabets, we
can simplify the expressions in (22)) and (23) as follows.

Corollary 4: Suppose that F} is invertible in Z; and Fj_1 is one-to-one for j,j’ = 1,2 with
Jj#j. Also, | X = V1| = | 21| = ¢ and |X)| = |)s] = | 22| = ¢o for some integers ¢, g2 > 2.
Then, a rate pair (R, R») is achievable if

Ry <logqy — H(Z,),

Ry <logqy — H(Zy).

Proof: The proof hinges on noting that H(Y]'|X7') < n -logg; and that the uniform input
distribution Pxn xp = (P},gl -P}(Jz)" achieves the upper bound. More specifically, we have to show
that if Pxp xp is the uniform distribution, then Pyr xn(y}'|z}) is uniform on Y} for any given

X7 = 2%, and hence H(Y}'|X} = 27) = n - logg;. By symmetry, we only provide the details
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for H(Y;'|X3). Suppose that Pyp xy is the uniform distribution on 7" x XJ'. Then, for any z%
we have

Pypixp(yy|ry) = Z Pypixn xp (Yo |2}, 25) Pxp xp (27 |23)

n
Ty

1 n
- (_) D Pryixpxg (Fa(afl, o, 25) o, 23)

q2

:E’!L

1
1\" I
Ty

n

1 n
_ (_) 3 Pry() 4)
42 o

1\"
(&)

where (24) holds since (X7, X7) is independent of Z5 and F, '(X1, X, Y5) is onto in X due
to the cardinality constraint. Clearly, Pyy|xy—.p is the uniform distribution for any z3, implying
that H(Y'|XY) = n - log ¢o. [

Next we consider ISD-TWCs as in Example 3] and [28]], but with the assumption that the noise
process {(Z1, Z2,)}°, can have memory. Note that any ISD-TWC with memory is a special
case of the system model in 20) and 1) satisfying the invertibility condition in Z; and Z,.

Thus, Corollary [3] applies to ISD-TWCs with memory to obtain the following result.
Corollary 5: For the ISD-TWC with memory, a rate pair (R, Ry) is achievable if

1 - _
Ry < lim —max H(ho(XT, Z2)) — H(Z,),

n—oo N PX{I

1 - i
Ry < lim —max H(h (X2, Z0)) — H(Zy),

n—o0 N, PX§L

where H(Z;) denotes the entropy rate of the process {Z;;}5°, for j =1, 2.

We note that Corollary (] also applies to ISD-TWCs with memory under identical alphabet
size constraints so that any rate pair in {(R;, Ry) : Ry <logqy — H(Z5), Ry <logq, — H(Z,)}
is achievable for ISD-TWCs with memory. We next derive converses to Corollaries 4] and

Lemma 2 (Outer Bound for Noise-Invertible TWCs with Memory): Suppose that |V;| = ¢; for
some integer ¢; > 2. If F} is invertible in Z; for j = 1,2, any achievable rate pair (R;, Rs)

must satisfy

1< . .
< R - ) 1—1 1—1
Ry <log g T}ggon 'E_l H(Zyi| 21, Z57),
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RS i1 i
Ry <logq _JL%E;H(ZI,AZI L 270,

where the limits exist because {(Z;,, Z>;)}2, is stationary.

Proof: For an achievable rate pair (R;, Ry), we have

n-R1 = H(M1|M2)

I(My; Yy'[My) + H(My|Y5', My)

< I(My; Y| Ms) + nee,

S H (Yol Mo, Vi) = H(Yaul M, My, Y37 | +meey

=1

~

3

IN

[10g g2 = H (Yl My, Mo, V7)) + e

@
Il
—_

M:

[log @—H (Yo ;| My, My, viThy, X, X2,i)] +n-€,
1

.
Il

I
M:z

[ o @o— H(Za,| My, My, Vi~ Y37 X0, X3) |+

=1

3

- [lOg Q2_H(Z2,i‘M17 MQa lei_lv )g_la X{'v X;? Zi_lv Zé_l)] + n-€p

1=1

I

(108> = H(Zo 27, Z57Y)] + e

=1

=n-logg — Z H(Zyi| Z77Y, Z57Y) + neey,

i=1

30

(25)

(26)

27)

(28)

(29)

(30)

€19

where (23)) is due to Fano’s inequality with €, — 0 as n — oo, @7) follows from |Vs| = ¢o,

(28) and (29) hold since F is invertible in Z; given (X ;, X5;), and (30) holds since

H(Zoi|Zi7Y, Z57Y) = H(Zyu| My, My, Zi74, Z571)
= H(Zoi|My, My, Zi74 Z71 X1 1, Xo )
= H(Zy,;| M, M, A X11,X01,Y11,Y21)
= H(Zy;|My, My, Z;7 ", Z574 X7, X2, Y11, Yau)

= H(Z2,i|M17 M27 Zi_la Zé_la X{? Xéu }/li_lv }/éi_1>
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where (32) is due to the fact that {(Z;;, Zs,;)}2, is independent of (M, M,), (33) and (33) hold
since X;; = f;.(M;, Y;-i_l) for j = 1,2, (34) follows from the identity Y;; = F;(X1;, Xo4, Z;.),
and (B6) is obtained by recursively using the same argument as in (33)-(33). Similarly, we have

n-Ry <n-logqr — Y H(Zu|Z{, Z57") + neéo. (37)

i=1
The proof is completed by dividing both sides of (3I) and (37) by n and letting n — co. W
Lemma 3 (Outer Bound for ISD-TWCs with Memory): For the ISD-TWC with memory, any

achievable rate pair (R;, Ry) must satisfy

Ry < Jim o wax HOw(X 29)) = 3 H(Zai| 27, 257

Ry < lim ~ |max H(h (X3, Z7")) — ZH(ZLHZf_l,Z;_l) .

n—o0 M, P
Xy i=1

Proof: The proof is similar to the proof of the previous lemma and hence the details are
omitted. The main difference is that the first term in (26) is now upper bounded as follows

> H(Yau| My, Y37) = H(ho(Xp4, To)| Mo, Y34 X5, T57)

i=1 i=1

<> H(To|T3 )

i=1

= H(Ty)

< maxH(im(X{La Z3)),

Pxn
where the first equality holds since X7} is a function of M, and Y;_l and Yo = ho(Xy, 1) is
invertible in 75 given Xs. [ |

Based on the preceding inner and outer bounds, the capacity region for two classes of TWCs
with memory (whose component noise processes are independent of each other) can be exactly
determined as follows.

Theorem 9: For a TWC with memory such that {Z; ;}:°, and {Z,,;}°, are stationary ergodic
and mutually independent, F is invertible in Z; and Fj_1 is one-to-one in X for j,j' = 1,2
with j # j/, and |Xs| = [Dh| = |Z21] = ¢ and |X)| = |Vs| = | 22| = o for some integers
q1,q2 > 2, the capacity region is given by

C= {(Rl,RQ) : Rl < lOgQ2 - [_{(Zg),RQ < lOgQ1 - [_{(Zl)} (38)
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Theorem 10: For a ISD-TWC with memory such that {Z;,;}7°, and {Z,;}2, are stationary

ergodic and mutually independent, the capacity region is given by

1 ~ _
C= {(Rl, Ro): Ry < lim — max H(ho(X2, Z2)) — H(Zs),

n—oo 1, PX?

Ry < hm,lnmxfﬂﬁﬂX?,Zf»——H(Zﬁ}. (39)

n—0o N Pxp
Remark 7: Theorem generalizes [28, Corollary 1] for memoryless ISD-TWCs. If one
further has || = |T1| = | 21| = ¢1 and |&}| = |T2| = | 22| = o for some integers ¢, q2 > 2,
then limy, o = maxpy, H(ho( X, Z2)) = log q; and that lim,,_,. 1 Maxpy, H(hy(X2,27)) =
log go.
The next example shows that if the noise processes are dependent, then Shannon’s random
coding scheme is not optimal.

Example 7 (Adaptation is Useful): Let ¢ = g2 = 2 and suppose that the channel is given by

Yii=F1(X1,, Xoi, Z1i) = X1, B2 Xoji @2 Z14,
Yo, = Fo( X, Xoji, Zoi) = X1 @2 Xoji @2 Zoj,

where {Z; ;}I" , is assumed to be memoryless with Z; ; uniformly distributed on Z; = {0, 1} for
i=1,2,...,n,and {Zy,;}?, is given by Zy; = 0 and Zy; = Z,,_1 for i = 2,3,...,n. Since

the functions F; and F, are invertible in Z; and Z,, the outer bound in Lemma [2| indicates that

: 1 - i—1 i—1
Rﬁ@ﬂjg%;maﬂm%)

—1-0=1,

1 & . .
Ry <log2— lim — E H(Zy:|Z7 25
i=1

n—oo N 4

We claim that the rate pair (R, R2) = (1,0) can be achieved by an adaptive coding scheme.
Let {M;;}? , denote the binary messages to be sent from users 1 to 2. For i = 1,2,...,n, set
the encoding function of user 1 as X1, = f1;({ My}, Y1) & My; @9 X1, 1 @9 Y1, with
initial conditions X; o = Xy = Y7o = 0, and set the encoder output of user 2 to be zero, i.e.,

Xo,; = 0 for all 7. With this coding scheme, the received signal at user 2 is given by

Yo, = X1, @2 Xo,; Bo Loy
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=M ,; ®2 X112 Y1,-1 D2 Za;
=M ; D2 X1,i-1 D2 Xii-1 D2 Z1-1 D2 Lo = My,

and thus the rate pair (1,0) is achievable. This achievability result together with the outer bound
imply that the channel capacity is given by C = {(Ry, R2) : R; < 1, Ry = 0}. However, the
Shannon-type random coding scheme only provides Ry < 1—H(Z,) = 0and Ry < 1—H(Z,) =
0 by Corollary Ml

IV. MULTIPLE ACCESS/DEGRADED BROADCAST TWCS

This section considers a three-user two-way communication scenario combining multiaccess
and broadcasting. We first introduce the channel model and derive inner and outer bounds for
the capacity region. Then, sufficient conditions for the two bounds to coincide are provided,

along with illustrative examples.

A. Channel Model

Two-way communication over a discrete additive-noise MA/DB TWC comprises three users
as depicted in Fig. [6l Users 1 and 2 want to transmit messages M;3 and Mss, respectively, to
user 3 through the TWC that acts as a MAC in the forward direction. User 3 wishes to broadcast
messages Mz, and Mo to users 1 and 2, respectively, through the TWC that acts as a DBC in
the reverse direction. The messages are assumed to be independent of each other and uniformly
distributed over their alphabets. The joint distribution of all the variables for n channel uses is

given by
{1,2,3}>

n n n
’ H PX2,i‘M237Y;71 ) H PXs,i\M{sLsz},Y;*l ) H Pyl,i7y2,i7y3,i‘X§1,2’3}7Y{i17’21,3} )
=1 =1 =1

where M3 93 31,32} £ { Mg, Mz, My, M3, }, X235y = {XP, X7, X)), and (12,3} £

n
PM{13,23,31,32}7X” Y25 = PM13 ! PM23 : PM31 : PM32' H Plei\Mlg,Yffl
i=1

{Y{", Y3, Y} Thus, the n transmissions can be described by the sequence of input-output
conditional probabilities {Py, , . | Xy Vicky .

To simplify our analysis, we assume that the channel is memoryless in the sense that

given current channel inputs, the current channel outputs are independent of past signals,

October 2, 2019 DRAFT



34

M3 xn
—
S ——
| Userl \ | MAC with |
~ I State X3 ! n M3, M.
M31 Y‘% 3 i :XS <i 32
,,,,,,,,,,,,,,,,,, User 3
n r
i Y | DBCwin | [Ty N
32 / state (6, X)L | 13 Mg Mo
User 2 X7 Vo |
Mos

Fig. 6: The information flow of MA/DB TWCs.

Le., PYlez,ist,i\Xil,z,g}7Y{if,§,3} = Py, Y2, Ys.4|X1.:,X2.4,X5,; for all 7. Furthermore, the two direc-
tions of transmission are assumed to interact in a way such that Py, v, vs,(x, . X0, X3

Py, o Yo i1X1.0,X0.0, X5 PYs.41X1.0,X2,0,X5,- Let all channel input and output alphabets other than V3
equal Q £ {0,1,...,¢ — 1} for some ¢ > 2. The MA/DB TWC is defined by the transition
probability Py;|x, x, x, in the MA direction and the transmission equations in the DB direction

are given by

Y= X1 ®¢ X3 Bg 214, (40)
Yo = X0 ®yg X3 By Z1,i By Lo, (41)
for i = 1,2,...,n, where Z,,,Z,; € Q denote additive noise variables, the components of

the memoryless and independent noise processes {Z;;}7" , and {Z5,}7 ,, respectively. We also
assume that the channel noise processes are independent of all users’ messages. Thus, the channel

transition probability of this MA/DB TWC at time ¢ can be written as
Py, v i e Xt X8 X1 yi=t yic1 yviet (Y1 Yo, ysal2t, b, by v s )
115 4,19 09, 1>+2>+327 1 »t2 73
= PYLi,ngi,ngi|X1’i,X27i,X3,i (yl,ia Y2,is y3,i|xl,i> T2, 5173,1')
= P}/Ii,i|X1,i7X2,i7X3,i (y3,i|$1,i7 L2, x3,i) : PYl,i|X1,i7X2,i,X3,i7Y3,i (yl,i‘xl,ia L2, T30, y3,i>
'PYQ,Z-|X1,,L-,X2,,L-,X3,Z-,Y1,z-,Yg,i (y2,i|$l,i> T2, T35 Y1,is y3,i)
= Py |x,,x0,x3 (Y3, 1,6, T26, T35 - Pz, (Y1, Oq 01,0 Oq 3) * Py (V2,0 O T2, Oq Y1,i Dy T14),

where ©, denotes modulo-g subtraction.
We next define channel codes, achievable rates, and channel capacity for the MA/DB TWC.
Definition 4: An (n, Ri3, Ros, R31, R32) channel code for the memoryless MA/DB TWC
consists of four message sets Mz = {1,2,..,2"%3} My = {1,2,...,2"M2} My =
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{1,2,...,2"81} 0 M3y = {1,2,..,2"%2} three sequences of encoding functions: f7' =

(S fr2 o fin)s 3 = (fors f22, o fon)s f3 = (f3.1, f3,25 -, f3,n) such that

Xi1 = fi1(Ms), Xi,i = fri(Ms, Ki_l), (42)
Xo1 = for1(Mas), Xoi = foi(Mas, Ygi_l), (43)
X31 = fs1(Msy, M3s), Xs; = fa:(Msy, Msg, Y371, (44)

for i = 2,3,...,n, and three decoding functions g;, g2, and g3, such that My, = g1(Mys, YT),
M3y = go(Mos, Y3), and (M3, Mas) = g3(May, Mz, YJ).
When messages are encoded via the channel code, the probability of decoding error is defined
as P (f1 [, 2, 01, 92, gs) = Pr{Mys # Mg or Mg # Mag or My # May or My # May}.
Definition 5: A rate quadruple (Ry3, Ras, Ra1, R32) is said to be achievable for the memoryless
MA/DB TWC if there exists a sequence of (n, Ry3, Ro3, R31, R32) codes with lim,, P — .
Definition 6: The capacity region CMAPEC of the memoryless MA/DB TWC is the closure of

the convex hull of all achievable rate quadruples (R;3, Ro3, R31, R32).

B. Capacity Inner and Outer Bounds for the Memoryless MA/DB TWCs

Let RMAPBC(Py v, xov, Pryxy,Xs. x5 P2y, Pz,) denote the set of rate quadruples

(R13, Ras, R31, R32) which satisfy the constraints

Rz < I(Xy; V3| Xy, X3),

Roz < I(Xy; Y3 Xy, X3),

Rz + Rog < I(X1, Xy; Y3 X3),

Ray < I(X3; X3 @y Z1|V),

Rsy < I(V; X3 Dy Z1 g Z2),
where V' is an auxiliary random variable with alphabet V' such that |V| < ¢ + 1 and
the mutual information terms are evaluated according to the joint probability distribution
Px| x5,X5,V,3,21,2: = Px1,%2,%3,v " Pys| x1,X0,x5° Pz, Pz,- We next establish a Shannon-type inner
bound and an outer bound for the capacity of MA/DB TWCs in Theorems [[T]and [I2] respectively.
Note that the achievable scheme in Theorem [1lis given by combining Shannon’s standard (non-

adaptive) coding schemes for the MAC [8, Theorem 4.2] and the DBC [ Theorem 5.2], and

hence the proof is omitted here. The derivation for the outer bound is given in Appendix [Bl
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Theorem 11 (Inner Bound): For a memoryless MA/DB TWC with MA transition probability
Py, x,,x,,x, and DB noise distributions Pz, and Py,, any rate quadruple (Ri3, Ro3, R31, R32) €

CMAPBE( Py Xy X, x5, P2y, Pz,) is achievable, where

MA-DBC A 55 MA-DBC
CI (PYB\XLX2,X3?PZUPZQ) - CO( U R (PX1'PX2'PV,X37PY3X1’X2>X37PZNPZQ)>'
Px,,Pxy,Pv,x,

Theorem 12 (Outer Bound): For a memoryless MA/DB TWC with MA transition prob-
ability Py, x, x, and DB noise distributions Pz and Pz,, all achievable rate quadruples

(R137 R237 R317 R32) belOﬂg to C(I\)/[A-DBC(PY3‘X1,X2,X37 PZ17 PZ2)7 where

MA-DBC A — MA-DBC
Co (PY3|X17X2,X3’ Pz, Pz,) = C0< U R (PX17X27X3,V7 Py x1,x0,%30 Py PZz)) .

Pxy.x9.x3.v

C. Conditions for the Tightness of the Inner and Outer Bounds

The inner and outer bounds derived in the previous section are of the same form but have
different restrictions on the joint distribution Py, x, x,, and hence they do not match. Here,
we establish conditions under which the two bounds have matching input distributions, implying
that they coincide and yield the capacity region. The proofs of Theorems are given in
Appendices [CHEL respectively.

Theorem 13: The inner and outer capacity bounds in Theorems [I] and [I2] coincide if for every
conditional input distribution P§1)7 Xo| X3 there exists a product input distribution P)((Zl)’ XX =

PX1~J5X2 (which depends on Pg(ll) x| x,) such that

IW(X; V3| Xa, X3 = x3) < IP(X); V3| Xo, X3 = x3) (45)
I (Xo; V3| X1, X3 = w3) < I (Xo; V3| X1, X3 = w3) (46)
IW (X1, Xo; V3| X5 = 23) < IP(Xq, Xo; V3| X5 = 23) @7)

hold for all z3 € X3. Under this condition, the capacity region is given by

MA-DBC _ —— MA-DBC
C = Co U R <PX1'PX2'PV,X3> ’PYES‘XLXZ,XS? PZ17 PZ2> .
Px.Pxy.Pv,xg

A special case of the above theorem is when Py,- - Py, does not depend on Py, Xs|X5- This

case may happen when Py, x, x, x, has a strong symmetry property.
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Corollary 6: The inner and outer capacity bounds in Theorems [L1] and coincide if there
exists an input distributions P)(?l ), x, = Px, - Px, such that for all P)((ll) Xo|x; and z3 € Aj the
inequalities given in @3)-@7) hold. In this case, the capacity region is given by

MA-DBC - MA-DBC
C :CO( U R <P)*(1'P)*(2'PV,X37PY3X1,X2,X37P211PZQ))'

Py x4
The next result is derived by treating the channel as a composition of state-dependent one-way
channels.
Theorem 14: The inner and outer capacity bounds in Theorems [I1] and [I2] coincide if the

following conditions hold:

(i) There exists Py, € P(A1) such that

arg max ](Xl, Y:fg|X2 = .CL’Q,Xg = 1’3) = P;(l

Px11Xg=09,X3=x3

for all x5 € X5 and z3 € A3, and

*
I(PXlﬁ PYS‘X17X2:$2,X3:I3)

does not depend on x5 for every fixed z3;
(i) Forany Px, € P(&Xs), Z(Px,, Py X, =21,X2,X3=z;) does not depend on z; € &; and x3 € As;
(iii) For any fixed Px, x,, we have that the mutual information Z(Px, x,, Py;|x,,xs,x3=2,) do€s

not depend on x3 € A3, and for each x3 € X35 we have that

I(PX1,X2> PY3|X17X27X3=963) < I(P)*{l ' PX27 PY3\X17X27X3=963)a
where Py, is given by condition (i) and Px,(72) = ). Px, x,(71, 2) for 25 € Ay,
Under this condition, the capacity region is given by

CMADBC _ &5 < U RMA-DBC (p)*(l Px, Py x4, Pry|x1,x0,X5: Pz, PZ2)> .

Pxy,Pv,xs
Next, we derive our last sufficient condition by generalizing Shannon’s condition (in Propo-
sition [T) to the three-user setting. This new condition is easier to verify than the previous ones.
Theorem 15: The inner and outer capacity bounds in Theorems [T1] and coincide if the

following conditions hold:

(i) For any relabeling T;\,ix,l, on X}, there exists a permutation 73 [z, /'] on )5 such that for

all 1, z9, x3, and y3, we have

Pyg\Xl,Xg,X;; (ys\%’ T2, $3): PY;;\Xl,XQ,Xg (Wy?’ [55/17 x/f] (93) ‘T;fll,w,l, ($1)7 T2, $3)§ (48)
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(ii) For any relabeling 752296,2, on X,, there exists a permutation on 73z}, ¥5] on )3 such that

for all zy, x5, x3, and y3, we have

X
PY3|X1,X2,X3 (yg‘l’l, X, LL’3): PYS\Xl,Xg,Xg (ﬂ-yg [x/b x/ll] (y3> ‘1’1, Tx’;x’z’ (x2)7 1’3) : (49)
Under these conditions, the capacity region is given by
CMA-DBC: E( U RMA—DBC (P.;{‘Jl‘P)I(JZZ'PV,X;a? Pyg‘Xl,X27X3, PZ17 PZz)) s (50)
Py xq

where P}é denotes uniform probability distribution on &X; for i = 1, 2.

D. Examples

We next illustrate Theorems via three examples.

Example 8 (Additive-Noise MA/DB TWC): Consider a discrete memoryless additive-noise
MA/DB TWC in which the inputs and outputs of the DBC are described by (@0) and (1)) and
the inputs and outputs of MAC are related via

Y3, = X1, ®q Xoi Bg X3 Dy L3, (51)

where {Z3,;}2°, with Z3, € Q is a discrete memoryless noise process which is independent of
all user messages and the noise processes {Z;,;}°, and {Z5,}°,. For any z3 € A%, we have

the following bounds:
I( X1 Y3| Xy, Xy = x3) = H(Y3| Xy, X3 = x3) — H(Y3| X1, Xy, X3 = 23) <log,q — Hy(Z3),
I(X; V3| X1, X5 = a3) = H(Y3| Xy, X5 = x3) — H(Y3]Xy, Xo, X3 = 23) < logy g — Hyp(Z3),
I( X1, Xp: V3| Xy = w3) = H(Y3| X3 = 23) — H(Y3| Xy, Xp, X3 = 23) < logy ¢ — Hy(Z3),
where equalities hold when Py, x, = PY, - P{.. Choosing Py, = Py, and Px, = Py, it is clear

that @3)-@7) in Theorem [13] hold, and hence the capacity region given by

CMA—DBC — CO( U RMA—DBC (P}(Jl'P}(JQ'PU,XyPY3X1,X2,X31pZUPZQ))

Py x4

@( U {(Ri3, Raz, R31, R32) : Ris + Ros < log, q — Hy(Z3),
Py xq

Ry < I(X1; X3 @9 Z31|V),

Ry < I(Xy® 73 @ZQ;V)}).
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Example 9: Suppose that X} = Xy, = X3 = {0,1}, V1 = Vo = {0,1}, and V3 = {0,1,2}. We
consider a discrete memoryless MA/DB TWC in which the DB direction is described by (@0Q)

and (@I) and the channel transition matrix [Py x, x,, x,(:|", -, )] for the MA direction is given
by
0 1 2

000 1-¢ 0 €
1001 1 —¢ 0 €
010 0 1—e¢ €
110 0 1—e¢ €
001 0 € 1—¢
101 0 € 1—e¢
011 1 —¢ € 0
111\ 1—-¢ € 0

where 0 < ¢ < 1. Since each marginal channel governed by the transition matrix
[Pyyx1,%2,x5 (-], 2, 23)] is quasi-symmetric, we immediately have that Py = Py . Also, since
[Pyyx1, X0, (|, 2, 73)], 22 € Xy and w3 € X3, are column permutations of each other, for any
fixed 23 € X3, T(P%,, Pyy|x,,Xo—zs,X3—c;) does not depend on x5 € Aj. Thus, condition (i) of
Theorem [14] holds. Moreover, condition (ii) holds since the matrices [Py;|x, x, x5 (:|21, -, Z3)],
r1 € X1 and z3 € A, are column permutations of each other.

Verifying condition (iii) involves several steps. We first observe that Z( Py, x,, Pyv;|x,, Xs,Xs=23)
does not depend on z3 € A3 for any fixed Py, x, since the matrices [Py;|x, x,x;(:|*, ", Z3)],
x3 € A, are column permutations of each other. From (97) and (98) in Appendix [D} it suffices
to consider input distributions of this form: Px, x, x,v = Px, x, - Px,,v. Thus, given any

(1) _ p (1) (2) _ pM
Px! xaxov = Pxi x, Pxyvs we define Pyl v vy (21,02, 3,0) = Py x, x, v (21$21, 22, 23, )

for all @y, 22, 23,v. Also, let PY) o = S(PY) o+ PE s, «,y) so that we have
P)(fl )7 Xo XV = P)(fl ). P)((lz) ~P)((13),V with P(?’l) = Py = Py . Now, since (@8] holds in this example,
one can directly obtain that IV (X, Xy; Y3| X3 = 23) < I®)(X1, Xy; Y3| X3 = 23) from the proof
of Lemmal[Zl As a result, this TWC satisfies all conditions of Theorem [14] and has capacity region

given by

CMA-DBC_ &5 ( U RMA-DBC ( P«‘[’fjl Px, Py xy, Pyy|x,,X0,x3, P21 PZQ> ) .

Px,,Pv,xq
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Example 10 (Binary MA/DB TWC with Erasures): Suppose that X} = X, = A3 = {0,1},
Vi =Y, ={0,1}, and Y3 = {0, 1, E}, where E denotes erasure symbol. We consider a discrete
memoryless MA/DB TWC in which the DBC direction is described by @Q) and (41l) and the
MAC direction is described by

Y5, = (X1, @2 Xo; @2 X3,)-1{Z3,; # E}+E-1{Z;, = E}, (52)

where {Z3,}7°, with Z3; € {0,E} is a discrete memoryless noise process which is independent
of all users’ messages and the noise processes {Z;,;}°, and {Z;;}°,. Also, we assume that

Pr(Zs;; = E) = ¢ for all ¢, thereby obtaining the channel transition matrix [Py, x, x5 x5 (|- - -)]:

0 1 E

000 1-¢ 0 €
100 0 l1—¢ ¢
010 0 1—¢ ¢
1101 1 —¢ 0 €
001 0 1—¢ ¢
101 1 —¢ 0 €
011 1 —¢ 0 €
111 0 1—¢ ¢

It can be directly verified that (4S]) and (9) in Theorem [I3] hold. Hence, the inner and outer

bounds coincide and the capacity region is given by

MA-DBC —— MA-DBC U U
C :CO( U R <PX1'PX2'PV,X37PY3X1,X2,X37PZDPZQ))

Py x4

@< U {(R137R237R317R32) : R13 + R23 S 1-— Hb(€)7

Py, x4

Ry < I(X1; X3 @9 Z1|V),

R32 S I(XQ Do Z1 Do Z27 V)}) .

Remark 8: Examples 9 and 10 also satisfy Theorem [13] since the product distribution f’Xl -PXQ
required by Theorem [13] are explicitly given in these examples. Moreover, it is straightforward to
show that Examples 9 and 10 do not satisfy the conditions of Theorems [13] and [14] respectively.

In other words, Theorems [I4] and [I3] are neither equivalent nor special cases of each other.
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V. CONCLUSION

We have identified salient symmetry conditions for three types of two-way noisy networks:
two-user TWCs with and without memory, and three-user MA/DB TWCs, under which Shannon-
type random coding inner bounds exactly yield channel capacity. These tightness results, which
subsume previously established symmetry properties as special cases, delineate large families
of TWCs for which user interactive adaptive coding is not beneficial in terms of improving
capacity. Future research directions include identifying necessary conditions for the tightness of
Shannon-type inner bounds and deriving conditions under which Han’s adaptive coding inner
bound is tight. An additional interesting avenue of investigation is to examine whether
adaptive coding is useful for the (almost) lossless and lossy transmission of correlated sources

over TWCs whose capacity are achievable by the Shannon-type random coding scheme.

APPENDIX
A. Proof of Proposition [l (Shannon’s One-sided Symmetry Condition)

The proof of Proposition [Il is based on the following lemmas.
Lemma 4: If a memoryless TWC satisfies the conditions in Proposition [Il then for any input

distribution P§<11)7 x,» any x4, ¥f € &y, and P§1)7 OO P§<11)7 X (T;le,l,( ), ), the following hold:

ID(X1; Y] Xo) = I®(X1; Yol Xo), (53)

I (X27}/1‘X1)

(Xz;Yl‘Xl)a (54)

R(P)((ll),Xy Pyi va1x:,x5) R(Pg),&» Py, vaix1,%)- (55)

Proof: For any P)((li x, and P.>(<21 )7 OO P)((li X, (7% ,(+),-), we have

T1,Tq

I®(X1;Ya| Xs)

—ZP)% B (X1; V2| Xy = 9)
Py, x X2 \Y2|T1, T2
—ZP)% (2) ZP)(?HX (@1]@2) « Pyyjxy x5 (Y2]71, 72) - log : (12) e :
T1,y2 PY2‘X2(y2|x2)
Py, x Xo\Y2|T1, T2
= > P (w1, 22) + Pryjxy x, (g2l 1, 22) - log o1, (2] ) -
T1,T2,Y2 le X1|X2('rl‘x2>'PY2|X1,X2(y2‘x17'r2)

1
= Z PA)((1)7X2(T;Z‘1750/1/($1)7 $2) ) PY2|X17X2 (ﬂ-y2 ['T/lv xll](y2>|7- - ,,(1’1) $2)

T1,22,Y2
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Py, x, x5 (m2 [z, 27](y2) |T5§?@’1’ (21), z2)

log T - - (56)
> Py (T () ) Poa (w22 [, 2] (o) |72 (1), 2)
1
= Y P @), w0) - Py, xo (1322, ) (o) |70 (1), 2)
r1,T2,Y2
Py, 1x, x5 (2 [, 7] (ya) ‘T;?,zflf (21), z2) (57)

-log i ~ -
S a POy (B1]2) Pra s xa (72 [, 2 (32) 31, 2)

1
= Y P (@), 22) - P, (m32 e, 2)(92) 170 (21), 0)

T1,22,Y2
Pyyx,,x, (w2 (2, 7] (y2) |7';?,zflf (1), 22)

1
P, (w2 [t 2 () 22)

-log

Py, x5, (G275 o (1), )

= > p§1>7X2(T;§{m,l, (1), 22) - Praxy x2 (G270 o (1), 22) - log O (58)
T1,22,92 PYQ‘X2 (y2|x2)
o - o Py, 3, x5 (02|71, 22)
- Z PXLXQ(xla 1'2) . PYQ\X1,X2 (y2|xla 1'2) . lOg (1) _ (59)
Z1,22,72 Py2|x2 (y2|:1:2)
= 11(Xy; Ya[X), (60)

where (36) holds by the definition of P)((Z1 ), x, (1, 22) and the fact that Py, x, x,(y2|71,72) =
Py, x, x, (2 [, ] (yg)\T:?x,l,(xl), x3) due to the Shannon condition in (), (57) and (39) hold
since T;le,l, is a bijection, and (38) holds since 72[z/, /] is a bijection.

By a similar argument, we can verify that /™" (X5: V1| X,) = I®®(Xy; Y1|X,). The proof is then

completed by noting that the identity R(P)((ll X Privalx) x0) = R(P)(fl )7 X, Privalx,,x,) follows

from the definition of R in (I). [ |
Lemma 5: If a memoryless TWC satisfies the condition in Proposition [I, then for any input
distribution P)((?XQ, any 2}, xf € X}, and P)(i)7X2(~, = ]3)((11)7)(2 (T;le,l,(-), -), we have
1 3
R(P)((l),ng PY17Y2\X1,X2) C R(P)((l),sz PY1,Y2|X17X2) (61)

where P.>(<31),X2 (1, xQ)é%(P§<ll)7X2 (21, :)32)+P§(21),X2(:)31, T3)).

Proof: The proof relies on the concavity of I(Xy;Y5/Xs) and 1(Xs; Y1 X)) in Py, x, [3l.

: 1 2 1 3 1 2
For any given P§(1),X2 and P_>(<1)7X2(', ) = P§1)7X2(T:fo3/(-), ), let P)((1)7X2 - %(P)(Q)JQ + P)(ﬁ),Xz)‘
The concavity property then implies that
1
I¥(Xy; Y| Xo) > 5([(1)()(1; Yol Xs) 4+ 1% (X1; V2| X5)) (62)
= IV(X1: Ya| Xo), (63)
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and that

(X0 Y1]1X1) > = (IV( X V1] X0) + I®(Xo; V1| X)) (64)

= IV(X5; V1] X,), (65)

where (63) and (63) follow from Lemma [l The proof is completed by invoking the definition
of R in (D). [ |
Lemma 6: If a memoryless TWC satisfies the condition in Proposition [Il then for any given

input distribution Py, x, = Px,|x,Px,, we have

R(PXLXz» PY17Y2\X1,X2) - R<P¥1'PX2> PY1,Y2\X1,X2)’ (66)

where P}(Jl denotes the uniform probability distribution on A}.

Proof: Without loss of generality, we assume that X; 2 {1,2,...,k}. Define P,, =
{f))(l,)(2 < P(Xl X Xg) : PXl’X2(17$2) = PX17X2(2,1’2) == PXl,XQ(m, LL’Q) for all x5 € Xg},
where 1 < m < k. Lemma [3] shows that for any P)((—ll), X, € P:, one can construct P)(fl ), X, € Po
in such a way that (6I) holds. We now extend this result by induction on m showing
that for any P)((—ll)’X2 € P, with 2 < m < &k, there exists a P)(g}? € Ppy1 such that

1 m—+2
R(P)((l),sz PY17Y2\X17X2) - R(P)((l,—")_(g)7 PYl,Y2|X1,X2)'

Suppose that the above claim is true up to m for some 1 < m < k, where the base case

m = 1 was proved in Lemma [§] We next prove the claim for m + 1. For any P§<11), x, € P

define

m+1
(m+2) N (3)
Py, x, (@1, 22) = m+ 1 ; Py x, (1, 72),

where P)((?E’XQ(~, )& P)((-IR’X2 (Ti)fll’m_,’_l('), -) for 2 <7 < m+ 1. Due to the Shannon’s one-sided
symmetry condition and Lemma H, we have that 1®) (X ;Y5|X,) = I (X;; Y| X,) and that
T9D(X9;Y1|X,) = I (X5; V1] X,) for 2 < i < m + 1. Concavity then implies that

m—+1

Z](i)(XnYz‘Xz)
m—+1 —

102 (X Ya| X) >

= ](1)(X1;Y2|X2)-

Similarly, we obtain that (2 (Xy; Y| X1)>1"(X5; Y1|X1). Moreover, since ]3)((11)7)(2 € P,,, we
have that P)((T}i) (x1,29) = (M- P§§1{X2(1, T3) +P)((11),X2(m+ 1,29))/(m+1) for 1 <z <m+1

and all z5 € A, i.e., P_gb}zz) € Pout1, thereby proving the claim.
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Since any Px, x, = Px,|x, Px, € P, can be expressed as P}él -Px,, in view of the definition
of R the proof is completed. [ ]
We are now ready to prove Proposition [11

Proof of Proposition 1: Note that

Co(Privaxixa) =20 [ | R(Px,xar Privaixsxa)

Pxy.x,
C co (U R<P/'[\.’Jl'PX27 PY1,Y2X1,X2)> (67)
C Ci(Py, vs/x1,X5)s (68)

where (67) follows from Lemma [0l Together with Ci( Py, v,(x,.x,) € Co(Py;,v5/x,,x,), this gives:

C = CI(PYLYQ\XLXQ)
— CO(PY17Y2‘X1,X2)

= [ U R(PYPrs Pryaxaxs) | - (69)

Px,

|
We remark that, based on the proof of Proposition [} it is straightforward to prove Shannon’s

two-sided symmetry condition in Proposition

B. Proof of Theorem

Proof: Suppose that (Ry3, Rog, R31, Ra2) is an achievable quadruple. We derive the necessary

conditions for those rates by the standard converse method. For R3, we have
n-Ri3
= H(My3|Mas, M3, M3y)
= I(M3; Y3 | Moz, M3y, Msy) — H(M3|Ys", Mas, My, M)
< I(Mys; Y3 [ Mas, M3y, Mss) + nee, (70)

< I(My3; Yy, Y3 [ Mag, Msy, Mso) + n-e,

Z I(M3;Ys,, 3@,2‘|Y2i_17 Y}f—la Moz, My, Msy) + n-e,
=1
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= Z (H(Yzi, Vil Xos X3, Yo', Yy, Mg, Myy, Mys)
i=1
—H(Ya, Yl X X Y Y37 Mag, My, Map, Mig) ) 106 (71)
< Z (H(Yzi, YailXo, X3i) — H(Yay, Y3l X1, X2,i7X3,i)) + ey (72)
i=1

= Z I( X1, Ya,, Y5 Xy, X3,) + neey
=1

n
= Z I(X1 33 Xo: @g Xsi By Z1,i By Lo, Y3i| Xaiy X3i) + neey

i=1

= Z I(X1 45 Y541 X0, Xs2) + 1( X145 21 @ Zo4|Ysi, Xoiy Xs4) + n0ep,

i=1

= (X1 YaalXa, Xa;) + neen, (73)

i—1
where (70) follows from Fano’s inequality with ¢, — 0 as n — oo, (1) holds since X,; =
foi( Moz, Yo ) and X3, = f3;(Ms1, M3y, Yy~1), ([@2) follows since the channel is memoryless,
and (73) follows since (Z; ;, Z»;) is independent of (Y3, X1, X2, X3,). By symmetry, we also

have

n-Rys < 1(Xoi; Vsl X1, Xsa) + neep. (74)
i=1

For the sum rate Ri3 + Rs3, we have
n - (Riz + Ras)
= H (M3, Mays| Mz, M3)
< I(Mi3, Mys; Y3' | Mz, Mzg) + n-e,
= Z (H(Y}),JX?,@, Y3i_17 M3y, M3s) — H(%,JY;_I, Msy, M3y, My, M23)> + n-€,
i=1

n

< Z (H(Y})JX?,Z) — H(%,i‘yg_17 Msy, Mso, M, M23)> + n-€,
i1

< Z <H(Y}>z|X3z) — H(Y3,| X1, Xay, Xs,z)) + n-€,
i1

= Z (X1, X243 Y30l X50) + neen,

=1
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where €, — 0 as n — oo by Fano’s inequality. Therefore, for the rates in the MA direction, we

have
1 n
Rz < — I( X715 Y34 X, X3 n
13_71; (X105 Y| Xoji, X34) + €

< I(X4; V3] Xy, X3) + €

1 n
Ros < - ; I( X5 Ys,:| X1, X32) + €5

< I(Xy; V3| Xy, X3) + €

1 n
Rz + Ry < - ; I( X1, X0 Y5, Xs,) + €
< I(Xy, X9y Y3|X3) + €,

where the inequalities hold since I(X7; Y3| Xy, X3), 1(Xo; V3| X1, X3), and (X7, Xo; Y3|X3) are
concaVGH in the joint input distribution Py, x, x,, where Px, x, x, = % Yo Py X X
For the achievable rate 35 in the DB direction, we have
n- Ry
= H (Ms2| Mas)

< I(Msg; Yy | Maz) + neep

n

=3 I(Msy; Yl V3™, Mo, X3) + nee,
=1

= Z ](M327 X3,i @q Zl,i @q Z2,i|X§_1 @q Z{_l @q Z§_17M237 X;) + n-ey
=1

= I(Msy; X33 @g Z1i B Zog Xi™' @ 237" ©g Z57" Mas) + ey (75)
=1

. i—1 i—1 i—1 .

<Y (Mg, X5 @y 247" @y 237", Mo Xs i © 213 By Zoi) + e (76)
=1

<Y I(May, Mas, Myg, X3 & 217 6y 237 X37" @4 2175 Xsi ®g Z14 Dy Zo) + noen
=1

= Z I(M32,2313}» Y/f_l, 1722'—1; 3721) + n€, (77)
=1

"This follows from the fact that I(A; C|B) is concave in Pa, p for fixed Poja,p [3l.
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where (Z3) holds since X} is a function of (X3 ' @, Zi ' @, Zi", My3), (@A) follows from
the chain rule and the non-negativity of mutual information, and (77) is expressed in terms of
371,2' £ X3 ®qg Z14, and 572; £ X3i@q L1, g Loi = 3712 Dq Lo
For Rs3;, we have
n-Ra;
= H(Ms1|Mq3,2313))

< I(Ma; YY", Y5 [ M32,23,13y) + 1€y,

I(Msy; Y, Yaul Yy Yy h Mooz a3y) + neey,
1

7

M-

I(Msy, X35 Y14, Y2,i|Y1i_1, Yo ! My32,93,13)) + neep

i=1

VL

I(Ms1, X34 Y14, Y2,i|Y1i_1, Yot M32,23,13} X1, X3) + neey

1=1
(78)
= I(Msy, X3 Y/1,2', 572,i|Y1i_1, Yzi_la M3223,13}, Xi, X;) +ne,
i=1
= Z I(Msy, Xs,53 Y14, You| Vi1 Y57 Msaas.03y) + neen
i=1
(79)
= Z I(Xs5,; 371,@ 372,¢|371i_1, }722'—17 M32,13,23))
i=1
+Z I(Msy; Y/u, 572,i|3~/1i_1, 1722'—1’ Mys2,13,93), X34) + 1€y
i=1
= > I Vi, Youl Vi V5! Mo as03y) + neen (80)
i=1
= Z I(Xs55 Vil Vi Y57 Mgz s 0my) + neen 81
i=1

where (78) holds since X;; = fi:(M3,Y™!) and Xo; = fo;(Mas, Yy 1), (79 holds since
(Vi~1 Y3~ X1, X%) can be generated knowing (M3, Mas, Yi~1 Y1), &) holds because
M31 —0— (}712'_1,}722'_1,M{32’13’23},X37Z’) —0— (5}172',{/272') form a Markov Chain, and (m) holds

since }72@ —o— (}7171',}711'_1,}721'_1,M{32713723}> —o— X3, form a Markov chain. Note that
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these Markov chain properties hold since {Z;;}7, and {Z;;}! , are independent memoryless
processes and are independent of all user messages.

Setting V; = (Y; 7', Y3 !, Mi321393), we have that V; —o— X3, —o— (Y}, Ys;) form a
Markov chain. From (77) and (1)), we obtain that n-Rsy < > | I(V;; }722) +n-€, and n-Rg; <
ST (X37Z‘;5}17i|v;‘) + n-€,. Let K be a time-sharing random variable that is uniform over
{1,2,...,n} and independent of all messages, inputs, and outputs. Setting V' = (K, Vk), X3 =
Xage, Z1 = T, Za = Zoxc Y1 = X3 ®g Z1 = Vi, Ya = X3 By Z1 By Zo = Yo i, we have

n-Rzp < z": [(Vi; Yaz) + neey,

i=1

=n-: I(VK;}N/Q’K|K) + n-€,
<n-I(V;Ys) +ne,

=n-I(V; X3 ®, Z1 Dy Z2) + n-€n,

and

n-Rs; < Z I( X3, 571;|Vz) +n-e,

i=1
=n-I(X3;Y1|V) 4 n-e,
=nNn- I(X37X3 EBq Zl‘V) + n-€n

for some Py, z, x,v = Px,v - Pz - Pz,. Combining the obtained bounds for rates R;3 and
Ry3, the proof is completed by letting n — oo. The bound on the alphabet size of V' can be
established by the convex cover method [8]]. [ ]

C. Proof of Theorem

Proof: Consider a MA-DB TWC governed by Py, |x, x, x;. Pz, and Pz,. Recall that

MA-DBC .
R (PXl,Xz,Xg,V7 PYg‘X1,X2,X37 le7 PZQ) = {<R137 R237 R317 R32) .

Ry < I(X1:Y3] X5, X3), (82)
Ros < I(Xs: Y3 X1, X3), (83)
Rz + Rys < I(Xy, Xo; Y3]X3), (84)

Rgl S I(Xg, X3 @q Zl|V), (85)

Ry < I(V; X3 @, Z1 &, Zg)}.(86)
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Since (82)-(84) do not depend on V' and (83) and (@) do not depend on (X, X;), we have

MA-DBC
R (PX1,X2,X3,V> PY3|X17X27X3> PZ1> PZz)

- RMA-DBC(PXl,XQ‘XS'PV,X;w PY3|X1,X2,X37 P217 PZQ)' (87)
To complete the proof, it suffices to show that for every Py, x,|x, and the corresponding PXl ]—t’X2
(which depends on Px, x,|x;) given by our assumption, satisfies

MA-DBC
R (PX17X2|X3PV,X37 PY3\X1,X2,X37 PZU PZz)

g RMA_DBC(pxl'pXQPVyXJ’ PY3|X1,X27X3? PZ17 PZQ)? (88)

C CMA—DBC (

: MA-DBC
since then we clearly have C} (Pyvy|x1,%2,x3, P21, Pz,) Py, 1x1,x5,x3, Pz,, Pz,). To

show (88)), consider two input distributions P)((ll), X XaV = P( ) X X | X P‘(};Q and PX) Xy
Py, - Py, - P‘(,?))(S, where Py, - Py, is given by the assumption. Then,

ID(X3; X3 @4 Z1V) = I0( X35 X3 @, Z1|V) (89)

IV X3 By Z1 @ Za) = 1PV X3 @y Z1 By Z2) (0)

: (1) (2) ' (1)
since Py v, v,y and Py’ « . have the same marginal Py . . Furthermore,

IV (Xy; 3] X, X3) = ZP( W (X715 V3] X, X3 = w3)
< ZP( (XlaYE’,|X2>X3—1'3)

= I( J(X1; Ya| Xa, Xs),
where the inequality follows from (45) and the last equality holds since P)((ll), X,.x5,y and
P)(fl) X,.x,,v have the same marginal P( Similarly, we obtain that I(V(X,; Y3 X 1, X3) <
I (Xy; V3| X1, X3) and 1V (Xl,Xg;}/g‘Xg) < I®(X}, X5; Y3 X3). Consequently, (88) holds.
|

D. Proof of Theorem

Proof: Similar to the proof in Theorem [[3] for any Px, x,|x,Pv,.x; = Pxyixs Pxy (x5 Py, x5

it suffices to show that

MA-DBC
R (PX17X2|X3'PV7X37 PY:;\XLX2,X37 PZ17 PZz)

g RMA_DBC(P)*(I'PXQ\Xg'PV,Xga PY3|X1,X2,X3> PZ1> PZQ)a (91)
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where Py is given by conditions (i).

1 1 1 2 N 1 1 .
For any P)((i X0 XsV = P)(ﬁ), Xl X5 P‘(/&g, let P)((i X2 X5V = PX1 . P)((Z) . P‘(/&g, where PX1 1S

given by condition (i) and P§(12) denotes the marginal distribution of X, derived from P§1)7 o XsV*

For the rate constraints in the DB direction, the same identities as in (89)-(0) can be obtained

because P§1)7 Xy x5, and P)((Zl{ X,.x5,v Share a common marginal distribution given by P‘(/lg(3 For

R;3 in the MA direction, we have
ID(X1;Ys] X0, X3)

- Z P§2)’X3($2,$3) ’ I(l)(XhYZ’)‘XQ = I3, X3 = Ig)

2,23
_ } : (1) (1)
- PXQ,XS (x2’ zg) ’ I PXI‘X2:-'E27X3:-'E3’ PY3|X1,X2:m2,X3:x3
T2,T3
< pY (9, x3) - max (P P
= X27X3 2,43 P a. X1|X2:1‘27X3:x3, Y3\X1,X2=x2,X3::c3
T X1|Xo=29,X3=23
2,23
= pY (x9,23) - | Py,, P 92)
o Xo, Xz \ V2543 X1 £ Y3 X1, Xo=w2,X3=13
2,23

1 1 *
- Z P)((a) (3) Z P)((z)\Xs (2]x3) 'I<PX1’ PY3|X17X2=ZB2,X3=933>
x: To

1 *
- Z P)((‘s (Z XQ\X 5172|{E3 ) ' I(PX1’ PYS‘XLX2:-'E,27X3:-'E3) (93)
1) *
- Z P( Z P (3) (PXN PY3|X17X2=90’2,X3=903>
)

= I (X}; V3] X, X3),

where (92) and (93) directly follow from condition (i).

For Rs3, we have
IO (X; Ya| X1, X3)

- Z Pgl),xg(xl>5”3) ) ](1)(X23 Y3|X1 =11, X3 = 933)

1,23
1 1
= Z P)((l),XS (.ﬁ(}l, LE‘3) . I<P)(<2)\X1=x1,X3=1’3’ PY3|X1::(:1,X2,X3:963)
1,23
=3 PP (wras)  I( Py P 94
o X1,X3 xl’ €3 XQ‘Xlzwl,XSZ.’Eg’ Y3|X1:II17X27X3:1"/3 ( )
T1,T3
1 1
< I( Z P_>(<1)7X3(5171, 3) - P)(<2)\X1,X3 (za|z1, 23), PY3|X1:x’1,X2,X3:m’3> 95)
1,23
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1
= I<P_>(<2), PYS\Xlzm’l,Xz,ngm’g)

* 1 1
= Z PX1 (xll)P)(Q) (zg)I<P_(X2)7 PY3\X1=$’1,X27X3:m_%) (96)

! !
ZEl,LES

= 1@ (Xy; Y5 X, X3),

where (94) and [©6) follow from condition (ii) and ([©@3) is due to convexity of Z(-,-) in its first
argument.

Moreover, for the sum rate R;3 + Rs3, we have
IM(Xy, X5; Y3 Xs)

—ZP)% ) - TW(X, Xo; Ya| X3 = a3)

1) 1
ZP( I( )((1)X2|X3 x3>PY3|X1 X9,X3= x3)

1) 1
o ZP)((% 5173 I( )((1)X2|X3 x3>PY3|X1 X2, X3= 963) o7
< I(ZP)((IS)(% P(l X x5 (15 T2[3), Pry|x,, X5, xa= x3> 98)
3

=7 (PXl X PY3|X1 X2, X3= 1‘3)
<7 (P)*(l : PX12 ; PY3|X1,X2,X3:m’3) 99)

1) * 1
— Z P( / (PXI P)(Q)’ PYS‘XLXQ,XS::E;,;)
= 1(2 (X1, Xo; Y3[X3),

where (©@7) and (Q9)) follow from condition (iii) and (98)) is due to convexity of Z(-,-) in its first
argument. Therefore, (QI) holds under conditions (i)-(iii). [ |

E. Proof of Theorem [[3
It suffices to show that

MA-DBC
R (PXl,X2\X3'PV7X37 PY3|X17X27X37 PZl’ PZ2)

- RMA‘DBC(P/%-P/%‘PV,Xga PY3\X1,X27X3> PZl’ PZz) (100)
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for any Px, x,|x,;v,x,. We first give a proof sketch. Analogous to Shannon’s proof for point-to-

point TWCs (see Appendix [Al), we want to show that for any input distribution P)((ll), Xo XV =

(1) n (2) _ p(® (1) 3) _ p® (1)
Py xalxe Tvixg TWe set Py, x, v = Px xx Pvix, a0d Py x, x, v = Py g xa P v, Where
(2 2 p) X
PXl,Xngg(" ) = PX1,X2\X3(TII11@/1/(')7 1), (101)
(3) alio 2)
PX1,X2|X3('7 |) - 5 (PXl,X2|X3('7 |) PX17X2|X3('7 ‘)) ) (102)

and 2/, 2 € X}, then we have

- 1 !
RMA DBC(P)((l)’X2‘X3 ) p&) 2 Pya|x1.x0. %55 Pz, 5 Paz,)

= RMA‘DBC(PE),lexa'P\(/,l))Q’ PY3|X17X27X3’ Py, PZ2) (103)
g RMA_DBC(P)(;;)’XQ‘XS'P‘(/};{37 PY3|X1,X27X3? PZl? PZ2)’ (104)

where the last inclusion is shown using (@8) and extending Lemma 3] to the MA/DBC setup.

Then, we use an induction argument as in the proof of Lemma 6] to obtain

MA-DBC
R (PX17X2|X3 ’ PV,X‘S? PYS\Xl,X2,X37 PZU PZz)

MA-DBC U
CR (P/’\,’l'PXz\X3PV,X3’PY3\X1,X27X3>PZ1’PZQ)'

Next, we consider input distributions of the form P)((ll)7 Xoxav = Py - P)(é)' X5 ng),v and set
(2) _ p®@ (1) 3) _pB) (1)
PX17X27X3,V = Xl,X2\X3'Pv,X3 and le,XQ,Xg,v—PXLX2|X3-PV7X3, where
(2) A p(1) X,
PX17X2|X3(.’.|.) - X1,X2‘X3("Tx’22,x’2’(')|')?
al

3) 1) (2
P (1) 2 5 (le,x2|xg('a'|') + PO e .\.)) 7
and 74, 25 € X,. It can be shown via (@9) that (I03)-(I04) also hold, and thus applying an
induction argument again yields

MA-DBC U
R (PXl'PX2IX3'PV7X3> PY3|X17X2,X3’ PZ1> PZz)

- RMA_DBC(P)%'P/%‘PV,Xga PYg\X1,X2,X3> PZl’ PZz)' (105)

Combining (I03) and (I03) then proves our claim. Due to symmetry, we only prove (103)).

1 1 1 2 2 1
Lemma 7: For any P)(Q),Xz,xg,v = P)(<1),X2\X3 : Px(/,))(g’ let P)((l),XQ,Xg,V = P)((l),lexg ’ P\(/',))<3 and
3 3 1 2 3 .
P)(ﬁ{ X XaV = P)((i XolXs P‘(/7 ;(3, where P)((i X\ x, and P)((i Xo|x, &re given by (101} and (102),
respectively. Then, (I03)-(I04) hold.

Proof: We have

1(2)(X1;Y3\X27X3 = $3)
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= Z X1X2|X3 (21, 12|73)- Pyy|x,, x5, 55 (Y3] 71, T2, T3)

T1,22,Y3

Py, x, x0,%5 (Y3| 21, 22, 13)

-log @ - ~
Zi -‘DX1|X2 X3 (331‘.1'2, 1'3) : PY3|X1,X2,X3 (y3|x1, T2, 1'3)

1
= Z P§<1)7X2|X3(Tf x//(l'l) To|T3) - PYg\Xl,X27X3(7Ty3[IJ1’xlll](y3)|7;?m’l’(xl)’x27$3)

Z1,22,Y3

log Py;x,,x5,x; (m* [, 2](ys) |ngzl7x/1/ (1), T2, 23)

lOg (Z X1|X2,X3 T ,1 ,,(1’1)|LL’2,SL’3) Py3X17X27X3(7Ty3[;(;/1’LL’/ll](y3)|T$§17x/1/(i’1),1’2,253))] (106)

Z P(l Xy ol x5 (15 2|T3) Pyy x1, X5, %, (3|21, T2, T3)

Z1,T2,Y3

PY3|X1,X2,X3(93’3317 50271’3) (107)

-log
Z P)((lﬂXz X3 (371 "TQ’ x?’)‘PYB\XLXLXS (y3‘3~717 Z, $3)

= ](1)(X17}/2‘X27X3 = ,’,U3),

where (T06) follows from @8)) and (I0I), (I07) holds since 73|z}, z}] and 7‘ , oy Are bijections.
By a similar argument, we have that 1 (Xy; Y3|X;, X5 = x3) = IU )(X27Y3|X1,X3 = 13)
and that 1®) (X, Xo; V3| X3 = x3) = IW (X, Xy; V3| X3 = x3). Next, using the concavity of
I(Xl; Y3|X2, X3 = ZE3), [(Xz; Y3|X1,X3 = 933), and ](X1>X2§ Y3|X3 = 933) in PX1,X2\X3(', '|933
yields that

I®)(X5; V3] X1, X3 = 23) > %(ﬂ”()@; V3| X1, X3 = 23)+1P) (Xo; Y3 | X1, X5 = 23))
= T (X5 V5| X, X3 = 3),
I®(Xy, X Ys| Xy = 25) > ;(I(l)(Xl,XQJGJXg = 23)+1 P (X1, Xo; V3| X3 = 73))
= I(X1, Xp; V3| X3 = 73),
and hence

I¥(X1; V3] X, X3) > TV (X35 V3| X, Xs),

$I1(X1; Y3 X2, X3 = x3) and I(Xa;Y3|X1, X5 = x3) are concave function of Px, x,|x, (-, |zs) since I(X1;Y2|X>) and
I(X2;Y1]|X1) are both concave in the input distribution Px, x, [3].

October 2, 2019 DRAFT



54

I (Xy; Ya| Xy, X3) > TD(Xy; Ya| X1, Xs),
I®(X1, Xy Y| X3) > TW (X, X V5| X3),

since P)((lg) = P)(g; ). Together with the definition of RMAPBC given in Section the inclusions
in (I03)-({04) are proved. [ |

Now, without loss of generality, suppose that X; = {1,2,...,k}. For 1 < m < k, define A,,
as the set of all conditional probability distributions Px, x,|x, satisfying Px, x, x,(1, z2|z3) =
Px, xox5(2, x2|23) = -+ = Px, x,)x5(M, T2|x3) for any fixed z, € A, and x3 € X3. As in the

proof of Lemma [@] it can be shown by induction on m that

MA-DBC
R (PX17X2\X3 ’ PV,X3’ PY3\X17X27X3> PZ1’ PZz)

MA-DBC/
CR (PXl,X2|X3 'PV7X37PY3|X17X2,X37PZ17PZ2)

where Py, x,/x, € Ap and PXI,XQ‘XB € A1 for 1 < m < k. Note that the base case m = 1
was proved in Lemma [7l Since Py, X»|x; € Ay can be expressed as Px, x,/x; = P}gl - Px, x5
(103) holds. To show (103), we consider input probability distributions of the form Px, x, x,v =
Py - Px,|x, - Px,,v. By changing the roles of X; and X, in the above derivation, the rest of the

proof is straightforward. [ ]
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