
ar
X

iv
:1

80
7.

03
42

2v
3 

 [
cs

.I
T

] 
 3

0 
Se

p 
20

19
1

Capacity of Two-Way Channels
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Abstract

In this paper, we make use of channel symmetry properties to determine the capacity region of three

types of two-way networks: (a) two-user memoryless two-way channels (TWCs), (b) two-user TWCs

with memory, and (c) three-user multiaccess/degraded broadcast (MA/DB) TWCs. For each network,

symmetry conditions under which a Shannon-type random coding inner bound (under independent

non-adaptive inputs) is tight are given. For two-user memoryless TWCs, prior results are substantially

generalized by viewing a TWC as two interacting state-dependent one-way channels. The capacity of

symmetric TWCs with memory, whose outputs are functions of the inputs and independent stationary

and ergodic noise processes, is also obtained. Moreover, various channel symmetry properties under

which the Shannon-type inner bound is tight are identified for three-user MA/DB TWCs. The results

not only enlarge the class of symmetric TWCs whose capacity region can be exactly determined but

also imply that interactive adaptive coding, not improving capacity, is unnecessary for such channels.
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Y1
<latexit s ha1_base64="tic8FxZ SS/bpM8NA/0VyM/tYz QI=">AAAB+XicbVA9Tw JBEJ3DL8Qv1NJmIzGxI nfEBO1IbCwxeoKBC9lb 9mDD7t5ld8+EnPwEW+2 tjK2/xtZf4gJXCPiSS V7em8nMvDDhTBvX/XYK a+sbm1vF7dLO7t7+Qfn w6EHHqSLUJzGPVTvEmn ImqW+Y4bSdKIpFyGkrH F1P/dYTVZrF8t6MExo IPJAsYgQbK9099rxeue JW3RnQKvFyUoEczV75p 9uPSSqoNIRjrTuem5gg w8owwumk1E01TTAZ4Q HtWCqxoDrIZqdO0JlV+ iiKlS1p0Ez9O5FhofVY hLZTYDPUy95U/M/rpCa 6DDImk9RQSeaLopQjE6 Pp36jPFCWGjy3BRDF7 KyJDrDAxNp2FLaGYlGw o3nIEq8SvVa+q7u1FpV HL0ynCCZzCOXhQhwbcQ BN8IDCAF3iFN+fZeXc+ nM95a8HJZ45hAc7XL3 Rek+o=</latexit><latexit s ha1_base64="tic8FxZ SS/bpM8NA/0VyM/tYz QI=">AAAB+XicbVA9Tw JBEJ3DL8Qv1NJmIzGxI nfEBO1IbCwxeoKBC9lb 9mDD7t5ld8+EnPwEW+2 tjK2/xtZf4gJXCPiSS V7em8nMvDDhTBvX/XYK a+sbm1vF7dLO7t7+Qfn w6EHHqSLUJzGPVTvEmn ImqW+Y4bSdKIpFyGkrH F1P/dYTVZrF8t6MExo IPJAsYgQbK9099rxeue JW3RnQKvFyUoEczV75p 9uPSSqoNIRjrTuem5gg w8owwumk1E01TTAZ4Q HtWCqxoDrIZqdO0JlV+ iiKlS1p0Ez9O5FhofVY hLZTYDPUy95U/M/rpCa 6DDImk9RQSeaLopQjE6 Pp36jPFCWGjy3BRDF7 KyJDrDAxNp2FLaGYlGw o3nIEq8SvVa+q7u1FpV HL0ynCCZzCOXhQhwbcQ BN8IDCAF3iFN+fZeXc+ nM95a8HJZ45hAc7XL3 Rek+o=</latexit><latexit s ha1_base64="tic8FxZ SS/bpM8NA/0VyM/tYz QI=">AAAB+XicbVA9Tw JBEJ3DL8Qv1NJmIzGxI nfEBO1IbCwxeoKBC9lb 9mDD7t5ld8+EnPwEW+2 tjK2/xtZf4gJXCPiSS V7em8nMvDDhTBvX/XYK a+sbm1vF7dLO7t7+Qfn w6EHHqSLUJzGPVTvEmn ImqW+Y4bSdKIpFyGkrH F1P/dYTVZrF8t6MExo IPJAsYgQbK9099rxeue JW3RnQKvFyUoEczV75p 9uPSSqoNIRjrTuem5gg w8owwumk1E01TTAZ4Q HtWCqxoDrIZqdO0JlV+ iiKlS1p0Ez9O5FhofVY hLZTYDPUy95U/M/rpCa 6DDImk9RQSeaLopQjE6 Pp36jPFCWGjy3BRDF7 KyJDrDAxNp2FLaGYlGw o3nIEq8SvVa+q7u1FpV HL0ynCCZzCOXhQhwbcQ BN8IDCAF3iFN+fZeXc+ nM95a8HJZ45hAc7XL3 Rek+o=</latexit>
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<latexit sha1_base64="xL Ssb89Kx+PPVTd6iMyREei9vUI=">AAAB+XicbVA9TwJBEJ3 DL8Qv1NJmIzGxIndIonYkNpYYPSGBC9lb9mDD7t5ld8+EnP wEW+2tjK2/xtZf4gJXCPiSSV7em8nMvDDhTBvX/XYKa+sbm 1vF7dLO7t7+Qfnw6FHHqSLUJzGPVTvEmnImqW+Y4bSdKIpF yGkrHN1M/dYTVZrF8sGMExoIPJAsYgQbK923exe9csWtujO gVeLlpAI5mr3yT7cfk1RQaQjHWnc8NzFBhpVhhNNJqZtqmm AywgPasVRiQXWQzU6doDOr9FEUK1vSoJn6dyLDQuuxCG2nw Gaol72p+J/XSU10FWRMJqmhkswXRSlHJkbTv1GfKUoMH1uC iWL2VkSGWGFibDoLW0IxKdlQvOUIVolfq15X3bt6pVHL0yn CCZzCOXhwCQ24hSb4QGAAL/AKb86z8+58OJ/z1oKTzxzDAp yvX3Xvk+s=</latexit><latexit sha1_base64="xL Ssb89Kx+PPVTd6iMyREei9vUI=">AAAB+XicbVA9TwJBEJ3 DL8Qv1NJmIzGxIndIonYkNpYYPSGBC9lb9mDD7t5ld8+EnP wEW+2tjK2/xtZf4gJXCPiSSV7em8nMvDDhTBvX/XYKa+sbm 1vF7dLO7t7+Qfnw6FHHqSLUJzGPVTvEmnImqW+Y4bSdKIpF yGkrHN1M/dYTVZrF8sGMExoIPJAsYgQbK923exe9csWtujO gVeLlpAI5mr3yT7cfk1RQaQjHWnc8NzFBhpVhhNNJqZtqmm AywgPasVRiQXWQzU6doDOr9FEUK1vSoJn6dyLDQuuxCG2nw Gaol72p+J/XSU10FWRMJqmhkswXRSlHJkbTv1GfKUoMH1uC iWL2VkSGWGFibDoLW0IxKdlQvOUIVolfq15X3bt6pVHL0yn CCZzCOXhwCQ24hSb4QGAAL/AKb86z8+58OJ/z1oKTzxzDAp yvX3Xvk+s=</latexit><latexit sha1_base64="xL Ssb89Kx+PPVTd6iMyREei9vUI=">AAAB+XicbVA9TwJBEJ3 DL8Qv1NJmIzGxIndIonYkNpYYPSGBC9lb9mDD7t5ld8+EnP wEW+2tjK2/xtZf4gJXCPiSSV7em8nMvDDhTBvX/XYKa+sbm 1vF7dLO7t7+Qfnw6FHHqSLUJzGPVTvEmnImqW+Y4bSdKIpF yGkrHN1M/dYTVZrF8sGMExoIPJAsYgQbK923exe9csWtujO gVeLlpAI5mr3yT7cfk1RQaQjHWnc8NzFBhpVhhNNJqZtqmm AywgPasVRiQXWQzU6doDOr9FEUK1vSoJn6dyLDQuuxCG2nw Gaol72p+J/XSU10FWRMJqmhkswXRSlHJkbTv1GfKUoMH1uC iWL2VkSGWGFibDoLW0IxKdlQvOUIVolfq15X3bt6pVHL0yn CCZzCOXhwCQ24hSb4QGAAL/AKb86z8+58OJ/z1oKTzxzDAp yvX3Xvk+s=</latexit>
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<latexit sha1_base64="p6 ar3+KG8qLaWOfI+gztVY5LmIs=">AAAB+XicbVA9TwJBEJ3 DL8Qv1NJmIzGxIndoonYkNpYYPcHAhewte7Bhd++yu2dCTn 6CrfZWxtZfY+svcYErBHzJJC/vzWRmXphwpo3rfjuFldW19 Y3iZmlre2d3r7x/8KDjVBHqk5jHqhViTTmT1DfMcNpKFMUi 5LQZDq8nfvOJKs1ieW9GCQ0E7ksWMYKNle4eu2fdcsWtulO gZeLlpAI5Gt3yT6cXk1RQaQjHWrc9NzFBhpVhhNNxqZNqmm AyxH3atlRiQXWQTU8doxOr9FAUK1vSoKn6dyLDQuuRCG2nw GagF72J+J/XTk10GWRMJqmhkswWRSlHJkaTv1GPKUoMH1mC iWL2VkQGWGFibDpzW0IxLtlQvMUIlolfq15V3dvzSr2Wp1O EIziGU/DgAupwAw3wgUAfXuAV3pxn5935cD5nrQUnnzmEOT hfv3eEk+w=</latexit><latexit sha1_base64="p6 ar3+KG8qLaWOfI+gztVY5LmIs=">AAAB+XicbVA9TwJBEJ3 DL8Qv1NJmIzGxIndoonYkNpYYPcHAhewte7Bhd++yu2dCTn 6CrfZWxtZfY+svcYErBHzJJC/vzWRmXphwpo3rfjuFldW19 Y3iZmlre2d3r7x/8KDjVBHqk5jHqhViTTmT1DfMcNpKFMUi 5LQZDq8nfvOJKs1ieW9GCQ0E7ksWMYKNle4eu2fdcsWtulO gZeLlpAI5Gt3yT6cXk1RQaQjHWrc9NzFBhpVhhNNxqZNqmm AyxH3atlRiQXWQTU8doxOr9FAUK1vSoKn6dyLDQuuRCG2nw GagF72J+J/XTk10GWRMJqmhkswWRSlHJkaTv1GPKUoMH1mC iWL2VkQGWGFibDpzW0IxLtlQvMUIlolfq15V3dvzSr2Wp1O EIziGU/DgAupwAw3wgUAfXuAV3pxn5935cD5nrQUnnzmEOT hfv3eEk+w=</latexit><latexit sha1_base64="p6 ar3+KG8qLaWOfI+gztVY5LmIs=">AAAB+XicbVA9TwJBEJ3 DL8Qv1NJmIzGxIndoonYkNpYYPcHAhewte7Bhd++yu2dCTn 6CrfZWxtZfY+svcYErBHzJJC/vzWRmXphwpo3rfjuFldW19 Y3iZmlre2d3r7x/8KDjVBHqk5jHqhViTTmT1DfMcNpKFMUi 5LQZDq8nfvOJKs1ieW9GCQ0E7ksWMYKNle4eu2fdcsWtulO gZeLlpAI5Gt3yT6cXk1RQaQjHWrc9NzFBhpVhhNNxqZNqmm AyxH3atlRiQXWQTU8doxOr9FAUK1vSoKn6dyLDQuuRCG2nw GagF72J+J/XTk10GWRMJqmhkswWRSlHJkaTv1GPKUoMH1mC iWL2VkQGWGFibDpzW0IxLtlQvMUIlolfq15V3dvzSr2Wp1O EIziGU/DgAupwAw3wgUAfXuAV3pxn5935cD5nrQUnnzmEOT hfv3eEk+w=</latexit>
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<latexit sha1_base64="Gu CiPJt2fmtfFc5wTVlTMOcL+ds=">AAAB+XicbVA9TwJBEJ3 DL8Qv1NJmIzGxInfEBO1IbCwxeoKBC9lb9mDD7t5ld8+EnP wEW+2tjK2/xtZf4gJXCPiSSV7em8nMvDDhTBvX/XYKa+sbm 1vF7dLO7t7+Qfnw6EHHqSLUJzGPVTvEmnImqW+Y4bSdKIpF yGkrHF1P/dYTVZrF8t6MExoIPJAsYgQbK9099mq9csWtujO gVeLlpAI5mr3yT7cfk1RQaQjHWnc8NzFBhpVhhNNJqZtqmm AywgPasVRiQXWQzU6doDOr9FEUK1vSoJn6dyLDQuuxCG2nw Gaol72p+J/XSU10GWRMJqmhkswXRSlHJkbTv1GfKUoMH1uC iWL2VkSGWGFibDoLW0IxKdlQvOUIVolfq15V3duLSqOWp1O EEziFc/CgDg24gSb4QGAAL/AKb86z8+58OJ/z1oKTzxzDAp yvX3Xxk+s=</latexit><latexit sha1_base64="Gu CiPJt2fmtfFc5wTVlTMOcL+ds=">AAAB+XicbVA9TwJBEJ3 DL8Qv1NJmIzGxInfEBO1IbCwxeoKBC9lb9mDD7t5ld8+EnP wEW+2tjK2/xtZf4gJXCPiSSV7em8nMvDDhTBvX/XYKa+sbm 1vF7dLO7t7+Qfnw6EHHqSLUJzGPVTvEmnImqW+Y4bSdKIpF yGkrHF1P/dYTVZrF8t6MExoIPJAsYgQbK9099mq9csWtujO gVeLlpAI5mr3yT7cfk1RQaQjHWnc8NzFBhpVhhNNJqZtqmm AywgPasVRiQXWQzU6doDOr9FEUK1vSoJn6dyLDQuuxCG2nw Gaol72p+J/XSU10GWRMJqmhkswXRSlHJkbTv1GfKUoMH1uC iWL2VkSGWGFibDoLW0IxKdlQvOUIVolfq15V3duLSqOWp1O EEziFc/CgDg24gSb4QGAAL/AKb86z8+58OJ/z1oKTzxzDAp yvX3Xxk+s=</latexit><latexit sha1_base64="Gu CiPJt2fmtfFc5wTVlTMOcL+ds=">AAAB+XicbVA9TwJBEJ3 DL8Qv1NJmIzGxInfEBO1IbCwxeoKBC9lb9mDD7t5ld8+EnP wEW+2tjK2/xtZf4gJXCPiSSV7em8nMvDDhTBvX/XYKa+sbm 1vF7dLO7t7+Qfnw6EHHqSLUJzGPVTvEmnImqW+Y4bSdKIpF yGkrHF1P/dYTVZrF8t6MExoIPJAsYgQbK9099mq9csWtujO gVeLlpAI5mr3yT7cfk1RQaQjHWnc8NzFBhpVhhNNJqZtqmm AywgPasVRiQXWQzU6doDOr9FEUK1vSoJn6dyLDQuuxCG2nw Gaol72p+J/XSU10GWRMJqmhkswXRSlHJkbTv1GfKUoMH1uC iWL2VkSGWGFibDoLW0IxKdlQvOUIVolfq15V3duLSqOWp1O EEziFc/CgDg24gSb4QGAAL/AKb86z8+58OJ/z1oKTzxzDAp yvX3Xxk+s=</latexit>

X1
<latexit sha1_base64="YF mmxWWKjTgn1UJesHcUr9B39Ho=">AAAB+XicbVBNS8NAEJ3 Ur1q/qh69LBbBU0mKoN4KXjxWNLbQhrLZbtqlu5uwuxFC7E /wqndP4tVf49Vf4rbNwbY+GHi8N8PMvDDhTBvX/XZKa+sbm 1vl7crO7t7+QfXw6FHHqSLUJzGPVSfEmnImqW+Y4bSTKIpF yGk7HN9M/fYTVZrF8sFkCQ0EHkoWMYKNle47fa9frbl1dwa 0SryC1KBAq1/96Q1ikgoqDeFY667nJibIsTKMcDqp9FJNE0 zGeEi7lkosqA7y2akTdGaVAYpiZUsaNFP/TuRYaJ2J0HYKb EZ62ZuK/3nd1ERXQc5kkhoqyXxRlHJkYjT9Gw2YosTwzBJM FLO3IjLCChNj01nYEopJxYbiLUewSvxG/bru3l3Umo0inTK cwCmcgweX0IRbaIEPBIbwAq/w5jw7786H8zlvLTnFzDEswP n6BXLJk+k=</latexit><latexit sha1_base64="YF mmxWWKjTgn1UJesHcUr9B39Ho=">AAAB+XicbVBNS8NAEJ3 Ur1q/qh69LBbBU0mKoN4KXjxWNLbQhrLZbtqlu5uwuxFC7E /wqndP4tVf49Vf4rbNwbY+GHi8N8PMvDDhTBvX/XZKa+sbm 1vl7crO7t7+QfXw6FHHqSLUJzGPVSfEmnImqW+Y4bSTKIpF yGk7HN9M/fYTVZrF8sFkCQ0EHkoWMYKNle47fa9frbl1dwa 0SryC1KBAq1/96Q1ikgoqDeFY667nJibIsTKMcDqp9FJNE0 zGeEi7lkosqA7y2akTdGaVAYpiZUsaNFP/TuRYaJ2J0HYKb EZ62ZuK/3nd1ERXQc5kkhoqyXxRlHJkYjT9Gw2YosTwzBJM FLO3IjLCChNj01nYEopJxYbiLUewSvxG/bru3l3Umo0inTK cwCmcgweX0IRbaIEPBIbwAq/w5jw7786H8zlvLTnFzDEswP n6BXLJk+k=</latexit><latexit sha1_base64="YF mmxWWKjTgn1UJesHcUr9B39Ho=">AAAB+XicbVBNS8NAEJ3 Ur1q/qh69LBbBU0mKoN4KXjxWNLbQhrLZbtqlu5uwuxFC7E /wqndP4tVf49Vf4rbNwbY+GHi8N8PMvDDhTBvX/XZKa+sbm 1vl7crO7t7+QfXw6FHHqSLUJzGPVSfEmnImqW+Y4bSTKIpF yGk7HN9M/fYTVZrF8sFkCQ0EHkoWMYKNle47fa9frbl1dwa 0SryC1KBAq1/96Q1ikgoqDeFY667nJibIsTKMcDqp9FJNE0 zGeEi7lkosqA7y2akTdGaVAYpiZUsaNFP/TuRYaJ2J0HYKb EZ62ZuK/3nd1ERXQc5kkhoqyXxRlHJkYjT9Gw2YosTwzBJM FLO3IjLCChNj01nYEopJxYbiLUewSvxG/bru3l3Umo0inTK cwCmcgweX0IRbaIEPBIbwAq/w5jw7786H8zlvLTnFzDEswP n6BXLJk+k=</latexit>

X2
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(c)

Fig. 1: Block diagrams of the two-way networks considered: (a) point-to-point memoryless

TWC with two channel inputs X1 and X2 and two channel outputs Y1 and Y2; (b) point-to-

point TWC with memory, where F1 and F2 are deterministic functions and (Z1, Z2) is a time-

correlated channel noise pair generated from a joint stationary and ergodic process; (c) three-user

memoryless MA/DB TWC, where Xi and Yi respectively denote channel input and output at

user j for j = 1, 2, 3.

I. INTRODUCTION

Shannon’s two-way channel (TWC) [3], which allows two users to exchange data streams in

a full-duplex manner, is a basic component of communication systems. To mitigate the inter-

ference incurred from two-way simultaneous transmission, TWCs are often used in conjunction

with orthogonal multiplexing [4]. With increasing demands for fast data transmission, many

industrial standards have enabled the use of non-orthogonal multiplexing to accommodate more

users [5], [6]. From an information-theoretic viewpoint, the challenge is how each user can

effectively maximize its individual transmission rate over the shared channel and concurrently

provide sufficient feedback to help the other users’ transmissions. These competing objectives

impose on each user the challenging task of optimally adapting their channel inputs to the

previously received signals of the other users. As finding such an optimal coding procedure is

still elusive, the exact characterization of the capacity region of general TWCs remains open

[7], [8, Section 17.5].

This paper revisits this open problem by finding larger classes of TWCs whose capacity region
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can be exactly obtained. Our approach is to identify channel symmetry properties under which a

Shannon-type random coding inner bound (under independent non-adaptive inputs) is tight, thus

directly determining the capacity region. As a result, we identify TWCs for which interactive

adaptive coding is useless in terms of improving the users’ transmission rates. In particular,

we focus on three two-way networks which we depict in Fig. 1. The two-user (point-to-point)

memoryless TWC in Fig. 1(a) models device-to-device communication [9]. The simplified TWC

with memory in Fig. 1(b), which is a generalization of additive-noise TWC in [1], can capture

the effect of time-correlated channel noise which commonly arises in wireless communications.

The three-user memoryless multiaccess/degraded broadcast (MA/DB) TWC [24] in Fig. 1(c)

models the communication between two mobile users and one base station, where the shared

channel in the users-to-base-station (uplink) direction acts as a multiple-access channel (MAC)

while the reverse (downlink) direction acts as a degraded broadcast channel (DBC). For these

networks, we derive conditions under which the Shannon-type inner bound is optimal in terms of

achieving channel capacity. Such a result also has a practical significance since communication

without adaptive coding simplifies system design.

A. Capacity Bounds for TWCs

We briefly review some general results on the capacity of TWCs. In [3], Shannon derived

inner and outer capacity bounds in the form of a single-letter expression for two-user memoryless

TWCs. The inner bound is obtained via random coding where the users’ channel inputs are

independent (and non-adaptive), while the inputs are allowed to have arbitrary correlation in the

outer bound. In general, the two bounds do not coincide. Follow-up work in [10]-[13] was devoted

to improving Shannon’s inner bound by using adaptive coding. Two novel outer bounds [14],

[15], which restrict the dependency among channel inputs, were proposed to refine Shannon’s

result. Moreover, methods to efficiently utilize TWCs were investigated by studying the role

of feedback [16]. In [17], directed mutual information [18], which is widely used in the study

of one-way channels with feedback [19]-[23], was used to characterize the capacity of TWCs,

but the obtained multi-letter expressions are often not computable. Recently, the Shannon-type

random coding scheme was shown to be optimal in several deterministic multi-user TWC settings

[24] such as MA/BC, Z, and interference TWCs, hence finding the channel capacity in these

cases. The channel capacity for a variant of these multi-user TWCs, called three-way channels,

was also investigated in different network setups such as three-way multi-cast finite-field or
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phase-fading Gaussian channels [26] and three-way Gaussian channels with multiple unicast

sessions [27]. An additional capacity result for deterministic interference TWCs was derived in

[25]. For TWCs with memory, Shannon provided a multi-letter capacity characterization in [3,

Section 16] which in general is incalculable.

B. Related Work

Channel symmetry properties, which are extensively investigated to simplify the computation

of the capacity of one-way channels, play a key role in determining the capacity region for TWCs.

The first channel symmetry property for TWCs was proposed by Shannon [3, Section 12]. Let

[PY1,Y2|X1,X2
(·, ·|·, ·)] denote the channel transition matrix of a two-user discrete memoryless

TWC, where Xj and Yj denote the channel input and output at user j, respectively. Shannon

gave two permutation invariance conditions on [PY1,Y2|X1,X2
(·, ·|·, ·)] which guarantee the equality

of his inner and outer bounds (see Propositions 1 and 2 in Section II for details). A recent work

[28] by Chaaban, Varshney, and Alouini (CVA) presented another tightness condition, where the

channel symmetry property is given in terms of conditional entropies for the marginal channel

distribution [PYj |X1,X2
(·|·, ·)] (see Proposition 3).

The above conditions delineate classes of two-user memoryless TWCs for which Shannon’s

capacity inner bound is tight, hence exactly yielding their capacity region. Examples include

Gaussian TWCs [13], q-ary additive-noise TWCs [1], and more general channel models such as

injective semi-deterministic TWCs (ISD-TWCs) [28], Cauchy [28] and exponential family type

TWCs [29]. It is worth mentioning that Hekstra and Willems [15] also presented a condition

under which Shannon’s inner bound is tight. However, their result is only valid for single-output

memoryless TWCs.

For three-user MA/BC memoryless TWCs, Cheng and Devroye [24] investigated a class of

symmetric TWCs. In particular, they considered deterministic, invertible, and alphabet-restricted

MA/BC TWCs, proving that the Shannon-type inner bound is tight for that class of channels.

However, to the best of our knowledge, symmetry properties for TWCs beyond these have not

been investigated. It is also important to point out that two-user TWCs with memory are not

well understood either.
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C. A Motivational Example and Proposed Approach

Consider a point-to-point binary-input and binary-output memoryless TWC with transition

probability matrix (see Section II-B for the formal description of the channel model)

[PY1,Y2|X1,X2
(·, ·|·, ·)] =















00 01 10 11

00 0.783 0.087 0.117 0.013

01 0.0417 0.3753 0.0583 0.5247

10 0.261 0.609 0.039 0.091

11 0.2919 0.1251 0.4081 0.1749















,

where the rows and columns are indexed by the channel inputs and outputs, respectively. The

corresponding marginal channel transition matrices are

[PY2|X1,X2
(·|·, 0)] =





0.9 0.1

0.3 0.7



 , [PY2|X1,X2
(·|·, 1)] =





0.1 0.9

0.7 0.3



 ,

and

[PY1|X1,X2
(·|0, ·)] = [PY1|X1,X2

(·|1, ·)] =





0.87 0.13

0.417 0.583



.

A thorough examination reveals that for this TWC Shannon’s inner bound is actually exact due

to the symmetric structures of the channel’s marginal transition matrices. However, none of the

previously proposed symmetry conditions in the literature are satisfied.

We address this problem by viewing a TWC as two state-dependent one-way channels [3],

[30]. Taking the two-user setting as an example, the state-dependent one-way channel from

users 1 to 2 has input X1, output Y2, state X2, and transition matrix given by [PY2|X1,X2
(·|·, ·)];

similarly, the one-way channel [PY1|X1,X2
(·|·, ·)] in the reverse direction has input X2, output Y1,

and channel state X1. Note that this viewpoint1 may also be useful for all previously mentioned

two-way networks. Another useful tool is the rich set of symmetry concepts for single-user one-

way channels.2 From this perspective, the two one-way channels now interact with each other

1Another viewpoint for two-user TWCs is based on compound MACs, see [31, Problem 14.11] and [32].

2Channel symmetry properties for single-user one-way memoryless channels can be roughly classified into two types. One

type focuses on the structure of the channel transition probability such as Gallager symmetric channels [33], weakly symmetric

and symmetric channels [34], and quasi-symmetric channels [35]. The other type aims at the invariance of information quantities

including T -symmetric channels [36] and channels with input-invariance symmetry [37].
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through the channel states. Clearly, this interaction could improve bi-directional transmission

rates by making use of adaptive coding.

Our approach is to study symmetry properties for state-dependent one-way channels that

imply that the capacity cannot be increased with the availability of channel state information

at the transmitter (in addition to the receiver). Such properties can potentially render interactive

adaptive coding useless in terms of enlarging TWC capacity. In the two-user memoryless set-

ting, we develop the following two important channel symmetry notions. The common optimal

input distribution condition identifies a state-dependent one-way channel that has an identical

capacity-achieving input distribution for all channel states. The invariance of input-output mutual

information condition then identifies a state-dependent one-way channel that produces the same

input-output mutual information for all channel states under any fixed input distribution. If a

TWC satisfies both conditions, one for each direction of the two-way transmission, the optimal

transmission scheme of one user is irrelevant to the other user’s transmission scheme, implying

that the interaction between the users does not increase their transmission rates and hence channel

capacity. In fact, the preceding motivational example illustrates this. More formally, we can prove

that under certain symmetry properties (identified by the derived conditions), any rate pair inside

Shannon’s outer bound region is always contained in the inner bound region, implying that the

latter bound is tight.

Furthermore, it should be expected that validating generalized channel symmetry properties

can be a very complex procedure. However, we show that such a verification can be greatly

simplified for some TWCs. For instance, the channel transition matrices [PY1|X1,X2
(·|·, 0)] and

[PY1|X1,X2
(·|·, 1)] in the above example are column permutations of each other and the matrices

[PY1|X1,X2
(·|0, ·)] and [PY1|X1,X2

(·|1, ·)] are identical. It turns out (as we will see later) that these

two symmetry properties imply that Shannon’s inner bound is tight. Therefore, we not only seek

general conditions but also look for conditions which are simple to verify.

D. Summary of Contributions

Most of the conditions that we establish in this paper comprise two parts, one for each direction

of the two-way transmission. Our contributions are summarized as follows.

• Point-to-Point Memoryless TWCs: six sufficient conditions (Theorems 1-4 and Corollaries 1-

2) guaranteeing that Shannon’s inner and outer bounds coincide are derived. Three of these are

shown to be substantial generalizations of the Shannon and CVA conditions (in Theorems 5-7);
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Thm. 1 Cor. 1 Prop. 1

Thm. 2 Cor. 2 Prop. 2

Thm. 4 Prop. 3Thm. 3
CVA

Shannon

Shannon

Thm. 8 Example 5

Example 5

Thm. 6

Thm. 5

Thm. 7

Example 4

Example 4

/

/

/

/

Fig. 2: The relationships between the results yielding the equality of Shannon’s capacity bounds

in point-to-point memoryless TWCs. Here, A → B indicates that result A subsumes result B,

and B 9 A indicates that result B does not subsume result A. For example, Prop. 3 → Prop. 1

and Prop. 1 9 Prop. 3 mean that the CVA result in Prop. 3 is more general than the Shannon

result in Prop. 1.

TWCs with Memory 
Noise-Invertible 

TWCs with Memory
Noise-Invertible, 

One-to-One Mapping, 
and Input-Output 

Alphabet-Size Constrained 

TWCs with Memory 

ISD-TWCs 
with Memory

Y1 = F1(X1, X2, Z1)

Y2 = F2(X1, X2, Z2)

Inner Bounds

Outer Bounds

ISD-TWCs 

with Memory
Noise-Inverible and Output 

Alphabet-Size Constrained 

TWCs with Memory

Thm. 9Thm. 10

Lemma 1:

Corollary 3:

Corollary 5:

Corollary 4:

Lemma 3: Lemma 2:

Fig. 3: The relationships between the results for point-to-point TWCs with memory. Here,

A
Thm. C
←−→ B indicates that results A and B are combined in Theorem C to determine the

capacity region.

our simplest condition can be verified by only observing the channel marginal distributions.

Moreover, the capacity region of q-ary additive-noise TWCs with erasures, which subsume

several classical TWCs, is fully characterized by our conditions. Several examples illustrating the

difference between these conditions are provided. We also refine Shannon’s result to show that the

CVA condition is a strict generalization of the Shannon condition (Theorem 8), thus answering a

question raised in [28]. Implications among our results (and prior results) are depicted in Fig. 2.
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• Point-to-Point TWCs with Memory: a Shannon-type inner bound and an outer bound for the

capacity of TWCs with memory under certain invertibility, one-to-one mapping, and alphabet

size constraints are derived (Lemmas 1-2 and Corollaries 3-5). Two sufficient conditions for

the tightness of the bounds are given (Theorems 9 and 10). The first condition is derived for

TWCs with strict invertibility and alphabet size constraints, characterizing channel capacity in

single-letter form. The other condition is specialized for injective semi-deterministic TWCs with

memory.3 The obtained results are related as shown in Fig. 3. We also illustrate via a simple

example that when the channel’s memory is strong, the Shannon-type random coding scheme

does not achieve capacity and adaptive coding is useful.

• Three-User Memoryless MA/DB TWCs: we establish a Shannon-type inner bound and

an outer bound for the capacity region of MA/DB TWCs (Theorems 11 and 12) where both

bounds admit a common rate expression but have different input distribution requirements. Three

sufficient conditions (based on different techniques) for these bounds to coincide are established

(Theorems 13-15). The first condition involves the existence of independent inputs that can

achieve the outer bound (similar to the CVA approach). The second condition is derived from

the viewpoint of two interacting state-dependent one-way channels. The last one focuses on

the permutation invariance structure of the channel transition matrix (mirroring the Shannon

symmetry method). The obtained results extend the results in [24] and readily provide the

capacity region for a larger class of MA/DB TWCs. While the channel model here is admittedly

simplified, we note that our intention is to illustrate a potential methodology for determining the

capacity regions of multi-user two-way channels and to motivate future work in this area.

The rest of the paper is organized as follows. In Section II, point-to-point memoryless TWCs

are investigated. TWCs with memory are studied in Section III, and memoryless MA/DB TWCs

are examined in Section IV. Concluding remarks are given in Section V.

II. POINT-TO-POINT MEMORYLESS TWCS

In this section, we study two-user memoryless two-way networks. We first formally describe

the general model for point-to-point TWCs (not necessarily memoryless) in Section II-A, and then

review the prior results for the memoryless case in Section II-B. New symmetry conditions are

3ISD-TWC model with memoryless noise were introduced in [28]. Here, we merely extend this setting by allowing noise

processes with memory.
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derived in Section II-C, and we demonstrate how to apply these conditions to finding the channel

capacity in Section II-D. Comparisons between prior results and our conditions are presented

in Section II-E, and the relationship between Shannon’s condition and the CVA condition is

examined in Section II-F.

A. General Channel Model

In point-to-point two-way communication as shown in Fig. 4, two users exchange messages

M1 and M2 via n channel uses. Here, M1 and M2 are assumed to be independent and uniformly

distributed on the finite sets M1 , {1, 2, ..., 2nR1} and M2 , {1, 2, ..., 2nR2}, respectively, for

some R1, R2 ≥ 0. Let Xj and Yj be the channel input and output alphabets, respectively for

j = 1, 2. For i = 1, 2, . . . , n, let Xj,i ∈ Xj and Yj,i ∈ Yj denote the channel input and output of

user j at time i, respectively. The joint probability distribution of all random variables for the

entire transmission period is given by

PM1,M2,X
n
1
,Xn

2
,Y n

1
,Y n

2
= PM1

· PM2
·

(

n
∏

i=1

PX1,i|M1,Y
i−1

1

)

·

(

n
∏

i=1

PX2,i|M2,Y
i−1

2

)

·

(

n
∏

i=1

PY1,i,Y2,i|Xi
1
,Xi

2
,Y i−1

1
,Y i−1

2

)

,

where X i
j , (Xj,1, Xj,2, . . . , Xj,i) and Y i

j , (Yj,1, Yj,2, . . . , Yj,i) for j = 1, 2. The n transmissions

over a point-to-point TWC can be then described by the sequence of conditional probabilities

{PY1,i,Y2,i|Xi
1
,Xi

2
,Y

i−1

1
,Y

i−1

2

}ni=1.

Definition 1: An (n,R1, R2) code for a TWC consists of two message sets M1 = {1, 2, . . . ,

2nR1} andM2 = {1, 2, . . . , 2
nR2}, two sequences of encoding functions fn

1 , (f1,1, f1,2, . . . , f1,n)

and fn
2 , (f2,1, f2,2, . . . , f2,n) such that

X1,1 = f1,1(M1), X1,i = f1,i(M1, Y
i−1
1 ),

X2,1 = f2,1(M2), X2,i = f2,i(M2, Y
i−1
2 ),

for i = 2, 3, . . . , n, and two decoding functions g1 and g2 such that M̂2 = g1(M1, Y
n
1 ) and

M̂1 = g2(M2, Y
n
2 ).

When messages M1 and M2 are encoded via an (n,R1, R2) channel code, the probability of

decoding error is defined as P
(n)
e (fn

1 , f
n
2 , g1, g2) = Pr{M̂1 6= M1 or M̂2 6= M2}.

Definition 2: A rate pair (R1, R2) is said to be achievable if there exists a sequence of

(n,R1, R2) codes with limn→∞ P
(n)
e = 0.
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TWCUser 1 User 2

M1 M2

M̂2 M̂1

Xn

1
Xn

2

Y n

2
Y n

1

Fig. 4: The information flow of point-to-point two-way transmission.

Definition 3: The capacity region C of a point-to-point TWC is defined as the closure of the

convex hull of all achievable rate pairs.

B. Prior Results for Memoryless TWCs

A point-to-point TWC is said to be memoryless if its transition probabilities satisfy

PY1,i,Y2,i|Xi
1
,Xi

2
,Y i−1

1
,Y i−1

2

= PY1,Y2|X1,X2

for some PY1,Y2|X1,X2
and all i ≥ 1. For a memoryless TWC with transition probability PY1,Y2|X1,X2

and input distribution PX1,X2
, let R(PX1,X2

, PY1,Y2|X1,X2
) denote the set of all rate pairs (R1, R2)

constrained by

R1 ≤ I(X1; Y2|X2) and R2 ≤ I(X2; Y1|X1). (1)

In [3], Shannon showed that the capacity region of a discrete memoryless point-to-point TWC

is inner bounded by

CI(PY1,Y2|X1,X2
) , co





⋃

PX1
,PX2

R(PX1
·PX2

, PY1,Y2|X1,X2
)



,

and outer bounded by

CO(PY1,Y2|X1,X2
) , co





⋃

PX1,X2

R(PX1,X2
, PY1,Y2|X1,X2

)



,

where co(·) denotes taking the closure of the convex hull. In general, CI and CO are not matched

to each other, but if they coincide, then the exact capacity region is obtained. Our objective is

to develop general conditions under which the two bounds coincide.

In the following, the Shannon [3] and CVA [28] conditions that imply the equality of CI

and CO are summarized. In short, the Shannon condition focuses on the permutation invariance

structure of the channel transition matrix [PY1,Y2|X1,X2
(·, ·|·, ·)], while the CVA condition involves

the existence of independent inputs which can achieve the outer bound. Throughout the paper,

we use I(l)(Xk; Yj|Xj) and H(l)(Yj|X1, X2) to denote the conditional mutual information and
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the conditional entropy evaluated under input distribution P
(l)
X1,X2

for j, k = 1, 2 with j 6= k. For

P
(l)
X1,X2

= P
(l)
Xj
· P

(l)
Xk|Xj

with j 6= k, the conditional entropy H(l)(Yj|Xj) is evaluated using the

marginal distribution P
(l)
Yj |Xj

(yj|xj) =
∑

xk
P

(l)
Xk|Xj

(xk|xj) · PYj |Xj ,Xk
(yj|xj, xk). Also, for a finite

set A, let πA : A → A denote a permutation (bijection), and for any two symbols a′ and a′′ in

A, let τAa′,a′′ : A → A denote the transposition which swaps a′ and a′′ in A, but leaves the other

symbols unaffected. Finally, let P(Xj) denote the set of all probability distributions on Xj , and

define PU
Xj

as the uniform probability distribution on Xj for j = 1, 2.

Proposition 1 (Shannon’s One-Sided Symmetry Condition [3]): For a memoryless TWC with

transition probability PY1,Y2|X1,X2
, we have that C = CI = CO if for any pair of distinct input

symbols x′
1, x

′′
1 ∈ X1, there exists a pair of permutations (πY1[x′

1, x
′′
1], π

Y2[x′
1, x

′′
1]) on Y1 and Y2,

respectively, (which depend on x′
1 and x′′

1) such that for all x1, x2, y1, y2,

PY1,Y2|X1,X2
(y1, y2|x1, x2) = PY1,Y2|X1,X2

(πY1 [x′
1, x

′′
1](y1), π

Y2[x′
1, x

′′
1](y2)|τ

X1

x′
1
,x′′

1

(x1), x2). (2)

Under this condition, the capacity region is given by

C = co





⋃

PX2

R
(

PU
X1
·PX2

, PY1,Y2|X1,X2

)



 . (3)

In [3], the proof of Proposition 1 is only sketched. To make the paper self-contained and

facilitate the understanding of a technique used to derive one of our results (Theorem 15), we

provide a full proof in Appendix A. Note that Proposition 1 describes a channel symmetry

property with respect to the channel input of user 1, but an analogous condition can be obtained

by exchanging the roles of users 1 and 2. The proposition below immediately follows from

Proposition 1.

Proposition 2 (Shannon’s Two-Sided Symmetry Condition [3]): For a memoryless TWC with

transition probability PY1,Y2|X1,X2
, we have that C = CI = CO if the TWC satisfies the one-sided

symmetry condition with respect to both channel inputs. In this case, the capacity region is

rectangular and given by C = R(PU
X1
·PU

X2
, PY1,Y2|X1,X2

).

Proposition 3 (CVA Condition [28]): For a memoryless TWC with transition probability

PY1,Y2|X1,X2
, we have that C = CI = CO if H(Yj|X1, X2), j = 1, 2, does not depend on PX1|X2

for any fixed PX2
and PYj |X1,X2

, and for any P
(1)
X1,X2

= P
(1)
X2
· P

(1)
X1|X2

there exists P̃X1
∈ P(X1)

such that H(1)(Yj|Xj) ≤ H(2)(Yj |Xj) for j = 1, 2, where P
(2)
X1,X2

= P̃X1
· P

(1)
X2

.

Thus, if a TWC satisfies any one of the above conditions, the capacity region can be determined

by considering independent inputs: PX1,X2
= PX1

·PX2
. This result implies that adaptive coding,
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where channel inputs are generated by interactively adapting to the previously received signals,

cannot improve the users’ achievable rates and that Shannon’s random coding scheme is optimal.

The class of memoryless ISD-TWCs [28] satisfies the CVA condition (but do not necessarily sat-

isfy the Shannon condition) and hence adaptive coding is useless for such channels. A TWC with

independent q-ary additive noise [1] is an example of a channel that satisfies both the Shannon

and CVA conditions. Although the CVA condition does not require any permutation invariance

on the channel marginal distribution PYj |X1,X2
, the invariance requirement of H(Yj|X1, X2)’s in

Proposition 3 does in fact impose a certain symmetry constraint on PYj |X1,X2
. More details about

these conditions will be provided in the proof of Theorem 7 and Section II-F.

C. Conditions for the Tightness of Shannon’s Inner and Outer Bounds

In this section, we present conditions that guarantee the tightness of Shannon’s inner bound

by considering a TWC as two interacting state-dependent one-way channels. For example, the

state-dependent one-way channel from user 1 to user 2 is governed by the marginal distribution

PY2|X1,X2
(derived from the channel probability PY1,Y2|X1,X2

), where X1 and Y2 are respectively

the input and the output of the channel with state X2.

Let PX and PY |X be probability distributions on X and Y , respectively. To simplify the

presentation, we use

I(PX , PY |X) =
∑

x,y

PX(x)PY |X(y|x) log
PY |X(y|x)

∑

x′ PX(x′)PY |X(y|x′)
,

as an alternative way of writing the mutual information I(X ; Y ) between input X (governed by

PX) and corresponding output Y of a channel with transition probability PY |X . A useful fact is

that I(·, ·) is concave in the first argument when the second argument is fixed. Moreover, the con-

ditional mutual information I(X1; Y2|X2 = x2) can be expressed as I(PX1|X2=x2
, PY2|X1,X2=x2

).

Since the TWC is viewed as two state-dependent one-way channels, each of the following

theorems consists of two conditions, one for each direction of the two-way transmission. By

symmetry, these theorems are valid if the roles of users 1 and 2 are swapped.

Theorem 1: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then CI = CO.

(i) There exists P ∗
X1
∈ P(X1) such that

argmax
PX1|X2=x2

I(X1; Y2|X2 = x2) = P ∗
X1

for all x2 ∈ X2;
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(ii) I(PX2
, PY1|X1=x1,X2

) does not depend on x1 ∈ X1 for any fixed PX2
∈ P(X2).

Proof: For any P
(1)
X1,X2

= P
(1)
X2
· P

(1)
X1|X2

, let P
(2)
X1,X2

= P ∗
X1
· P

(1)
X2

, where P ∗
X1

is given by (i).

In light of (i), we have

I(1)(X1; Y2|X2) =
∑

x2

P
(1)
X2

(x2) · I
(1)(X1; Y2|X2 = x2) (4)

≤
∑

x2

P
(1)
X2

(x2) ·

[

max
PX1|X2=x2

I(X1; Y2|X2 = x2)

]

(5)

=
∑

x2

P
(1)
X2

(x2) · I(P
∗
X1
, PY2|X1,X2=x2

) (6)

=
∑

x2

P
(1)
X2

(x2) · I
(2)(X1; Y2|X2 = x2) (7)

= I(2)(X1; Y2|X2). (8)

Moreover,

I(1)(X2; Y1|X1) =
∑

x1

P
(1)
X1

(x1) · I
(1)(X2; Y1|X1 = x1)

=
∑

x1

P
(1)
X1

(x1) · I(P
(1)
X2|X1=x1

, PY1|X1=x1,X2
)

=
∑

x1

P
(1)
X1

(x1) · I(P
(1)
X2|X1=x1

, PY1|X1=x′
1
,X2

) (9)

≤ I

(

∑

x1

P
(1)
X1

(x1)P
(1)
X2|X1

(x2|x1), PY1|X1=x′
1
,X2

)

(10)

= I(P
(1)
X2

, PY1|X1=x′
1
,X2

)

=
∑

x′
1

P ∗
X1
(x′

1) · I(P
(1)
X2

, PY1|X1=x′
1
,X2

) (11)

= I(2)(X2; Y1|X1), (12)

where (9) holds by the invariance assumption in (ii) and x′
1 ∈ X1 is arbitrary, (10) holds

since the functional I(·, ·) is concave in the first argument, and (11) is obtained from the

invariance assumption in (ii). Combining the above yields R(P
(1)
X1,X2

, PY1,Y2|X1,X2
) ⊆ R(P ∗

X1
·

P
(1)
X2

, PY1,Y2|X1,X2
), which implies that CO ⊆ CI and hence CI = CO.

Instead of relying on the permutation invariance (row, column, or both) of the channel transition

matrix, the symmetry property in the theorem is characterized by a combination of two symmetry

properties for state-dependent one-way channels in terms of mutual information: (1) common

capacity-achieving input distribution; (2) invariance of input-output mutual information. A special
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case where condition (i) of Theorem 1 trivially holds is when each one-way channel PY2|X1,X2=x2
,

x2 ∈ X2, is T -symmetric4 [36]; in this case we have P ∗
X1

= PU
X1

.

We next apply condition (ii) of Theorem 1 for both directions of the two-way transmission.

Theorem 2: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then CI = CO.

(i) I(PX1
, PY2|X1,X2=x2

) does not depend on x2 ∈ X2 for any fixed PX1
∈ P(X1);

(ii) I(PX2
, PY1|X1=x1,X2

) does not depend on x1 ∈ X1 for any fixed PX2
∈ P(X2).

Proof: From conditions (i) and (ii), we know that maxPX1|X2=x2
I(X1; Y2|X2 = x2) has a

common maximizer P ∗
X1

for all x2 ∈ X2 and that maxPX2|X1=x1
I(X2; Y1|X1 = x1) has a common

maximizer P ∗
X2

for all x1 ∈ X1. For any P
(1)
X1,X2

= P
(1)
X1
·P

(1)
X2|X1

, let P
(2)
X1,X2

= P ∗
X1
·P ∗

X2
. Using the

same argument as in (4)-(8) and applying condition (ii) to (6), we conclude that I(1)(X1; Y2|X2) ≤

I(2)(X1; Y2|X2) and I(1)(X2; Y1|X1) ≤ I(2)(X2; Y1|X1). Thus,R(P
(1)
X1,X2

, PY1,Y2|X1,X2
) ⊆ R(P ∗

X1
·

P ∗
X2
, PY1,Y2|X1,X2

), which yields CI = CO.

To verify condition (i) in Theorem 1, one should find optimal input distributions for the

one-way channel from users 1 to 2 for each state x2 ∈ X2, say, via the Blahut-Arimoto

algorithm [38]. This process can sometimes be simplified by testing whether the uniform input

distribution is optimal via the Karush-Kuhn-Tucker (KKT) conditions for one-way channel

capacity [33]. However, verifying condition (ii) in Theorem 1 may necessitate the evaluation

of I(PX2
, PY1|X1,X2

(·|x1, ·)) for all PX2
∈ P(X2) and x1 ∈ X1. In practice, such a verification

is often complex, especially when the size of the input alphabet is large. Similar difficulties

arise when ascertaining the conditions of Theorem 2. In the following results, conditions that

are easier to check are presented.

Theorem 3: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then CI = CO.

(i) There exists P ∗
X1
∈ P(X1) such that

argmax
PX1|X2=x2

I(X1; Y2|X2 = x2) = P ∗
X1

for all x2 ∈ X2 and I(P ∗
X1
, PY2|X1,X2=x2

) does not depend on x2 ∈ X2;

(ii) There exists P ∗
X2
∈ P(X2) such that

argmax
PX2|X1=x1

I(X2; Y1|X1 = x1) = P ∗
X2

4A point-to-point one way channel is called T -symmetric if the optimal input distribution (that maximizes the channel’s

mutual information) is uniform.
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for all x1 ∈ X1 and I(P ∗
X2
, PY1|X1=x1,X2

) does not depend on x1 ∈ X1.

Proof: For any P
(1)
X1,X2

= P
(1)
X2
·P

(1)
X1|X2

, consider P
(2)
X1,X2

= P ∗
X1
·P ∗

X2
, where P ∗

X1
and P ∗

X2
are

given by (i) and (ii), respectively. Following the same steps as in (4)-(8) and using the second

part of condition (i), we obtain that I(1)(X1; Y2|X2) ≤ I(2)(X1; Y2|X2). By a similar argument,

we obtain the inequality I(1)(X2; Y1|X1) ≤ I(2)(X2; Y1|X1). Hence, R(P
(1)
X1,X2

, PY1,Y2|X1,X2
) ⊆

R(P ∗
X1
·P ∗

X2
, PY1,Y2|X1,X2

) which implies CI = CO.

Unlike condition (ii) of Theorem 1 and the conditions in Theorem 2, Theorem 3 only requires

checking the existence of a common maximizer and testing whether I(P ∗
X1
, PY2|X1,X2=x2

) is

invariant with respect to x2 ∈ X2 and I(P ∗
X2
, PY1|X1=x1,X2

) is invariant with respect to x1 ∈ X1,

thus significantly reducing the validation computational complexity vis-a-vis Theorems 1 and 2.

The next two corollaries provide even simpler conditions. Let [PY2|X1,X2
(·|·, x2)] denote the

transition matrix of the channel from users 1 to 2 when the input of user 2 is fixed to be x2. The

matrix [PY2|X1,X2
(·|·, x2)] has size |X1| × |Y2| and its entry at the x1th row and y2th column is

PY2|X1,X2
(y2|x1, x2). Similarly, let [PY2|X1,X2

(·|x1, ·)] denote the transition matrix of the channel

from users 2 to 1 when the input of user 1 is fixed to be x1.

Corollary 1: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then CI = CO.

(i) The channel with transition matrix [PY2|X1,X2
(·|·, x2)] is quasi-symmetric5 for all x2 ∈ X2;

(ii) The matrices [PY1|X1,X2
(·|x1, ·)], x1 ∈ X1, are column permutations of each other.

Proof: It suffices to show that conditions (i) and (ii) imply the conditions of Theorem 1.

Under condition (i), we obtain a common maximizer given by P ∗
X1

= PU
X1

since the optimal

input distribution for a quasi-symmetric channel is the uniform distribution [35]; this implies

condition (i) of Theorem 1. Furthermore, we observe that I(PX2
, PY1|X1,X2

(·|x1, ·)) is invariant

with respect to column permutations of the transition matrix PY1|X1,X2
(·|x1, ·) for given PX2

.

Since the matrices [PY1|X1,X2
(·|x1, ·)], x1 ∈ X1, are column permutations of each other, we

conclude that I(PX2
, PY1|X1=x1,X2

) does not depend on x1 ∈ X1 for any fixed PX2
∈ P(X2),

which is the second condition of Theorem 1.

Corollary 2: For a memoryless TWC, if conditions (i) and (ii) below are satisfied, then CI = CO.

(i) The matrices [PY2|X1,X2
(·|·, x2)], x2 ∈ X2, are column permutations of each other;

5A discrete memoryless channel with transition matrix [PY |X(·|·)] is said to be weakly-symmetric if the rows are permutations

of each other and all the column sums are identical [34]. A discrete memoryless channel is said to be quasi-symmetric if its

transition matrix [PY |X(·|·)] can be partitioned along its columns into weakly-symmetric sub-matrices [35].
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(ii) The matrices [PY1|X1,X2
(·|x1, ·)], x1 ∈ X1, are column permutations of each other.

Proof: It suffices to show that conditions (i) and (ii) imply the conditions of Theorem 2.

This can be done using a similar argument as in the second part of the proof of Corollary 1,

and hence the details are omitted.

If the transition probability PY1,Y2|X1,X2
satisfies conditions (i) and (ii) of Theorem 1, the

capacity region is given by

C = co





⋃

PX2

R(P ∗
X1
·PX2

, PY1,Y2|X1,X2
)



 , (13)

where P ∗
X1

is given by condition (i). For example, condition (i) trivially holds when each one-

way channel with fixed state x2 ∈ X2 from users 1 to 2 is T -symmetric. In this case, we have

P ∗
X1

= PU
X1

and the capacity region becomes

C = co





⋃

PX2

R(PU
X1
·PX2

, PY1,Y2|X1,X2
)



 . (14)

In fact, this is also the capacity region for memoryless TWCs which satisfy Corollary 1 because

condition (ii) of Corollary 1 implies condition (ii) of Theorem 1 (this follows from the proof

of Corollary 1). Moreover, the proof of Theorem 2 demonstrates that a common maximizer

exists for each direction of the two-way transmission under the conditions of Theorem 2. Let

argmaxPX1|X2=x2
I(X1; Y2|X2 = x2) = P ∗

X1
for all x2 ∈ X2 and argmaxPX2|X1=x1

I(X2; Y1|X1 =

x1) = P ∗
X2

for all x1 ∈ X1. A TWC which satisfies the conditions of Theorem 2 has the capacity

region

C = R(P ∗
X1
·P ∗

X2
, PY1,Y2|X1,X2

). (15)

The region is rectangular which suggests that such a two-way transmission inherently comprises

two independent one-way transmissions. A memoryless TWC that satisfies the conditions in

either Theorem 3 or Corollary 2 also has a capacity region given by (15).

To end this section, we remark that it is possible to combine different conditions to determine

the capacity region of a broader class of memoryless TWCs as shown below.

Theorem 4: For a memoryless TWC, if both of the following conditions are satisfied, then

C = CI = CO with C given by (13):

(i) There exists P ∗
X1
∈ P(X1) such that

argmax
PX1|X2=x2

I(X1; Y2|X2 = x2) = P ∗
X1
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for all x2 ∈ X2;

(ii) H(Y1|X1, X2) does not depend on PX1|X2
given PX2

and PY1|X1,X2
, and P ∗

X1
given in (i)

satisfies H(1)(Y1|X1) ≤ H(2)(Y1|X1) for any P
(1)
X1,X2

= P
(1)
X2
· P

(1)
X1|X2

, where P
(2)
X1,X2

=

P ∗
X1
· P

(1)
X2

.

Here, condition (i) is directly from Theorem 1; condition (ii) is obtained by extracting the CVA

condition related to the channel from user 2 to user 1. In order that the two conditions jointly

determine the capacity region, the P̃X1
required by the CVA condition is forced to be P ∗

X1
.

Proof of Theorem 4: Given any P
(1)
X1,X2

= P
(1)
X2
·P

(1)
X1|X2

, let P
(2)
X1,X2

= P ∗
X1
·P

(1)
X2

. Invoking the

same argument as in (4)-(8), we obtain that I(1)(X1; Y2|X2) ≤ I(2)(X1; Y2|X2) using condition

(i). Moreover, condition (ii) implies that I(1)(X2; Y1|X1) = H(1)(Y1|X1) − H(1)(Y1|X1, X2) ≤

H(2)(Y1|X1) − H(2)(Y1|X1, X2) = I(2)(X2; Y1|X1). Combining the above then completes the

proof.

D. Examples

We next illustrate the proposed conditions via examples.

Example 1 (Memoryless Binary Additive-Noise TWCs with Erasures): Let X1 = X2 = {0, 1}

and Y1 = Y2 = Z = {0, 1,E}, where E denotes channel erasure. A binary additive noise TWC

with erasures is defined by the channel equations

Y1,i = (X1,i ⊕2 X2,i ⊕2 Z1,i)·1{Z1,i 6= E}+ E·1{Z1,i = E},

Y2,i = (X1,i ⊕2 X2,i ⊕2 Z2,i)·1{Z2,i 6= E}+ E·1{Z2,i = E},

where ⊕2 denotes modulo-2 addition, {(Z1,i, Z2,i)}
∞
i=1 is a memoryless joint noise-erasure process

that is independent of the users’ messages and has components Z1,i, Z2,i ∈ Z such that Pr(Zj,i =

E) = εj and Pr(Zj,i = 1) = αj , where 0 ≤ εj + αj ≤ 1 for j = 1, 2, and 1{·} denotes the

indicator function. Here, we adopt the convention E · 0 = 0 and E · 1 = E to simplify the

representation of the channel equations.6 The channel equations yield the following transition

matrices for the one-way channels:

[PY2|X1,X2
(·|·, 0)] =





1− ε2 − α2 α2 ε2

α2 1− ε2 − α2 ε2



 ,

6Strictly speaking, X1,i ⊕2 X2,i ⊕2 Zj,i is undefined when Zj,i = E, but we set (X1,i ⊕2 X2,i ⊕2 E) · 0 = 0.
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[PY2|X1,X2
(·|·, 1)] =





α2 1− ε2 − α2 ε2

1− ε2 − α2 α2 ε2



 ,

[PY1|X1,X2
(·|0, ·)] =





1− ε1 − α1 α1 ε1

α1 1− ε1 − α1 ε1



 ,

[PY1|X1,X2
(·|1, ·)] =





α1 1− ε1 − α1 ε1

1− ε1 − α1 α1 ε1



 ,

where the rows are indexed by 0 and 1 (from top to bottom) and the columns are indexed by

0, 1, and E (from left to right). As all our proposed conditions are only based on the marginal

transition probabilities, the relationship between Z1,i and Z2,i can be arbitrary. By Corollary

2, we obtain that the optimal channel input distribution is P ∗
X1
· P ∗

X2
= PU

X1
· PU

X2
since the

marginal channel transition matrices not only exhibit column permutation properties but also are

quasi-symmetric. The capacity region is given by

C =

{

(R1, R2) : R1 ≤ (1− ε2)·
(

1−Hb

( α2

1− ε2

))

,

R2 ≤ (1− ε1)·
(

1−Hb

( α1

1− ε1

))

}

,

where Hb(·) denotes the binary entropy function. One can verify that this TWC also satisfies

the conditions of Theorems 1-3 and Corollary 1.

Remark 1: Various TWCs are special cases of this TWC model:

1) If α1 = α2 = 0, then the memoryless binary additive TWC with erasures is recovered:

Y1,i = (X1,i ⊕2 X2,i)·1{Z1,i 6= E}+ E·1{Z1,i = E},

Y2,i = (X1,i ⊕2 X2,i)·1{Z2,i 6= E}+ E·1{Z2,i = E}.

The capacity region is given by

C = {(R1, R2) : R1 ≤ 1− ε2, R2 ≤ 1− ε1}.

2) If ε1 = ε2 = 0, then the memoryless binary additive-noise TWC is obtained:

Y1,i = X1,i ⊕2 X2,i ⊕2 Z1,i,

Y2,i = X1,i ⊕2 X2,i ⊕2 Z2,i.
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The capacity region of this channel is given by

C = {(R1, R2) : R1 ≤ 1−Hb(α2), R2 ≤ 1−Hb(α1)}.

3) If ε1 = ε2 = 0 and α1 = α2 = 0, then we obtain the memoryless binary additive TWC

given by Y1,i = X1,i ⊕2 X2,i and Y2,i = X1,i ⊕2 X2,i. The capacity region is given by

C = {(R1, R2) : R1 ≤ 1, R2 ≤ 1} [3], [24].

Remark 2: Example 1 can be generalized to a non-binary setting: for some integer q > 2,

X1 = X2 = {0, 1, . . . , q − 1} and Y1 = Y2 = Z = {0, 1, . . . , q − 1,E}, the q-ary channel model

obeys the same equations as in Example 1 with modulo-2 addition replaced with the modulo-

q operation ⊕q . Furthermore, the channel noise-erasure variables have marginal distributions

given by Pr(Zj,i = E) = εj and Pr(Zj,i = z) = αj/(q − 1) for z = 1, 2, . . . , q − 1, where

0 ≤ αj + εj ≤ 1 for j = 1, 2. By Corollary 2, we directly have that CI = CO, and

C =

{

(R1, R2) : R1 ≤ (1− ε2)·

(

log2 q −Hq

(

α2

(q − 1)(1− ε2)

))

,

R2 ≤ (1− ε1)·

(

log2 q −Hq

(

α1

(q − 1)(1− ε1)

))

}

,

where Hq(x) , x· log2(q − 1)− x· log2 x− (1− x)· log2(1− x).

Example 2 (Data Access TWCs): Let q = 2m for some integer m ≥ 1 and consider the

alphabets X1 = X2 = X = {0, 1, . . . , q− 1}, Y1 = Y2 = {0, 1, . . . , q− 1,E}, and Z = {0, 1, 2}.

A data access TWC linking two storage devices is described by

Y1,i = (X1,i ⊞q X2,i) · 1{Z1,i = 0}+((q − 1)⊞q X1,i ⊞q X2,i)·1{Z1,i = 1}+ E·1{Z1,i = 2},

Y2,i = (X1,i ⊞q X2,i) · 1{Z2,i = 0}+((q − 1)⊞q X1,i ⊞q X2,i)·1{Z2,i = 1}+ E·1{Z2,i = 2},

where a⊞q b denotes bit-wise addition for the length-q standard binary representation of a, b ∈ X ,

and {(Z1,i, Z2,i)}
∞
i=1 is a memoryless joint noise-erasure process that is independent of the stored

messages and has components Z1,i, Z2,i ∈ Z such that Pr(Zj,i = 1) = αj and Pr(Zj,i = E) = εj ,

where 0 ≤ αj + εj ≤ 1 for j = 1, 2. This channel model can capture the effect of user signal

superpositions (when Zj,i = 0), bit-level burst errors which flip all bits of X1,i ⊞q X2,i (when

Zj,i = 1), and data package losses (when Zj,i = 2).

For this channel, an application of Corollary 2 immediately gives the capacity region:

C =

{

(R1, R2) : R1 ≤ (1− ε2)·

(

m−Hb

(

α2

1− ε2

))

,
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R2 ≤ (1− ε1)·

(

m−Hb

(

α1

1− ε1

))

}

.

The next example redervies a known result in [28] based on our approach.

Example 3 (Memoryless Injective Semi-Deterministic TWCs [28]): Let Tj and Zj denote finite

sets. A memoryless ISD-TWC is defined in [28] by the channel equations

Yj,i = hj(Xj,i, Tj,i) and Tj,i = h̃j(Xk,i, Zj,i) (16)

for j, k = 1, 2 with j 6=k, where hj : Xj × Tj → Yj is invertible in Tj and h̃j : Xk × Zj → Tj

is invertible in Zj , i.e., for every xj ∈ Xj , hj(xj , tj) is one-to-one in tj ∈ Tj and for every

xk ∈ Xk, h̃j(xk, zj) is one-to-one in zj ∈ Zj . Here, {(Z1,i, Z2,i)}
∞
i=1 is a memoryless joint noise

process that is independent of users’ messages. For this channel, we have [28]

I(X1; Y2|X2 = x2) ≤ max
PX1

H(h̃2(X1, Z2))−H(Z2).

This upper bound does not depend on X2, and hence a common maximizer exists, i.e., P ∗
X1

=

argmaxPX1
H(h̃2(X1, Z2)). Moreover, the value of maxPX1

I(X1; Y2|X2 = x2) is identical for all

x2 ∈ X2. We immediately observe that condition (i) in Theorem 3 holds. By a similar argument,

condition (ii) in Theorem 3 also holds, implying that Shannon’s inner and outer bounds coincide.

The capacity region is given by

C =

{

(R1, R2) : R1 ≤ max
PX1

H(h̃2(X1, Z2))−H(Z2),

R2 ≤ max
PX2

H(h̃1(X2, Z1))−H(Z1)

}

.

Example 4: Consider the TWC with X1 = X2 = Y1 = Y2 = {0, 1} and transition probability

[PY1,Y2|X1,X2
] =















00 01 10 11

00 0.783 0.087 0.117 0.013

01 0.36279 0.05421 0.50721 0.07579

10 0.261 0.609 0.039 0.091

11 0.173889 0.243111 0.243111 0.339889















.

The one-way channel marginal distributions are

[PY2|X1,X2
(·|·, 0)] =





0 1

0 0.9 0.1

1 0.3 0.7
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Fig. 5: The capacity region of the point-to-point memoryless TWC in Example 4.

and

[PY2|X1,X2
(·|·, 1)] =





0 1

0 0.87 0.13

1 0.417 0.583





with [PY1|X1,X2
(·|0, ·)]=[PY1|X1,X2

(·|1, ·)]=[PY2|X1,X2
(·|·, 1)].

Shannon’s symmetry condition in Proposition 1 does not hold for this channel since there are

no permutations of Y1 and Y2 which can result in (2). Furthermore, since H(Y2|X1 = 0, X2 =

0) = Hb(0.1) and H(Y2|X1 = 1, X2 = 0) = Hb(0.3), H(Y2|X1, X2) depends on PX1|X2
for fixed

PX2
. Thus, the CVA condition in Proposition 3 does not hold either. However, the conditions

of Theorem 1 are satisfied since a common maximizer exists for the one-way channel from

users 1 to 2 given by P ∗
X1
(0) = 0.471, and condition (ii) trivially holds. By considering all input

distributions of the form PX1,X2
= P ∗

X1
·PX2

, where PX2
∈ P(X2), one can compute the capacity

region as shown in Fig. 5. We note that, with some extra effort, one can show that the conditions

of Theorem 4 also hold [2].

Finally, we point out (without proof) that the channels in the examples in [3, Fig. 2 & Table

II] and [28, Section IV-B] satisfy the conditions of Theorem 1.

E. Comparison with Prior Results

In this section, we show that Theorems 1 and 2 generalize the Shannon results in Propositions 1

and 2, respectively, and that Theorem 4 subsumes the CVA result in Proposition 3 as a special

October 2, 2019 DRAFT



22

case.

Theorem 5: A TWC that satisfies the Shannon’s one-sided symmetry condition of Proposition 1

must satisfy the conditions of Theorem 1.

Proof: If a TWC satisfies the Shannon condition in Proposition 1, the capacity-achieving

input distribution is of the form PX1,X2
= PU

X1
·PX2

for some PX2
∈ P(X2) [3]. This implies that

condition (i) of Theorem 1 is satisfied because a common maximizer exists for all x2 ∈ X and

is given by P ∗
X1

= PU
X1

. To prove that condition (ii) is also satisfied, we consider the transition

matrices [PY1|X1,X2
(·|x′

1, ·)] and [PY1|X1,X2
(·|x′′

1, ·)] for arbitrary x′
1, x

′′
1 ∈ X1 and show that these

are column permutations of each other and hence I(PX2
, PY1|X1=x′

1
,X2

) = I(PX2
, PY1|X1=x′′

1
,X2

).

The first claim is true because

PY1|X1,X2
(y1|x

′
1, x2) = PY1|X1,X2

(πY1[x′
1, x

′′
1](y1)|τ

X1

x′
1
,x′′

1

(x′
1), x2) (17)

= PY1|X1,X2
(πY1[x′

1, x
′′
1](y1)|x

′′
1, x2),

where (17) is obtained by marginalizing over Y2 on both sides of (2). For the second claim, we

have

I(PX2
, PY1|X1=x′

1
,X2

)

=
∑

x2,y1

PX2
(x2) · PY1|X1,X2

(y1|x
′
1, x2)· log

PY1|X1,X2
(y1|x

′
1, x2)

∑

x̃2
PX2

(x̃2)·PY1|X1,X2
(y1|x′

1, x̃2)

=
∑

x2,y1

PX2
(x2) · PY1|X1,X2

(πY1 [x′
1, x

′′
1](y1)|x

′′
1, x2)

· log
PY1|X1,X2

(πY1[x′
1, x

′′
1](y1)|x

′′
1, x2)

∑

x̃2
PX2

(x̃2)·PY1|X1,X2
(πY1[x′

1, x
′′
1](y1)|x

′′
1, x̃2)

(18)

=
∑

x2,ỹ1

PX2
(x2) · PY1|X1,X2

(ỹ1|x
′′
1, x2)· log

PY1|X1,X2
(ỹ1|x

′′
1, x2)

∑

x̃2
PX2

(x̃2)·PY1|X1,X2
(ỹ1|x

′′
1, x̃2)

= I(PX2
, PY1|X1=x′′

1
,X2

),

where (18) holds by the first claim.

Remark 3: Since the optimal input distribution of user 1 in Theorem 1 is not necessarily

uniform as illustrated in Example 4, Theorem 1 is more general than Proposition 1.

Theorem 6: A TWC that satisfies the Shannon two-sided symmetry condition of Proposition 2

must satisfy the conditions of Theorem 2.

This theorem is immediate, and hence the proof is omitted. Together with Example 5 given in

the next section, Theorem 2 is shown to be more general than Proposition 2. We next show that
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the symmetry properties identified by the conditions of Theorem 4 are more general than those

in the CVA condition.

Theorem 7: A TWC that satisfies the CVA condition in Proposition 3 must satisfy the

conditions in Theorem 4.

Proof: Suppose that the condition of Proposition 3 is satisfied. To prove the theorem, we

show that for j = 1, 2, H(Yj|X1 = x′
1, X2 = x2) = H(Yj|X1 = x′′

1, X2 = x2) for all x′
1, x

′′
1 ∈ X1

and x2 ∈ X2. Given arbitrary pairs (x′
1, x2) and (x′′

1, x2), consider the probability distributions

P
(1)
X1,X2

(a, b) =







1, if a = x′
1 and b = x2,

0, otherwise,

and

P
(2)
X1,X2

(a, b) =







1, if a = x′′
1 and b = x2,

0, otherwise.

Noting that P
(1)
X2

= P
(2)
X2

, we have H(Yj|X1 = x′
1, X2 = x2) = H(1)(Yj|X1, X2) = H(2)(Yj|X1, X2)

= H(Yj|X1 = x′′
1, X2 = x2), where the first and last equality are due to the definitions of

P
(1)
X1,X2

and P
(2)
X1,X2

, respectively, and the second equality follows from the CVA condition since

P
(1)
X2

= P
(2)
X2

. Thus H(Yj|X1 = x1, X2 = x2) does not depend on x1 for fixed x2 as claimed. Also,

since H(Yj|X1, X2 = x2) =
∑

x1
PX1|X2

(x1|x2) ·H(Yj|X1 = x1, X2 = x2), H(Yj|X1, X2 = x2)

does not depend on PX1|X2=x2
.

Next, we show that condition (i) of Theorem 4 holds by constructing a common maximizer

from the CVA condition. For fixed x2 ∈ X2, let

P ∗
X1|X2=x2

= argmax
PX1|X2=x2

I(X1; Y2|X2 = x2)

= argmax
PX1|X2=x2

(

H(Y2|X2 = x2)−H(Y2|X1, X2 = x2)
)

,

and define P
(1)
X1,X2

= P
(1)
X2
· P ∗

X1|X2
for some P

(1)
X2
∈ P(X2). Since H(Yj|X1, X2 = x2) does

not depend on PX1|X2=x2
, P ∗

X1|X2=x2
is in fact a maximizer of H(Y2|X2 = x2). Note that the

maximizer P ∗
X1|X2=x2

is not necessarily unique, but any choice works for our purposes. Now for

P
(1)
X1,X2

, by the CVA condition, there exists P̃X1
∈ P(X1) such that H(1)(Y2|X2) ≤ H(2)(Y2|X2),

where P
(2)
X1,X2

= P̃X1
· P

(1)
X2

. Since P ∗
X1|X2=x2

is the maximizer for H(Y2|X2 = x2), we have

H(1)(Y2|X2) =
∑

x2

P
(1)
X2

(x2) ·H
(1)(Y2|X2 = x2)
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=
∑

x2

P
(1)
X2

(x2) ·

[

max
PX1|X2=x2

H(Y2|X2 = x2)

]

≥
∑

x2

P
(1)
X2

(x2) ·H
(2)(Y2|X2 = x2)

= H(2)(Y2|X2)

Thus, H(1)(Y2|X2) = H(2)(Y2|X2), i.e.,

∑

x2

P
(1)
X2

(x2)·H
(1)(Y2|X2 = x2)=

∑

x2

P
(1)
X2

(x2)·H
(2)(Y2|X2 = x2).

Since H(2)(Y2|X2 = x2) ≤ H(1)(Y2|X2 = x2) for each x2 ∈ X2, we obtain H(1)(Y2|X2 = x2) =

H(2)(Y2|X2 = x2), i.e., P̃X1
achieves the same value for H(Y2|X2 = x2) as P ∗

X1|X2=x2
for all

x2 ∈ X2. Consequently, P̃X1
is a common maximizer and thus condition (i) of Theorem 4 is

satisfied. Moreover, since the common maximizer P̃X1
is from the CVA condition, we have that

H(1)(Y1|X1) ≤ H(2)(Y1|X1), which together with the fact that H(Y1|X1, X2) does not depend

on PX1|X2
given PX2

and PY1|X1,X2
(guaranteed by the CVA condition) implies that condition

(ii) of Theorem 4 holds.

Remark 4: As illustrated by Example 4, a TWC that satisfies the conditions of Theorem 4

does not necessarily satisfy the CVA condition in Proposition 3. Therefore, Theorem 4 is a more

general result than Proposition 3. We note that the main difference between Theorem 4 and

Proposition 3 lies in the fact that we allow H(Y2|X1, X2) to depend on PX1|X2
, given PX2

.

F. Connection Between the Shannon and CVA Conditions

In this section, we connect Shannon’s result to the CVA condition. First, the proof in Ap-

pendix A shows that Shannon’s symmetry conditions are more than sufficient for CI and CO to

coincide. In fact, assume that the marginal channels PYj |X1,X2
’s (derived from PY1,Y2|X1,X2

) satisfy

the following extended Shannon’s symmetry condition: for any pair of distinct input symbols x′
1,

x′′
1 ∈ X1, there exists a pair of permutations (πY1 [x′

1, x
′′
1], π

Y2 [x′
1, x

′′
1]) on Y1 and Y2, respectively,

(which depend on x′
1 and x′′

1) such that for all x1, x2, y1, y2,






PY1|X1,X2
(y1|x1, x2) = PY1|X1,X2

(πY1[x′
1, x

′′
1](y1)|τ

X1

x′
1
,x′′

1

(x1), x2),

PY2|X1,X2
(y2|x1, x2) = PY2|X1,X2

(πY2[x′
1, x

′′
1](y2)|τ

X1

x′
1
,x′′

1

(x1), x2),
(19)

then CI = CO = C with C given by (3).

The extended Shannon’s symmetry conditions are more general than their original versions

since (2) implies (19) but the reverse implication is not true as shown below.
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Example 5: Consider the TWC with X1 = X2 = Y1 = Y2 = {0, 1} and transition probability

[PY1,Y2|X1,X2
] =





















00 01 10 11

00 0.25 0.5 0.25 0

01 0.375 0375 0.125 0.125

10 0.125 0.125 0.375 0.375

11 0.125 0.125 0.375 0.375





















.

The marginal distributions are

[PY1|X1,X2
] =















0 1

00 0.75 0.25

01 0.75 0.25

10 0.25 0.75

11 0.25 0.75















and

[PY2|X1,X2
] =















0 1

00 0.5 0.5

01 0.5 0.5

10 0.5 0.5

11 0.5 0.5















.

Clearly, neither of the Shannon conditions in Proposition 1 or 2 holds, but the extended condition

in (19) holds.

We now show that the above extended symmetry condition implies the CVA condition.

Theorem 8: A TWC that satisfies the condition in (19) must satisfy the CVA condition of

Proposition 3.

Proof: If the marginal channels PY1|X1,X2
and PY2|X1,X2

satisfy the extended one-sided

symmetry condition, then H(Yj|X1 = x1, X2 = x2) does not depend on x1 ∈ X1 for any fixed

x2 ∈ X2 since the rows of [PYj |X1,X2
(·|·, x2)] are permutations of each other. Hence, H(Yj|X1, X2)

does not depend on PX1|X2
given PX2

∈ P(X2) as required by the CVA condition.

Next, for any given joint distribution P
(1)
X1,X2

= P
(1)
X2
·P

(1)
X1|X2

, we show that P
(2)
X1,X2

= P̃X1
·P

(1)
X2

with the choice P̃X1
= PU

X1
meets the remaining requirements of the CVA condition in Proposi-

tion 3. Since the TWC satisfies the extended Shannon condition, Lemma 6 in Appendix A gives
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the two inequalities: I(1)(X1; Y2|X2) ≤ I(2)(X1; Y2|X2) and I(1)(X2; Y1|X1) ≤ I(2)(X2; Y1|X1).

Observing that I(1)(X1; Y2|X2) = H(1)(Y2|X2)−H
(1)(Y2|X1, X2) = H(1)(Y2|X2)−H

(2)(Y2|X1, X2),

we immediately obtain that H(1)(Y2|X2) ≤ H(2)(Y2|X2) since I(1)(X1; Y2|X2) ≤ I(2)(X1; Y2|X2).

Moreover, since H(1)(Y1|X1, X2) = H(2)(Y1|X1, X2) and I(1)(X2; Y1|X1) ≤ I(2)(X2; Y1|X1), we

have that H(1)(Y1|X1) ≤ H(2)(Y1|X1). Thus, the CVA condition is fulfilled.

Remark 5: In [28], the existence of examples showing that the Shannon and CVA results are

not equivalent was posed as an open question. The example below shows that the CVA condition

is more general than the extended (one-sided) Shannon’s symmetry condition (19). Together with

Example 5, we conclude that the CVA result is more general than the Shannon result.

Example 6: Consider the TWC with X1 = Y1 = Y2 = {0, 1, 2} and X2 = {0, 1} and marginal

distributions given by

[PY1|X1,X2
(·|·, 0)] =











0 1 2

0 0.3 0.2 0.5

1 0.5 0.3 0.2

2 0.2 0.5 0.3











.

with [PY1|X1,X2
(·|·, 1)]=[PY2|X1,X2

(·|·, 0)]=[PY2|X1,X2
(·|·, 1)]=[PY1|X1,X2

(·|·, 0)]. Clearly, there are

no relabeling functions for Y1 and Y2 which recover [PY1|X1,X2
(·|·, 0)] after exchanging the labels

of X1 = 0 and X1 = 1, so that the extended one-sided symmetry condition does not hold. To

check the CVA condition, we first observe that H(Yj|X1 = x1, X2 = x2) does not depend on

x1 ∈ X1 and x2 ∈ X2; thus H(Yj|X1, X2) does not depend on PX1,X2
for j = 1, 2. Furthermore,

for any given P
(1)
X1,X2

= P
(1)
X2
·P

(1)
X1|X2

, consider P
(2)
X1,X2

= P̃X1
·P

(1)
X2

with P̃X1
= PU

X1
. Then, we have

I(1)(X1; Y2|X2) =
∑

x2
P

(1)
X2

(x2) · I
(1)(X1; Y2|X2 = x2) ≤

∑

x2
P

(1)
X2

(x2) · I
(2)(X1; Y2|X2 = x2) =

I(2)(X1; Y2|X2), where the inequality follows from the fact that PU
X1

is the capacity-achieving

input distribution for all one-way channels from users 1 to 2. On the other hand, since the matrices

[PY1|X1,X2
(·|x1, ·)], x1 ∈ X1, are column permutations of each other, I(PX2

, PY1|X1=x1,X2
) does

not depend on x1 ∈ X1 for any fixed PX2
∈ P(X2). One can then follow the proof of Theorem 1

to obtain that I(1)(X2; Y1|X1) ≤ I(2)(X2; Y1|X1). Now, since H(Yj|X1, X2) does not depend on

the input distribution, we conclude that H(1)(Yj|Xj) ≤ H(2)(Yj|Xj) for j = 1, 2, and thus the

CVA condition is satisfied.

Remark 6: The channel in the above example in fact also satisfies the conditions of Theorem 1.

Nevertheless, the connection between the conditions of Theorem 1 and the CVA condition is
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still unclear.

We close this section by noting that the symmetry properties induced by our proposed condi-

tions are not necessarily specific to two-user memoryless TWCs as we will see in Section IV. It

is also worth mentioning that the proposed conditions can be used to investigate whether or not

Shannon-type random coding schemes (under independent and non-adaptive inputs) provide tight

bounds for other classical communication scenarios such as MACs with feedback and one-way

compound channels. In particular, our conditions can be used to identify compound channels

where the availability of channel state information at the transmitter (in addition to the receiver)

cannot improve capacity.

III. TWO-WAY SYMMETRIC CHANNELS WITH MEMORY

We here consider point-to-point TWCs with memory whose inputs and outputs are related via

functions F1 and F2 as follows:

Y1,i = F1(X1,i, X2,i, Z1,i), (20)

Y2,i = F2(X1,i, X2,i, Z2,i), (21)

where {(Z1,i, Z2,i)}
∞
i=1 is a stationary and ergodic noise process which is independent of the users’

messages M1 and M2. Note that this model is a special case of the general model introduced in

Section II-A; it is also a generalization of the discrete additive-noise TWC considered in [1].

We first state (without proof) an inner bound for arbitrary (time-invariant) functions F1 and F2.

The bound can be proved via Shannon’s standard random coding scheme (under non-adaptive

independent inputs) for information stable one-way channels with memory, applied in each

direction of the two-way transmission.

Lemma 1 (Inner Bound): For the channel described in (20) and (21), a rate pair (R1, R2)

is achievable if there exist two sequences of codes (fn
1 , g1) and (fn

2 , g2) with message sets

M1 = {1, 2, . . . , 2
nR1} and M2 = {1, 2, . . . , 2

nR2}, respectively, such that

R1 ≤ lim
n→∞

1

n
I(Xn

1 ; Y
n
2 |X

n
2 ),

R2 ≤ lim
n→∞

1

n
I(Xn

2 ; Y
n
1 |X

n
1 ),

where the mutual information terms are evaluated under a sequence of product input probability

distributions {PXn
1
·PXn

2
}∞n=1 and the inputs Xn

j are independent of {(Z1,i, Z2,i)}
n
i=1, j = 1, 2.
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We say that Fj(X1, X2, Zj) is invertible in Zj if Fj(x1, x2, ·) is one-to-one for any fixed

x1 ∈ X1 and x2 ∈ X2. Under this invertibility condition, we obtain the following corollary.

Corollary 3: If Fj is invertible in Zj for j = 1, 2, a rate pair (R1, R2) is achievable if

R1 ≤ lim
n→∞

1

n
H(Y n

2 |X
n
2 )− H̄(Z2), (22)

R2 ≤ lim
n→∞

1

n
H(Y n

1 |X
n
1 )− H̄(Z1), (23)

for product distributions {PXn
1
·PXn

2
}∞n=1, where H̄(Zj) denotes the entropy rate of the noise

process {Zj,i}
∞
i=1 and the inputs Xn

j are independent of {(Z1,i, Z2,i)}
n
i=1, j = 1, 2.

Proof: The proof follows from the fact that

I(Xn
1 ; Y

n
2 |X

n
2 ) = H(Y n

2 |X
n
2 )−H(Y n

2 |X
n
1 , X

n
2 )

= H(Y n
2 |X

n
2 )−H(Zn

2 |X
n
1 , X

n
2 )

= H(Y n
2 |X

n
2 )−H(Zn

2 ),

where the second equality holds since F2 is invertible in Z2 and the last equality holds since

the channel inputs are generated independently of the noise process {(Z2,1, Z2,i)}
∞
i=1. Applying

a similar argument to I(Xn
1 ; Y

n
2 |X

n
2 ) completes the proof.

Let F−1
j denote the inverse of Fj for fixed (x1, x2) so that zj = F−1

j (x1, x2, yj), j = 1, 2.

If we further assume that zj = F−1
j (x1, x2, yj) is one-to-one in xj′ for any fixed xj ∈ Xj and

yj ∈ Yj , where j, j′ = 1, 2 with j 6= j′, and impose cardinality constraints on the alphabets, we

can simplify the expressions in (22) and (23) as follows.

Corollary 4: Suppose that Fj is invertible in Zj and F−1
j is one-to-one for j, j′ = 1, 2 with

j 6= j′. Also, |X2| = |Y1| = |Z1| = q1 and |X1| = |Y2| = |Z2| = q2 for some integers q1, q2 ≥ 2.

Then, a rate pair (R1, R2) is achievable if

R1 ≤ log q2 − H̄(Z2),

R2 ≤ log q1 − H̄(Z1).

Proof: The proof hinges on noting that H(Y n
j |X

n
j ) ≤ n · log qj and that the uniform input

distribution PXn
1
,Xn

2
= (PU

X1
·PU

X2
)n achieves the upper bound. More specifically, we have to show

that if PXn
1
,Xn

2
is the uniform distribution, then PY n

j |Xn
j
(ynj |x

n
j ) is uniform on Yn

j for any given

Xn
j = xn

j , and hence H(Y n
j |X

n
j = xn

j ) = n · log qj . By symmetry, we only provide the details
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for H(Y n
2 |X

n
2 ). Suppose that PXn

1
,Xn

2
is the uniform distribution on X n

1 ×X
n
2 . Then, for any xn

2

we have

PY n
2
|Xn

2
(yn2 |x

n
2 ) =

∑

xn
1

PY n
2
|Xn

1
,Xn

2
(yn2 |x

n
1 , x

n
2 )PXn

1
|Xn

2
(xn

1 |x
n
2 )

=

(

1

q2

)n

·
∑

xn
1

PY n
2
|Xn

1
,Xn

2
(F2(x

n
1 , x

n
2 , z

n
2 )|x

n
1 , x

n
2 )

=

(

1

q2

)n

·
∑

xn
1

PZn
2
|Xn

1
,Xn

2
(F−1

2 (xn
1 , x

n
2 , y

n
2 )|x

n
1 , x

n
2 )

=

(

1

q2

)n

·
∑

zn
2

PZn
2
(zn2 ) (24)

=

(

1

q2

)n

,

where (24) holds since (Xn
1 , X

n
2 ) is independent of Zn

2 and F−1
2 (X1, X2, Y2) is onto in X1 due

to the cardinality constraint. Clearly, PY n
2
|Xn

2
=xn

2
is the uniform distribution for any xn

2 , implying

that H(Y n
2 |X

n
2 ) = n · log q2.

Next we consider ISD-TWCs as in Example 3 and [28], but with the assumption that the noise

process {(Z1,i, Z2,i)}
∞
i=1 can have memory. Note that any ISD-TWC with memory is a special

case of the system model in (20) and (21) satisfying the invertibility condition in Z1 and Z2.

Thus, Corollary 3 applies to ISD-TWCs with memory to obtain the following result.

Corollary 5: For the ISD-TWC with memory, a rate pair (R1, R2) is achievable if

R1 ≤ lim
n→∞

1

n
max
PXn

1

H(h̃2(X
n
1 , Z

n
2 ))− H̄(Z2),

R2 ≤ lim
n→∞

1

n
max
PXn

2

H(h̃1(X
n
2 , Z

n
1 ))− H̄(Z1),

where H̄(Zj) denotes the entropy rate of the process {Zj,i}
∞
i=1 for j = 1, 2.

We note that Corollary 4 also applies to ISD-TWCs with memory under identical alphabet

size constraints so that any rate pair in {(R1, R2) : R1 ≤ log q2− H̄(Z2), R2 ≤ log q1− H̄(Z1)}

is achievable for ISD-TWCs with memory. We next derive converses to Corollaries 4 and 5.

Lemma 2 (Outer Bound for Noise-Invertible TWCs with Memory): Suppose that |Yj| = qj for

some integer qj ≥ 2. If Fj is invertible in Zj for j = 1, 2, any achievable rate pair (R1, R2)

must satisfy

R1 ≤ log q2 − lim
n→∞

1

n

n
∑

i=1

H(Z2,i|Z
i−1
1 , Z i−1

2 ),
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R2 ≤ log q1 − lim
n→∞

1

n

n
∑

i=1

H(Z1,i|Z
i−1
1 , Z i−1

2 ),

where the limits exist because {(Z1,i, Z2,i)}
∞
i=1 is stationary.

Proof: For an achievable rate pair (R1, R2), we have

n·R1 = H(M1|M2)

= I(M1; Y
n
2 |M2) +H(M1|Y

n
2 ,M2)

≤ I(M1; Y
n
2 |M2) + n·ǫn (25)

=
n
∑

i=1

[

H(Y2,i|M2, Y
i−1
2 )−H(Y2,i|M1,M2, Y

i−1
2 )

]

+n·ǫn

(26)

≤
n
∑

i=1

[

log q2 −H(Y2,i|M1,M2, Y
i−1
2 )

]

+ n·ǫn (27)

≤
n
∑

i=1

[

log q2−H(Y2,i|M1,M2, Y
i−1
1 , Y i−1

2 , X1,i, X2,i)
]

+n·ǫn

=
n
∑

i=1

[

log q2−H(Z2,i|M1,M2, Y
i−1
1 , Y i−1

2 , X i
1, X

i
2)
]

+n·ǫn

(28)

=

n
∑

i=1

[

log q2−H(Z2,i|M1,M2, Y
i−1
1 , Y i−1

2 , X i
1, X

i
2, Z

i−1
1 , Z i−1

2 )
]

+ n·ǫn (29)

=

n
∑

i=1

[

log q2 −H(Z2,i|Z
i−1
1 , Z i−1

2 )
]

+ n·ǫn (30)

= n · log q2 −
n
∑

i=1

H(Z2,i|Z
i−1
1 , Z i−1

2 ) + n·ǫn, (31)

where (25) is due to Fano’s inequality with ǫn → 0 as n → ∞, (27) follows from |Y2| = q2,

(28) and (29) hold since Fj is invertible in Zj given (X1,i, X2,i), and (30) holds since

H(Z2,i|Z
i−1
1 , Z i−1

2 ) = H(Z2,i|M1,M2, Z
i−1
1 , Z i−1

2 ) (32)

= H(Z2,i|M1,M2, Z
i−1
1 , Z i−1

2 , X1,1, X2,1) (33)

= H(Z2,i|M1,M2, Z
i−1
1 , Z i−1

2 , X1,1, X2,1, Y1,1, Y2,1) (34)

= H(Z2,i|M1,M2, Z
i−1
1 , Z i−1

2 , X2
1 , X

2
2 , Y1,1, Y2,1) (35)

= H(Z2,i|M1,M2, Z
i−1
1 , Z i−1

2 , X i
1, X

i
2, Y

i−1
1 , Y i−1

2 ) (36)
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where (32) is due to the fact that {(Z1,i, Z2,i)}
∞
i=1 is independent of (M1,M2), (33) and (35) hold

since Xj,i = fj,i(Mj, Y
i−1
j ) for j = 1, 2, (34) follows from the identity Yj,i = Fj(X1,i, X2,i, Zj,i),

and (36) is obtained by recursively using the same argument as in (33)-(35). Similarly, we have

n·R2 ≤ n· log q1 −
n
∑

i=1

H(Z1,i|Z
i−1
1 , Z i−1

2 ) + n·ǫ̂n. (37)

The proof is completed by dividing both sides of (31) and (37) by n and letting n→∞.

Lemma 3 (Outer Bound for ISD-TWCs with Memory): For the ISD-TWC with memory, any

achievable rate pair (R1, R2) must satisfy

R1 ≤ lim
n→∞

1

n

[

max
PXn

1

H(h̃2(X
n
1 , Z

n
2 ))−

n
∑

i=1

H(Z2,i|Z
i−1
1 , Z i−1

2 )

]

,

R2 ≤ lim
n→∞

1

n

[

max
PXn

2

H(h̃1(X
n
2 , Z

n
1 ))−

n
∑

i=1

H(Z1,i|Z
i−1
1 , Z i−1

2 )

]

.

Proof: The proof is similar to the proof of the previous lemma and hence the details are

omitted. The main difference is that the first term in (26) is now upper bounded as follows

n
∑

i=1

H(Y2,i|M2, Y
i−1
2 ) =

n
∑

i=1

H(h2(X2,i, T2,i)|M2, Y
i−1
2 , X i

2, T
i−1
2 )

≤

n
∑

i=1

H(T2,i|T
i−1
2 )

= H(T n
2 )

≤ max
PXn

1

H(h̃2(X
n
1 , Z

n
2 )),

where the first equality holds since X i
2 is a function of M2 and Y i−1

2 and Y2 = h2(X2, T2) is

invertible in T2 given X2.

Based on the preceding inner and outer bounds, the capacity region for two classes of TWCs

with memory (whose component noise processes are independent of each other) can be exactly

determined as follows.

Theorem 9: For a TWC with memory such that {Z1,i}
∞
i=1 and {Z2,i}

∞
i=1 are stationary ergodic

and mutually independent, Fj is invertible in Zj and F−1
j is one-to-one in Xj′ for j, j′ = 1, 2

with j 6= j′, and |X2| = |Y1| = |Z1| = q1 and |X1| = |Y2| = |Z2| = q2 for some integers

q1, q2 ≥ 2, the capacity region is given by

C =
{

(R1, R2) : R1 ≤ log q2 − H̄(Z2), R2 ≤ log q1 − H̄(Z1)
}

. (38)
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Theorem 10: For a ISD-TWC with memory such that {Z1,i}
∞
i=1 and {Z2,i}

∞
i=1 are stationary

ergodic and mutually independent, the capacity region is given by

C =
{

(R1, R2) : R1 ≤ lim
n→∞

1

n
max
PXn

1

H(h̃2(X
n
1 , Z

n
2 ))− H̄(Z2),

R2 ≤ lim
n→∞

1

n
max
PXn

2

H(h̃1(X
n
2 , Z

n
1 ))− H̄(Z1)

}

. (39)

Remark 7: Theorem 10 generalizes [28, Corollary 1] for memoryless ISD-TWCs. If one

further has |X2| = |T1| = |Z1| = q1 and |X1| = |T2| = |Z2| = q2 for some integers q1, q2 ≥ 2,

then limn→∞
1
n
maxPXn

1

H(h̃2(X
n
1 , Z

n
2 )) = log q1 and that limn→∞

1
n
maxPXn

2

H(h̃1(X
n
2 , Z

n
1 )) =

log q2.

The next example shows that if the noise processes are dependent, then Shannon’s random

coding scheme is not optimal.

Example 7 (Adaptation is Useful): Let q1 = q2 = 2 and suppose that the channel is given by

Y1,i = F1(X1,i, X2,i, Z1,i) = X1,i ⊕2 X2,i ⊕2 Z1,i,

Y2,i = F2(X1,i, X2,i, Z2,i) = X1,i ⊕2 X2,i ⊕2 Z2,i,

where {Z1,i}
n
i=1 is assumed to be memoryless with Z1,i uniformly distributed on Z1 = {0, 1} for

i = 1, 2, . . . , n, and {Z2,i}
n
i=1 is given by Z2,1 = 0 and Z2,i = Z1,i−1 for i = 2, 3, . . . , n. Since

the functions F1 and F2 are invertible in Z1 and Z2, the outer bound in Lemma 2 indicates that

R1 ≤ log 2− lim
n→∞

1

n

n
∑

i=1

H(Z2,i|Z
i−1
1 , Z i−1

2 )

= 1− 0 = 1,

R2 ≤ log 2− lim
n→∞

1

n

n
∑

i=1

H(Z1,i|Z
i−1
1 , Z i−1

2 )

= 1−H(Z1,i) = 0.

We claim that the rate pair (R1, R2) = (1, 0) can be achieved by an adaptive coding scheme.

Let {M1,i}
n
i=1 denote the binary messages to be sent from users 1 to 2. For i = 1, 2, . . . , n, set

the encoding function of user 1 as X1,i = f1,i({M1,i}
n
i=1, Y

i−1
1 ) , M1,i ⊕2 X1,i−1 ⊕2 Y1,i−1 with

initial conditions X1,0 = X2,0 = Y1,0 = 0, and set the encoder output of user 2 to be zero, i.e.,

X2,i = 0 for all i. With this coding scheme, the received signal at user 2 is given by

Y2,i = X1,i ⊕2 X2,i ⊕2 Z2,i
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= M1,i ⊕2 X1,i−1 ⊕2 Y1,i−1 ⊕2 Z2,i

= M1,i ⊕2 X1,i−1 ⊕2 X1,i−1 ⊕2 Z1,i−1 ⊕2 Z2,i = M1,i,

and thus the rate pair (1, 0) is achievable. This achievability result together with the outer bound

imply that the channel capacity is given by C = {(R1, R2) : R1 ≤ 1, R2 = 0}. However, the

Shannon-type random coding scheme only provides R1 ≤ 1−H̄(Z2) = 0 and R2 ≤ 1−H̄(Z2) =

0 by Corollary 4.

IV. MULTIPLE ACCESS/DEGRADED BROADCAST TWCS

This section considers a three-user two-way communication scenario combining multiaccess

and broadcasting. We first introduce the channel model and derive inner and outer bounds for

the capacity region. Then, sufficient conditions for the two bounds to coincide are provided,

along with illustrative examples.

A. Channel Model

Two-way communication over a discrete additive-noise MA/DB TWC comprises three users

as depicted in Fig. 6. Users 1 and 2 want to transmit messages M13 and M23, respectively, to

user 3 through the TWC that acts as a MAC in the forward direction. User 3 wishes to broadcast

messages M31 and M32 to users 1 and 2, respectively, through the TWC that acts as a DBC in

the reverse direction. The messages are assumed to be independent of each other and uniformly

distributed over their alphabets. The joint distribution of all the variables for n channel uses is

given by

PM{13,23,31,32} ,X
n
{1,2,3}

,Y n
{1,2,3}

= PM13
· PM23

· PM31
· PM32

·

(

n
∏

i=1

PX1,i|M13,Y
i−1

1

)

·

(

n
∏

i=1

PX2,i|M23,Y
i−1

2

)

·

(

n
∏

i=1

PX3,i|M{31,32},Y
i−1

3

)

·

(

n
∏

i=1

PY1,i,Y2,i,Y3,i|Xi
{1,2,3}

,Y
i−1

{1,2,3}

)

,

where M{13,23,31,32} , {M13,M23,M31,M32}, Xn
{1,2,3} , {Xn

1 , X
n
2 , X

n
3 }, and Y n

{1,2,3} ,

{Y n
1 , Y

n
2 , Y

n
3 }. Thus, the n transmissions can be described by the sequence of input-output

conditional probabilities {PY1,i,Y2,i,Y3,i|Xi
{1,2,3}

,Y
i−1

{1,2,3}
}ni=1.

To simplify our analysis, we assume that the channel is memoryless in the sense that

given current channel inputs, the current channel outputs are independent of past signals,
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User 1

User 2

Xn

1

Xn

2

Y n

2

Y n

1

User 3

M13
<latexit sha 1_base64="rfmCMpQkaoXH A/+4QVjW5b2x4aY=">AAAB /HicbVA9SwNBEJ3zM8avqK XNYhCswl0U1C5gYyNE8JJA coS9zSZZs7t37O4J4Tj8C7b aW4mt/8XWX+ImucIkPhh4v DfDzLww5kwb1/12VlbX1jc 2C1vF7Z3dvf3SwWFDR4ki1 CcRj1QrxJpyJqlvmOG0FSu KRchpMxzdTPzmE1WaRfLBjG MaCDyQrM8INlZq3HVT7zzr lspuxZ0CLRMvJ2XIUe+Wfj q9iCSCSkM41rrtubEJUqwM I5xmxU6iaYzJCA9o21KJBd VBOr02Q6dW6aF+pGxJg6bq3 4kUC63HIrSdApuhXvQm4n9 eOzH9qyBlMk4MlWS2qJ9wZ CI0eR31mKLE8LElmChmb0V kiBUmxgY0tyUUWdGG4i1Gs Ez8auW64t5flGvVPJ0CHMM JnIEHl1CDW6iDDwQe4QVe4c 15dt6dD+dz1rri5DNHMAfn 6xerJpUn</latexit><latexit sha 1_base64="rfmCMpQkaoXH A/+4QVjW5b2x4aY=">AAAB /HicbVA9SwNBEJ3zM8avqK XNYhCswl0U1C5gYyNE8JJA coS9zSZZs7t37O4J4Tj8C7b aW4mt/8XWX+ImucIkPhh4v DfDzLww5kwb1/12VlbX1jc 2C1vF7Z3dvf3SwWFDR4ki1 CcRj1QrxJpyJqlvmOG0FSu KRchpMxzdTPzmE1WaRfLBjG MaCDyQrM8INlZq3HVT7zzr lspuxZ0CLRMvJ2XIUe+Wfj q9iCSCSkM41rrtubEJUqwM I5xmxU6iaYzJCA9o21KJBd VBOr02Q6dW6aF+pGxJg6bq3 4kUC63HIrSdApuhXvQm4n9 eOzH9qyBlMk4MlWS2qJ9wZ CI0eR31mKLE8LElmChmb0V kiBUmxgY0tyUUWdGG4i1Gs Ez8auW64t5flGvVPJ0CHMM JnIEHl1CDW6iDDwQe4QVe4c 15dt6dD+dz1rri5DNHMAfn 6xerJpUn</latexit><latexit sha 1_base64="rfmCMpQkaoXH A/+4QVjW5b2x4aY=">AAAB /HicbVA9SwNBEJ3zM8avqK XNYhCswl0U1C5gYyNE8JJA coS9zSZZs7t37O4J4Tj8C7b aW4mt/8XWX+ImucIkPhh4v DfDzLww5kwb1/12VlbX1jc 2C1vF7Z3dvf3SwWFDR4ki1 CcRj1QrxJpyJqlvmOG0FSu KRchpMxzdTPzmE1WaRfLBjG MaCDyQrM8INlZq3HVT7zzr lspuxZ0CLRMvJ2XIUe+Wfj q9iCSCSkM41rrtubEJUqwM I5xmxU6iaYzJCA9o21KJBd VBOr02Q6dW6aF+pGxJg6bq3 4kUC63HIrSdApuhXvQm4n9 eOzH9qyBlMk4MlWS2qJ9wZ CI0eR31mKLE8LElmChmb0V kiBUmxgY0tyUUWdGG4i1Gs Ez8auW64t5flGvVPJ0CHMM JnIEHl1CDW6iDDwQe4QVe4c 15dt6dD+dz1rri5DNHMAfn 6xerJpUn</latexit>

M23
<latexit sha 1_base64="DB9utvBKvtkF JO7V67+aDsque1s=">AAAB /HicbVA9SwNBEJ3zM8avqK XNYhCswiUKahewsREieEkg OcLeZi9Zs7t37O4J4Tj8C7b aW4mt/8XWX+ImucIkPhh4v DfDzLwg5kwb1/12VlbX1jc 2C1vF7Z3dvf3SwWFTR4ki1 CMRj1Q7wJpyJqlnmOG0HSu KRcBpKxjdTPzWE1WaRfLBjG PqCzyQLGQEGys173pp7Tzr lcpuxZ0CLZNqTsqQo9Er/X T7EUkElYZwrHWn6sbGT7Ey jHCaFbuJpjEmIzygHUslFl T76fTaDJ1apY/CSNmSBk3Vv xMpFlqPRWA7BTZDvehNxP+ 8TmLCKz9lMk4MlWS2KEw4M hGavI76TFFi+NgSTBSztyI yxAoTYwOa2xKIrGhDqS5Gs Ey8WuW64t5flOu1PJ0CHMM JnEEVLqEOt9AADwg8wgu8wp vz7Lw7H87nrHXFyWeOYA7O 1y+su5Uo</latexit><latexit sha 1_base64="DB9utvBKvtkF JO7V67+aDsque1s=">AAAB /HicbVA9SwNBEJ3zM8avqK XNYhCswiUKahewsREieEkg OcLeZi9Zs7t37O4J4Tj8C7b aW4mt/8XWX+ImucIkPhh4v DfDzLwg5kwb1/12VlbX1jc 2C1vF7Z3dvf3SwWFTR4ki1 CMRj1Q7wJpyJqlnmOG0HSu KRcBpKxjdTPzWE1WaRfLBjG PqCzyQLGQEGys173pp7Tzr lcpuxZ0CLZNqTsqQo9Er/X T7EUkElYZwrHWn6sbGT7Ey jHCaFbuJpjEmIzygHUslFl T76fTaDJ1apY/CSNmSBk3Vv xMpFlqPRWA7BTZDvehNxP+ 8TmLCKz9lMk4MlWS2KEw4M hGavI76TFFi+NgSTBSztyI yxAoTYwOa2xKIrGhDqS5Gs Ey8WuW64t5flOu1PJ0CHMM JnEEVLqEOt9AADwg8wgu8wp vz7Lw7H87nrHXFyWeOYA7O 1y+su5Uo</latexit><latexit sha 1_base64="DB9utvBKvtkF JO7V67+aDsque1s=">AAAB /HicbVA9SwNBEJ3zM8avqK XNYhCswiUKahewsREieEkg OcLeZi9Zs7t37O4J4Tj8C7b aW4mt/8XWX+ImucIkPhh4v DfDzLwg5kwb1/12VlbX1jc 2C1vF7Z3dvf3SwWFTR4ki1 CMRj1Q7wJpyJqlnmOG0HSu KRcBpKxjdTPzWE1WaRfLBjG PqCzyQLGQEGys173pp7Tzr lcpuxZ0CLZNqTsqQo9Er/X T7EUkElYZwrHWn6sbGT7Ey jHCaFbuJpjEmIzygHUslFl T76fTaDJ1apY/CSNmSBk3Vv xMpFlqPRWA7BTZDvehNxP+ 8TmLCKz9lMk4MlWS2KEw4M hGavI76TFFi+NgSTBSztyI yxAoTYwOa2xKIrGhDqS5Gs Ey8WuW64t5flOu1PJ0CHMM JnEEVLqEOt9AADwg8wgu8wp vz7Lw7H87nrHXFyWeOYA7O 1y+su5Uo</latexit>

M31
<latexit sha1_base64="y fwet3bfqXUZw0dSytC71nppZ5U=">AAAB/HicbVA9SwN BEJ3zM8avqKXNYhCswl0U1C5gYyNE8JJAcoS9zSZZs7t 37O4J4Tj8C7baW4mt/8XWX+ImucIkPhh4vDfDzLww5kwb 1/12VlbX1jc2C1vF7Z3dvf3SwWFDR4ki1CcRj1QrxJpy JqlvmOG0FSuKRchpMxzdTPzmE1WaRfLBjGMaCDyQrM8IN lZq3HXTcy/rlspuxZ0CLRMvJ2XIUe+Wfjq9iCSCSkM41 rrtubEJUqwMI5xmxU6iaYzJCA9o21KJBdVBOr02Q6dW6 aF+pGxJg6bq34kUC63HIrSdApuhXvQm4n9eOzH9qyBlMk 4MlWS2qJ9wZCI0eR31mKLE8LElmChmb0VkiBUmxgY0ty UUWdGG4i1GsEz8auW64t5flGvVPJ0CHMMJnIEHl1CDW6i DDwQe4QVe4c15dt6dD+dz1rri5DNHMAfn6xerKJUn</l atexit><latexit sha1_base64="y fwet3bfqXUZw0dSytC71nppZ5U=">AAAB/HicbVA9SwN BEJ3zM8avqKXNYhCswl0U1C5gYyNE8JJAcoS9zSZZs7t 37O4J4Tj8C7baW4mt/8XWX+ImucIkPhh4vDfDzLww5kwb 1/12VlbX1jc2C1vF7Z3dvf3SwWFDR4ki1CcRj1QrxJpy JqlvmOG0FSuKRchpMxzdTPzmE1WaRfLBjGMaCDyQrM8IN lZq3HXTcy/rlspuxZ0CLRMvJ2XIUe+Wfjq9iCSCSkM41 rrtubEJUqwMI5xmxU6iaYzJCA9o21KJBdVBOr02Q6dW6 aF+pGxJg6bq34kUC63HIrSdApuhXvQm4n9eOzH9qyBlMk 4MlWS2qJ9wZCI0eR31mKLE8LElmChmb0VkiBUmxgY0ty UUWdGG4i1GsEz8auW64t5flGvVPJ0CHMMJnIEHl1CDW6i DDwQe4QVe4c15dt6dD+dz1rri5DNHMAfn6xerKJUn</l atexit><latexit sha1_base64="y fwet3bfqXUZw0dSytC71nppZ5U=">AAAB/HicbVA9SwN BEJ3zM8avqKXNYhCswl0U1C5gYyNE8JJAcoS9zSZZs7t 37O4J4Tj8C7baW4mt/8XWX+ImucIkPhh4vDfDzLww5kwb 1/12VlbX1jc2C1vF7Z3dvf3SwWFDR4ki1CcRj1QrxJpy JqlvmOG0FSuKRchpMxzdTPzmE1WaRfLBjGMaCDyQrM8IN lZq3HXTcy/rlspuxZ0CLRMvJ2XIUe+Wfjq9iCSCSkM41 rrtubEJUqwMI5xmxU6iaYzJCA9o21KJBdVBOr02Q6dW6 aF+pGxJg6bq34kUC63HIrSdApuhXvQm4n9eOzH9qyBlMk 4MlWS2qJ9wZCI0eR31mKLE8LElmChmb0VkiBUmxgY0ty UUWdGG4i1GsEz8auW64t5flGvVPJ0CHMMJnIEHl1CDW6i DDwQe4QVe4c15dt6dD+dz1rri5DNHMAfn6xerKJUn</l atexit>

M32
<latexit sha1_base64="G8OBsxA5zVzGIqsUfu1V5OD ZBGk=">AAAB/HicbVA9SwNBEJ3zM8avqKXNYhCswiUKahewsREieEkgOcLeZi9Zs7t37O4J4Tj8C7baW4mt/8XWX+ ImucIkPhh4vDfDzLwg5kwb1/12VlbX1jc2C1vF7Z3dvf3SwWFTR4ki1CMRj1Q7wJpyJqlnmOG0HSuKRcBpKxjdTP zWE1WaRfLBjGPqCzyQLGQEGys173rpeS3rlcpuxZ0CLZNqTsqQo9Er/XT7EUkElYZwrHWn6sbGT7EyjHCaFbuJpjE mIzygHUslFlT76fTaDJ1apY/CSNmSBk3VvxMpFlqPRWA7BTZDvehNxP+8TmLCKz9lMk4MlWS2KEw4MhGavI76TFFi +NgSTBSztyIyxAoTYwOa2xKIrGhDqS5GsEy8WuW64t5flOu1PJ0CHMMJnEEVLqEOt9AADwg8wgu8wpvz7Lw7H87nr HXFyWeOYA7O1y+svJUo</latexit><latexit sha1_base64="G8OBsxA5zVzGIqsUfu1V5OD ZBGk=">AAAB/HicbVA9SwNBEJ3zM8avqKXNYhCswiUKahewsREieEkgOcLeZi9Zs7t37O4J4Tj8C7baW4mt/8XWX+ ImucIkPhh4vDfDzLwg5kwb1/12VlbX1jc2C1vF7Z3dvf3SwWFTR4ki1CMRj1Q7wJpyJqlnmOG0HSuKRcBpKxjdTP zWE1WaRfLBjGPqCzyQLGQEGys173rpeS3rlcpuxZ0CLZNqTsqQo9Er/XT7EUkElYZwrHWn6sbGT7EyjHCaFbuJpjE mIzygHUslFlT76fTaDJ1apY/CSNmSBk3VvxMpFlqPRWA7BTZDvehNxP+8TmLCKz9lMk4MlWS2KEw4MhGavI76TFFi +NgSTBSztyIyxAoTYwOa2xKIrGhDqS5GsEy8WuW64t5flOu1PJ0CHMMJnEEVLqEOt9AADwg8wgu8wpvz7Lw7H87nr HXFyWeOYA7O1y+svJUo</latexit><latexit sha1_base64="G8OBsxA5zVzGIqsUfu1V5OD ZBGk=">AAAB/HicbVA9SwNBEJ3zM8avqKXNYhCswiUKahewsREieEkgOcLeZi9Zs7t37O4J4Tj8C7baW4mt/8XWX+ ImucIkPhh4vDfDzLwg5kwb1/12VlbX1jc2C1vF7Z3dvf3SwWFTR4ki1CMRj1Q7wJpyJqlnmOG0HSuKRcBpKxjdTP zWE1WaRfLBjGPqCzyQLGQEGys173rpeS3rlcpuxZ0CLZNqTsqQo9Er/XT7EUkElYZwrHWn6sbGT7EyjHCaFbuJpjE mIzygHUslFlT76fTaDJ1apY/CSNmSBk3VvxMpFlqPRWA7BTZDvehNxP+8TmLCKz9lMk4MlWS2KEw4MhGavI76TFFi +NgSTBSztyIyxAoTYwOa2xKIrGhDqS5GsEy8WuW64t5flOu1PJ0CHMMJnEEVLqEOt9AADwg8wgu8wpvz7Lw7H87nr HXFyWeOYA7O1y+svJUo</latexit>

M̂13
<latexit sha1_base64="M ++nfhaiGf9NCoIBXDz8fN9hTDY=">AAACAnicbVBNS8N AFHzxs9avqkcvi0XwVJIqqLeCFy9CBWMLTSib7bZdurs JuxuhhBz9C1717km8+ke8+kvctjnY1oEHw8x7zGOihDNt XPfbWVldW9/YLG2Vt3d29/YrB4ePOk4VoT6JeazaEdaU M0l9wwyn7URRLCJOW9HoZuK3nqjSLJYPZpzQUOCBZH1Gs LFSEAyxye7ybuad591K1a25U6Bl4hWkCgWa3cpP0ItJK qg0hGOtO56bmDDDyjDCaV4OUk0TTEZ4QDuWSiyoDrPpz zk6tUoP9WNlRxo0Vf9eZFhoPRaR3RTYDPWiNxH/8zqp6V +FGZNJaqgks6B+ypGJ0aQA1GOKEsPHlmCimP0VkSFWmB hb01xKJPKyLcVbrGCZ+PXadc29v6g26kU7JTiGEzgDDy6 hAbfQBB8IJPACr/DmPDvvzofzOVtdcYqbI5iD8/ULqOi X9A==</latexit><latexit sha1_base64="M ++nfhaiGf9NCoIBXDz8fN9hTDY=">AAACAnicbVBNS8N AFHzxs9avqkcvi0XwVJIqqLeCFy9CBWMLTSib7bZdurs JuxuhhBz9C1717km8+ke8+kvctjnY1oEHw8x7zGOihDNt XPfbWVldW9/YLG2Vt3d29/YrB4ePOk4VoT6JeazaEdaU M0l9wwyn7URRLCJOW9HoZuK3nqjSLJYPZpzQUOCBZH1Gs LFSEAyxye7ybuad591K1a25U6Bl4hWkCgWa3cpP0ItJK qg0hGOtO56bmDDDyjDCaV4OUk0TTEZ4QDuWSiyoDrPpz zk6tUoP9WNlRxo0Vf9eZFhoPRaR3RTYDPWiNxH/8zqp6V +FGZNJaqgks6B+ypGJ0aQA1GOKEsPHlmCimP0VkSFWmB hb01xKJPKyLcVbrGCZ+PXadc29v6g26kU7JTiGEzgDDy6 hAbfQBB8IJPACr/DmPDvvzofzOVtdcYqbI5iD8/ULqOi X9A==</latexit><latexit sha1_base64="M ++nfhaiGf9NCoIBXDz8fN9hTDY=">AAACAnicbVBNS8N AFHzxs9avqkcvi0XwVJIqqLeCFy9CBWMLTSib7bZdurs JuxuhhBz9C1717km8+ke8+kvctjnY1oEHw8x7zGOihDNt XPfbWVldW9/YLG2Vt3d29/YrB4ePOk4VoT6JeazaEdaU M0l9wwyn7URRLCJOW9HoZuK3nqjSLJYPZpzQUOCBZH1Gs LFSEAyxye7ybuad591K1a25U6Bl4hWkCgWa3cpP0ItJK qg0hGOtO56bmDDDyjDCaV4OUk0TTEZ4QDuWSiyoDrPpz zk6tUoP9WNlRxo0Vf9eZFhoPRaR3RTYDPWiNxH/8zqp6V +FGZNJaqgks6B+ypGJ0aQA1GOKEsPHlmCimP0VkSFWmB hb01xKJPKyLcVbrGCZ+PXadc29v6g26kU7JTiGEzgDDy6 hAbfQBB8IJPACr/DmPDvvzofzOVtdcYqbI5iD8/ULqOi X9A==</latexit>

M̂32
<latexit sha 1_base64="ThegoSjOL8CA vLuzxs4I3ZbGeV4=">AAAC AnicbVBNS8NAFHzxs9avqk cvi0XwVNIqqLeCFy9CBWML TSib7aZdursJuxuhhBz9C17 17km8+ke8+kvctjnY1oEHw 8x7zGPChDNtXPfbWVldW9/ YLG2Vt3d29/YrB4ePOk4Vo R6Jeaw6IdaUM0k9wwynnUR RLEJO2+HoZuK3n6jSLJYPZp zQQOCBZBEj2FjJ94fYZHd5 Lztv5L1K1a25U6BlUi9IFQ q0epUfvx+TVFBpCMdad+tu YoIMK8MIp3nZTzVNMBnhAe 1aKrGgOsimP+fo1Cp9FMXKj jRoqv69yLDQeixCuymwGep FbyL+53VTE10FGZNJaqgks 6Ao5cjEaFIA6jNFieFjSzB RzP6KyBArTIytaS4lFHnZl lJfrGCZeI3adc29v6g2G0U 7JTiGEziDOlxCE26hBR4QSO AFXuHNeXbenQ/nc7a64hQ3 RzAH5+sXqn6X9Q==</late xit><latexit sha 1_base64="ThegoSjOL8CA vLuzxs4I3ZbGeV4=">AAAC AnicbVBNS8NAFHzxs9avqk cvi0XwVNIqqLeCFy9CBWML TSib7aZdursJuxuhhBz9C17 17km8+ke8+kvctjnY1oEHw 8x7zGPChDNtXPfbWVldW9/ YLG2Vt3d29/YrB4ePOk4Vo R6Jeaw6IdaUM0k9wwynnUR RLEJO2+HoZuK3n6jSLJYPZp zQQOCBZBEj2FjJ94fYZHd5 Lztv5L1K1a25U6BlUi9IFQ q0epUfvx+TVFBpCMdad+tu YoIMK8MIp3nZTzVNMBnhAe 1aKrGgOsimP+fo1Cp9FMXKj jRoqv69yLDQeixCuymwGep FbyL+53VTE10FGZNJaqgks 6Ao5cjEaFIA6jNFieFjSzB RzP6KyBArTIytaS4lFHnZl lJfrGCZeI3adc29v6g2G0U 7JTiGEziDOlxCE26hBR4QSO AFXuHNeXbenQ/nc7a64hQ3 RzAH5+sXqn6X9Q==</late xit><latexit sha 1_base64="ThegoSjOL8CA vLuzxs4I3ZbGeV4=">AAAC AnicbVBNS8NAFHzxs9avqk cvi0XwVNIqqLeCFy9CBWML TSib7aZdursJuxuhhBz9C17 17km8+ke8+kvctjnY1oEHw 8x7zGPChDNtXPfbWVldW9/ YLG2Vt3d29/YrB4ePOk4Vo R6Jeaw6IdaUM0k9wwynnUR RLEJO2+HoZuK3n6jSLJYPZp zQQOCBZBEj2FjJ94fYZHd5 Lztv5L1K1a25U6BlUi9IFQ q0epUfvx+TVFBpCMdad+tu YoIMK8MIp3nZTzVNMBnhAe 1aKrGgOsimP+fo1Cp9FMXKj jRoqv69yLDQeixCuymwGep FbyL+53VTE10FGZNJaqgks 6Ao5cjEaFIA6jNFieFjSzB RzP6KyBArTIytaS4lFHnZl lJfrGCZeI3adc29v6g2G0U 7JTiGEziDOlxCE26hBR4QSO AFXuHNeXbenQ/nc7a64hQ3 RzAH5+sXqn6X9Q==</late xit>

M̂31
<latexit sha 1_base64="t/K5Zs9pYg20 AcPAKK6U+DFozCU=">AAAC AnicbVBNS8NAFHzxs9avqk cvi0XwVJIqqLeCFy9CBWML TSib7bZdursJuxuhhBz9C17 17km8+ke8+kvctjnY1oEHw 8x7zGOihDNtXPfbWVldW9/ YLG2Vt3d29/YrB4ePOk4Vo T6JeazaEdaUM0l9wwyn7UR RLCJOW9HoZuK3nqjSLJYPZp zQUOCBZH1GsLFSEAyxye7y bnbu5d1K1a25U6Bl4hWkCg Wa3cpP0ItJKqg0hGOtO56b mDDDyjDCaV4OUk0TTEZ4QD uWSiyoDrPpzzk6tUoP9WNlR xo0Vf9eZFhoPRaR3RTYDPW iNxH/8zqp6V+FGZNJaqgks 6B+ypGJ0aQA1GOKEsPHlmC imP0VkSFWmBhb01xKJPKyL cVbrGCZ+PXadc29v6g26kU 7JTiGEzgDDy6hAbfQBB8IJP ACr/DmPDvvzofzOVtdcYqb I5iD8/ULqOqX9A==</late xit><latexit sha 1_base64="t/K5Zs9pYg20 AcPAKK6U+DFozCU=">AAAC AnicbVBNS8NAFHzxs9avqk cvi0XwVJIqqLeCFy9CBWML TSib7bZdursJuxuhhBz9C17 17km8+ke8+kvctjnY1oEHw 8x7zGOihDNtXPfbWVldW9/ YLG2Vt3d29/YrB4ePOk4Vo T6JeazaEdaUM0l9wwyn7UR RLCJOW9HoZuK3nqjSLJYPZp zQUOCBZH1GsLFSEAyxye7y bnbu5d1K1a25U6Bl4hWkCg Wa3cpP0ItJKqg0hGOtO56b mDDDyjDCaV4OUk0TTEZ4QD uWSiyoDrPpzzk6tUoP9WNlR xo0Vf9eZFhoPRaR3RTYDPW iNxH/8zqp6V+FGZNJaqgks 6B+ypGJ0aQA1GOKEsPHlmC imP0VkSFWmBhb01xKJPKyL cVbrGCZ+PXadc29v6g26kU 7JTiGEzgDDy6hAbfQBB8IJP ACr/DmPDvvzofzOVtdcYqb I5iD8/ULqOqX9A==</late xit><latexit sha 1_base64="t/K5Zs9pYg20 AcPAKK6U+DFozCU=">AAAC AnicbVBNS8NAFHzxs9avqk cvi0XwVJIqqLeCFy9CBWML TSib7bZdursJuxuhhBz9C17 17km8+ke8+kvctjnY1oEHw 8x7zGOihDNtXPfbWVldW9/ YLG2Vt3d29/YrB4ePOk4Vo T6JeazaEdaUM0l9wwyn7UR RLCJOW9HoZuK3nqjSLJYPZp zQUOCBZH1GsLFSEAyxye7y bnbu5d1K1a25U6Bl4hWkCg Wa3cpP0ItJKqg0hGOtO56b mDDDyjDCaV4OUk0TTEZ4QD uWSiyoDrPpzzk6tUoP9WNlR xo0Vf9eZFhoPRaR3RTYDPW iNxH/8zqp6V+FGZNJaqgks 6B+ypGJ0aQA1GOKEsPHlmC imP0VkSFWmBhb01xKJPKyL cVbrGCZ+PXadc29v6g26kU 7JTiGEzgDDy6hAbfQBB8IJP ACr/DmPDvvzofzOVtdcYqb I5iD8/ULqOqX9A==</late xit>

M̂23
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Fig. 6: The information flow of MA/DB TWCs.

i.e., PY1,i,Y2,i,Y3,i|Xi
{1,2,3}

,Y
i−1

{1,2,3}
= PY1,i,Y2,i,Y3,i|X1,i,X2,i,X3,i

for all i. Furthermore, the two direc-

tions of transmission are assumed to interact in a way such that PY1,i,Y2,i,Y3,i|X1,i,X2,i,X3,i
=

PY1,i,Y2,i|X1,i,X2,i,X3,i
· PY3,i|X1,i,X2,i,X3,i

. Let all channel input and output alphabets other than Y3

equal Q , {0, 1, ..., q − 1} for some q ≥ 2. The MA/DB TWC is defined by the transition

probability PY3|X1,X2,X3
in the MA direction and the transmission equations in the DB direction

are given by

Y1,i = X1,i ⊕q X3,i ⊕q Z1,i, (40)

Y2,i = X2,i ⊕q X3,i ⊕q Z1,i ⊕q Z2,i, (41)

for i = 1, 2, ..., n, where Z1,i, Z2,i ∈ Q denote additive noise variables, the components of

the memoryless and independent noise processes {Z1,i}
n
i=1 and {Z2,i}

n
i=1, respectively. We also

assume that the channel noise processes are independent of all users’ messages. Thus, the channel

transition probability of this MA/DB TWC at time i can be written as

PY1,i,Y2,i,Y3,i|Xi
1
,Xi

2
,Xi

3
,Y

i−1

1
,Y

i−1

2
,Y

i−1

3

(y1,i, y2,i, y3,i|x
i
1, x

i
2, x

i
3, y

i−1
1 , yi−1

2 , yi−1
3 )

= PY1,i,Y2,i,Y3,i|X1,i,X2,i,X3,i
(y1,i, y2,i, y3,i|x1,i, x2,i, x3,i)

= PY3,i|X1,i,X2,i,X3,i
(y3,i|x1,i, x2,i, x3,i) · PY1,i|X1,i,X2,i,X3,i,Y3,i

(y1,i|x1,i, x2,i, x3,i, y3,i)

·PY2,i|X1,i,X2,i,X3,i,Y1,i,Y3,i
(y2,i|x1,i, x2,i, x3,i, y1,i, y3,i)

= PY3|X1,X2,X3
(y3,i|x1,i, x2,i, x3,i · PZ1

(y1,i ⊖q x1,i ⊖q x3,i) · PZ2
(y2,i ⊖q x2,i ⊖q y1,i ⊕q x1,i),

where ⊖q denotes modulo-q subtraction.

We next define channel codes, achievable rates, and channel capacity for the MA/DB TWC.

Definition 4: An (n,R13, R23, R31, R32) channel code for the memoryless MA/DB TWC

consists of four message sets M13 = {1, 2, ..., 2nR13}, M23 = {1, 2, ..., 2nR23}, M31 =
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{1, 2, ..., 2nR31}, M32 = {1, 2, ..., 2nR32}, three sequences of encoding functions: fn
1 =

(f1,1, f1,2, ..., f1,n), f
n
2 = (f2,1, f2,2, ..., f2,n), f

n
3 = (f3,1, f3,2, ..., f3,n) such that

X1,1 = f1,1(M13), X1,i = f1,i(M13, Y
i−1
1 ), (42)

X2,1 = f2,1(M23), X2,i = f2,i(M23, Y
i−1
2 ), (43)

X3,1 = f3,1(M31,M32), X3,i = f3,i(M31,M32, Y
i−1
3 ), (44)

for i = 2, 3, . . . , n, and three decoding functions g1, g2, and g3, such that M̂31 = g1(M13, Y
n
1 ),

M̂32 = g2(M23, Y
n
2 ), and (M̂13, M̂23) = g3(M31,M32, Y

n
3 ).

When messages are encoded via the channel code, the probability of decoding error is defined

as P
(n)
e (fn

1 , f
n
2 , f

n
3 , g1, g2, g3) = Pr{M̂13 6= M13 or M̂23 6= M23 or M̂31 6= M31 or M̂32 6= M32}.

Definition 5: A rate quadruple (R13, R23, R31, R32) is said to be achievable for the memoryless

MA/DB TWC if there exists a sequence of (n,R13, R23, R31, R32) codes with limn→∞ P
(n)
e = 0.

Definition 6: The capacity region CMA-DBC of the memoryless MA/DB TWC is the closure of

the convex hull of all achievable rate quadruples (R13, R23, R31, R32).

B. Capacity Inner and Outer Bounds for the Memoryless MA/DB TWCs

Let RMA-DBC(PX1,X2,X3,V , PY3|X1,X2,X3
, PZ1

, PZ2
) denote the set of rate quadruples

(R13, R23, R31, R32) which satisfy the constraints

R13 ≤ I(X1; Y3|X2, X3),

R23 ≤ I(X2; Y3|X1, X3),

R13 +R23 ≤ I(X1, X2; Y3|X3),

R31 ≤ I(X3;X3 ⊕q Z1|V ),

R32 ≤ I(V ;X3 ⊕q Z1 ⊕q Z2),

where V is an auxiliary random variable with alphabet V such that |V| ≤ q + 1 and

the mutual information terms are evaluated according to the joint probability distribution

PX1,X2,X3,V,Y3,Z1,Z2
= PX1,X2,X3,V ·PY3|X1,X2,X3

·PZ1
·PZ2

. We next establish a Shannon-type inner

bound and an outer bound for the capacity of MA/DB TWCs in Theorems 11 and 12, respectively.

Note that the achievable scheme in Theorem 11 is given by combining Shannon’s standard (non-

adaptive) coding schemes for the MAC [8, Theorem 4.2] and the DBC [8, Theorem 5.2], and

hence the proof is omitted here. The derivation for the outer bound is given in Appendix B.
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Theorem 11 (Inner Bound): For a memoryless MA/DB TWC with MA transition probability

PY3|X1,X2,X3
and DB noise distributions PZ1

and PZ2
, any rate quadruple (R13, R23, R31, R32) ∈

CMA-DBC
I (PY3|X1,X2,X3

, PZ1
, PZ2

) is achievable, where

CMA-DBC
I (PY3|X1,X2,X3

, PZ1
, PZ2

) , co

(

⋃

PX1
,PX2

,PV,X3

RMA-DBC(PX1
·PX2
·PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2
)

)

.

Theorem 12 (Outer Bound): For a memoryless MA/DB TWC with MA transition prob-

ability PY3|X1,X2
and DB noise distributions PZ1

and PZ2
, all achievable rate quadruples

(R13, R23, R31, R32) belong to CMA-DBC
O (PY3|X1,X2,X3

, PZ1
, PZ2

), where

CMA-DBC
O (PY3|X1,X2,X3

, PZ1
, PZ2

) , co

(

⋃

PX1,X2,X3,V

RMA-DBC(PX1,X2,X3,V , PY3|X1,X2,X3
, PZ1

, PZ2
)

)

.

C. Conditions for the Tightness of the Inner and Outer Bounds

The inner and outer bounds derived in the previous section are of the same form but have

different restrictions on the joint distribution PX1,X2,X3,V , and hence they do not match. Here,

we establish conditions under which the two bounds have matching input distributions, implying

that they coincide and yield the capacity region. The proofs of Theorems 13-15 are given in

Appendices C-E, respectively.

Theorem 13: The inner and outer capacity bounds in Theorems 11 and 12 coincide if for every

conditional input distribution P
(1)
X1,X2|X3

, there exists a product input distribution P
(2)
X1,X2|X3

=

P̃X1
·P̃X2

(which depends on P
(1)
X1,X2|X3

) such that

I(1)(X1; Y3|X2, X3 = x3) ≤ I(2)(X1; Y3|X2, X3 = x3) (45)

I(1)(X2; Y3|X1, X3 = x3) ≤ I(2)(X2; Y3|X1, X3 = x3) (46)

I(1)(X1, X2; Y3|X3 = x3) ≤ I(2)(X1, X2; Y3|X3 = x3) (47)

hold for all x3 ∈ X3. Under this condition, the capacity region is given by

CMA-DBC = co

(

⋃

PX1
,PX2

,PV,X3

RMA-DBC
(

PX1
·PX2
·PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2

)

)

.

A special case of the above theorem is when P̃X1
· · P̃X2

does not depend on PX1,X2|X3
. This

case may happen when PY3|X1,X2,X3
has a strong symmetry property.
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Corollary 6: The inner and outer capacity bounds in Theorems 11 and 12 coincide if there

exists an input distributions P
(2)
X1,X2

= P ∗
X1
· P ∗

X2
such that for all P

(1)
X1,X2|X3

and x3 ∈ X3 the

inequalities given in (45)-(47) hold. In this case, the capacity region is given by

CMA-DBC = co

(

⋃

PV,X3

RMA-DBC
(

P ∗
X1
·P ∗

X2
·PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2

)

)

.

The next result is derived by treating the channel as a composition of state-dependent one-way

channels.

Theorem 14: The inner and outer capacity bounds in Theorems 11 and 12 coincide if the

following conditions hold:

(i) There exists P ∗
X1
∈ P(X1) such that

argmax
PX1|X2=x2,X3=x3

I(X1; Y3|X2 = x2, X3 = x3) = P ∗
X1

for all x2 ∈ X2 and x3 ∈ X3, and

I(P ∗
X1
, PY3|X1,X2=x2,X3=x3

)

does not depend on x2 for every fixed x3;

(ii) For any PX2
∈ P(X2), I(PX2

, PY3|X1=x1,X2,X3=x3
) does not depend on x1 ∈ X1 and x3 ∈ X3;

(iii) For any fixed PX1,X2
, we have that the mutual information I(PX1,X2

, PY3|X1,X2,X3=x3
) does

not depend on x3 ∈ X3, and for each x3 ∈ X3 we have that

I(PX1,X2
, PY3|X1,X2,X3=x3

) ≤ I(P ∗
X1
· PX2

, PY3|X1,X2,X3=x3
),

where P ∗
X1

is given by condition (i) and PX2
(x2) =

∑

x1
PX1,X2

(x1, x2) for x2 ∈ X2.

Under this condition, the capacity region is given by

CMA-DBC = co

(

⋃

PX2
,PV,X3

RMA-DBC
(

P ∗
X1
·PX2
·PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2

)

)

.

Next, we derive our last sufficient condition by generalizing Shannon’s condition (in Propo-

sition 1) to the three-user setting. This new condition is easier to verify than the previous ones.

Theorem 15: The inner and outer capacity bounds in Theorems 11 and 12 coincide if the

following conditions hold:

(i) For any relabeling τX1

x′
1
,x′′

1

on X1, there exists a permutation πY3 [x′
1, x

′′
1] on Y3 such that for

all x1, x2, x3, and y3, we have

PY3|X1,X2,X3
(y3|x1, x2, x3)= PY3|X1,X2,X3

(

πY3 [x′
1, x

′′
1](y3)

∣

∣τX1

x′
1
,x′′

1

(x1), x2, x3

)

; (48)
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(ii) For any relabeling τX2

x′
2
,x′′

2

on X2, there exists a permutation on πY3[x′
2, x

′′
2] on Y3 such that

for all x1, x2, x3, and y3, we have

PY3|X1,X2,X3
(y3|x1, x2, x3)= PY3|X1,X2,X3

(

πY3 [x′
1, x

′′
1](y3)

∣

∣x1, τ
X2

x′
2
,x′′

2

(x2), x3

)

. (49)

Under these conditions, the capacity region is given by

CMA-DBC= co

(

⋃

PV,X3

RMA-DBC
(

PU
X1
·PU

X2
·PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2

)

)

, (50)

where PU
Xi

denotes uniform probability distribution on Xi for i = 1, 2.

D. Examples

We next illustrate Theorems 13-15 via three examples.

Example 8 (Additive-Noise MA/DB TWC): Consider a discrete memoryless additive-noise

MA/DB TWC in which the inputs and outputs of the DBC are described by (40) and (41) and

the inputs and outputs of MAC are related via

Y3,i = X1,i ⊕q X2,i ⊕q X3,i ⊕q Z3,i, (51)

where {Z3,i}
∞
i=1 with Z3,i ∈ Q is a discrete memoryless noise process which is independent of

all user messages and the noise processes {Z1,i}
∞
i=1 and {Z2,i}

∞
i=1. For any x3 ∈ X3, we have

the following bounds:

I(X1; Y3|X2, X3 = x3) = H(Y3|X2, X3 = x3)−H(Y3|X1, X2, X3 = x3) ≤ log2 q −Hb(Z3),

I(X2; Y3|X1, X3 = x3) = H(Y3|X1, X3 = x3)−H(Y3|X1, X2, X3 = x3) ≤ log2 q −Hb(Z3),

I(X1, X2; Y3|X3 = x3) = H(Y3|X3 = x3)−H(Y3|X1, X2, X3 = x3) ≤ log2 q −Hb(Z3),

where equalities hold when PX1,X2
= PU

X1
·PU

X2
. Choosing P̃X1

= PU
X1

and P̃X2
= PU

X2
, it is clear

that (45)-(47) in Theorem 13 hold, and hence the capacity region given by

CMA-DBC = co





⋃

PV,X3

RMA-DBC
(

PU
X1
·PU

X2
·PU,X3

, PY3|X1,X2,X3
, PZ1

, PZ2

)





= co

(

⋃

PV,X3

{

(R13, R23, R31, R32) : R13 +R23 ≤ log2 q −Hb(Z3),

R31 ≤ I(X1;X3 ⊕2 Z1|V ),

R32 ≤ I(X2 ⊕ Z1 ⊕ Z2;V )
}

)

.
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Example 9: Suppose that X1 = X2 = X3 = {0, 1}, Y1 = Y2 = {0, 1}, and Y3 = {0, 1, 2}. We

consider a discrete memoryless MA/DB TWC in which the DB direction is described by (40)

and (41) and the channel transition matrix [PY3|X1,X2,X3
(·|·, ·, ·)] for the MA direction is given

by







































0 1 2

000 1− ε 0 ε

100 1− ε 0 ε

010 0 1− ε ε

110 0 1− ε ε

001 0 ε 1− ε

101 0 ε 1− ε

011 1− ε ε 0

111 1− ε ε 0







































where 0 ≤ ε ≤ 1. Since each marginal channel governed by the transition matrix

[PY3|X1,X2,X3
(·|·, x2, x3)] is quasi-symmetric, we immediately have that P ∗

X1
= PU

X1
. Also, since

[PY3|X1,X2,X3
(·|·, x2, x3)], x2 ∈ X2 and x3 ∈ X3, are column permutations of each other, for any

fixed x3 ∈ X3, I(P
∗
X1
, PY3|X1,X2=x2,X3=x3

) does not depend on x2 ∈ X2. Thus, condition (i) of

Theorem 14 holds. Moreover, condition (ii) holds since the matrices [PY3|X1,X2,X3
(·|x1, ·, x3)],

x1 ∈ X1 and x3 ∈ X3, are column permutations of each other.

Verifying condition (iii) involves several steps. We first observe that I(PX1,X2
, PY3|X1,X2,X3=x3

)

does not depend on x3 ∈ X3 for any fixed PX1,X2
since the matrices [PY3|X1,X2,X3

(·|·, ·, x3)],

x3 ∈ X3, are column permutations of each other. From (97) and (98) in Appendix D, it suffices

to consider input distributions of this form: PX1,X2,X3,V = PX1,X2
· PX3,V . Thus, given any

P
(1)
X1,X2,X3,V

= P
(1)
X1,X2

·P
(1)
X3,V

, we define P
(2)
X1,X2,X3,V

(x1, x2, x3, v) = P
(1)
X1,X2,X3,V

(x1⊕21, x2, x3, v)

for all x1, x2, x3, v. Also, let P
(3)
X1,X2,X3,V

= 1
2
(P

(1)
X1,X2,X3,V

+ P
(2)
X1,X2,X3,V

) so that we have

P
(3)
X1,X2,X3,V

= P
(3)
X1
·P

(1)
X2
·P

(1)
X3,V

with P
(3)
X1

= PU
X1

= P ∗
X1

. Now, since (48) holds in this example,

one can directly obtain that I(1)(X1, X2; Y3|X3 = x3) ≤ I(3)(X1, X2; Y3|X3 = x3) from the proof

of Lemma 7. As a result, this TWC satisfies all conditions of Theorem 14 and has capacity region

given by

CMA-DBC= co

(

⋃

PX2
,PV,X3

RMA-DBC
(

PU
X1
·PX2
·PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2

)

)

.

October 2, 2019 DRAFT



40

Example 10 (Binary MA/DB TWC with Erasures): Suppose that X1 = X2 = X3 = {0, 1},

Y1 = Y2 = {0, 1}, and Y3 = {0, 1,E}, where E denotes erasure symbol. We consider a discrete

memoryless MA/DB TWC in which the DBC direction is described by (40) and (41) and the

MAC direction is described by

Y3,i = (X1,i ⊕2 X2,i ⊕2 X3,i)·1{Z3,i 6= E}+E·1{Z3,i = E}, (52)

where {Z3,i}
∞
i=1 with Z3,i ∈ {0,E} is a discrete memoryless noise process which is independent

of all users’ messages and the noise processes {Z1,i}
∞
i=1 and {Z2,i}

∞
i=1. Also, we assume that

Pr(Z3,i = E) = ε for all i, thereby obtaining the channel transition matrix [PY3|X1,X2,X3
(·|·, ·, ·)]:







































0 1 E

000 1− ε 0 ε

100 0 1− ε ε

010 0 1− ε ε

110 1− ε 0 ε

001 0 1− ε ε

101 1− ε 0 ε

011 1− ε 0 ε

111 0 1− ε ε







































.

It can be directly verified that (48) and (49) in Theorem 15 hold. Hence, the inner and outer

bounds coincide and the capacity region is given by

CMA-DBC = co

(

⋃

PV,X3

RMA-DBC
(

PU
X1
·PU

X2
·PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2

)

)

= co

(

⋃

PV,X3

{

(R13, R23, R31, R32) : R13 +R23 ≤ 1−Hb(ǫ),

R31 ≤ I(X1;X3 ⊕2 Z1|V ),

R32 ≤ I(X2 ⊕2 Z1 ⊕2 Z2;V )
}

)

.

Remark 8: Examples 9 and 10 also satisfy Theorem 13 since the product distribution P̃X1
·P̃X2

required by Theorem 13 are explicitly given in these examples. Moreover, it is straightforward to

show that Examples 9 and 10 do not satisfy the conditions of Theorems 15 and 14, respectively.

In other words, Theorems 14 and 15 are neither equivalent nor special cases of each other.

October 2, 2019 DRAFT



41

V. CONCLUSION

We have identified salient symmetry conditions for three types of two-way noisy networks:

two-user TWCs with and without memory, and three-user MA/DB TWCs, under which Shannon-

type random coding inner bounds exactly yield channel capacity. These tightness results, which

subsume previously established symmetry properties as special cases, delineate large families

of TWCs for which user interactive adaptive coding is not beneficial in terms of improving

capacity. Future research directions include identifying necessary conditions for the tightness of

Shannon-type inner bounds and deriving conditions under which Han’s adaptive coding inner

bound [13] is tight. An additional interesting avenue of investigation is to examine whether

adaptive coding is useful for the (almost) lossless and lossy transmission of correlated sources

over TWCs whose capacity are achievable by the Shannon-type random coding scheme.

APPENDIX

A. Proof of Proposition 1 (Shannon’s One-sided Symmetry Condition)

The proof of Proposition 1 is based on the following lemmas.

Lemma 4: If a memoryless TWC satisfies the conditions in Proposition 1, then for any input

distribution P
(1)
X1,X2

, any x′
1, x′′

1 ∈ X1, and P
(2)
X1,X2

(·, ·) , P
(1)
X1,X2

(τX1

x′
1
,x′′

1

(·), ·), the following hold:

I(1)(X1; Y2|X2) = I(2)(X1; Y2|X2), (53)

I(1)(X2; Y1|X1) = I(2)(X2; Y1|X1), (54)

R(P
(1)
X1,X2

, PY1,Y2|X1,X2
) = R(P

(2)
X1,X2

, PY1,Y2|X1,X2
). (55)

Proof: For any P
(1)
X1,X2

and P
(2)
X1,X2

(·, ·) , P
(1)
X1,X2

(τX1

x′
1
,x′′

1

(·), ·), we have

I(2)(X1; Y2|X2)

=
∑

x2

P
(2)
X2

(x2) · I
(2)(X1; Y2|X2 = x2)

=
∑

x2

P
(2)
X2

(x2)
∑

x1,y2

P
(2)
X1|X2

(x1|x2) · PY2|X1,X2
(y2|x1, x2) · log

PY2|X1,X2
(y2|x1, x2)

P
(2)
Y2|X2

(y2|x2)

=
∑

x1,x2,y2

P
(2)
X1,X2

(x1, x2) · PY2|X1,X2
(y2|x1, x2) · log

PY2|X1,X2
(y2|x1, x2)

∑

x̃1
P

(2)
X1|X2

(x̃1|x2)·PY2|X1,X2
(y2|x̃1, x2)

=
∑

x1,x2,y2

P
(1)
X1,X2

(τX1

x′
1
,x′′

1

(x1), x2) · PY2|X1,X2
(πY2 [x′

1, x
′′
1](y2)|τ

X1

x′
1
,x′′

1

(x1), x2)
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·log
PY2|X1,X2

(πY2[x′
1, x

′′
1](y2)|τ

X1

x′
1
,x′′

1

(x1), x2)
∑

x̃1
P

(1)
X1|X2

(τX1

x′
1
,x′′

1

(x̃1)|x2)·PY2|X1,X2
(πY2[x′

1, x
′′
1](y2)|τ

X1

x′
1
,x′′

1

(x̃1), x2)
(56)

=
∑

x1,x2,y2

P
(1)
X1,X2

(τX1

x′
1
,x′′

1

(x1), x2) · PY2|X1,X2
(πY2

2 [x′
1, x

′′
1](y2)|τ

X1

x′
1
,x′′

1

(x1), x2)

·log
PY2|X1,X2

(πY2 [x′
1, x

′′
1](y2)|τ

X1

x′
1
,x′′

1

(x1), x2)
∑

x̃1
P

(1)
X1|X2

(x̃1|x2)PY2|X1,X2
(πY2 [x′

1, x
′′
1](y2)|x̃1, x2)

(57)

=
∑

x1,x2,y2

·P
(1)
X1,X2

(τX1

x′
1
,x′′

1

(x1), x2) · PY2|X1,X2
(πY2

2 [x′
1, x

′′
1](y2)|τ

X1

x′
1
,x′′

1

(x1), x2)

· log
PY2|X1,X2

(πY2[x′
1, x

′′
1](y2)|τ

X1

x′
1
,x′′

1

(x1), x2)

P
(1)
Y2|X2

(πY2 [x′
1, x

′′
1](y2)|x2)

=
∑

x1,x2,ỹ2

P
(1)
X1,X2

(τX1

x′
1
,x′′

1

(x1), x2) · PY2|X1,X2
(ỹ2|τ

X1

x′
1
,x′′

1

(x1), x2) · log
PY2|X1,X2

(ỹ2|τ
X1

x′
1
,x′′

1

(x1), x2)

P
(1)
Y2|X2

(ỹ2|x2)
(58)

=
∑

x̃1,x2,ỹ2

P
(1)
X1,X2

(x̃1, x2) · PY2|X1,X2
(ỹ2|x̃1, x2) · log

PY2|X1,X2
(ỹ2|x̃1, x2)

P
(1)
Y2|X2

(ỹ2|x2)
(59)

= I(1)(X1; Y2|X2), (60)

where (56) holds by the definition of P
(2)
X1,X2

(x1, x2) and the fact that PY2|X1,X2
(y2|x1, x2) =

PY2|X1,X2
(πY2[x′

1, x
′′
1](y2)|τ

X1

x′
1
,x′′

1

(x1), x2) due to the Shannon condition in (2), (57) and (59) hold

since τX1

x′
1
,x′′

1

is a bijection, and (58) holds since πY2 [x′
1, x

′′
1] is a bijection.

By a similar argument, we can verify that I(1)(X2; Y1|X1) = I(2)(X2; Y1|X1). The proof is then

completed by noting that the identity R(P
(1)
X1,X2

, PY1,Y2|X1,X2
) = R(P

(2)
X1,X2

, PY1,Y2|X1,X2
) follows

from the definition of R in (1).

Lemma 5: If a memoryless TWC satisfies the condition in Proposition 1, then for any input

distribution P
(1)
X1,X2

, any x′
1, x′′

1 ∈ X1, and P
(2)
X1,X2

(·, ·) , P
(1)
X1,X2

(τX1

x′
1
,x′′

1

(·), ·), we have

R(P
(1)
X1,X2

, PY1,Y2|X1,X2
) ⊆ R(P

(3)
X1,X2

, PY1,Y2|X1,X2
) (61)

where P
(3)
X1,X2

(x1, x2),
1
2
(P

(1)
X1,X2

(x1, x2)+P
(2)
X1,X2

(x1, x2)).

Proof: The proof relies on the concavity of I(X1; Y2|X2) and I(X2; Y1|X1) in PX1,X2
[3].

For any given P
(1)
X1,X2

and P
(2)
X1,X2

(·, ·) = P
(1)
X1,X2

(τX1

x′
1
,x′′

1

(·), ·), let P
(3)
X1,X2

= 1
2
(P

(1)
X1,X2

+ P
(2)
X1,X2

).

The concavity property then implies that

I(3)(X1; Y2|X2) ≥
1

2

(

I(1)(X1; Y2|X2) + I(2)(X1; Y2|X2)
)

(62)

= I(1)(X1; Y2|X2), (63)
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and that

I(3)(X2; Y1|X1) ≥
1

2

(

I(1)(X2; Y1|X1) + I(2)(X2; Y1|X1)
)

(64)

= I(1)(X2; Y1|X1), (65)

where (63) and (65) follow from Lemma 4. The proof is completed by invoking the definition

of R in (1).

Lemma 6: If a memoryless TWC satisfies the condition in Proposition 1, then for any given

input distribution PX1,X2
= PX1|X2

PX2
, we have

R(PX1,X2
, PY1,Y2|X1,X2

) ⊆ R
(

PU
X1
·PX2

, PY1,Y2|X1,X2

)

, (66)

where PU
X1

denotes the uniform probability distribution on X1.

Proof: Without loss of generality, we assume that X1 , {1, 2, ..., κ}. Define Pm =

{PX1,X2
∈ P(X1 × X2) : PX1,X2

(1, x2) = PX1,X2
(2, x2) = · · · = PX1,X2

(m, x2) for all x2 ∈ X2},

where 1 ≤ m ≤ κ. Lemma 5 shows that for any P
(1)
X1,X2

∈ P1, one can construct P
(3)
X1,X2

∈ P2

in such a way that (61) holds. We now extend this result by induction on m showing

that for any P
(1)
X1,X2

∈ Pm with 2 ≤ m < κ, there exists a P
(m+2)
X1,X2

∈ Pm+1 such that

R(P
(1)
X1,X2

, PY1,Y2|X1,X2
) ⊆ R(P

(m+2)
X1,X2

, PY1,Y2|X1,X2
).

Suppose that the above claim is true up to m for some 1 ≤ m < κ, where the base case

m = 1 was proved in Lemma 5. We next prove the claim for m + 1. For any P
(1)
X1,X2

∈ Pm,

define

P
(m+2)
X1,X2

(x1, x2) ,
1

m+ 1

m+1
∑

i=1

P
(i)
X1,X2

(x1, x2),

where P
(i)
X1,X2

(·, ·) , P
(1)
X1,X2

(τX1

i−1,m+1(·), ·) for 2 ≤ i ≤ m+ 1. Due to the Shannon’s one-sided

symmetry condition and Lemma 4, we have that I(i)(X1; Y2|X2) = I(1)(X1; Y2|X2) and that

I(i)(X2; Y1|X1) = I(1)(X2; Y1|X1) for 2 ≤ i ≤ m+ 1. Concavity then implies that

I(m+2)(X1; Y2|X2) ≥
1

m+ 1

m+1
∑

i=1

I(i)(X1; Y2|X2)

= I(1)(X1; Y2|X2).

Similarly, we obtain that I(m+2)(X2; Y1|X1)≥I
(1)(X2; Y1|X1). Moreover, since P

(1)
X1,X2

∈ Pm, we

have that P
(m+2)
X1,X2

(x1, x2) = (m ·P
(1)
X1,X2

(1, x2)+P
(1)
X1,X2

(m+1, x2))/(m+1) for 1 ≤ x1 ≤ m+1

and all x2 ∈ X2, i.e., P
(m+2)
X1,X2

∈ Pm+1, thereby proving the claim.
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Since any PX1,X2
= PX1|X2

·PX2
∈ Pκ can be expressed as PU

X1
·PX2

, in view of the definition

of R the proof is completed.

We are now ready to prove Proposition 1.

Proof of Proposition 1: Note that

CO(PY1,Y2|X1,X2
) = co





⋃

PX1,X2

R(PX1,X2
, PY1,Y2|X1,X2

)





⊆ co





⋃

PX2

R
(

PU
X1
·PX2

, PY1,Y2|X1,X2

)



 (67)

⊆ CI(PY1,Y2|X1,X2
), (68)

where (67) follows from Lemma 6. Together with CI(PY1,Y2|X1,X2
) ⊆ CO(PY1,Y2|X1,X2

), this gives:

C = CI(PY1,Y2|X1,X2
)

= CO(PY1,Y2|X1,X2
)

= co





⋃

PX2

R
(

PU
X1
·PX2

, PY1,Y2|X1,X2

)



 . (69)

We remark that, based on the proof of Proposition 1, it is straightforward to prove Shannon’s

two-sided symmetry condition in Proposition 2.

B. Proof of Theorem 12

Proof: Suppose that (R13, R23, R31, R32) is an achievable quadruple. We derive the necessary

conditions for those rates by the standard converse method. For R13, we have

n·R13

= H(M13|M23,M31,M32)

= I(M13; Y
n
3 |M23,M31,M32)−H(M13|Y

n
3 ,M23,M31,M32)

≤ I(M13; Y
n
3 |M23,M31,M32) + n·ǫn (70)

≤ I(M13; Y
n
2 , Y

n
3 |M23,M31,M32) + n·ǫn

=
n
∑

i=1

I(M13; Y2,i, Y3,i|Y
i−1
2 , Y i−1

3 ,M23,M31,M32) + n·ǫn
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=
n
∑

i=1

(

H(Y2,i, Y3,i|X2,i, X3,i, Y
i−1
2 , Y i−1

3 ,M23,M31,M32)

−H(Y2,i, Y3,i|X2,i, X3,i, Y
i−1
2 , Y i−1

3 ,M23,M31,M32,M13)
)

+ n·ǫn (71)

≤
n
∑

i=1

(

H(Y2,i, Y3,i|X2,i, X3,i)−H(Y2,i, Y3,i|X1,i, X2,i, X3,i)
)

+ n·ǫn (72)

=
n
∑

i=1

I(X1,i; Y2,i, Y3,i|X2,i, X3,i) + n·ǫn

=

n
∑

i=1

I(X1,i;X2,i ⊕q X3,i ⊕q Z1,i ⊕q Z2,i, Y3,i|X2,i, X3,i) + n·ǫn

=

n
∑

i=1

I(X1,i; Y3,i|X2,i, X3,i) + I(X1,i;Z1,i ⊕q Z2,i|Y3,i, X2,i, X3,i) + n·ǫn

=
n
∑

i=1

I(X1,i; Y3,i|X2,i, X3,i) + n·ǫn, (73)

where (70) follows from Fano’s inequality with ǫn → 0 as n → ∞, (71) holds since X2,i =

f2,i(M23, Y
i−1
2 ) and X3,i = f3,i(M31,M32, Y

i−1
3 ), (72) follows since the channel is memoryless,

and (73) follows since (Z1,i, Z2,i) is independent of (Y3,i, X1,i, X2,i, X3,i). By symmetry, we also

have

n·R23 ≤

n
∑

i=1

I(X2,i; Y3,i|X1,i, X3,i) + n·ǫn. (74)

For the sum rate R13 +R23, we have

n · (R13 +R23)

= H(M13,M23|M31,M32)

≤ I(M13,M23; Y
n
3 |M31,M32) + n·ǫn

=
n
∑

i=1

(

H(Y3,i|X3,i, Y
i−1
3 ,M31,M32)−H(Y3,i|Y

i−1
3 ,M31,M32,M13,M23)

)

+ n·ǫn

≤
n
∑

i=1

(

H(Y3,i|X3,i)−H(Y3,i|Y
i−1
3 ,M31,M32,M13,M23)

)

+ n·ǫn

≤

n
∑

i=1

(

H(Y3,i|X3,i)−H(Y3,i|X1,i, X2,i, X3,i)
)

+ n·ǫn

=

n
∑

i=1

I(X1,i, X2,i; Y3,i|X3,i) + n·ǫn,
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where ǫn → 0 as n→∞ by Fano’s inequality. Therefore, for the rates in the MA direction, we

have

R13 ≤
1

n

n
∑

i=1

I(X1,i; Y3,i|X2,i, X3,i) + ǫn

≤ I(X1; Y3|X2, X3) + ǫn

R23 ≤
1

n

n
∑

i=1

I(X2,i; Y3,i|X1,i, X3,i) + ǫn

≤ I(X2; Y3|X1, X3) + ǫn

R13 +R23 ≤
1

n

n
∑

i=1

I(X1,i, X2,i; Y3,i|X3,i) + ǫn

≤ I(X1, X2; Y3|X3) + ǫn

where the inequalities hold since I(X1; Y3|X2, X3), I(X2; Y3|X1, X3), and I(X1, X2; Y3|X3) are

concave7 in the joint input distribution PX1,X2,X3
, where PX1,X2,X3

= 1
n

∑n

i=1 PX1,i,X2,i,X3,i
.

For the achievable rate R32 in the DB direction, we have

n·R32

= H(M32|M23)

≤ I(M32; Y
n
2 |M23) + n·ǫn

=
n
∑

i=1

I(M32; Y2,i|Y
i−1
2 ,M23, X

i
2) + n·ǫn

=

n
∑

i=1

I(M32;X3,i ⊕q Z1,i ⊕q Z2,i|X
i−1
3 ⊕q Z

i−1
1 ⊕q Z

i−1
2 ,M23, X

i
2) + n·ǫn

=

n
∑

i=1

I(M32;X3,i ⊕q Z1,i ⊕q Z2,i|X
i−1
3 ⊕q Z

i−1
1 ⊕q Z

i−1
2 ,M23) + n·ǫn (75)

≤
n
∑

i=1

I(M32, X
i−1
3 ⊕q Z

i−1
1 ⊕q Z

i−1
2 ,M23;X3,i ⊕q Z1,i ⊕q Z2,i) + n·ǫn (76)

≤
n
∑

i=1

I(M32,M23,M13, X
i−1
3 ⊕q Z

i−1
1 ⊕q Z

i−1
2 ,X i−1

3 ⊕q Z
i−1
1 ;X3,i ⊕q Z1,i ⊕q Z2,i) + n·ǫn

=

n
∑

i=1

I(M{32,23,13}, Ỹ
i−1
1 , Ỹ i−1

2 ; Ỹ2,i) + n·ǫn (77)

7This follows from the fact that I(A;C|B) is concave in PA,B for fixed PC|A,B [3].
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where (75) holds since X i
2 is a function of (X i−1

3 ⊕q Z
i−1
1 ⊕q Z

i−1
2 ,M23), (76) follows from

the chain rule and the non-negativity of mutual information, and (77) is expressed in terms of

Ỹ1,i , X3,i ⊕q Z1,i, and Ỹ2,i , X3,i ⊕q Z1,i ⊕q Z2,i = Ỹ1,i ⊕q Z2,i.

For R31, we have

n·R31

= H(M31|M{32,23,13})

≤ I(M31; Y
n
1 , Y

n
2 |M{32,23,13}) + n·ǫn

=
n
∑

i=1

I(M31; Y1,i, Y2,i|Y
i−1
1 , Y i−1

2 ,M{32,23,13}) + n·ǫn

≤

n
∑

i=1

I(M31, X3,i; Y1,i, Y2,i|Y
i−1
1 , Y i−1

2 ,M{32,23,13}) + n·ǫn

=

n
∑

i=1

I(M31, X3,i; Y1,i, Y2,i|Y
i−1
1 , Y i−1

2 ,M{32,23,13}, X
i
1, X

i
2) + n·ǫn

(78)

=
n
∑

i=1

I(M31, X3,i; Ỹ1,i, Ỹ2,i|Y
i−1
1 , Y i−1

2 ,M{32,23,13}, X
i
1, X

i
2) + n·ǫn

=

n
∑

i=1

I(M31, X3,i; Ỹ1,i, Ỹ2,i|Ỹ
i−1
1 , Ỹ i−1

2 ,M{32,13,23}) + n·ǫn

(79)

=

n
∑

i=1

I(X3,i; Ỹ1,i, Ỹ2,i|Ỹ
i−1
1 , Ỹ i−1

2 ,M{32,13,23})

+
n
∑

i=1

I(M31; Ỹ1,i, Ỹ2,i|Ỹ
i−1
1 , Ỹ i−1

2 ,M{32,13,23}, X3,i) + n·ǫn

=

n
∑

i=1

I(X3,i; Ỹ1,i, Ỹ2,i|Ỹ
i−1
1 , Ỹ i−1

2 ,M{32,13,23}) + n·ǫn (80)

=

n
∑

i=1

I(X3,i; Ỹ1,i|Ỹ
i−1
1 , Ỹ i−1

2 ,M{32,13,23}) + n·ǫn (81)

where (78) holds since X1,i = f1,i(M13, Y
i−1
1 ) and X2,i = f2,i(M23, Y

i−1
2 ), (79) holds since

(Y i−1
1 , Y i−1

2 , X i
1, X

i
2) can be generated knowing (M13, M23, Ỹ

i−1
1 , Ỹ i−1

2 ), (80) holds because

M31 ⊸−− (Ỹ i−1
1 , Ỹ i−1

2 ,M{32,13,23}, X3,i) ⊸−− (Ỹ1,i, Ỹ2,i) form a Markov chain, and (81) holds

since Ỹ2,i ⊸−− (Ỹ1,i, Ỹ
i−1
1 , Ỹ i−1

2 ,M{32,13,23}) ⊸−− X3,i form a Markov chain. Note that
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these Markov chain properties hold since {Z1,i}
n
i=1 and {Z2,i}

n
i=1 are independent memoryless

processes and are independent of all user messages.

Setting Vi = (Ỹ i−1
1 , Ỹ i−1

2 ,M{32,13,23}), we have that Vi ⊸−− X3,i ⊸−− (Ỹ1,i, Ỹ2,i) form a

Markov chain. From (77) and (81), we obtain that n·R32 ≤
∑n

i=1 I(Vi; Ỹ2,i)+n·ǫn and n·R31 ≤
∑n

i=1 I(X3,i; Ỹ1,i|Vi) + n·ǫn. Let K be a time-sharing random variable that is uniform over

{1, 2, ..., n} and independent of all messages, inputs, and outputs. Setting V = (K, VK), X3 =

X3,K , Z1 = Z1,K , Z2 = Z2,K Ỹ1 = X3 ⊕q Z1 = Ỹ1,K , Ỹ2 = X3 ⊕q Z1 ⊕q Z2 = Ỹ2,K , we have

n·R32 ≤
n
∑

i=1

I(Vi; Ỹ2,i) + n·ǫn

= n · I(VK ; Ỹ2,K|K) + n·ǫn

≤ n · I(V ; Ỹ2) + n·ǫn

= n · I(V ;X3 ⊕q Z1 ⊕q Z2) + n·ǫn,

and

n·R31 ≤
n
∑

i=1

I(X3,i; Ỹ1,i|Vi) + n·ǫn

= n · I(X3; Ỹ1|V ) + n·ǫn

= n · I(X3;X3 ⊕q Z1|V ) + n·ǫn

for some PZ1,Z2,X3,V = PX3,V · PZ1
· PZ2

. Combining the obtained bounds for rates R13 and

R23, the proof is completed by letting n → ∞. The bound on the alphabet size of V can be

established by the convex cover method [8].

C. Proof of Theorem 13

Proof: Consider a MA-DB TWC governed by PY3|X1,X2,X3
, PZ1

, and PZ2
. Recall that

RMA-DBC(PX1,X2,X3,V , PY3|X1,X2,X3
, PZ1

, PZ2
) =

{

(R13, R23, R31, R32) :

R13 ≤ I(X1; Y3|X2, X3), (82)

R23 ≤ I(X2; Y3|X1, X3), (83)

R13 +R23 ≤ I(X1, X2; Y3|X3), (84)

R31 ≤ I(X3;X3 ⊕q Z1|V ), (85)

R32 ≤ I(V ;X3 ⊕q Z1 ⊕q Z2)
}

.(86)
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Since (82)-(84) do not depend on V and (85) and (86) do not depend on (X1, X2), we have

RMA-DBC(PX1,X2,X3,V , PY3|X1,X2,X3
, PZ1

, PZ2
)

= RMA-DBC(PX1,X2|X3
·PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2
). (87)

To complete the proof, it suffices to show that for every PX1,X2|X3
and the corresponding P̃X1

P̃X2

(which depends on PX1,X2|X3
) given by our assumption, satisfies

RMA-DBC(PX1,X2|X3
PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2
)

⊆ RMA-DBC(P̃X1
·P̃X2
·PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2
), (88)

since then we clearly have CMA-DBC
O (PY3|X1,X2,X3

, PZ1
, PZ2

) ⊆ CMA-DBC
I (PY3|X1,X2,X3

, PZ1
, PZ2

). To

show (88), consider two input distributions P
(1)
X1,X2,X3,V

, P
(1)
X1,X2|X3

· P
(1)
V,X3

and P
(2)
X1,X2,X3,V

,

P̃X1
· P̃X2

· P
(1)
V,X3

, where P̃X1
· P̃X2

is given by the assumption. Then,

I(1)(X3;X3 ⊕q Z1|V ) = I(2)(X3;X3 ⊕q Z1|V ) (89)

I(1)(V ;X3 ⊕q Z1 ⊕q Z2) = I(2)(V ;X3 ⊕q Z1 ⊕q Z2) (90)

since P
(1)
X1,X2,X3,V

and P
(2)
X1,X2,X3,V

have the same marginal P
(1)
V,X3

. Furthermore,

I(1)(X1; Y3|X2, X3) =
∑

x3

P
(1)
X3

(x3) · I
(1)(X1; Y3|X2, X3 = x3)

≤
∑

x3

P
(1)
X3

(x3) · I
(2)(X1; Y3|X2, X3 = x3)

= I(2)(X1; Y3|X2, X3),

where the inequality follows from (45) and the last equality holds since P
(1)
X1,X2,X3,V

and

P
(2)
X1,X2,X3,V

have the same marginal P
(1)
X3

. Similarly, we obtain that I(1)(X2; Y3|X1, X3) ≤

I(2)(X2; Y3|X1, X3) and I(1)(X1, X2; Y3|X3) ≤ I(2)(X1, X2; Y3|X3). Consequently, (88) holds.

D. Proof of Theorem 14

Proof: Similar to the proof in Theorem 13, for any PX1,X2|X3
PV,X3

= PX2|X3
PX1|X2,X3

PV,X3
,

it suffices to show that

RMA-DBC(PX1,X2|X3
·PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2
)

⊆ RMA-DBC(P ∗
X1
·PX2|X3

·PV,X3
, PY3|X1,X2,X3

, PZ1
, PZ2

), (91)
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where P ∗
X1

is given by conditions (i).

For any P
(1)
X1,X2,X3,V

= P
(1)
X1,X2|X3

· P
(1)
V,X3

, let P
(2)
X1,X2,X3,V

= P ∗
X1
· P

(1)
X2
· P

(1)
V,X3

, where P ∗
X1

is

given by condition (i) and P
(1)
X2

denotes the marginal distribution of X2 derived from P
(1)
X1,X2,X3,V

.

For the rate constraints in the DB direction, the same identities as in (89)-(90) can be obtained

because P
(1)
X1,X2,X3,V

and P
(2)
X1,X2,X3,V

share a common marginal distribution given by P
(1)
V,X3

. For

R13 in the MA direction, we have

I(1)(X1; Y3|X2, X3)

=
∑

x2,x3

P
(1)
X2,X3

(x2, x3) · I
(1)(X1; Y3|X2 = x2, X3 = x3)

=
∑

x2,x3

P
(1)
X2,X3

(x2, x3) · I
(

P
(1)
X1|X2=x2,X3=x3

, PY3|X1,X2=x2,X3=x3

)

≤
∑

x2,x3

P
(1)
X2,X3

(x2, x3) ·

[

max
PX1|X2=x2,X3=x3

I
(

PX1|X2=x2,X3=x3
, PY3|X1,X2=x2,X3=x3

)

]

=
∑

x2,x3

P
(1)
X2,X3

(x2, x3) · I
(

P ∗
X1
, PY3|X1,X2=x2,X3=x3

)

(92)

=
∑

x3

P
(1)
X3

(x3)
∑

x2

P
(1)
X2|X3

(x2|x3) · I
(

P ∗
X1
, PY3|X1,X2=x2,X3=x3

)

=
∑

x3

P
(1)
X3

(x3) ·

(

∑

x2

P
(1)
X2|X3

(x2|x3)

)

· I
(

P ∗
X1
, PY3|X1,X2=x′

2
,X3=x3

)

(93)

=
∑

x′
2

P
(1)
X2

(x′
2)
∑

x3

P
(1)
X3

(x3) · I
(

P ∗
X1
, PY3|X1,X2=x′

2
,X3=x3

)

= I(2)(X1; Y3|X2, X3),

where (92) and (93) directly follow from condition (i).

For R23, we have

I(1)(X2; Y3|X1, X3)

=
∑

x1,x3

P
(1)
X1,X3

(x1, x3) · I
(1)(X2; Y3|X1 = x1, X3 = x3)

=
∑

x1,x3

P
(1)
X1,X3

(x1, x3) · I
(

P
(1)
X2|X1=x1,X3=x3

, PY3|X1=x1,X2,X3=x3

)

=
∑

x1,x3

P
(1)
X1,X3

(x1, x3) · I
(

P
(1)
X2|X1=x1,X3=x3

, PY3|X1=x′
1
,X2,X3=x′

3

)

(94)

≤ I

(

∑

x1,x3

P
(1)
X1,X3

(x1, x3) · P
(1)
X2|X1,X3

(x2|x1, x3), PY3|X1=x′
1
,X2,X3=x′

3

)

(95)
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= I
(

P
(1)
X2

, PY3|X1=x′
1
,X2,X3=x′

3

)

=
∑

x′
1
,x′

3

P ∗
X1
(x′

1)·P
(1)
X3

(x′
3)·I

(

P
(1)
X2

, PY3|X1=x′
1
,X2,X3=x′

3

)

(96)

= I(2)(X2; Y3|X2, X3),

where (94) and (96) follow from condition (ii) and (95) is due to convexity of I(·, ·) in its first

argument.

Moreover, for the sum rate R13 +R23, we have

I(1)(X1, X2; Y3|X3)

=
∑

x3

P
(1)
X3

(x3) · I
(1)(X1, X2; Y3|X3 = x3)

=
∑

x3

P
(1)
X3

(x3) · I
(

P
(1)
X1,X2|X3=x3

, PY3|X1,X2,X3=x3

)

=
∑

x3

P
(1)
X3

(x3) · I
(

P
(1)
X1,X2|X3=x3

, PY3|X1,X2,X3=x′
3

)

(97)

≤ I

(

∑

x3

P
(1)
X3

(x3) · P
(1)
X1,X2|X3

(x1, x2|x3), PY3|X1,X2,X3=x′
3

)

(98)

= I
(

P
(1)
X1,X2

, PY3|X1,X2,X3=x′
3

)

≤ I
(

P ∗
X1
· P

(1)
X2

, PY3|X1,X2,X3=x′
3

)

(99)

=
∑

x′
3

P
(1)
X3

(x′
3) · I

(

P ∗
X1
· P

(1)
X2

, PY3|X1,X2,X3=x′
3

)

= I(2)(X1, X2; Y3|X3),

where (97) and (99) follow from condition (iii) and (98) is due to convexity of I(·, ·) in its first

argument. Therefore, (91) holds under conditions (i)-(iii).

E. Proof of Theorem 15

It suffices to show that

RMA-DBC(PX1,X2|X3
·PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2
)

⊆ RMA-DBC(PU
X1
·PU

X2
·PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2
) (100)
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for any PX1,X2|X3
PV,X3

. We first give a proof sketch. Analogous to Shannon’s proof for point-to-

point TWCs (see Appendix A), we want to show that for any input distribution P
(1)
X1,X2,X3,V

=

P
(1)
X1,X2|X3

P
(1)
V,X3

, if we set P
(2)
X1,X2,X3,V

= P
(2)
X1,X2|X3

P
(1)
V,X3

and P
(3)
X1,X2,X3,V

= P
(3)
X1,X2|X3

P
(1)
V,X3

, where

P
(2)
X1,X2|X3

(·, ·|·) , P
(1)
X1,X2|X3

(τX1

x′
1
,x′′

1

(·), ·|·), (101)

P
(3)
X1,X2|X3

(·, ·|·) ,
1

2

(

P
(1)
X1,X2|X3

(·, ·|·) + P
(2)
X1,X2|X3

(·, ·|·)
)

, (102)

and x′
1, x

′′
1 ∈ X1, then we have

RMA-DBC(P
(1)
X1,X2|X3

· P
(1)
V,X3

, PY3|X1,X2,X3
, PZ1

, PZ2
)

= RMA-DBC(P
(2)
X1,X2|X3

·P
(1)
V,X3

, PY3|X1,X2,X3
, PZ1

, PZ2
) (103)

⊆ RMA-DBC(P
(3)
X1,X2|X3

·P
(1)
V,X3

, PY3|X1,X2,X3
, PZ1

, PZ2
), (104)

where the last inclusion is shown using (48) and extending Lemma 5 to the MA/DBC setup.

Then, we use an induction argument as in the proof of Lemma 6 to obtain

RMA-DBC(PX1,X2|X3
· PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2
)

⊆ RMA-DBC(PU
X1
·PX2|X3

PV,X3
, PY3|X1,X2,X3

, PZ1
, PZ2

).

Next, we consider input distributions of the form P
(1)
X1,X2,X3,V

= PU
X1
· P

(1)
X2|X3

· P
(1)
X3,V

and set

P
(2)
X1,X2,X3,V

= P
(2)
X1,X2|X3

·P
(1)
V,X3

and P
(3)
X1,X2,X3,V

=P
(3)
X1,X2|X3

·P
(1)
V,X3

, where

P
(2)
X1,X2|X3

(·, ·|·) , P
(1)
X1,X2|X3

(·, τX2

x′
2
,x′′

2

(·)|·),

P
(3)
X1,X2|X3

(·, ·|·) ,
1

2

(

P
(1)
X1,X2|X3

(·, ·|·) + P
(2)
X1,X2|X3

(·, ·|·)
)

,

and x′
2, x

′′
2 ∈ X2. It can be shown via (49) that (103)-(104) also hold, and thus applying an

induction argument again yields

RMA-DBC(PU
X1
·PX2|X3

·PV,X3
, PY3|X1,X2,X3

, PZ1
, PZ2

)

⊆ RMA-DBC(PU
X1
·PU

X2
·PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2
). (105)

Combining (105) and (105) then proves our claim. Due to symmetry, we only prove (105).

Lemma 7: For any P
(1)
X1,X2,X3,V

= P
(1)
X1,X2|X3

· P
(1)
V,X3

, let P
(2)
X1,X2,X3,V

= P
(2)
X1,X2|X3

· P
(1)
V,X3

and

P
(3)
X1,X2,X3,V

= P
(3)
X1,X2|X3

· P
(1)
V,X3

, where P
(2)
X1,X2|X3

and P
(3)
X1,X2|X3

are given by (101) and (102),

respectively. Then, (103)-(104) hold.

Proof: We have

I(2)(X1; Y3|X2, X3 = x3)
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=
∑

x1,x2,y3

P
(2)
X1,X2|X3

(x1, x2|x3)·PY3|X1,X2,X3
(y3|x1, x2, x3)

· log
PY3|X1,X2,X3

(y3|x1, x2, x3)
∑

x̃1
P

(2)
X1|X2,X3

(x̃1|x2, x3) · PY3|X1,X2,X3
(y3|x̃1, x2, x3)

=
∑

x1,x2,y3

P
(1)
X1,X2|X3

(τX1

x′
1
,x′′

1

(x1), x2|x3) · PY3|X1,X2,X3
(πY3 [x′

1, x
′′
1](y3)|τ

X1

x′
1
,x′′

1

(x1), x2, x3)

·

[

logPY3|X1,X2,X3
(πY3[x′

1, x
′′
1](y3)|τ

X1

x′
1
,x′′

1

(x1), x2, x3)

− log

(

∑

x̃1

P
(1)
X1|X2,X3

(τX1

x′
1
,x′′

1

(x̃1)|x2, x3)·PY3|X1,X2,X3
(πY3[x′

1, x
′′
1](y3)|τ

X1

x′
1
,x′′

1

(x̃1), x2, x3)

)]

(106)

=
∑

x1,x2,y3

P
(1)
X1,X2|X3

(x1, x2|x3)·PY3|X1,X2,X3
(y3|x1, x2, x3)

· log
PY3|X1,X2,X3

(y3|x1, x2, x3)
∑

x̃1
P

(1)
X1|X2,X3

(x̃1|x2, x3)·PY3|X1,X2,X3
(y3|x̃1, x2, x3)

(107)

= I(1)(X1; Y2|X2, X3 = x3),

where (106) follows from (48) and (101), (107) holds since πY3 [x′
1, x

′′
1] and τX1

x′
1
,x′′

1

are bijections.

By a similar argument, we have that I(2)(X2; Y3|X1, X3 = x3) = I(1)(X2; Y3|X1, X3 = x3)

and that I(2)(X1, X2; Y3|X3 = x3) = I(1)(X1, X2; Y3|X3 = x3). Next, using the concavity of

I(X1; Y3|X2, X3 = x3), I(X2; Y3|X1, X3 = x3), and I(X1, X2; Y3|X3 = x3) in PX1,X2|X3
(·, ·|x3)

8

yields that

I(3)(X1; Y3|X2, X3 = x3) ≥
1

2

(

I(1)(X1; Y3|X2, X3 = x3)+I(2)(X1; Y3|X2, X3 = x3)
)

= I(1)(X1; Y3|X2, X3 = x3),

I(3)(X2; Y3|X1, X3 = x3) ≥
1

2

(

I(1)(X2; Y3|X1, X3 = x3)+I(2)(X2; Y3|X1, X3 = x3)
)

= I(1)(X2; Y3|X1, X3 = x3),

I(3)(X1, X2; Y3|X3 = x3) ≥
1

2

(

I(1)(X1, X2; Y3|X3 = x3)+I(2)(X1, X2; Y3|X3 = x3)
)

= I(1)(X1, X2; Y3|X3 = x3),

and hence

I(3)(X1; Y3|X2, X3) ≥ I(1)(X1; Y3|X2, X3),

8I(X1;Y3|X2, X3 = x3) and I(X2;Y3|X1, X3 = x3) are concave function of PX1,X2|X3
(·, ·|x3) since I(X1;Y2|X2) and

I(X2;Y1|X1) are both concave in the input distribution PX1,X2
[3].
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I(3)(X2; Y3|X1, X3) ≥ I(1)(X2; Y3|X1, X3),

I(3)(X1, X2; Y3|X3) ≥ I(1)(X1, X2; Y3|X3),

since P
(1)
X3

= P
(3)
X3

. Together with the definition of RMA-DBC given in Section IV-B, the inclusions

in (103)-(104) are proved.

Now, without loss of generality, suppose that X1 = {1, 2, ..., κ}. For 1 ≤ m ≤ κ, define Λm

as the set of all conditional probability distributions PX1,X2|X3
satisfying PX1,X2|X3

(1, x2|x3) =

PX1,X2|X3
(2, x2|x3) = · · · = PX1,X2|X3

(m, x2|x3) for any fixed x2 ∈ X2 and x3 ∈ X3. As in the

proof of Lemma 6, it can be shown by induction on m that

RMA-DBC(PX1,X2|X3
· PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2
)

⊆ RMA-DBC(P̃X1,X2|X3
· PV,X3

, PY3|X1,X2,X3
, PZ1

, PZ2
)

where PX1,X2|X3
∈ Λm and P̃X1,X2|X3

∈ Λm+1 for 1 ≤ m < κ. Note that the base case m = 1

was proved in Lemma 7. Since PX1,X2|X3
∈ Λκ can be expressed as PX1,X2|X3

= PU
X1
· PX2|X3

,

(105) holds. To show (105), we consider input probability distributions of the form PX1,X2,X3,V =

PU
X1
·PX2|X3

·PX3,V . By changing the roles of X1 and X2 in the above derivation, the rest of the

proof is straightforward.
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