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Optimum Overflow Thresholds in Variable-Length
Source Coding Allowing Non-Vanishing

Error Probability
Ryo Nomura , Member, IEEE, and Hideki Yagi , Member, IEEE

Abstract— The variable-length source coding problem allowing
the error probability up to some constant is considered for
general sources. In this problem, the optimum mean codeword
length of variable-length codes has already been determined.
On the other hand, in this paper, we focus on the overflow
(or excess codeword length) probability instead of the mean
codeword length. The infimum of overflow thresholds under the
constraint that both of the error probability and the overflow
probability are smaller than or equal to some constant is called
the optimum overflow threshold. In this paper, we first derive
finite-length upper and lower bounds on these probabilities so
as to analyze the optimum overflow thresholds. Then, by using
these bounds, we determine the general formula of the optimum
overflow thresholds in both of the first-order and second-order
forms. Next, we consider another expression of the derived
general formula so as to reveal the relationship with the optimum
coding rate in the fixed-length source coding problem. Finally,
we apply the general formula derived in this paper to the case
of stationary memoryless sources.

Index Terms— Error probability, general source, overflow
probability, variable-length source coding.

I. INTRODUCTION

THE variable-length source coding is one of important
problems from both practical and theoretical points of

view. The performance of variable-length codes is evalu-
ated by several criteria such as the mean codeword length,
the overflow probability (or excess codeword length) and so
on. Shannon [2] has first demonstrated that the infimum of
the mean codeword length coincides with the source entropy
for stationary memoryless sources. Han [3] has extended the
results into the case of general sources. The overflow proba-
bility, which is defined as the probability of codeword length
being above some threshold, has also been analyzed in several
contexts [4]–[6]. Uchida and Han [5] have shown the infi-
mum of achievable thresholds given the overflow probability
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exponent r for general sources. Kontoyiannis and Verdú [6]
have investigated the optimum overflow threshold, which
means the infimum of the overflow threshold under the con-
straint that the overflow probability is smaller than or equal
to δ > 0. They have considered the optimum codeword length
without prefix constraints and shown that the relationship
between the optimum overflow threshold in variable-length
coding and the optimum error probability in fixed-length
coding. All the results mentioned above are for the variable-
length coding without error.

In this paper, on the other hand, we consider the variable-
length coding allowing the error probability up to some
constant ε > 0, which we call the ε-variable-length coding.
The first-order optimum mean codeword length of ε-variable-
length codes has been derived by Han [3], and Koga and
Yamamoto [7]. Kostina et al. [8] have determined the second-
order optimum mean codeword length of the ε-variable-length
codes. They have revealed that the second-order optimum
mean codeword length of the ε-variable-length codes has
a completely different behavior with that of the variable-
length codes without error [8]. Yagi and Nomura [9] have
also characterized the first- and second-order optimum mean
codeword cost of the ε-variable-length codes.

Inspired by the result in [8], we also focus on the the
ε-variable-length coding problem and attempt to investigate
the optimum overflow threshold in the problem. As we have
mentioned previously, the first- and second-order optimum
overflow thresholds in the variable-length coding without error
have already been studied [6], [10]. We extend the problem
setting to the case of ε-variable-length coding and derive
the general formula of the first- and second-order optimum
overflow thresholds. To this end, we first derive finite-length
upper and lower bounds on the error probability and the
overflow probability. Then, using these bounds, we determine
the general formulas of the first- and second-order opti-
mum overflow thresholds. We also provide another expression
of our general formulas so as to reveal the relationship
with the optimum coding rate in the fixed-length coding
problem.

Related works include the work by Saito and
Matsushima [11], in which the first-order optimum overflow
threshold in ε-variable-length coding has been determined
by using the smooth max entropy (or smooth Rényi entropy
of order zero). The analyses here are based on information
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spectrum methods and the approach is different from
that in [11].

This paper is organized as follows. In Section II, we describe
the problem setting and give some definitions of the first-
and second-order optimum overflow thresholds. In Section III,
we derive the finite blocklength upper and lower bounds so
as to investigate the optimum overflow threshold in the sub-
sequent sections. In Section IV, we show the general formula
of the optimum first-order overflow threshold. We also give
another expression of the general formula and compare to the
first-order optimum achievable rates in the fixed-length source
coding. In Section V, we show the general formula of the
second-order optimum thresholds. In Section VI, we compute
the optimum thresholds for the stationary memoryless source
by using general formulas given in the preceding sections.
Finally, we provide some concluding remarks on our results
in Section VII.

II. VARIABLE-LENGTH CODING ALLOWING ERRORS

A. Problem Setting

Let X =
{

Xn = (X (n)1 , X (n)2 , . . . , X (n)n )
}∞

n=1
denote a

general source, where each X (n)i takes a value in the
finite or countably infinite alphabet X . We use the term general
source to denote a sequence of random variables Xn indexed
by blocklength n and denote the probability distribution of Xn

as PXn . We consider the variable-length codes characterized
as follows. Let ϕn : X n → U∗ and ψn : U∗ → X n denote
a variable-length encoder and a decoder respectively, where
U = {1, 2, · · · , K } is a code alphabet and U∗ is the set of
all finite-length strings over U excluding the null string. The
codeword length for the source sequence x ∈ X n is denoted
by l(ϕn(x)) when we use the encoder ϕn .

In this setting, we are interested in the following two
probabilities:

Definition 2.1: The error probability of (ϕn, ψn) and the
overflow probability of (ϕn, ψn) with threshold ηn are respec-
tively defined as

εn := Pr
{

Xn �= ψn(ϕn(X
n))

}
, (2.1)

δn(ηn) := Pr
{
l(ϕn(X

n)) > ηn
}
. (2.2)

Notice here that ηn < 1 always leads to δn(ηn) = 1.
Hence, without loss of generality we assume that ηn ≥ 1.
In particular, we consider two cases such as ηn = n R and
ηn = n R + √

nL.
We next define the achievability considered in this paper.

For a given source X and a threshold ηn we cannot minimize
εn and δn(ηn) simultaneously, because there exists a trade-
off relation between these two quantities in general. Instead,
we focus on the first and second-order optimum overflow
threshold as follows.

Definition 2.2: Rate R is said to be (ε, δ)-achievable (ε, δ ∈
[0, 1)), if there exists a sequence of variable-length code
(ϕn, ψn) such that

lim sup
n→∞

εn ≤ ε, lim sup
n→∞

δn(n R) ≤ δ. (2.3)

Definition 2.3 (First-order (ε, δ)-optimum threshold):

R(ε, δ|X) := inf {R|R is (ε, δ)-achievable} . (2.4)

The second-order optimum threshold is similarly defined as
follows.

Definition 2.4: Rate L is said to be (ε, δ, R)-achievable
(ε, δ ∈ [0, 1), R ≥ 0), if there exists a sequence of variable-
length code (ϕn, ψn) such that

lim sup
n→∞

εn ≤ ε, lim sup
n→∞

δn
(
n R + √

nL
) ≤ δ. (2.5)

Definition 2.5 (Second-order (ε,δ,R)-optimum threshold):

L(ε, δ, R|X) := inf{L|L is (ε, δ, R)-achievable}. (2.6)

Remark 2.1: It is not difficult to check that the condition
ε + δ ≥ 1 yields the trivial result such as R(ε, δ|X) =
0 or L(ε, δ, R|X) = −∞. Hence, in this paper we assume
that ε + δ < 1 holds.

In this paper, we consider the non-prefix variable-length
code. We here derive the necessary condition for non-prefix
variable-length codes allowing errors. For a variable-length
code (ϕn, ψn), let Dn(ϕn, ψn) ⊂ X n and Tn(ϕn, ηn) ⊂ X n be
defined as follows:

Dn(ϕn, ψn) := {
x ∈ X n |x = ψn(ϕn(x))

}
, (2.7)

Tn(ϕn, ηn) := {
x ∈ X n |l(ϕn(x)) ≤ ηn

}
. (2.8)

Then, since any sequence x ∈ Dn(ϕn, ψn) is correctly decod-
able, it holds that

|Dn(ϕn, ψn) ∩ Tn(ϕn, ηn)| ≤
ηn∑

i=1

K i < K ηn+1. (2.9)

We use (2.9) instead of Kraft’s inequality as a condition for
non-prefix variable-length codes in this paper. Throughout this
paper, the logarithm is taken to the base K .

B. Previous Results

Saito and Matsushima [11] have derived the first-order
(ε, δ)-optimum threshold by using the smooth max entropy.

Definition 2.6 (Smooth max entropy): For any given γ ∈
[0, 1), the smooth max entropy (or smooth Rényi entropy of
order zero) of the source is defined by

H γ (X) := min
A⊂X :Pr{X∈A}≥1−γ

log |A|. (2.10)

Theorem 2.1 (Saito and Matsushima [11]): For any ε, δ ∈
[0, 1) satisfying ε + δ < 1, it holds that

R(ε, δ|X) = lim
ν↓0

lim sup
n→∞

1

n
H ε+δ+ν(Xn). (2.11)

Remark 2.2: In the fixed-length source coding problem,
the infimum of achievable rates under the constraint that
the error probability is asymptotically up to ε is called the
ε-optimum coding rate. Uyematsu [12] has provided the
general formula of the ε-optimum coding rate also by using
the smooth max entropy.
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In the zero-error variable-length coding problem,
Kontoyiannis and Verdú [6] have discussed the optimum
codeword length without prefix constraints by considering the
optimum variable-length codes. They have also pointed out
that the minimum error probability of n-to-R fixed-length
codes coincides with the minimum overflow probability
of variable-length codes with the threshold ηn = n R.
Hence, if we consider the zero-error variable-length coding
problem, we can evaluate the optimum overflow threshold by
investigating the optimum fixed-length coding rate.

One simple way to evaluate the first-order (ε, δ)-optimum
threshold (as well as the second-order (ε, δ, R)-optimum
threshold) is to extend this relation in [6] into the case of the
variable-length coding allowing errors. In this paper, however,
we employ another way to derive these optimum threshold
called the information-spectrum methods developed by Verdú
and Han.

III. FINITE BLOCKLENGTH BOUNDS

In this section, we derive the finite blocklength upper
and lower bounds on the error probability and the overflow
probability.

Theorem 3.1 (Finite blocklength upper bound): Let an >
0, ηn ≥ 1 be arbitrary positive numbers. Then, for any
An ⊂ X n satisfying Pr{Xn ∈ An} ≥ 1 − ε, there exists a
variable-length code (ϕn, ψn) such that

εn ≤ ε,

δn(ηn) ≤ Pr

{
an

PXn (Xn)

Pr {Xn ∈ An} ≤ K −ηn , Xn ∈ An

}
+an K . (3.1)

Proof: We first construct the encoder and the decoder.
[Encoder ϕn]: For any fixed An ⊂ X n satisfying Pr{Xn ∈

An} ≥ 1 − ε, we define the encoder as

ϕn(x) =
{

fn(x) x ∈ An,
1 otherwise, (3.2)

where fn : An → U∗ is an injection mapping which assigns
the codeword whose length1 is − log PXn (x)

Pr{Xn∈An } � to each x ∈
An . It is not difficult to verify that there exists such an injection
mapping. Actually, if we consider the probability distribution
PX

n (x) = PXn (x)
Pr{Xn∈An } over An , then there exists a prefix code

for An without error, because
∑

x∈An
K log

PXn (x)
Pr{Xn∈An } = 1 holds.

The codeword length l(ϕn(x)) of this code is given by

l(ϕn(x)) =
{

− log PXn (x)
Pr{Xn∈An } � x ∈ An,

1 otherwise.
(3.3)

[Decoder ψn]: The decoder ψn is arranged to be an inverse
mapping of fn . That is, for a received sequence u ∈ U∗,
if there exists x ∈ An such that u = fn(x), then the decoder
outputs ψn(u) = x. If there does not exist such x (this would
happen, for example, when fn(x) �= 1 holds for all x ∈ An),
then the decoder declares an error.

Next, we evaluate the error probability and the over-
flow probability of this variable-length code. From the
construction of the code, the error probability is given by

1When PXn (x)
Pr{Xn∈An } = 1 holds, then − log PXn (x)

Pr{Xn∈An } � = 0 holds. In this
special case, we formally set ϕn(x) = 0, and hence, l(ϕn (x)) = 1 holds.

εn ≤ Pr {Xn /∈ An} ≤ ε. Hence, it suffices to show (3.1).
To do so, let us define Sn and Bn as follows:

Sn := {
x ∈ X n |l(ϕn(x)) > ηn

}
, (3.4)

Bn :=
{

x ∈ X n

∣∣∣∣an
PXn (x)

Pr {Xn ∈ An} ≤ K −ηn

}
. (3.5)

Then, since ηn ≥ 1 holds, we have

(An)
c ⊆ (Sn)

c (3.6)

from the construction of the code (ϕn, ψn), where c denotes
the complement. Moreover, for any x ∈ Sn it holds that
− log PXn (x)

Pr{Xn∈An } > ηn − 1. This means that for any x ∈ Sn

PXn (x) < K −(ηn−1)Pr{Xn ∈ An}. (3.7)

Thus, from (3.6) and (3.7) we have

δn(ηn) = Pr
{

Xn ∈ Sn ∩ Bn
} + Pr

{
Xn ∈ Sn ∩ (Bn)

c}
≤ Pr

{
Xn ∈ An ∩ Bn

} +
∑

x∈Sn∩(Bn)c

PXn (x)

≤ Pr
{

Xn ∈ An ∩ Bn
}

+
∑

x∈(Bn)c

K −(ηn−1)Pr{Xn ∈ An}

≤ Pr
{

Xn ∈ An ∩ Bn
}

+|(Bn)
c|K −(ηn−1)Pr{Xn ∈ An}. (3.8)

Next, we evaluate the second term on the r.h.s. of (3.8). From
the definition of Bn , we have

1 ≥
∑
x/∈Bn

PXn (x)

≥
∑
x/∈Bn

K −ηn

an
Pr

{
Xn ∈ An

}

= |(Bn)
c| K −ηn

an
Pr

{
Xn ∈ An

}
(3.9)

from which it follows that

|(Bn)
c| ≤ an K ηn

1

Pr {Xn ∈ An} . (3.10)

Plugging (3.10) into (3.8) yields (3.1).
Theorem 3.2 (Finite blocklength lower bound): For an

arbitrary fixed variable-length code (ϕn, ψn), we set
Dn = {x ∈ X n |x = ψn(ϕn(x)) } . Then, for any an > 0 and
any ηn ≥ 1 it holds that

δn(ηn) ≥ Pr

{
PXn (Xn)

Pr {Xn ∈ Dn} ≤ an K −ηn , Xn ∈ Dn

}
−an K Pr

{
Xn ∈ Dn

}
. (3.11)

Proof: Set B̃n as

B̃n :=
{

x ∈ X n
∣∣∣∣ PXn (x)
Pr {Xn ∈ Dn} ≤ an K −ηn

}
(3.12)
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and Sn as in (3.4). Then, we have

Pr

{
PXn (Xn)

Pr {Xn ∈ Dn} ≤ an K −ηn , Xn ∈ Dn

}
=

∑
x∈Dn∩B̃n∩Sn

PXn (x)+
∑

x∈Dn∩B̃n∩(Sn)c

PXn (x)

≤ δn(ηn)+
∑

x∈Dn∩(Sn)c

an K −ηn Pr
{

Xn ∈ Dn
}

= δn(ηn)+ ∣∣Dn ∩ (Sn)
c
∣∣ an K −ηn Pr

{
Xn ∈ Dn

}
≤ δn(ηn)+ an K Pr

{
Xn ∈ Dn

}
, (3.13)

where the last inequality is due to (2.9). This completes the
proof of the theorem.

IV. FIRST-ORDER (ε, δ)-OPTIMUM THRESHOLD

A. General Formula

In this section, we establish the general formula of the first-
order (ε, δ)-optimum threshold by using Theorems 3.1 and
3.2. We define the quantity Gε,δ(X) as

Gε,δ(X)

:= inf

⎧⎪⎨
⎪⎩R

∣∣∣∣∣∣∣limν↓0
lim sup

n→∞
inf

An⊂X n :
Pr{Xn∈An }≥1−ε−ν

Pr

{
− 1

n
log

PXn (Xn)

Pr{Xn ∈ An} ≥ R, Xn ∈ An

}
≤ δ

}
. (4.1)

Then, we have the following theorem:
Theorem 4.1 (First-order (ε, δ)-optimum threshold): For

any ε, δ ∈ [0, 1) satisfying ε + δ < 1, it holds that

R(ε, δ|X) = Gε,δ(X). (4.2)

Proof: The proof consists of two parts.
(Direct Part:) Setting R0 as R0 := Gε,δ(X), we show that

for any γ > 0, R = R0 + 2γ is (ε, δ)-achievable. To do so,
we arbitrarily fix ν ∈ (0, 1−ε] and use Theorem 3.1 with an =
K −nγ and ηn = n R = n(R0 + 2γ ). Let λ1 > λ2 > · · · → 0
be an arbitrary decreasing sequence. We choose An ⊆ X n

satisfying Pr {Xn ∈ An} ≥ 1 − ε − ν and

Pr

{
− 1

n
log

PXn (Xn)

Pr {Xn ∈ An} ≥ R0 + γ, Xn ∈ An

}
≤ inf

An⊂X n :
Pr{Xn∈An }≥1−ε−ν

Pr

{
− 1

n
log

PXn (Xn)

Pr {Xn ∈ An} ≥ R0+γ, Xn ∈ An

}
+λn .

(4.3)

Then, for this An ⊆ X n , from Theorem 3.1 there exists a
variable-length code (ϕn, ψn) such that

εn ≤ ε + ν, (4.4)

and

δn(n R)=Pr

{
1

n
l(ϕn(X

n)) > R0 + 2γ

}

≤Pr

{
− 1

n
log

PXn (Xn)

Pr {Xn ∈ An} ≥ R0+γ, Xn ∈ An

}
+K −nγ+1. (4.5)

It follows from (4.3) that

lim sup
n→∞

Pr

{
1

n
l(ϕn(X

n)) > R0 + 2γ

}
≤ lim sup

n→∞
inf

An⊂X n :
Pr{Xn∈An }≥1−ε−ν

Pr

{
− 1

n
log

PXn (Xn)

Pr {Xn ∈ An} ≥ R0 + γ, Xn ∈ An

}
≤ δ, (4.6)

where the last inequality follows immediately from the defin-
ition of R0 because for any ν < ν it holds that

inf
An⊂X n :

Pr{Xn∈An }≥1−ε−ν

Pr

{
− 1

n
log

PXn (Xn)

Pr {Xn ∈ An} ≥ R0 + γ, Xn ∈ An

}
≤ inf

An⊂X n :
Pr{Xn∈An }≥1−ε−ν

Pr

{
− 1

n
log

PXn (Xn)

Pr {Xn ∈ An} ≥ R0 + γ, Xn ∈ An

}
≤ lim

ν↓0
inf

An⊂X n :
Pr{Xn∈An }≥1−ε−ν

Pr

{
− 1

n
log

PXn (Xn)

Pr {Xn ∈ An} ≥ R0 + γ, Xn ∈ An

}
.

(4.7)

From (4.4), (4.5) and (4.6), the direct part has been proved.
(Converse Part:) We assume that R is (ε, δ)-achievable.

Then, it holds that

lim sup
n→∞

εn ≤ ε, (4.8)

lim sup
n→∞

δn(n R) ≤ δ. (4.9)

By using Theorem 3.2 with an = K −nγ (∀γ > 0) and
ηn = n R, we have

δn(n R) ≥ Pr

{
PXn (Xn)

Pr {Xn ∈ Dn} ≤ K −n(R+γ ), Xn ∈ Dn

}
−K −nγ+1, (4.10)

where Dn = {x ∈ X n |x = ψn(ϕn(x))} . Here, (4.8) means that
for any ν ∈ (0, 1−ε) there exists n0 such that Pr{Xn ∈ Dn} ≥
1 − ε − ν (∀n > n0) holds. Thus, for any ν ∈ (0, 1 − ε) we
have

lim sup
n→∞

δn(n R)

≥ lim sup
n→∞

Pr

{
− 1

n
log

PXn (Xn)

Pr {Xn ∈ Dn} ≥ R+γ, Xn ∈ Dn

}
≥ lim sup

n→∞
inf

An⊂X n :
Pr{Xn∈An }≥1−ε−ν

Pr

{
− 1

n
log

PXn (Xn)

Pr {Xn ∈ An} ≥ R+γ, Xn ∈ An

}
. (4.11)
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Substituting this inequality into (4.9), we obtain

δ ≥ lim sup
n→∞

inf
An⊂X n :

Pr{Xn∈An }≥1−ε−ν

Pr

{
− 1

n
log

PXn (Xn)

Pr {Xn ∈ An} ≥ R+γ, Xn ∈ An

}
. (4.12)

This means that

R + γ

≥ inf

⎧⎪⎨
⎪⎩R

∣∣∣∣∣∣∣limν↓0
lim sup

n→∞
inf

An⊂X n :
Pr{Xn∈An }≥1−ε−ν

Pr

{
− 1

n
log

PXn (Xn)

Pr{Xn ∈ An} ≥ R, Xn ∈ An

}
≤ δ

}
,

(4.13)

which implies that the converse part holds.

B. Another Expression of the General Formula

The general formula of the (ε, δ)-optimum thresholds
derived in the previous subsection seems complicated and
hard to compute even for tractable sources such as stationary
memoryless sources, Markov sources and so on. Hence in this
subsection, we derive another expression of Gε,δ(X) which
enables us not only to compute the (ε, δ)-optimum thresholds
for tractable sources but also to understand the structure of the
optimum overflow thresholds in the ε-variable-length coding.
As a result, the relationship with the γ -optimum coding rate
in the fixed-length coding is revealed.

Set

F(ε, R) := lim sup
n→∞

inf
An⊂X n :

Pr{Xn∈An }≥1−ε

Pr

{
− 1

n
log PXn (Xn)≥ R, Xn ∈ An

}
. (4.14)

Then, the function F(ε, R) is a monotonically nonincreasing
function of ε and R. Then, we have the following lemma:

Lemma 4.1:

Gε,δ(X) = inf

{
R

∣∣∣∣limν↓0
F(ε + ν, R) ≤ δ

}
. (4.15)

Proof: We first fix ν as ν ∈ (0, 1 − ε) and An ⊂ X n

satisfying Pr {Xn ∈ An} ≥ 1 − ε− ν. Then, for any x ∈ X n it
holds that ∣∣∣∣− 1

n
log PXn (x)+ 1

n
log

PXn (x)
Pr{Xn ∈ An}

∣∣∣∣
≤

∣∣∣∣− 1

n
log PXn (x)+ 1

n
log

PXn (x)
1 − ε − ν

∣∣∣∣
= 1

n
log

1

1 − ε − ν
. (4.16)

Thus, noting that for any γ > 0 it holds that 1
n log 1

1−ε−ν <
γ (∀n > n0), which implies that the difference between
− 1

n log PXn (x) and − 1
n log PXn (x)

Pr{ Xn∈An } becomes arbitrarily
small, we obtain the lemma.

Here, we define two quantities

H̃ε,δ(X) := inf {R |F(ε, R) ≤ δ } , (4.17)

and

Hγ (X) := inf

{
R

∣∣∣∣lim sup
n→∞

Pr

{
1

n
log

1

PXn (Xn)
> R

}
≤γ

}
.

(4.18)

It should be noted that the γ -optimum coding rate in the fixed
length coding is characterized by H γ (X) [3] (cf. Remark 4.1
below).

Then, the following theorem holds:
Theorem 4.2: For any ε, δ ∈ [0, 1) satisfying ε + δ < 1,

it holds that

Gε,δ(X) = H̃ε,δ(X) = H ε+δ(X). (4.19)

Since Hγ (X) is a right-continuous function of γ (see, [3]),
the function Gε,δ(X) and H̃ε,δ(X) are also right-continuous
functions of ε and δ.

From the theorem we immediately have:
Corollary 4.1: Fix ε ∈ [0, 1) arbitrarily. Then, for any

ε1, ε2 ≥ 0 satisfying ε1 + ε2 = ε it holds that

H̃ε1,ε2(X) = H ε(X).

Remark 4.1: The ε-optimum coding rate in the fixed-
length coding and the (first-order) ε-optimum threshold in the
variable-length coding without error coincide with R(ε, 0|X)
and R(0, ε|X), respectively. Then, the following relation has
already been shown in [13], [14].

R(ε, 0|X) = R(0, ε|X) = H ε(X). (4.20)

This equality reveals a deep relationship between the fixed-
length coding and the variable-length coding without error.
From the above equality and Corollary 4.1, for any ε1, ε2 ≥ 0
satisfying ε1 + ε2 = ε, we obtain the following relation

R(ε1, ε2|X) = R(ε, 0|X) = R(0, ε|X). (4.21)

It should be emphasized that the relation (4.21) subsumes
(4.20), because ε1 and ε2 in (4.21) may be arbitrary nonnega-
tive numbers satisfying ε1 + ε2 = ε. This relation can also be
obtained from the fact that the r.h.s. of (2.11) coincides with
H ε+δ(X) [12].

Remark 4.2: In [6], the optimum zero-error variable-length
code has been discussed. We can consider the optimum
variable-length code allowing errors as an immediate exten-
sion of the argument in [6]. Then, by using this optimum code
and the argument developed in [6], we can also show (4.21).

Before proving Theorem 4.2, we show the following lemma.
Lemma 4.2: For any ν > 0, it holds that

H̃ε+ν,δ(X) ≤ Gε,δ(X) = lim
ν↓0

H̃ε+ν,δ(X) ≤ H̃ε,δ(X). (4.22)

Proof of Lemma 4.2: Since H̃ε,δ(X) is a monotonically
nonincreasing function of ε, the first and second inequalities
hold immediately from Lemma 4.1. Hence, it suffices to show
the intermediate equality.
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Since F(ε, R) is a monotonically nonincreasing function of
ε and R, Gε,δ(X) can be expressed as

Gε,δ(X) = inf
⋂
ν>0

{R |F(ε+ν, R)≤δ } . (4.23)

For any ν > 0, we have

Gε,δ(X) ≥ inf {R |F(ε + ν, R) ≤ δ }
= H̃ε+ν,δ(X), (4.24)

which implies

Gε,δ(X) ≥ sup
ν>0

H̃ε+ν,δ(X) = lim
ν↓0

H̃ε+ν,δ(X). (4.25)

On the otherhand, again for any ν > 0, we have

lim
ν↓0

H̃ε+ν,δ(X) ≥ H̃ε+ν,δ(X)

= inf {R|F(ε + ν, R) ≤ δ} . (4.26)

This inequality for an arbitrary fixed ν > 0 implies that

lim
ν↓0

H̃ε+ν,δ(X) ≥ inf
⋂
ν>0

{R|F(ε + ν, R) ≤ δ}

= Gε,δ(X), (4.27)

where the equality is due to (4.23). Combining (4.25) and
(4.27) yields

Gε,δ(X) = lim
ν↓0

H̃ε+ν,δ(X). (4.28)

This completes the proof of the lemma. �
Proof of Theorem 4.2: From Lemma 4.2, it suffices to prove

two inequalities:

Gε,δ(X) ≥ H ε+δ(X), (4.29)

H̃ε,δ(X) ≤ H ε+δ(X). (4.30)

(Proof of (4.29):) For any fixed R > Gε,δ(X), we show that
R ≥ H ε+δ(X) holds.

Set Jn ⊆ X n as

Jn :=
{

x ∈ X n
∣∣∣∣− 1

n
log PXn (x) ≥ R

}
. (4.31)

Then, by the assumption R > Gε,δ(X) and (4.15), it holds
that

δ ≥ lim
ν↓0

lim sup
n→∞

inf
An⊂X n :

Pr{Xn∈An }≥1−ε−ν
Pr

{
Xn ∈ An ∩ Jn

}
≥ lim sup

n→∞
inf

An⊂X n :
Pr{Xn∈An }≥1−ε−ν

Pr
{

Xn ∈ An ∩ Jn
}

(4.32)

for any ν ∈ (0, 1−ε). Moreover, we define a subset Kn ⊆ X n

such that

Pr
{

Xn ∈ Kn
} ≥ 1 − ε − ν (4.33)

and

Pr
{

Xn ∈ Jn ∩Kn
}

≤ inf
An⊂X n :

Pr{Xn∈An }≥1−ε−ν
Pr

{
Xn ∈ An ∩ Jn

} + ν (4.34)

hold. Then, from (4.32) it holds that

lim sup
n→∞

Pr
{

Xn ∈ Jn ∩ Kn
} ≤ δ + ν. (4.35)

On the other hand, from (4.33), we have

Pr
{

Xn ∈ Jn
} ≤ Pr

{
Xn ∈ Jn ∩ Kn

} + Pr
{

Xn ∈ (Kn)
c}

≤ Pr
{

Xn ∈ Jn ∩ Kn
} + ε + ν. (4.36)

This means that

lim sup
n→∞

Pr
{

Xn ∈ Jn
}

≤ lim sup
n→∞

Pr
{

Xn ∈ Jn ∩ Kn
} + ε + ν

≤ δ + ε + 2ν. (4.37)

Since ν ∈ (0, 1 − ε) is arbitrarily, we have

lim sup
n→∞

Pr
{

Xn ∈ Jn
} ≤ δ + ε, (4.38)

which implies R ≥ H ε+δ(X).
(Proof of (4.30):) For any fixed R > H ε+δ(X), we show

that R ≥ H̃ε,δ(X) holds. We also use the set Jn defined in
(4.31). Since R > H ε+δ(X) holds, we have

lim sup
n→∞

Pr
{

Xn ∈ Jn
} ≤ ε + δ. (4.39)

Here, without loss of generality we assume that the elements of
Xn be ordered {x1, x2, x3, · · · } with decreasing probabilities,
that is, for any i < j , PXn (xi ) ≥ PXn (x j ) holds. We define a
positive integer i∗ and Ln = {x1, x2, · · · , xi∗ } such that

Pr
{

Xn ∈ Ln \ {xi∗ }
} =

i∗−1∑
i=1

PXn (xi ) < 1 − ε, (4.40)

Pr
{

Xn ∈ Ln
} =

i∗∑
i=1

PXn (xi ) ≥ 1 − ε. (4.41)

We then evaluate the probability

Pr
{

Xn ∈ Jn ∩ Ln
}

= Pr
{

Xn ∈ Jn
} − Pr

{
Xn ∈ Jn ∩ (Ln)

c} . (4.42)

By the definition of Jn , for all n satisfying 1
n log 1

PXn (xi∗ ) < R,
it holds that

Pr
{

Xn ∈ Jn ∩ Ln
} = 0. (4.43)

On the other hand, for all n satisfying 1
n log 1

PXn (xi∗ ) ≥ R,

PXn (xi∗) ≤ e−nR (4.44)

and (Ln)
c ⊆ Jn hold. Hence, we have

Pr
{

Xn ∈ Jn ∩ (Ln)
c}=Pr

{
Xn ∈ (Ln)

c}
=Pr

{
Xn ∈(Ln \ {xi∗ })c

}− PXn (xi∗)

≥ε − e−nR, (4.45)

where the last inequality is due to (4.40) and (4.44). Thus,
from (4.42), (4.43), and (4.45) we have

Pr
{

Xn ∈ Jn ∩ Ln
}

≤ max
{

0,Pr
{

Xn ∈ Jn
}−

(
ε−e−nR

)}
(4.46)
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for all n. Taking lim supn→∞ on both sides yields

lim sup
n→∞

Pr
{

Xn ∈ Jn ∩ Ln
}

≤ max

{
0, lim sup

n→∞
Pr

{
Xn ∈ Jn

} − ε

}
≤ δ, (4.47)

where the last inequality is due to (4.39).
Since Ln satisfies (4.41) we obtain

lim sup
n→∞

inf
An⊂X n :

Pr{Xn∈An }≥1−ε
Pr

{
Xn ∈ An ∩ Jn

} ≤ δ. (4.48)

This implies R ≥ H̃ε,δ(X). �

V. SECOND-ORDER (ε, δ, R)-OPTIMUM THRESHOLD

In this section, we establish the general formula of the
second-order (ε, δ, R)-optimum threshold. We define the quan-
tity Gε,δ(R|X) as

Gε,δ(R|X)

:= inf

⎧⎪⎨
⎪⎩L

∣∣∣∣∣∣∣limν↓0
lim sup

n→∞
inf

An⊂X n :
Pr{Xn∈An }≥1−ε−ν

Pr

{
− 1

n
log

PXn (Xn)

Pr{Xn ∈ An} ≥ R + L√
n
, Xn ∈ An

}
≤ δ

}
.

(5.1)

Theorem 5.1 (Second-order (ε, δ, R)-optimum threshold):
For any ε, δ∈[0, 1) satisfying ε + δ < 1, it holds that

L(ε, δ, R|X) = Gε,δ(R|X).
Proof: The proof of the theorem proceeds in parallel with

that of Theorem 4.1.
As in the first-order case (cf. Remark 4.1), Gε,δ(R|X)

can also be expressed as in another way. Let us define an
information-spectrum quantity:

H γ (R|X)
:= inf

{
L

∣∣∣∣lim sup
n→∞

Pr

{
1

n
log

1

PXn (Xn)
> R+ L√

n

}
≤γ

}
.

Theorem 5.2: For any ε, δ ∈ [0, 1) satisfying ε + δ < 1,
it holds that

Gε,δ(R|X) = H ε+δ(R|X).
Proof: The proof is similar to that of Theorem 4.2.

The second-order (ε, R)-optimum coding rate in the fixed-
length coding is characterized by H ε(R|X) [13]. This means
that in order to compute Gε,δ(R|X) for some specified sources
such as i.i.d. sources and Markov sources, we can use the
similar technique as the one in [13] (see, Section VI).

VI. APPLICATION TO STATIONARY

MEMORYLESS SOURCES

In this section we compute the optimum overflow thresholds
for the stationary memoryless source with generic distribu-
tion X by using general formulas obtained in the preceding
sections.

A. First-Order (ε, δ)-Optimum Thresholds

For a stationary memoryless source X , the following theo-
rem is well-known.

Theorem 6.1 (Steinberg and Verdú [15]): For any γ ∈
[0, 1), it holds that

H γ (X) = H (X), (6.1)

where H (X) denotes the entropy of the source X .
From Theorems 4.1, 4.2, and 6.1, we immediately have

Theorem 6.2: For any ε, δ ∈ [0, 1) satisfying ε + δ < 1 it
holds that

R(ε, δ|X) = H (X) (0 ≤ ε, δ < 1). (6.2)

Thus, the (ε, δ)-optimum overflow thresholds equals to the
entropy of the source irrespective of ε and δ.

B. Second-Order (ε, δ, R)-Optimum Overflow Thresholds

In the second-order coding rate analysis, it is well-known
that:

Theorem 6.3 (Hayashi [13]):

H γ (R|X) =
⎧⎨
⎩

−∞ R > H (X)
+∞ R < H (X)√

VX

−1 (γ ) R = H (X),

(6.3)

where


(x) := 1√
2π

∫ ∞

x
e− t2

2 dt (6.4)

is the complementary standard Gaussian distribution function
and

VX :=
∑
x∈X

PX (x) (− log PX (x)− H (X))2 . (6.5)

denotes the variance of the self-information called varentropy
of the source [6].
As is known from the above theorem, the setting of first-
order constant R is quite important to analyze the second-
order (ε, δ, R)-optimum overflow thresholds. In this paper,
we consider the following two case:

Case 1) Setting R as the first-order (ε, δ)-optimum thresh-
olds R1:

In this case, from Theorem 4.1 R1 = H ε+δ(X) holds. Thus,
from Theorem 6.1 we set

R1 = H (X) (6.6)

for the stationary memoryless source with generic distribu-
tion X .

Case 2) Setting R as the optimum mean codeword
length R2:

The optimum mean codeword length of the
ε-variable-length codes has been first determined by
Koga and Yamamoto [7] in the case that ε ∈ [0, 1), while
Han [3], [16] has derived it in the case of ε = 0.
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From the result in [7] we shall set

R2

= H[ε](X)

:= lim
ν↓0

lim sup
n→∞

1

n
inf

An⊂X n :
Pr{Xn∈An }≥1−ε−ν

∑
x∈An

PXn (x) log
1

PXn (x)
.

(6.7)

In particular,
R2 = (1 − ε)H (X) (6.8)

holds for the stationary memoryless source with generic dis-
tribution X [7], [9].

Remark 6.1: The optimum second-order mean codeword
length L[ε](H[ε](X)|X) for the stationary memoryless source
X has been determined by Kostina et al. [8] as follows.

Assuming that the third absolute moment of − log PX (X)
is finite, then for any given ε ∈ (0, 1), it holds that

L[ε](H[ε](X)|X) = −
√

V (X)

2π
e− (
−1(ε))2

2 . (6.9)

The above result shows an interesting phenomenon in which
the optimum second-order mean codeword length is always
negative.

Summarizing up, we set R as R1 = H (X) and R2 = (1 −
ε)H (X).

Then, we obtain the following theorem.
Theorem 6.4: For any ε, δ ∈ [0, 1) satisfying ε + δ < 1,

it holds that

L(ε, δ, R1|X) =
√

VX

−1 (ε + δ) , (6.10)

L(ε, δ, R2|X) =
{ √

VX

−1 (δ) ε = 0

+∞ ε �= 0.
(6.11)

Proof: From Theorems 5.1, 5.2, and 6.3 we obtain (6.10)
as well as (6.11) in the case of ε = 0. On the other hand, when
we consider the case of L(ε, δ, R2|X) with ε > 0, it holds that
R2 = (1 − ε)H (X) < H (X). Thus, from Theorems 5.1 and
5.2, and the definition of H ε+δ(R2|X) it holds that

L(ε, δ, R2|X)
= H ε+δ(R2|X)
= inf

{
L

∣∣∣∣lim sup
n→∞

Pr

{
1

n
log

1

PXn (Xn)
> R2+ L√

n

}
≤ε+δ

}

= inf

{
L

∣∣∣∣lim sup
n→∞

Pr

{
1

n
log

1

PXn (Xn)
> (1 − ε)H (X)+ L√

n

}
≤ ε + δ

}
.

(6.12)

Here, from the law of large numbers this case necessarily
yields that

lim
n→∞ Pr

{
1

n
log

1

PXn (Xn)
> (1 − ε)H (X)+ L√

n

}
= 1,

(6.13)

for any constant L < ∞. Hence, in this case we set formally
as L(ε, δ, R2|X) = +∞.

The above theorem shows that if we set R as R = R2 (the
optimum mean codeword length of ε-variable-length codes),
the second-order (ε, δ, R)-optimum thresholds is always infin-
ity as long as ε > 0. This means that the error probabil-
ity or the overflow probability cannot be less than or equal to
the desired value irrespective with the second-order thresh-
old L. Moreover, from the similar argument to the proof
of Theorem 6.4, we observe that L(ε, δ, R|X) = ∞ for
R < H (X), and L(ε, δ, R|X) = −∞ for R > H (X). Hence,
in order to analyze the second-order optimum threshold L in
the ε-variable-length coding, the first-order rate R should be
set as the first-order optimum threshold: R1 = H (X).

VII. CONCLUDING REMARKS

We have so far considered the first- and second-order
achievability to evaluate the optimum overflow thresholds in
the ε-variable-length coding problem. As shown in the proofs
of this paper, the information spectrum approach is substantial
in analyses. In particular, Theorems 3.1 and 3.2 enable us
to analyze the first- and second-order optimum overflow
thresholds by the unified approach. In addition, we can apply
these theorems into the case of the optimistic coding scenario
[17], [18]. For example, the first-order achievability in the
optimistic scenario is defined by using the following conditions
instead of (2.3):

lim sup
n→∞

εn ≤ ε, lim inf
n→∞ δn(n R) ≤ δ. (7.1)

Then, we can show that the first-order optimistic optimum
overflow thresholds is characterized by G∗

ε,δ(X) in which the
lim supn→∞ in the definition of Gε,δ(X) (eq. (4.1)) is replaced
by lim infn→∞. Analogous to Theorem 4.2, G∗

ε,δ(X) is equal
to H

∗
ε,δ(X) in which the lim supn→∞ in the definition of

H
∗
ε,δ(X) is again replaced by lim infn→∞.
We have also clarified that the relationship between the

ε-variable-length coding and the γ -fixed-length coding. In the
γ -fixed-length coding problem, the γ -optimum coding rate
has already been derived for several tractable sources such
as stationary memoryless sources, Markov sources and mixed
sources [13], [19]. We can use these results to compute the
(ε, δ)-optimum thresholds as well as the (ε, δ, R)-optimum
thresholds in the ε-variable-length coding. Actually, in this
paper we compute the optimum thresholds in the ε-variable-
length coding for the stationary memoryless source by using
the previous results for the γ -fixed-length coding.
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