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On private information retrieval array codes
Yiwei Zhang, Xin Wang, Hengjia Wei and Gennian Ge

Abstract

Given a database, the private information retrieval (PIR) protocol allows a user to make queries to several servers and retrieve
a certain item of the database via the feedbacks, without revealing the privacy of the specific item to any single server. Classical
models of PIR protocols require that each server stores a whole copy of the database. Recently new PIR models are proposed
with coding techniques arising from distributed storage system. In these new models each server only stores a fraction1/s of the
whole database, wheres > 1 is a given rational number. PIR array codes are recently proposed by Fazeli, Vardy and Yaakobi to
characterize the new models. Consider a PIR array code withm servers and thek-PIR property (which indicates that thesem
servers may emulate any efficientk-PIR protocol). The central problem is to design PIR array codes with optimal ratek/m. Our
contribution to this problem is three-fold. First, for the case1 < s ≤ 2, although PIR array codes with optimal rate have been
constructed recently by Blackburn and Etzion, the number ofservers in their construction is impractically large. We determine
the minimum number of servers admitting the existence of a PIR array code with optimal rate for a certain range of parameters.
Second, for the cases > 2, we derive a new upper bound on the rate of a PIR array code. Finally, for the cases > 2, we analyze
a new construction by Blackburn and Etzion and show that its rate is better than all the other existing constructions.

Index Terms

Private information retrieval, PIR array codes

I. I NTRODUCTION

The private information retrieval (PIR) protocol is first introduced in [4]. The classical model is as follows. Suppose we
have ann-bit database and a set ofk servers, each storing a whole copy of the database, so the total storage overheadis
nk. A k-server PIR protocol will allow a user to retrieve a data itemwhile each server (as long as they do not collude) has
no information about which item is retrieved. For example, suppose the database isx = (x1, x2, . . . , xn) and a user wants to
retrievexi. In a 2-server PIR protocol, the user may randomly pick a vectorv ∈ {0, 1}n. The first server receives the queryv
and responds to the user withv ·x. The second server receives the queryv+ ei and responds with(v + ei) ·x. Then the user
may retrievexi = (v + ei) · x− v · x. Each server itself does not know which item is retrieved since v is a random vector.

Recently, PIR protocols have been combined with techniquesand ideas arising from distributed storage system [1, 3, 5, 8,
9]. Instead of storing a complete copy of the database in eachserver, in the newly proposed models each server only stores
a fraction of the database. A breakthrough by Fazeli, Vardy and Yaakobi [6, 7] shows thatm servers (for somem > k)
may emulate ak-server protocol with storage overhead significantly smaller thannk. Continuing the example above, let three
servers store the following fractions of database respectively: x′ = (x1, . . . , xn/2), x

′′ = (xn/2+1, . . . , xn) and x
′ + x

′′.
Without loss of generality assume that a user wants to retrieve xi with 1 ≤ i ≤ n/2. The user may randomly pick a
vectoru ∈ {0, 1}n/2 and the queries for the three servers are correspondinglyu, u + ei andu + ei. Then by calculating
xi = −u · x′ − (u + ei) · x

′′ + (u+ ei) · (x
′ + x

′′), the user successfully retrieves the itemxi without revealing its privacy.
Compared with the original model, the storage overhead reduces from2n to 3n

2 .
In [7] the problem of designing PIR protocols is reformulated as designing a corresponding PIR array code, which is defined

as follows. Given positive integerst, m, p and k, a [t × m, p] array code is a t × m array, where each entry is a linear
combination of{x1, . . . , xp} (we may view eachxi as an element in a certain finite fieldF). The array code has thek-PIR
property if for every i ∈ {1, 2, . . . , p} there existk pairwise disjoint subsetsS1, S2, . . . , Sk of columns such that the entries
in eachSj could linearly spanxi, 1 ≤ j ≤ k. We further call such an array code a[t×m, p] k-PIR array code. For example,
the following is a[3× 6, 6] 4-PIR array code:

x1 x2 x3 x4 x5 x6

x2 x3 x4 x5 x6 x1

x3 + x4 x4 + x5 x5 + x6 x6 + x1 x1 + x2 x2 + x3

We may verify the4-PIR property directly. For example,x1 may be spanned byS1 = {1}, S2 = {6}, S3 = {2, 5} (by
(x1 + x2)− x2) andS4 = {3, 4} (by (x1 + x6) + x5 − (x5 + x6)).

The research of G. Ge was supported by the National Natural Science Foundation of China under Grant Nos. 11431003 and 61571310.
Y. Zhang is with the School of Mathematical Sciences, Capital Normal University, Beijing 100048, China (email: rexzyw@163.com).
X. Wang is with the School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China (email: 11235062@zju.edu.cn).
H. Wei is with the School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (email: ven0505@163.com).
G. Ge is with the School of Mathematical Sciences, Capital Normal University, Beijing 100048, China. He is also with Beijing Center for Mathematics

and Information Interdisciplinary Sciences, Beijing 100048, China (e-mail: gnge@zju.edu.cn).

http://arxiv.org/abs/1609.09167v1


2

The relation of a[t×m, p] k-PIR array code with a PIR protocol is as follows. Then-bit database is partitioned intop parts
{x1, x2, . . . , xp}, each part encoded as an element of a certain finite fieldF. A column of the array corresponds to a server.
Each server hast cells storing the linear combinations of{x1, x2, . . . , xp} suggested by the entries. In [7] it is shown that the
k-PIR property allows the servers to emulate all known efficient k-server PIR protocols. The storage overhead in this scheme
is thenntm/p, better thannk if the array code is good enough (namelytm/p < k). Let s be the ratio between the size of the
whole database and that of the data stored on each server, i.e., s = n

nt/p = p/t. The goal is to minimize the storage overhead,

so we would like that nk
ntm/p = s k

m is as large as possible. The PIR rate of such an array code is then defined ask/m.
Note that given a PIR array code, each server could actually span a subspaceV of Fp of dimension at mostt using the

information in itst cells. Changing the cells to produce a new spanning set forV , or even to replaceV by a larger subspace
containingV , will not harm thek-PIR property. So without loss of generality we shall followtwo assumptions posed in [2]:
• if xi can be derived by a single server alone, thenxi is stored as the value of one of the cells of the server;
• the data stored in any server’s cells are linearly independent, i.e., the subspace spanned by thet cells has dimensiont.
A further reasonable assumption is to make the PIR array codeas simple as possible. We assume that ifxi can be derived

by a single server alone, then except for the singleton cellxi, the itemxi does not appear in any other cell of the server.
Now the general problem is as follows. Givens andt (so p = st is also given), we want to build a[t×m, p] k-PIR array

code with the largest ratek/m, denoted asg(s, t). Further we want to analyzeg(s) = limt→∞g(s, t). Below we will list
several results regarding this problem, the first two of which can be derived from [7].

Theorem 1:For any given positive integers, g(s, 1) ≤ 2s−1

2s−1 , with equality if and only ifk is divisible by2s−1.
Theorem 2:For any integers ≥ 3, we haveg(s, s− 1) ≥ s

2s−1 .
Recently, this problem receives the attention from Blackburn and Etzion. They aim to construct PIR array codes with

optimal PIR rate. Some of their main results in [2] are listedbelow, including: two upper bounds regardingg(s, t) andg(s);
constructions meeting the upper bound for1 < s ≤ 2; and several constructions for the cases > 2.

Theorem 3:For each rational numbers > 1 we have thatg(s) ≤ s+1
2s . There is not such thatg(s, t) = s+1

2s .
Theorem 4:For any integert ≥ 2 and any positive integerd, with s = 1 + d

t andp = t+ d, we have

g(1 +
d

t
, t) ≤

(2d+ 1)t+ d2

(t+ d)(2d+ 1)
= 1−

d2 + d

(t+ d)(2d+ 1)
.

Moreover, when1 < s ≤ 2, this upper bound is tight. That is,g(2, t) = 3t+1
4t+2 and for t ≥ 2, 1 ≤ d ≤ t − 1, g(1 + d

t , t) =
(2d+1)t+d2

(t+d)(2d+1) .
Theorem 5:There exist PIR array codes satisfying the following parameters:

1) Let s = rt−(r−2)r−1
t and thenp = rt − (r − 2)r − 1, where3 ≤ r ≤ t. Theng(s, t) ≥ 1

2 + t−r+1
2(rt−(r−2)r−1) .

2) Lets = r+d/t and thenp = rt+d, wherer ≥ 2 is an integer,t ≥ r, 1 ≤ d ≤ t−1. Theng(s, t) ≥ 1− (rt+d−t+r)(rt+d−t)
(rt+d)(2rt+2d−2t+r) .

3) Let s > 2 be an integer andt ≥ s. Theng(s, t) ≥ st+t+1
s(2t+1) .

4) Let s > 2 be an integer. Let(s− 1)t = lb and t ≥ l+ b, wherel andb are positive integers. Theng(s, t) ≥ s+1
2s − l

2st .

Our contribution to PIR array codes is three-fold.
First, givent ≥ 2, 1 ≤ d ≤ t ands = 1+ d

t (then1 < s ≤ 2), although PIR array codes meeting the upper bound have been
constructed by Blackburn and Etzion, the number of columns in their array codes is impractically large (m =

(
t+d
t

)
v
d +

(
t+d
d+1

)
v
t

wherev is the least common multiple ofd and t). That is, a corresponding scheme requires a lot of servers in order to meet
the optimal rate. A scheme with a small number of servers is ofinterest due to applicable reasons. Therefore we shall consider
the following problem: what is the smallest number of servers m such that an array code with optimal ratek/m exists? In
[2] the cased = 1 is solved. In this paper, we show that whent > d2 − d, the smallest number of servers such that an array
code with optimal rate exists ism = p(2d+ 1)/ω whereω = gcd{d2 + d, p(2d+ 1)}.

Second, for the cases > 2, we derive a new upper bound on the rate of a PIR array code which improves the result shown
in Theorem 4.

Finally, for the cases > 2, a new construction appears in [2, Section 4] by Blackburn and Etzion. We deeply analyze
their construction in the following aspects. First, a minorproblem of their construction is that the number of servers is very
large. By a slight modification, we propose another construction which has a much smaller number of servers compared to the
original construction, with only a slight sacrifice in the rate. Second, we shall demonstrate that both constructions can produce
codes of larger rate than all the other existing ones in Theorem 5. Finally, we have some discussions regarding the potential
optimality of this construction.

The rest of the paper is organized as follows. In Section II weanalyze the case1 < s ≤ 2 and determine the minimum
number of servers needed to implement an array code with optimal rate fort > d2 − d. In Section III we derive a new upper
bound on the rate fors > 2. In Section IV, for the cases > 2, we analyze the construction by Blackburn and Etzion in several
aspects. Section V concludes the paper.
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II. 1 < s ≤ 2: OPTIMAL PIR ARRAY CODES WITH MINIMUM NUMBER OF SERVERS

In this section we deal with the case1 < s ≤ 2, wheres = 1 + d
t . In this case PIR array codes with optimal rate have

been constructed by Blackburn and Etzion [2]. However the number of serversm in their constructions is impractically large
(m =

(
t+d
t

)
v
d +

(
t+d
d+1

)
v
t wherev is the least common multiple ofd andt). For applicable reasons, array codes with a smaller

number of servers are of interest. A natural question is to construct PIR array codes with minimum number of servers while
maintaining the optimal rate.

Let s = 1 + d/t, where1 ≤ d ≤ t, then1 < s ≤ 2 andp = ts = t+ d. The upper bound of the rate has been shown to be
1− d2+d

p(2d+1) in Theorem 4. Letω be the greatest common divisor ofd2 + d andp(2d+ 1), then the smallest possible number
of servers for a PIR array code with optimal rate is thenp(2d+1)/ω. In this section we are going to prove for a certain range
of parameters that there do exist such PIR array codes withp(2d+ 1)/ω servers.

Sinceω|d2 + d, then we can splitω as ω = ω1ω2, whereω1|d, ω2|(d + 1). Moreover, sinced and d + 1 are relatively
prime, thenω1 andω2 are relatively prime. Denoted = ω1d1 andd+ 1 = ω2d2. Furthermore, sincegcd(d, 2d+ 1) = 1 and
gcd(d+ 1, 2d+ 1) = 1, then we can deduce thatω|p. Denotep = µω = µω1ω2 and then the desired number of servers will
bem = p(2d+1)

ω = µ(2d+ 1).
We first define two types of servers. For a server of the first type, every cell of the server contains a singleton item in

{x1, x2, . . . , xp} and we call it a singleton server. Such a server containst singleton cells, say{y1, y2, . . . , yt}, and we denote
this server byA, whereA = {x1, x2, . . . , xp}\{y1, y2, . . . , yt}. For a server of the second type,t − 1 cells of the server
contain a singleton item, say{z1, z2, . . . , zt−1}, and the remaining cell contains the summation of all the items except for
{z1, z2, . . . , zt−1}. We call it aΣ-server and denote it byΣB, whereB = {x1, x2, . . . , xp}\{z1, z2, . . . , zt−1}. The PIR array
code we shall construct consists of these two types of servers defined above. Within this section all indices are reduced modulop.

Construction (givent, d satisfyingt > d2 − d):

1. We haveµ(d+ 1) singleton servers as follows. For0 ≤ j ≤ µω2 − 1, defineAj = {xj+α+βµω2
: 0 ≤ α ≤ d1 − 1, 0 ≤ β ≤

ω1 − 1}. Sinced1ω1 = d < p = µω1ω2, we haved1 < µω2 and thus there are no repeated items in eachAj . Therefore the
cardinality ofAj is exactlyd1ω1 = d. The µ(d + 1) = µω2d2 singleton servers are the serversA0, A1, . . . , Aµω2−1, each
appearingd2 times.

2. We haveµd Σ-servers as follows. For0 ≤ j ≤ µω1−1, defineBj = {xj+γd1+λµω1
: 0 ≤ γ ≤ d2−1, 0 ≤ λ ≤ ω2−1}. Since

t > d2 − d, we haved1ω1(d2 − 1)ω2 ≤ d2 < p = µω1ω2, sod1(d2 − 1) < µ and thus there are no repeated items in eachBj .
Therefore the cardinality ofBj is exactlyd2ω2 = d+1. Theµd = µω1d1 Σ-servers are the serversΣB0,ΣB1, . . . ,ΣBµω1−1,
each appearingd1 times.

Next we shall show that the construction above produces PIR array codes with optimal rate, fort > d2 − d. We discuss in
two separated cases,t ≥ d2 andd2 − d < t < d2.

A. t ≥ d2

Theorem 6:For t ≥ d2, there existk-PIR array codes withm = µ(2d + 1) servers such that the ratekm equalsg(s, t) =
1− d2+d

p(2d+1) .
Proof: We claim that whent ≥ d2, for any Aj1 andBj2 , |Aj1

⋂
Bj2 | ≤ 1. Suppose otherwise, we have at least two

distinct items inAj1

⋂
Bj2 , that is, there existα1, α2, β1, β2, γ1, γ2, λ1, λ2 such that

j1 + α1 + β1µω2 ≡ j2 + γ1d1 + λ1µω1 (mod p)

and
j1 + α2 + β2µω2 ≡ j2 + γ2d1 + λ2µω1 (mod p).

Do subtractions using these two equations above, we can get

(α2 − α1) + (β2 − β1)µω2 ≡ (γ2 − γ1)d1 + (λ2 − λ1)µω1 (mod p).

Then we have
(α2 − α1) ≡ (γ2 − γ1)d1 (mod µ).

When t ≥ d2, µ = p
ω1ω2

≥ d(d+1)
ω1ω2

= d1d2. Since 1 − d1 ≤ α2 − α1 ≤ d1 − 1 and 1 − d2 ≤ γ2 − γ1 ≤ d2 − 1, so
(α2 −α1) ≡ (γ2 − γ1)d1 (mod µ) holds if and only ifα2 −α1 = γ2 − γ1 = 0. Then we have(β2 − β1)µω2 ≡ (λ2 −λ1)µω1

(mod p) and equivalently
(β2 − β1)ω2 ≡ (λ2 − λ1)ω1 (mod ω1ω2).
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Sinceω1 andω2 are relatively prime,1−ω1 ≤ β2−β1 ≤ ω1−1 and1−ω2 ≤ λ2−λ1 ≤ ω2−1, then(β2−β1)ω2 ≡ (λ2−λ1)ω1

(mod ω1ω2) holds if and only ifβ2 − β1 = λ2 − λ1 = 0. Now we arrive at a contradiction to the existence of two distinct
items inAj1

⋂
Bj2 . Therefore|Aj1

⋂
Bj2 | ≤ 1 as claimed.

To analyze thek-PIR property, it suffices to analyze how to span an itemx0 since obviously the construction is symmetric
for all items{x0, x1, . . . , xp}. In theµ(d+ 1) singleton servers there are totallytµ(d+ 1) singleton cells andtµ(d+1)

p among

them contain the singletonx0. So tµ(d+1)
p = td2

ω1
singleton servers contain a singletonx0 and the restdµ(d+1)

p = d1d2 singleton

servers do not. In theµd Σ-servers there are totally(t − 1)µd singleton cells and(t−1)µd
p among them contain the singleton

x0. So (t−1)µd
p = (t−1)d1

ω2
Σ-servers contain a singletonx0 and the rest(d+1)µd

p = d1d2 Σ-servers do not. Arbitrarily choose
one of thed1d2 singleton servers not containing the singletonx0, then the server should beAj1 wherex0 ∈ Aj1 . Arbitrarily
choose one of thed1d2 Σ-servers not containing the singletonx0, then the server should beΣBj2 wherex0 ∈ Bj2 . Since
we have claimed|Aj1

⋂
Bj2 | ≤ 1, then the serverAj1 knows all the items except forx0 among the summation stored in the

non-singleton cell of the serverΣBj2 , so they two together can span the itemx0.
So we can finally deduce thatk = td2

ω1
+ (t−1)d1

ω2
+d1d2 = d2+2td+t

ω1ω2
. Thus the rate of this array code isk/m = d2+2td+t

µ(2d+1)ω1ω2
=

1− d2+d
p(2d+1) , meeting the upper bound.

Remark 7:Build a bipartite graph where the first part of vertices corresponds to the set of singleton servers not containing
the singletonx0 and the second part of vertices corresponds to the set ofΣ-servers not containing the singletonx0. An edge
between two vertices indicates that these two servers can span x0 together. Then in the proof above, we are actually saying
that whent ≥ d2, we will have a complete bipartite graph. This constraint isactually not necessary. The essential constraint is
only to guarantee a perfect matching in this bipartite graph, i.e., to guarantee that all those servers not containing the singleton
x0 could be divided into pairs, with each pair capable of spanning x0. Following this idea, we extend Theorem 6 to a wider
range of parameters in the next subsection.

B. d2 − d < t < d2

Before the tedious analysis on this range of parameters, we first provide an example illustrating the essence of the proof.
Example 8 (d = 5, t = 23, p = 28): The corresponding parameters areω = 2, µ = 14, ω1 = 1, d1 = 5, ω2 = 2 andd2 = 3.

We have84 singleton servers:Aj , 0 ≤ j ≤ 27, each appearing three times, whereAj = {xj+α : 0 ≤ α ≤ 4}. We have70
Σ-servers:ΣBj , 0 ≤ j ≤ 13, each appearing five times, whereBj = {xj+5γ+14λ:0≤γ≤2,0≤λ≤1}. The servers not containing
the singletonx0 are: ΣB0, ΣB9 and ΣB4, each appearing five times;A0, A27, A26, A25 and A24, each appearing three
times. Note thatΣB0 cannot be connected toA24 sinceB0

⋂
A24 = {0, 24}. Also ΣB4 cannot be connected toA0 since

B4

⋂
A0 = {0, 4}. A perfect matching of the bipartite graph induced by these servers is shown as follows.

B9 = {9, 14, 19,
23, 0, 5}

B0 = {0, 5, 10,
14, 19, 24}

B4 = {4, 9, 14,
18, 23, 0}

A0 = {0, 1,
2, 3, 4}

A27 = {27, 0,
1, 2, 3}

A26 = {26, 27,
0, 1, 2}

A25 = {25, 26,
27, 0, 1}

A24 = {24, 25,
26, 27, 0}

We shall briefly preview the outline of the proof to come. In the cased2 − d < t < d2, while we stick to the construction
in the previous subsection, the bipartite graph induced by those servers not containing the singletonx0 is no longer complete.
To deal with this trouble, we shall show that the absent edgesare incident to only two kinds ofΣ-servers. To find a perfect
matching in the bipartite graph, it suffices to find suitable partners for these two kinds ofΣ-servers first and the rest edges
can be chosen arbitrarily.

Lemma 9:For d2 − d < t < d2, suppose|Aj1

⋂
Bj2 | > 1 and0 ∈ Aj1

⋂
Bj2 , thenj2 = 0 or j2 = µω1 − d1(d2 − 1).

Proof: There existα1, α2, β1, β2, γ1, γ2, λ1, λ2 such that

j1 + α1 + β1µω2 ≡ j2 + γ1d1 + λ1µω1 ≡ 0 (mod p)

and
j1 + α2 + β2µω2 ≡ j2 + γ2d1 + λ2µω1 (mod p).

Do subtractions using these two equations above, we can get

(α2 − α1) + (β2 − β1)µω2 ≡ (γ2 − γ1)d1 + (λ2 − λ1)µω1 (mod p).

Then we have(α2 − α1) ≡ (γ2 − γ1)d1 (mod µ). When t > d2 − d, µ = p
ω1ω2

> d2

ω1ω2
≥ d1(d2 − 1). Since1 − d1 ≤

α2 − α1 ≤ d1 − 1 and 1 − d2 ≤ γ2 − γ1 ≤ d2 − 1, so (α2 − α1) ≡ (γ2 − γ1)d1 (mod µ) holds if and only if one of the
following holds:



5

• Case I.α2 − α1 = γ2 − γ1 = 0. Then by the same analysis as in Theorem 6 we will arrive at a contradiction to
|Aj1

⋂
Bj2 | > 1. So this case is impossible.

• Case II.γ2 − γ1 = d2 − 1, and consequentlyγ2 = d2 − 1 andγ1 = 0. Then we havej2 + λ1µω1 ≡ 0 (mod p). Since
0 ≤ j2 ≤ µω1 − 1 and0 ≤ λ1 ≤ ω2 − 1, then we must havej2 = 0.
• Case III.γ2 − γ1 = 1 − d2, and consequentlyγ1 = d2 − 1 and γ2 = 0. Then we havej2 + d1(d2 − 1) + λ1µω1 ≡ 0

(mod p). Since0 ≤ j2 ≤ µω1 − 1, 0 ≤ λ1 ≤ ω2 − 1 andd1(d2 − 1) < µ ≤ µω1, then we must havej2 = µω1 − d1(d2 − 1).

So we only need to focus on two kinds of specialΣ-servers,ΣB0 andΣBµω1−d1(d2−1).
Lemma 10:Aj1

⋂
B0 = {x0} if and only if j1 = 0 or µω2 − µ+ d1(d2 − 1) + 1 ≤ j1 ≤ µω2 − 1.

Proof: j1 + α1 + β1µω2 ≡ 0 (mod p) holds if and only if

j1 = α1 = β1 = 0

or
β1 = ω1 − 1 andj1 = µω2 − α1.

So the candidate forj1 satisfyingx0 ∈ Aj1 is j1 ∈ {0}
⋃
[µω2 − d1 + 1, µω2 − 1].

We should then exclude thosej1 such that|Aj1

⋂
B0| > 1. Continuing Case II in Lemma 9,γ2 − γ1 = d2 − 1, then

α2 − α1 = d1(d2 − 1)− µ. Soα1 ∈ [0, d1 − 1]
⋂
[µ− d1(d2 − 1), µ− d1(d2 − 1) + d1 − 1] = [µ− d1(d2 − 1), d1 − 1]. Then

the candidate forj1 such that|Aj1

⋂
B0| > 1 is j1 ∈ [µω2 − d1 + 1, µω2 − µ + d1(d2 − 1)]. Therefore, by excluding these

choices forj1, we finally deduce thatAj1

⋂
B0 = {x0} if and only if j1 = 0 or µω2−µ+ d1(d2 − 1)+1 ≤ j1 ≤ µω2− 1.

Lemma 11:Aj1

⋂
Bµω1−d1(d2−1) = {x0} if and only if µω2 − d1 + 1 ≤ j1 ≤ µω2 − d1d2 + µ.

Proof: j1 + α1 + β1µω2 ≡ 0 (mod p) holds if and only if

j1 = α1 = β1 = 0

or
β1 = ω1 − 1 andj1 = µω2 − α1.

So the candidate forj1 satisfyingx0 ∈ Aj1 is j1 ∈ {0}
⋃
[µω2 − d1 + 1, µω2 − 1].

We should then exclude thosej1 such that|Aj1

⋂
Bµω1−d1(d2−1)| > 1. Continuing Case III in Lemma 9,γ2 − γ1 = 1− d2,

thenα2−α1 = µ−d1(d2−1). Soα1 ∈ [0, d1−1]
⋂
[d1(d2−1)−µ, d1(d2−1)−µ+d1−1] = [0, d1(d2−1)−µ+d1−1]. Then

the candidate forj1 such that|Aj1

⋂
B0| > 1 is j1 ∈ [µω2 − d1(d2 − 1)+µ− d1+1, µω2− 1]

⋃
{0}. Therefore, by excluding

these choices forj1, we finally deduce thatAj1

⋂
Bµω1−d1(d2−1) = {x0} if and only if µω2 − d1+1 ≤ j1 ≤ µω2− d1d2 +µ.

Lemma 12:d2(µ− d1(d2 − 1)) ≥ d1.
Proof: This is equivalent tod+1

ω2
( p
ω1ω2

− d
ω1

(d+1
ω2

− 1)) ≥ d
ω1

. Reorganizing this inequality we getdω2(d + 1 − ω2) ≥

(d+ 1)(d2 + d− p). Sinceω2|d+ 1 andd2 < p < d2 + d, sop is not a multiple ofd+ 1 and thereforeω2 6= d+ 1. Thus we
have1 ≤ ω2 ≤ d+1

2 , then the left-hand-side is at leastd2. Sinced2 < p, we haved2 + d− p ≤ d− 1 and the right-hand-side
is at mostd2 − 1. Therefore the inequality holds.

Combining these lemmas above, we can finally extend Theorem 6to the range of parametersd2 − d < t < d2.
Theorem 13:For d2 − d < t < d2, there existk-PIR array codes withm = µ(2d+ 1) servers such that the ratekm equals

g(s, t) = 1− d2+d
p(2d+1) .

Proof: It suffices to find a perfect matching in the bipartite graph induced by those servers not containing the singleton
x0. For thosed1 servers namedΣB0, from Lemma 10 we know that eachΣB0 is connected to the singleton serverAj with
j ∈ S , [µω2 − µ+ d1(d2 − 1) + 1, µω2 − 1]

⋃
{0}. Since eachAj appearsd2 times so there are totallyd2(µ− d1(d2 − 1))

such servers.
Similarly, for thosed1 servers namedΣBµω1−d1(d2−1), from Lemma 11 we know that eachΣBµω1−d1(d2−1) is connected

to the singleton serverAj with j ∈ T , [µω2 − d1 + 1, µω2 − d1d2 + µ]. Since eachAj appearsd2 times so there are totally
d2(µ− d1(d2 − 1)) such servers.

For anyΣ-server other thanΣB0 andΣBµω1−d1(d2−1), Lemma 9 tells us that it is connected to all the singleton servers
not containing the singletonx0. Therefore, in order to find a perfect matching, we only need to find the edges incident
with the serversΣB0 andΣBµω1−d1(d2−1), and the rest edges can be chosen arbitrarily. By Lemma 12,d2|S| = d2|T | =
d2(µ − d1(d2 − 1)) ≥ d1. Moreover,d2|S

⋃
T | = d1d2 ≥ 2d1, whered2 ≥ 2 follows from the fact thatω2 6= d + 1 shown

in Lemma 12. Therefore finding the partners for those serversnamedΣB0 andΣBµω1−d1(d2−1) could be done and the result
follows.
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III. s > 2: A NEW UPPER BOUND OFg(s, t)

In this section we derive a new upper bound ofg(s, t) for s > 2 (equivalently,d > t andp = d + t > 2t), improving the
original upper bound shown in Theorem 4.

For any given PIR array code, we first divide the servers into the following four parts. The first part contains all thel
singleton servers, i.e., servers whose cells are all singleton entries. The second part contains all ther servers, where each
server hast− 1 singleton entries and the remaining entry is a summation ofη out of the leftp− t+ 1 items,2 ≤ η ≤ t+ 1.
The third part contains all theu servers, where each server hast− 1 singleton entries and the remaining entry is a summation
of λ out of the leftp− t+1 items,t+1 < λ ≤ p− t+1. Finally the fourth part contains all thew servers, where each server
has at mostt− 2 singleton entries. Clearlyl + r + u+ w = m.

Theorem 14:For any integert ≥ 2 and any positive integerd > t, we have

g(1 +
d

t
, t) ≤

d2 + 2t2 + 3td+ 2t

2(t+ d)(d+ t+ 1)
.

Proof: Suppose we have a[t×m, p] k-PIR array code with parameters satisfying the condition ofthe theorem. For each
i ∈ {1, 2, . . . , p}, let Si

1, S
i
2, . . . , S

i
ki

be disjoint subsets of servers such that each subset of servers could span the itemxi. The
numberki is chosen to be as large as possible. To derive an upper bound on k/m, it suffices to show that

p∑

i=1

ki ≤
d2 + 2t2 + 3td+ 2t

2(d+ t+ 1)
m.

Among each of the four parts, without loss of generality, anyserver containing a singleton entryxi can be chosen as one
of the subsetsSi

1, S
i
2, . . . , S

i
ki

. Assume the numbers of such servers among the four parts areli, ri, ui andwi. Let fi be the
number of subsets in the listSi

1, S
i
2, . . . , S

i
ki

consisting of exactly one singleton server and one non-singleton server. Letgi be
the number of subsets in the listSi

1, S
i
2, . . . , S

i
ki

containing at least two singleton servers and exactly one non-singleton server.
For any remaining subset in the listSi

1, S
i
2, . . . , S

i
ki

other than those listed above, it must contain at least two non-singleton
servers. So we have the following inequality:

ki ≤ li + ri + ui + wi + fi + gi +
r − ri + u− ui + w − wi − fi − gi

2
.

Below we estimate
∑

ki in two ways. First, by counting the singleton servers we havefi + 2gi ≤ l − li. So we have

ki ≤ li + ri + ui + wi + fi + gi +
r − ri + u− ui + w − wi − fi − gi

2

= li +
r + ri + u+ ui + w + wi

2
+

fi
2
+

gi
2

≤ li +
r + ri + u+ ui + w + wi

2
+

fi
2
+ gi

≤ li +
r + ri + u+ ui + w + wi

2
+

l− li
2

=
l+ li + r + ri + u+ ui + w + wi

2
.

By counting the number of singleton cells in each of the four parts of servers, we have
∑

li = lt,
∑

ri = r(t − 1),∑
ui = u(t− 1) and

∑
wi ≤ w(t− 2). These lead to

∑
ki ≤

p(l + r + u+ w)

2
+

lt+ r(t − 1) + u(t− 1) + w(t − 2)

2

= l
p+ t

2
+ r

p+ t− 1

2
+ u

p+ t− 1

2
+ w

p+ t− 2

2
. (1)

The second estimation is to analyzefi, the number of subsets in the listSi
1, S

i
2, . . . , S

i
ki

containing exactly one singleton server
and one non-singleton server. Notice that the non-singleton server cannot be from the third part. This is because such a server
from the third part does not have the singleton entryxi and its unique non-singleton cell should be of the formxi+

∑λ−1
j=1 yj ,

whereλ − 1 > t. Any singleton server without the singleton entryxi could only provide the values oft items. So they two
cannot cooperate on spanningxi. Therefore, trivially we havefi ≤ r − ri +w−wi and

∑
fi ≤ pr − r(t− 1) + pw−

∑
wi.

However, this is still not enough. The following observation will be the key to this theorem. For any non-singleton server from
the second part, its unique non-singleton entry is a summation of at mostt+1 items. So its contribution to counting

∑
fi is at

mostt+1. Therefore, instead of using
∑

fi ≤ pr−r(t−1)+pw−
∑

wi, a better estimation is
∑

fi ≤ r(t+1)+pw−
∑

wi.
Then we have
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ki ≤ li + ri + ui + wi + fi + gi +
r − ri + u− ui + w − wi − fi − gi

2

= li +
r + ri + u+ ui + w + wi

2
+

fi
4
+

gi
2
+

fi
4

≤ li +
r + ri + u+ ui + w + wi

2
+

l− li
4

+
fi
4

=
l+ 3li + 2r + 2ri + 2u+ 2ui + 2w + 2wi

4
+

fi
4
,

and thus

∑
ki ≤

∑ l + 3li + 2r + 2ri + 2u+ 2ui + 2w + 2wi

4
+

∑
fi
4

=
lp+ 3lt+ 2rp+ 2r(t− 1) + 2up+ 2u(t− 1) + 2wp+ 2

∑
wi

4
+

r(t + 1) + wp−
∑

wi

4

=
lp+ 3lt+ 2rp+ 2r(t− 1) + 2up+ 2u(t− 1) + 2wp+ r(t + 1) + wp

4
+

∑
wi

4

≤ l
p+ 3t

4
+ r

2p+ 3t− 1

4
+ u

p+ t− 1

2
+ w

3p+ t− 2

4
. (2)

Now we have estimated
∑

ki in two ways, the formula(1) and the formula(2). Denote

F (l, r, u, w) = l
p+ t

2
+ r

p+ t− 1

2
+ u

p+ t− 1

2
+ w

p+ t− 2

2
,

and denote
G(l, r, u, w) = l

p+ 3t

4
+ r

2p+ 3t− 1

4
+ u

p+ t− 1

2
+ w

3p+ t− 2

4
,

then
∑

ki ≤ min{F,G}. To find an upper bound of
∑

ki, it suffices to determine the maximum value ofmin{F,G}.
Suppose that this maximum occurs at(l̃, r̃, ũ, w̃). It is easy to check thatF (l̃, r̃, ũ, w̃) ≤ F (l̃, r̃ + ũ, 0, w̃) andG(l̃, r̃, ũ, w̃) ≤
G(l̃, r̃ + ũ, 0, w̃). Therefore we havẽu = 0. Now the problem reduces to

max min

{
l
p+ t

2
+ r

p+ t− 1

2
+ w

p+ t− 2

2
, l

p+ 3t

4
+ r

2p+ 3t− 1

4
+ w

3p+ t− 2

4

}
,

s.t. l+ r + w = m, l, r, w ∈ N

To solve the program above, first letw be fixed. Then it is routine to deduce that whenl = m t+1
p+1 + w p−2t+1

p+1 , the

corresponding objective function is then a function ofw of the formmp2+tp+2t
2(p+1) −w t

(p+1) . Then to maximize this function we

will havew = 0. To sum up, whenw = 0, l = m t+1
p+1 andr = m p−t

p+1 , the optimal value of the program is thend
2+2t2+3td+2t
2(d+t+1) m

and the theorem follows.

Finally, it is straightforward to check that our new upper bound is better than Theorem 4 whens > 2. That is,d
2+2t2+3td+2t
2(t+d)(d+t+1) <

(2d+1)t+d2

(t+d)(2d+1) whend > t.

IV. s > 2: ANALYZING THE CONSTRUCTION BY BLACKBURN AND ETZION

For the cases > 2, Blackburn and Etzion propose a new PIR array code in [2, Section 4]. We briefly review their construction
(hereafter we call it the B-E Construction) fors being an integer. The case whens is not an integer can be managed similarly.

For a server witht− 1 singleton cells and the other one containing a summation ofj out of the leftst− t+ 1 items, we
shall call it a server of typej, 1 ≤ j ≤ st− t+1. A type 1 server is then just a singleton server. For1 ≤ r ≤ s, let Tr denote
the whole set of servers of type(r−1)t+1 containing all the possible combinations of singleton cells and the summation cell.
That is, |T1| =

(
st
t

)
and |Tr| =

(
st
t−1

)(
st−t+1

(r−1)t+1

)
for 2 ≤ r ≤ s. The B-E construction consists of serversTr, 1 ≤ r ≤ s, with

eachTr appearingηr times. For any given itemxi, we pair those servers not containing the singleton cellxi by constructing
s− 1 bipartite graphs. The choices forηr are to guarantee that, for any given itemxi, each of thes− 1 bipartite graphs has a
perfect matching, i.e., all those servers not containing the singletonxi can be divided into pairs, each pair capable of spanning
xi.

For any given itemxi, thes− 1 bipartite graphs are as follows. The bipartite graphGr, 1 ≤ r ≤ s− 1, has two sides. The
first side represents all the servers inTr (appearingηr times), in whichxi is neither a singleton nor appears in the summation
part. The second side represents all the servers inTr+1 (appearingηr+1 times), in whichxi appears in the summation part.
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An edge is connected betweenv from the first side andu from the second side, if and only if all the items appeared inv
(t− 1 singletons and(r− 1)t+1 items in the summation part) are exactly thert items in the summation part ofu, excluding
xi. It can be easily calculated that, to guarantee a perfect matching inGr , we must have the ratioη1 : η2 =

(
p−t−1
t−1

)
: 1 and

ηr : ηr+1 =
(
p−rt−1

t−1

)
:
(

rt
t−1

)
for 2 ≤ r ≤ s− 1.

Example 15 (s = 4): The servers inT1, T2, T3, T4 appearη1, η2, η3, η4 times respectively. The following ratios are required.
η1 : η2 =

(
3t−1
t−1

)
: 1, η2 : η3 = (t+ 1) : 2t andη3 : η4 = 1 :

(
3t
t−1

)
. So we may selectη1 = (t+ 1)

(
3t−1
t−1

)
, η2 = t+ 1, η3 = 2t

andη4 = 2t
(

3t
t−1

)
.

Compared to those existing PIR array codes in Theorem 5, one advantage of the B-E Construction is that it is a unified
construction, suitable to all parameters.

In this section we shall deeply analyze the B-E Constructionin several aspects. The rest of this section is divided into three
subsections. In the first subsection, based on a slight modification, we present a new construction and compare it with the
original B-E Construction. In the second subsection we showthat both constructions produce PIR array codes with betterrate
than all the other existing PIR array codes in Theorem 5. Finally in the third subsection, we add some remarks regarding the
possible optimality of the B-E Construction.

A. A new construction

A minor problem of the B-E Construction is that, the number ofserversm could be very large since the choices for the
integers{ηr : 1 ≤ r ≤ s} should abide by the desired ratio. Based on a slight modification, we present a new construction
of PIR array codes, with a much smaller number of servers compared to the B-E Construction, with a slight sacrifice in the rate.

Construction (givent, s > 2 andp = ts):

1. Take all those
(
p
t

)
singleton servers, each appearingδ times, whereδ =

(
p−t−1
t−1

)
.

2. For a server witht − 1 singleton cells and the other one containing a summation ofj out of the leftp− t+ 1 items, we
shall call it a server of typej, 2 ≤ j ≤ p− t+ 1. Take all those servers of typest+ 1, t+ 2, . . . , p− t+ 1, each appearing
exactly once.

It is easy to see that the array code consisting of these servers is indeed symmetric for all the items{x1, x2, . . . , xp}. To
span any symbol, sayxi, all those servers containing a singleton cellxi will surely do, and we hope that those servers not
containing a singleton cellxi can be divided into pairs and each pair could together spanxi. This is shown in the following
theorem.

Theorem 16:The construction above gives an array code withm =
(
p
t

)(
p−t−1
t−1

)
+

(
p

t−1

)∑
t+1≤j≤p−t+1

(
p−t+1

j

)
andk =

p+t
2p

(
p
t

)(
p−t−1
t−1

)
+ p+t−1

2p

(
p

t−1

)∑
t+1≤j≤p−t+1

(
p−t+1

j

)
.

Proof: There are totally
(
p
t

)
× δ singleton servers and totally

(
p

t−1

)(
p−t+1

j

)
servers of typej, altogether

m =

(
p

t

)(
p− t− 1

t− 1

)
+

(
p

t− 1

) ∑

t+1≤j≤p−t+1

(
p− t+ 1

j

)
.

Among the singleton servers, the number of singleton cells containing the singletonxi is exactly t
p

(
p
t

)(
p−t−1
t−1

)
. Among the

non-singleton servers (each witht − 1 singleton cells), the number of singleton cells containingthe singletonxi is exactly
t−1
p

(
p

t−1

)∑
t+1≤j≤p−t+1

(
p−t+1

j

)
.

For each singleton server without the singleton cellxi, suppose it stores{y1, y2, . . . , yt}. Then we may pair it with a server
of type t+1 whose unique non-singleton cell containsxi+

∑t
j=1 yj . These two servers could together spanxi. The singleton

server storing{y1, y2, . . . , yt} appearsδ =
(
p−t−1
t−1

)
times. Meanwhile we also have exactly

(
p−t−1
t−1

)
servers of typet + 1

whose unique non-singleton cell containsxi +
∑t

j=1 yj. So clearly we may divide these two families of servers in pairs.
Next we analyze a server of typej satisfying: 1) it does not contain the singletonxi and 2)xi does not appear in the

summation in its non-singleton cell, for somet+1 ≤ j < p− t+1. We may suppose this server containsz1, z2, . . . , zt−1 and
ω1 + ω2 + · · ·+wj . Then we can pair it with a server of typej + 1 containingz1, z2, . . . , zt−1 andxi +ω1 + ω2 + · · ·+wj .
Clearly they two will together derive the value ofxi.

In this way, all the servers not containing a singletonxi are divided into pairs and each pair could together spanxi. So we
have

k =
t

p

(
p

t

)(
p− t− 1

t− 1

)
+

t− 1

p

(
p

t− 1

) ∑

t+1≤j≤p−t+1

(
p− t+ 1

j

)
+

m− t
p

(
p
t

)(
p−t−1
t−1

)
− t−1

p

(
p

t−1

)∑
t+1≤j≤p−t+1

(
p−t+1

j

)

2

=
p+ t

2p

(
p

t

)(
p− t− 1

t− 1

)
+

p+ t− 1

2p

(
p

t− 1

) ∑

t+1≤j≤p−t+1

(
p− t+ 1

j

)
.
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Example 17 (s = 4): We have all combinations of
(
4t
t

)
singleton servers, each appearing

(
3t−1
t−1

)
times. Then we have all

the servers of typet+1, t+2, . . . , 3t+1, totally
(

4t
t−1

)∑
t+1≤j≤3t+1

(
3t+1
j

)
servers. It is routine to check that the number of

servers is much smaller than that of Example 15.

B. Comparing the rate of different PIR array codes

To calculate the exact rate of the B-E Construction or our newconstruction is tedious and in some sense, not necessary. First
note that in the B-E Construction and our modified construction, all those servers not containingxi could be divided into pairs
so that each pair is capable of spanningxi. Suppose we haveα singleton servers andβ non-singleton servers. Among theα
singleton servers there are totallytα singleton cells. Since the code is obviously symmetric for all the items, thentα/p servers
contain a singleton cellxi. Similarly among theβ non-singleton servers (each hast− 1 singleton cells and a summation cell)
there are(t−1)β/p servers containing a singleton cellxi. So we havem = α+β andk = tα/p+(t−1)β/p+m−tα/p−(t−1)β/p

2 .
Thus the ratek/m = t+p

2p
α

α+β +
t+p−1

2p
β

α+β is a weighted average oft+p
2p and t+p−1

2p and is strictly larger thant+p−1
2p = ts+t−1

2ts .
At this point an easy observation is that a larger ratioαα+β implies a larger rate. It is tedious but straight forward to check that

the B-E Construction does have a larger ratioαα+β compared to our modified construction. So the rate of the B-E Construction
is strictly larger than ours. Next we shall show that our construction produces codes with better rate than the other existing
PIR array codes in Theorem 5.

Since our construction produces codes with rate strictly larger thant+p−1
2p = ts+t−1

2ts , we shall first use this value to compare
with the other existing PIR array codes and successfully show that ts+t−1

2ts is larger than the rate of most existing codes.
However there exist some sporadic cases when this comparison is not enough and then we have to proceed with a more
detailed comparison.

• Comparison with Theorem 5, the first case (Construction 7 andTheorem 10 in [2]):

Let 3 ≤ r ≤ t ands = r− (r−2)+1
t . In this casep = ts = tr−t2+2r−1. It is easy to check thatts+t−1

2ts > 1
2+

t−r+1
2(rt−(r−2)r−1)

holds whenr ≥ 3.

• Comparison with Theorem 5, the second case (Construction 8 and Theorem 11 in [2]):

Let s = r+ d
t andp = rt+d, wherer ≥ 2 is an integer,t ≥ r, 1 ≤ d ≤ t−1. The process to show thatts+t−1

2ts = rt+d+t−1
2(rt+d)

is larger than1− (rt+d−t+r)(rt+d−t)
(rt+d)(2rt+2d−2t+r) can be reduced to proving(r − 2)(rt + d− t) > r. This always holds whenr ≥ 3.

The remaining case is whenr = 2, p = 2t+ d and we have to follow a detailed analysis. In our modified construction, the
number of singleton servers isA =

(
2t+d

t

)(
t+d−1
t−1

)
. The number of the other servers isB =

(
2t+d
t−1

)∑d
i=0

(
t+d+1

i

)
. So we have

the rate

k/m =
A 3t+d

4t+2d +B 3t+d−1
4t+2d

A+B
=

3t+ d

4t+ 2d
−

1

(4t+ 2d)(AB + 1)
.

A lower bound of AB can be derived as follows, where the third inequality is due to
∑d

i=0

(
t+d+1

i

)
≤ d(t+d+1)!

d!(t+1)! and the
fourth inequality is due tod ≤ t− 1:

A

B
=

(
2t+d

t

)(
t+d−1
t−1

)
(
2t+d
t−1

)∑d
i=0

(
t+d+1

i

) =
(t+ d+ 1)(t+ d− 1)!

t(t− 1)!d!
∑d

i=0

(
t+d+1

i

) ≥
t+ 1

d(t+ d)
>

1

t+ d
.

Thus the ratekm ≥ 3t+d
4t+2d−

1
(4t+2d)( 1

t+d
+1)

and it is routine to check that the right-hand side is larger than1− (t+d+2)(t+d)
(2t+d)(2t+2d+2) .

• Comparison with Theorem 5, the third case (Construction 9 and Theorem 12 in [2]):

Let s > 2 be an integer andt ≥ s. The inequalityts+t−1
2ts > ts+t+1

s(2t+1) can be equivalently reduced tots > 3t + 1, which
naturally holds whens ≥ 4. The remaining cases = 3 is analyzed as follows.

When s = 3, thenp = 3t. In our constructionm =
(
3t
t

)(
2t−1
t−1

)
+

(
3t
t−1

)
22t andk = 2

3

(
3t
t

)(
2t−1
t−1

)
+ 4t−1

6t

(
3t
t−1

)
22t. We now
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prove that our ratek/m is larger than4t+1
6t+3 using the following deductions:

2
3

(
3t
t

)(
2t−1
t−1

)
+ 4t−1

6t

(
3t
t−1

)
22t

(
3t
t

)(
2t−1
t−1

)
+
(

3t
t−1

)
22t

>
4t+ 1

6t+ 3

⇐⇒
2t+ 1

t

(
2t− 1

t− 1

)
·

1

6t+ 3
> 22t(

4t+ 1

6t+ 3
−

4t1
6t

)

⇐⇒ (4t+ 2)

(
2t− 1

t− 1

)
> 22t

where the last inequality can be easily checked by induction: when t = 1, the inequality corresponds to6 > 4; the inductive

step follows from
(4t+6)(2t+1

t )
(4t+2)(2t−1

t−1 )
= 4t+6

t+1 > 4.

• Comparison with Theorem 5, the fourth case (Construction 10and Theorem 13 in [2]):

Let s > 2 be an integer. Let(s− 1)t = lb and t ≥ l + b, wherel and b are positive integers. Obviouslyl should be larger
than 1. Thusts+t−1

2ts = s+1
2s − 1

2st >
s+1
2s − l

2st holds.
Summing up the above, we have shown that the PIR array code produced by our construction has better rates than all the

existing ones in Theorem 5.

C. Does the B-E Construction have optimal rate?

Finally we add some discussions on the B-E Construction regarding its potential optimality. The following analysis is based
on intuitive ideas rather than strict proofs. To prove or disprove the optimality of the B-E Construction will be of greatinterest.

For any PIR array code with optimal rate, first note that we mayassume that all servers of the same type appear the same
number of times, just as in the B-E Construction. This is because if it is not the case, then we may choose any permutation
π ∈ Sp and let it operate on the code, exchanging the names of the items. Taking the union of all suchp! codes will result in
an optimal code, in which all servers of the same type appear the same number of times.

So we may assume that all those
(
p
t

)
singleton servers appear a certain number of times. For eachof those singleton servers

not containing a given itemxi, we shall find its partner to cooperate on spanningxi. We turn to servers of typej for help and
the candidate for the valuej should be2 ≤ j ≤ t+1. Then what should be the proper choice forj? The set of servers of type
j can be divided into three subsets:Aj servers containing a singletonxi, Bj servers containingxi in its summation part and
the restCj servers in whichxi neither appears as a singleton nor appears in its summation part. It can be easily calculated
that Bj

Cj
= 1

p−t+1

j
−1

, which increases asj increases. TheBj servers are the partners we wish to find for those singleton servers

not containingxi and theCj servers accompanied will become new troubles. So intuitively we wish to maximize the ratioBj

Cj

and thusj = t+ 1. Following the same analysis step-by-step, we choose the servers of typet+1, 2t+ 1, 3t+1 . . . , which is
exactly the B-E Construction.

Moreover, it seems that bringing in servers with less thant− 1 singleton cells does no good. Suppose we haveαi servers
with t − i singleton cells,0 ≤ i ≤ t. Then following a similar analysis as in Subsection IV-B, the rate will be a weighted
average of{ t+p−i

2p : 0 ≤ i ≤ t}, whereαi’s are the corresponding weights. So the existence of servers with less thant − 1
singleton cells is very likely to decrease the rate.

To sum up, we believe that all these intuitive analyses aboveare positive evidences to the following conjecture:
Conjecture 18:For s > 2, the PIR array codes produced by the B-E Construction have optimal rate.

V. CONCLUSION

In this paper we consider the problem of constructing optimal PIR array codes, following the work of [7] and [2]. For the
case1 < s ≤ 2, we determine the minimum number of servers admitting a PIR array code with optimal rate for a certain
range of parameters, i.e.t > d2− d. We believe a similar result may be found for the remaining cases by a different approach.
For the cases > 2, we derive a new upper bound on the rate and we analyze the construction by Blackburn and Etzion in
several aspects. Especially, to prove or to disprove the optimality of the B-E construction fors > 2 will be of great interest.
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