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On the Error in Phase Transition Computations for
Compressed Sensing

Sajad Daei, Farzan Haddadi, Arash Amini, Martin Lotz

Abstract—Evaluating the statistical dimension is a common
tool to determine the asymptotic phase transition in compressed
sensing problems with Gaussian ensemble. Unfortunately, the
exact evaluation of the statistical dimension is very difficult and
it has become standard to replace it with an upper-bound. To
ensure that this technique is suitable, [1] has introduced an
upper-bound on the gap between the statistical dimension and its
approximation. In this work, we first show that the error bound
in [1] in some low-dimensional models such as total variation and
`1 analysis minimization becomes poorly large. Next, we develop
a new error bound which significantly improves the estimation
gap compared to [1]. In particular, unlike the bound in [1] that
fails in some settings with overcomplete dictionaries, our bound
exhibits a decaying behavior in such cases.

Index Terms—statistical dimension, error estimate, low-
complexity models.

I. INTRODUCTION

UNDERSTANDING the behavior of random compressed
sensing problems in transition from absolute failure to

success (known as phase transition) has been the subject
of research in recent years [1]–[8]. Most of these works
concentrate on simple sparse models and do not allude to the
challenges in other low-dimensional structures such as low-
rank matrices, block-sparse vectors, gradient-sparse vectors
and cosparse (also known as analysis sparse [9]) vectors. For
simplicity, we associate such structures with their common
recovery techniques and rename the structures accordingly. For
instance, total variation (TV), `1 analysis and `1,2 minimiza-
tion refer to both the recovery techniques and the underlying
low-dimensional structures. In this work, we revisit linear
inverse problems with the aim of recovering a vector x P Rn
from a few random linear measurements y “ Ax P Rm. This
is summarized as solving the following convex program:

Pf : min
zPRn

fpzq

s.t. y “ Az, (1)

where, A P Rmˆn is the measurement matrix whose entries
are i.i.d. random variables with normal distribution and f is
a convex penalty function that promotes the low-dimensional
structure. A major subject of recent research is the number of
Gaussian measurements (the number of rows in A) one needs
to recover a structured vector x from y P Rm. In [3], a bound
is obtained using polytope angle calculations with asymptotic
sharpness in case of f “ } ¨ }1. A link between the number of
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required measurements and the error in the denoising problem
is investigated in [8]. For the particular case of f “ } ¨ }TV in
Pf , we need to consider the denoising problem

px “ argmin
zPRn

τσ}z}TV `
1

2
}y ´ z}22, (2)

where y “ x ` w with w being an additive noise drawn
from N p0, σ2Iq. If we define the worst-case normalized mean
squared error (NMSE) as

NMSE :“ lim
σÑ0

inf
τě0

E}x´ px}22
σ2

, (3)

then, the result in [8] implies that the value of NMSE is a sharp
estimate of the required number of measurements (for PTV)
in the asymptotic case. Also, in [7], the authors showed that
the mentioned NMSE is the same as the number of required
measurements that TV approximate message passing (TV-
AMP) algorithm needs. [2] introduced a general framework for
obtaining the number of Gaussian measurements in different
low-dimensional structures using Gordon min-max inequality
[10] and the concept of atomic norms. Specifically, it was
shown that ω2pDpf,xqXBnq`1 measurements are sufficient.
Here, Dpf,xq is the descent cone of f at x P Rn and
ω2pDpf,xq X Bnq is the squared Gaussian width, which
intuitively measures the size of this cone. In [1], it has been
shown that the statistical dimension of this cone, which is
defined below and differs from the squared Gaussian width
above by at most 1, specifies the phase transition of the
[random] convex program Pf from absolute failure to absolute
success:

δpDpf,xqq :“ E dist2pg, conepBfpxqqq. (4)

δpDpf,xqq is the average distance of a standard Gaussian
i.i.d. vector g P Rn from non-negative scalings of the sub-
differential at point x P Rn. So far, we know that a phase
transition exists in Pf and its boundary is interpreted via the
statistical dimension. A natural question is how we can find
an expression for the phase transition curve. The upper-bound
for δpDpf,xqq, first used in the context of `1 minimization by
Stojnic ( [6]), is given by:

δpDpf,xqq ď inf
tě0
E dist2pg, tBfpxqq :“ Uδ. (5)

However, it is still unknown whether Uδ is sharp for different
low-dimensional structures. For ease of notation, we define the
error Eδ by:

Eδ :“ Uδ ´ δpDpf,xqq. (6)
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Here, Uδ represents a sufficient number of measurements that
Pf needs for successful recovery. In [1], implicit formulas
are derived for the upper-bound (5) in case of `1 and nuclear
norm. Recently, an explicit upper-bound for Uδ in case of
`1 analysis and TV minimization is presented in [11]. The
proposed bound depends on a notion called “generalized
analysis sparsity” and is numerically observed to be tight
for many analysis operators. In [1], a general upper-bound
expression for Eδ (known as the error estimate) for various
structure-inducing functions (e.g. `1) is proposed (see Theorem
1). For the cases of `1 and nuclear norm minimization, it is
further shown that the normalized error estimate

pEp
n (and thus

Eδ
n ) vanishes in high dimensions. This result confirms that Uδ

is a good surrogate for δpDpf,xqq. However, the asymptotic
behavior of Eδn in cases of }¨}1,2, }Ω¨}1 and }¨}TV :“ }Ωd ¨}1

where

Ωd “

»

—

—

—

–

1 ´1 0 ¨ ¨ ¨ 0
0 1 ´1 ¨ ¨ ¨ 0

. . . . . . . . .
0 ¨ ¨ ¨ ¨ ¨ ¨ 1 ´1

fi

ffi

ffi

ffi

fl

P Rn´1ˆn, (7)

is not studied. Thus, one could simply think of the following
problems:

1) Does Uδ provide a fair estimate of the statistical dimen-
sion?

2) How to quantify the gap between the exact phase transi-
tion curve and the one obtained via Uδ?

3) Can one extend the previous error bounds obtained for `1
minimization in [1] to other low-dimensional structures
such as block sparsity, TV and `1 analysis?

In this work, we try to find answers to these ques-
tions. Specifically, we want to study how well Uδ describes
δpDpf,xqq in low-dimensional structures represented by } ¨}1,
}¨}1,2, }¨}˚, }Ω¨}1 and }¨}TV :“ }Ωd¨}1. A generic Ω P Rpˆn
can be tall, i.e. p ą n, or fat, i.e. p ď n; due to the similarity of
the arguments used in this paper, we include square matrices
in the category of fat matrices. Tall Ω matrices cover various
redundant1 analysis operators that are common in practice;
in particular, redundant wavelet frames [12], and redundant
random frames (widely used as a benchmark template in [9],
[11], [13], [14]). Also fat matrices include examples such as
the one-dimensional finite difference operator Ωd and non-
redundant random analysis operators (used in [11, Section
3.3]). We call a signal x P Rn an analysis-sparse vector (also
called as cosparse vector [9]) with respect to the analysis
operator Ω P Rpˆn if after applying Ω the resulting vector
becomes sparse; i.e., Ωx is sparse. We denote the support set
of Ωx with S; similarly, S stands for the zero set of Ωx.
The number of zeros in Ωx, i.e., |S|, is called the cosparsity
of x with respect to Ω [9], [11], [14]. We should highlight
that in most of the existing literature regarding the `1-analysis
problem it is assumed that Ω P Rpˆn has rows in general
position2.

1The term redundant refers to an analysis operator with more number of
rows than columns.

2Every subset of n rows of Ω are linearly independent.

Uδ δpDp} ¨ }1,xqq Eδ
n

pEp
n

in (21) s
9.458 9.0905 0.0003 0.064 1
16.828 16.8 0.0003 0.045 2
23.4544 23.04 .0005 0.036 3
61.244 60.84 0.0004 0.02 10

104.1814 104.04 0.0001 0.015 20

Table I: In this table, we examine the error estimate [1] for function f “ }¨}1
and signal x with dimension n “ 1000. The upper-bound Uδ is computed
using the package SNOW in [1]. The true sample complexity is denoted by
δpDp}¨}1,xqq and computed by squaring ωpDp}¨}1,xqXBnq (see Appendix
E for more details). For the considered class of x signals, we observe that

there is a negligible gap between
pEp
n

in [1] and the true normalized error
Eδ
n

.

A. Motivation

Tables I and II present the results of a computer experiment
designed to evaluate the error of Uδ in estimating the statistical
dimension. In two experiments shown in Tables I and II, we
test the error bound for `1 and TV minimization. The value of
δpDpf,xqq which is approximately equal to ω2pDpf,xqXBnq,
is computed using the procedure proposed in [11, Section B.2]
(see Appendix E). In the first experiment, for each sparsity
level, we construct a sparse vector x P R1000 with random
non-zero values (distributed as N p0,

?
1000q) at uniformly

random locations. In the second experiment, we set Ω “ Ωd,
and generate a gradient sparse vector x P R1000 as the sum
of two components: a small but non-zero component in the
space nullpΩSq, and a large component in the space nullpΩq.
The notation ΩS refers to the matrix Ω restricted to the rows
indexed by S (see Section IV-A for more details). For Tables
I and II, the upper-bound (5) is obtained by [1, Equation D.6]
and numerical optimization3, respectively. As shown in Tables
I and II, there exists a gap between the true error Eδ and the
state of the art theoretical error estimate pEp in (21). While
the normalized gap, i.e., |Eδ´

pEp|
n is negligible in the `1 case

(Table I), it is considerable in case of TV minimization (Table
II). Now, a natural question that arises is: can we find a better
bound that reduces the gap?

B. Contributions

In this work, we rigorously analyze the error of estimating
the phase transition. The significance of this error is to have
a good understanding about the required number of measure-
ments that Pf needs to recover a structured vector from under-
sampled measurements. Our analysis is general and holds for a
variety of low-dimensional structures including sparse, block-
sparse, analysis sparse and gradient-sparse vectors, as well as
low-rank matrices. In brief, the contributions of this work can
be listed as follows.

1) Identifying a failure regime for [1]: For f “ }Ω ¨ }1 in
Pf , the error estimate of [1] shown in (21), can become
remarkably large for some specific signals and analysis
operators. For fat analysis operators, a typical signal x
with such property is constructed as:

x “ PnullpΩSq
w ` PnullpΩqc P Rn, (8)

3See also [15, Section 4] which proposes a numerical method to calculate
Uδ in case of TV minimization.
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Uδ δpDp} ¨ }TV,xqq
Eδ
n

pEp
n

in (21) Average amplitude of x }Ωx}8 s
58 56.25 0.002 2063.3 1000 0.1 10
61.1 60.84 0.0013 5.1143 30 4 10
80.03 79.21 0.0008 0.4 3 0.9 10
982 979.69 0.002 10.4 316 0.4 850

Table II: In this table, we examine the TV error bound for gradient sparse signals with dimension n “ 1000. The upper-bound Uδ is obtained by Monte
Carlo simulations and numerical optimization. The true sample complexity δpDp} ¨ }TV,xqq « ω2pDp} ¨ }TV,xq X Bnq is obtained using the approach

presented in Appendix E. The large values of
pEp
n

observed in this table are not necessarily caused by approximating δpDpf,xqq with Uδ .

where w, c P Rn are arbitrary vectors. For tall analysis
operators, we can find pairs of Ω and x for which the
error estimate [1] explodes. We precisely investigate this
in Section IV.

2) Obtaining an error bound for δpDpf,xqq with rather gen-
eral fp¨q: δpDpf,xqq precisely determines the boundary
of failure and success of Pf . However, exact computation
of δpDpf,xqq is very difficult. It is common to approxi-
mate δpDpf,xqq with Uδ . By providing an error bound,
we formally show that this approximation is good. More
precisely, we show that

Eδ
n
ď h2pβ, ωq, (9)

where β depends on Bfpxq, and h2pβ, ωq is a function
of β and ωpDpf,xqXBnq that is succinctly shown by ω.
Under certain conditions, we show that h2pβ, ωq vanishes
as n grows sufficiently large. To a great extent, the setting
considered for f (see (30)) is nonrestrictive. In particular,
it includes the important special cases of }Ω ¨ }1 for tall
and fat analysis operators.
In contrast to the error estimate of [1] that directly
depends on x P Rn, our bound is determined by Bfpxq.
Besides, our error bound holds even for rank-deficient
fat Ω P Rpˆn matrices. We should emphasize that our
error estimate bound is not sharp in all cases of analysis
operators and does not necessarily fill the gap between
Eδ and pEp in (21). In fact, there are various settings in
which the bound in [1], our bound, or both are effective.

C. Notation

Throughout the paper, scalars are denoted by lowercase
letters, vectors by lowercase boldface letters, and matrices by
uppercase boldface letters. The ith element of the vector x
is given either by xpiq or xi. The notation p¨q: stands for
the pseudo-inverse operator. We reserve calligraphic uppercase
letters for sets (e.g. S) and denote the cardinality of a set
S by |S|. The complement of a set S in t1, ..., nu (briefly
represented as rns) is denoted by S. Similarly, the complement
of an event E is shown by E . For a matrix X P Rmˆn and a
subset S Ď rns, the notation XS refers to the sub-matrix of
X by including the rows indexed by S . Similarly, for x P Rn,
xS stands for the vector in Rn that coincides with x at entries
indexed by S and zero elsewhere. Also, we use the notation
rxS to represent a sub-vector of x in R|S|, that is formed by
discarding the zero entries not indexed in S. The null-space
of linear operators is denoted by nullp¨q. For a matrix Ω, the

operator norm is defined as }Ω}pÑq “ sup
}x}pď1

}Ωx}q . Also,

κpΩq :“ σmaxpΩq
σminpΩq

denotes the condition number of Ω. The
polar K˝ of a cone K Ă Rn is the set of vectors forming
non-acute angles with every vector in K, i.e.

K˝ “ tv P Rn : xv, zy ď 0 @z P Ku. (10)

Bn and Sn´1 stand for the unit ball tx P Rn : }x}2 ď 1u
and unit sphere tx P Rn : }x}2 “ 1u, respectively. PC
is the matrix associated with the orthogonal projection onto
the subspace C, that maps a vector in Rn onto the subspace
C Ă Rn.

D. Outline

The paper is organized as follows. The required concepts
from convex geometry are reviewed in Section II. Section
III discusses two approaches in obtaining the error estimate.
Section V is dedicated to present our main contributions. In
Section IV, we investigate the estimate in [1] and introduce
some examples for which the error estimate does not work.
In Section VI, numerical experiments are presented which
confirm our theory. Finally, the paper is concluded in Section
VII.

II. CONVEX GEOMETRY

In this section, a review of basic concepts of convex
geometry is provided.

A. Descent Cones

The descent cone Dpf,xq at a point x P Rn consists of the
set of directions that do not increase f and is given by:

Dpf,xq “
ď

tě0

tz P Rn : fpx` tzq ď fpxqu. (11)

The descent cone reveals the local behavior of f near x and
is a convex set. There is also a relation between decent cone
and subdifferential [16, Chapter 23] given by:

D˝pf,xq “ conepBfpxqq :“
ď

tě0

tBfpxq. (12)

B. Statistical Dimension

Definition 1. Statistical Dimension [1]: Let C Ď Rn be a
closed convex cone. The statistical dimension of C is defined
as:

δpCq :“ E}PCpgq}
2
2 “ E dist2pg, C˝q, (13)
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where PCpxq is the projection of x P Rn onto the set C defined
as: PCpxq “ argmin

zPC
}z ´ x}2.

The statistical dimension extends the concept of linear
subspaces to convex cones. Intuitively, it measures the size of a
cone. Furthermore, δpDpf,xqq determines the precise location
of transition from failure to success in Pf .

C. Gaussian width

Definition 2. The Gaussian width of a set C is defined as:

ωpCq :“ E sup
yPC
xy, gy. (14)

The relation between statistical dimension and Gaussian
width is summarized in the following [2, Proposition 3.6], [1,
Proposition 10.2].

ωpC X Sn´1q ď ωpC X Bnq “ E}PCpgq}2 “ E distpg, C˝q,
(15)

ω2pC X Bnq “ pE}PCpgq}2q2 ď δpCq. (16)

It is shown in [1, Proposition 10.2]. that the quantities ω2pCX
Bnq and δpCq differ numerically by at most 1.

D. Optimality Condition

In the following, we characterize when Pf succeeds in the
noise-free case.

Proposition 1. [2, Proposition 2.1] Optimality condition: Let
f be a proper convex function. The vector x P Rn is the unique
optimal point of Pf if and only if Dpf,xq X nullpAq “ t0u.

The next theorem determines the number of measurements
needed for successful recovery of Pf for any proper convex
function f .

Theorem 1. [1, Theorem 2]: Let f : Rn Ñ R Y t˘8u be
a proper convex function and x P Rn a fixed vector. Suppose
that m independent Gaussian linear measurements of x are
observed via y “ Ax P Rm. If

m ě δpDpf,xqq `
c

8 logp
4

η
qn, (17)

for a given probability of failure (tolerance) η P r0, 1s, then,
we have

PpDpf,xq X nullpAq “ t0uq ě 1´ η. (18)

Besides, if

m ď δpDpf,xqq ´
c

8 logp
4

η
qn, (19)

then,

PpDpf,xq X nullpAq “ t0uq ď η. (20)

III. RELATED WORKS IN ERROR ESTIMATION

For bounding the distance between δpDpf,xqq and Uδ , two
different approaches are proposed in [1], [17]. In the following,
we briefly describe these methods.

Result 1. [1, Theorem 4.3] Let f be a norm. Then, for any
x P Rnzt0u:

0 ď Eδ ď

NumE
hkkkkkkikkkkkkj

2 sup
sPBfpxq

}s}2

f
´

x
}x}2

¯ :“ pEp. (21)

Result 2. [17, Proposition 1] Suppose that for x P Rnzt0u,
Bfpxq satisfies a weak decomposability assumption:

Dz0 P Bfpxq s.t. xz ´ z0, z0y “ 0, @z P Bfpxq. (22)

Then4,

inf
tě0
E distpg, tBfpxqq ď ωpDpf,xq X Bnq ` 6. (23)

A. Explanations

Result 2 presents an error estimate for the Gaussian width
of the descent cone (restricted to the unit ball) that is used to
upper-bound the number of Gaussian measurements in various
low-dimensional structures [2, Section 3.1]. For functions f “
} ¨ }1, } ¨ }1,2 and } ¨ }˚, the constraint (22) is satisfied (see
Section V-A). For f “ }Ω ¨ }1, however, this constraint is not
generally guaranteed (see Appendix F).

Unlike Result 2, the error estimate (21) depends on Bf at
the ground-truth vector x, and the vector x itself. Although
[1, Theorem 4.3] restricts f to be a norm, the provided proof
remains valid for semi-norms such as TV. The error bound
in (21), is effective for many structure-inducing functions
including `1, `1,2, and nuclear norm. Particularly,

pEp
n asymp-

totically vanishes in these cases. However, the normalized
error estimate

pEp
n is large in some cases of `1 analysis and

TV minimization and does not reflect the actual error Eδ
n ; in

Section IV-A, we study some examples. A naive interpretation
of this fact is that Uδ is a poor approximation of δpDpf,xqq
in those cases. Fortunately, as we show in Section V, this
argument is invalid, which in turn suggests that (21) is a loose
bound in those cases.

IV. THE STUDY OF EXISTING RESULTS

A. Result 1 for various low-complexity models

Before we describe our contributions in Section V, we first
evaluate the error estimate (21) when f is any of `1, `1,2,
nuclear norm, or `1-analysis for different analysis operators.
An important observation is that the error estimate (21) is
increasing with }x}2

fpxq ; thus, whenever this term becomes large,
we might obtain a loose upper-bound. To better clarify this
point, we study the case of `1-analysis in three categories of
fat analysis operators Ω, rank-deficient tall analysis operators
Ω, and full-rank tall analysis operators Ω.

4This result is wrongly interpreted as inftě0

b

E dist2pg, tBfpxqq ď

ωpDpf,xq X Bnq ` 6 in [17].
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‚ Sparse vectors
Since δ

`

Dp} ¨ }1,xq
˘

“ δ
`

Dp} ¨ }1, sgnpxqq
˘

, the bound
pEp in (21) can be written in terms of sgnpxq:

pEp “
2 sup}zS}8ď1 }sgnpxq ` zS}2

}sgnpxq}1
}sgnpxq}2

ě
2}sgnpxq ` 1S}2?

s
“

2
?
n

?
s
, (24)

where the inequality is for choosing a point 1S in the
feasible set }zS}8 ď 1. The above expression may lead
to large errors in low sparsity regimes (s ! n), however,
limnÑ8

pEp
n “ 0. This shows that Uδ is asymptotically a

fair approximation of δ
`

Dp} ¨ }1,xq
˘

.
‚ Block-sparse Vectors

With the same approach as in the previous case, the actual
error estimate is lower-bounded by

pEp ě
2
?
q

?
s

(25)

where s and q stand for the number of non-zero blocks
and the total number of blocks respectively. Again for
small s, the error can become large while limqÑ8

pEp
q “

0; thus, Uδ is asymptotically a fair approximation of
δ
`

Dp} ¨ }1,2,xq
˘

.
‚ Low-rank Matrices

Let X P Rn1ˆn2 be the rank r ground-truth ma-
trix (n1 ě n2) with the SVD decomposition X “

Un1ˆn1
Σn1ˆn2

V H
n2ˆn2

(alternatively, we have the re-
duced SVD decomposition as X “ Un1ˆrΣrˆrV

H
n2ˆr).

Since δ
`

Dp} ¨ }˚,Xq
˘

“ δ
`

Dp} ¨ }˚,Un1ˆrV
H
n2ˆrq

˘

, we
can replace X with Un1ˆrV

H
n2ˆr in (21):

pEp “
2 sup}PTK pZq}2Ñ2ď1 }Un1ˆrV

H
n2ˆr ` PTKpZq}F

}Un1ˆr
V H
n2ˆr

}˚

}Un1ˆr
V H
n2ˆr

}F

,

(26)

where

PTKpZq “
´

I ´ PspanpUn1ˆr
q

¯

Z
´

I ´ PspanpVn2ˆr
q

¯

.

Now, by setting

Z “ Un1ˆn2

„

0 0
0 In2´r



V H
n2ˆn2

in (26), we obtain a lower-bound on pEp as

pEp ě
2}Un1ˆn2

V H
n2ˆn2

}F

}Un1ˆrV
H
n2ˆr

}˚

}Un1ˆrV
H
n2ˆr

}F

“
2
?
n2

?
r
. (27)

Similar to the previous cases, when r ! n2, the bound
becomes large, while, limn1,n2Ñ8

pEp
n1n2

“ 0. This shows
that Uδ is asymptotically a fair approximation of δ

`

Dp} ¨
}˚,xq

˘

.
‚ Cosparse vectors (fat analysis operators)

For fat Ω P Rpˆn, the nullpΩq is non-trivial, and we
can choose c such that PnullpΩqc ‰ 0. Now, if x “

PnullpΩSq
w `PnullpΩqc, where w is an arbitrary vector,

the denominator of the bound in (21) can be written as

}Ωx}1
}x}2

“
}ΩSPnullpΩSq

w}1

}PnullpΩSq
w ` PnullpΩqc}2

. (28)

By increasing the norm of c using a scalar multiplier,
the above fraction decreases. In other words, we can
make the denominator of the error bound (21) arbitrarily
small (alternatively enlarge the error bound (21)). One
of the well-known examples in this category is the
finite difference operator Ωd, where nullpΩdq consists
of constant vectors. For this example, the denominator
can be reduced by setting c “ α1nˆ1 P nullpΩdq and
α " 1.

‚ Cosparse vectors (rank-deficient tall analysis opera-
tors)
Similar to the previous case, nullpΩq is non-trivial. Thus,
the same approach can be devised to make the bound in
(21) arbitrarily large.

‚ Cosparse vectors (full-rank tall analysis operators)
When Ω is a full-rank and tall matrix, we cannot gener-
ally find x that results in a small value of }Ωx}1

}x}2
. Here,

we show the existence of pairs pΩ,xq for which the
aforementioned ratio becomes arbitrarily small.
Let |S| ą n, |S| ă n, σ ą 0 and define

A|S|ˆn “ U|S|ˆn diagt1, 1, . . . , 1
loooomoooon

pn´1q times

, σuV T
nˆn,

where U|S|ˆn and Vnˆn are arbitrary incomplete and
complete unitary matrices, respectively. It is evident that
A|S|ˆn is a full-rank tall matrix. Let ui and vj stand
for the ith and jth columns of U and V , respectively.
We know that Avn “ σun. Now, define B

|S|ˆn “

rv1, . . . ,v|S|s
T (since |S| ă n, this is possible). Obvi-

ously, B vn “ 0. Finally, we define

Ω “

„

A
B



, x “ vn, S “ t1, . . . , |S|u,

S “ t|S| ` 1, . . . , |S| ` |S|u.

Indeed, the design is such that ΩS “ A and ΩS “ B.
As A has full column rank, Ω is also a full-rank matrix.
It is straightforward to check that x P nullpΩSq, and

}Ωx}1
}x}2

“ }Ωx}1 “

›

›

›

›

„

A
B



vn

›

›

›

›

1

“ }Avn}1 “ σ}un}1.

Now, we can reduce σ while keeping the rest untouched.
In this way, we construct non-trivial pairs of pΩ,xq for
which the ratio }Ωx}1

}x}2
can be set arbitrarily small.

Remark 1. The value of pEp provides an upper-bound on
the gap between Uδ and δ

`

Dpf,xq
˘

. However, its normalized

value (e.g.,
pEp
n in the `1 minimization) is important in de-

termining the phase transition curve. As we discussed earlier,
the normalized value is vanishing in the three cases of `1, `1,2
and nuclear-norm minimization. However, we do not observe
this vanishing property in some cases of `1-analysis. In these
cases, Uδ might not be a good approximation of δpDpf,xqq.
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Type of anal. operator Ω p n r s κpΩq β NumE
pEp
n

pEn
n

Eδ
n

Random 1 1000 999 944 10 8 1.3 85.14 139.13 0.12 0.005
Random 1 1000 999 999 2 100 1 63.04 4.85 0.051 0.006
Random 1 2000 1990 1990 11 50 1 43 2.04 0.07 0.001

Random 1* 2000 1995 1995 10 1.94 1.05 82.5 0.08 0.05 0.002
Random 2 1000 995 995 6 483 1.2 59.3 2.72 0.03 0.002

High-pass Daubechies wavelet (2 decom. level) 2048 1024 1023 600 8 1.3 101.64 22.7 0.1 0.005

Table III: We examine the function f “ }Ω ¨ }1 when Ω is a tall analysis operator. Three types of operators are considered: Random 1, Random 2 and
wavelet. These operators are constructed using the procedure proposed in Items 1, 2, and 3 in Section VI, respectively. For the wavelet case, we construct
a 3072 ˆ 1024 Daubechies wavelet transform where we only retain its high-pass coefficients (of size 2048 ˆ 1). The number of decomposition levels in
the wavelet transformation is two. Except for Random 1*, we construct cosparse signals according to the procedure explained in Section VI. For Random
1* we use x “ PnullpΩSq

c, where c is uniformly distributed on the unit sphere Sn´1. In this table, NumE denotes the numerator of pEp and is equal to
2 supsPBfpxq }s}2.

Type of Analysis operator Ω p n r s β NumE
pEp
n

pEn
n

Eδ
n

Random 1 1490 1500 1490 5 1 71.76 51.93 0.056 0.001
Random 1 1999 2000 1999 10 1 83.06 5.8 0.0136 0.008
Random 1 1999 2000 1997 10 1 82.72 18.38 0.04 0.001
Random 2 1999 2000 1999 10 1.05 124.3 16.15 0.008 0.002

TV 1999 2000 1999 350 1 124.76 9.94 0.08 0.001
TV 1999 2000 1999 10 1 123.72 891.3 0.003 0.001
TV* 1999 2000 1999 10 1 123.12 0.2 0.002 0.001

Low-pass Daubechies wavelet (1 decom. level) 2048 2048 2047 10 1.05 85.8 130.36 0.071 0.002
High-pass Daubechies wavelet (1 decom. level) 1024 1024 1023 8 1.08 63.4 13.9 0.1 0.005

Table IV: We examine the function f “ }Ω ¨ }1 when Ω is a fat analysis operators. Four types of operators are considered: Random 1, Random 2, finite
difference, and wavelet. The cases of Random 1 and 2 are constructed using the procedure explained in Items 1 and 2 in Section VI, respectively. We build
the wavelet matrices with Daubechies structure where we retain low- and high-pass coefficients. The considered number of decomposition levels is 1. As it is
clear, our error bound pEn outperforms the previous error estimate (21) denoted by pEp in all cases. Except for TV*, we construct cosparse signals according
to the procedure explained in Section VI. For TV* we use x “ PnullpΩSq

c, where c is uniformly distributed on the unit sphere Sn´1. In this table, NumE

denotes the numerator of pEp and is equal to 2 supsPBfpxq }s}2.

B. Weak decomposability condition

For functions f “ t} ¨ }1, } ¨ }1,2, } ¨ }˚u, one can always
find a vector z0 P Bfpxq such that the weak decomposability
assumption (22) holds. More precisely, one can use [18,
Definition 2]:

z0 “ sgnpxq for f “ } ¨ }1,

z0 “
xVb
}xVb}2

for f “ } ¨ }1,2,

Z0 “ Un1ˆrV
H
n2ˆr for f “ } ¨ }˚, (29)

where Un1ˆr and Vn2ˆr are the bases corresponding to
the reduced singular value decomposition of the ground-truth
matrix X :“ Un1ˆrΣrˆrV

H
rˆn2

. The sets tVbuqb“1 stand for a
partitioning of t1, ..., nu into q blocks of equal length. In [15],
it is shown that f “ }¨}TV satisfies the weak decomposability
assumption (22), i.e., there exists z0 P B} ¨ }TVpxq which
satisfies (22). In Section V-A, we show that the weak decom-
posability condition does not necessarily hold for the general
family of f “ }Ω ¨ }1; in particular, we construct counter-
examples for the case of full-rank tall analysis operators.

V. MAIN RESULTS

Our main results which are stated in the following theorem,
estimate the distance between δpDpf,xqq and its correspond-
ing upper-bound.

Theorem 2. Let f be a proper convex function that promotes
the structure of x ‰ 0 P Rn and let g P Rn be a standard
i.i.d Gaussian vector. Suppose Bfpxq satisfies

Dz0 s.t. xz ´ z0, z0y “ 0, @z P Bfpxq. (30)

Then for any positive values of λ, ζ, we have that

0 ď Eδ ďp4λβ ` γq ωpDpf,xq X Bnq ` γpζ ` 2λβq ` 4λ2β2

:“ pEn, (31)

and

0 ď inf
tě0
E distpg, tBfpxqq ´ ωpDpf,xq X Bnq ď 1.6` 4β,

(32)

where γ is the constant

γ “
?
72

d

ln
3

1´ 4e´
λ2

2 ´ 2e´
ζ2

2

, (33)

and β is given by

β “
}z1}2
}z0}2

, (34)

where

z1 “ arg min
zPBfpxq

}z}2. (35)

Proof. See Appendices A and B.

Remark 2. The error estimate in (31) is the main result
of Theorem 2, while (32) can be thought of as an exten-
sion of Result 2 to more general structure-inducing func-
tions (including `1-analysis). Despite the similarities between

inftě0E distpg, tBfpxqq and inftě0

b

E dist2pg, tBfpxqq,
these two terms are different, and (32) cannot be considered as
an error bound. We should add that (32) is used in our proof
of (31).
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Remark 3. If β is bounded, as ωpDpf,xq X Bnq ď
?
n, pEn

n
asymptotically tends to 0. We numerically observe in Section
V-A that for functions f “ t} ¨ }1, } ¨ }1,2, } ¨ }˚, }Ω ¨ }1u, β is
bounded in most cases of Ω. In case of `1 analysis, β can be
upper-bounded by a function of the generalized sign vector of
x (i.e. ΩT sgnpΩxq).

When β is bounded in the `1-analysis case, our bound in
Theorem 2 implies that the normalized error gap is vanishing
asymptotically; equivalently, it implies that Uδ is a good
estimate of δ

`

Dp}Ω ¨ }1,xq
˘

. Our result holds for various
analysis operators including the ones that have non-trivial
linear dependencies among their rows. It should be noted that
we do not guarantee the boundedness of β; in case β fails to
remain bounded, our error estimate is no longer effective.

A. Evaluation of β

To compute β, we need both z1 in (35) and z0 in (30). It is
not difficult to see that for functions f “ t} ¨ }1, } ¨ }1,2, } ¨ }˚u,
z1 in (35) is obtained by

z1 “ sgnpxq for f “ } ¨ }1,

z1 “
xVb
}xVb}2

for f “ } ¨ }1,2,

Z1 “ Un1ˆrV
H
n2ˆr for f “ } ¨ }˚, (36)

where Un1ˆr and Vn2ˆr are bases corresponding to the re-
duced singular value decomposition of the ground-truth matrix
X :“ Un1ˆrΣrˆrV

H
rˆn2

.
Choosing z0 “ z1 in the subdifferential is common for

functions f “ t} ¨ }1, } ¨ }1,2, } ¨ }˚u [17], [18]. Unlike these
simple choices, obtaining z0 for the cosparse vectors is more
involved. In the following proposition, we discuss this issue
when f “ }Ω ¨ }1, where Ω is either a tall or a fat analysis
operator.

Proposition 2. Consider the cosparse vector x P Rn in the
analysis domain Ω P Rpˆn with support S. Then,

z0 “ PnullpΩSq
ΩT sgnpΩxq, (37)

satisfies (30).

Proof. See Appendix D.
In what follows, we examine some special and important

implications of this proposition.

Remark 4. In case of Ω “ I (i.e. f “ } ¨ }1), z0 “ sgnpxq.
This supports the fact that choosing z0 in the subdifferential
is reasonable and efficient.

Remark 5. (Upper-bound on β) Employing (37), we can
express β as

β :“
inf}rzS}8ď1 }Ω

TsgnpΩxq `ΩH
S rzS}2

}PnullpΩSq
ΩT sgnpΩxq}2

ď
}ΩT

S sgnpΩSxq}2
}PnullpΩSq

ΩT
S sgnpΩSxq}2

. (38)

The boundedness of β is consistently observed in our nu-
merical results (see Tables III and IV). We also prove the
boundedness for some special cases of Ω P Rpˆn. For

instance, for fat matrices with orthogonal rows (a special case
of which is investigated in Item 1 of Section VI), β equals 1.
(see Appendix H for the proof). Another example is when the
elements of Ω are drawn from an i.i.d. Gaussian distribution.
In this case, under the assumption |S|`1

n ď ρ ă 1, we have
that

β ď
1

?
1´ ρ

with high probability in high dimensions (see Appendix G for
the proof).

VI. NUMERICAL EXPERIMENTS

In this section, we numerically compare the new error bound
of (31) against the bound (21) derived using the existing
approach for various low-dimensional structures. For each test,
we optimize λ and ζ to minimize the right-hand side of (31).
Figures 1, 2, and 3 show the proposed error bound (31) and
the error estimates (24), (25), and (27), for } ¨ }1, } ¨ }1,2 and
} ¨ }˚, respectively. In all cases, the sparsity/rank values are
set very small. To compute ωpDpf,xqXBnq in (31), we used
its upper-bound obtained via (16), [1, Equations D.6, D.10],
and [19, Lemma 1]. It is clear from these figures that the
new error bound outperforms the previous error bound (21) in
very low sparsity/rank regimes; it should be emphasized that
the curves depict the upper-bound of (31). Notice that in these
three cases, both

pEp
n and En

n tend to zero at large n.
Due to the varying nature of the `1 analysis case, we

construct three kinds of analysis operators as follows:
1) Random 1: We first generate a p ˆ n Gaussian matrix

with i.i.d. elements. Then, we compute its SVD as
UpˆpΣpˆnV

H
nˆn. Then, Σ is replaced with the matrix

Σ1 :“

„

Ir 0rˆn´r
0p´rˆr 0p´rˆn´r



(39)

to get

Ω “ UpˆpΣ1V
H
nˆn. (40)

When r “ n ď p, the constructed Ω in (40) is a tight
frame. To have an analysis operator with more varied
singular values, we proceed with

Ω “DpˆpUpˆpΣ1V
H
nˆn, (41)

where Dpˆp is a diagonal matrix. This type of matrices
is widely used as a benchmark in [11], [13], [14]. The
above approach was directly adopted from [14].

2) Random 2: In this case, we simply use the Gaussian
ensemble by constructing a p ˆ n matrix with i.i.d.
elements that each follows N p0, σ2q. Here, σ2 implicitly
specifies the range of the singular values.

3) Wavelet: We choose a redundant wavelet transform from
the package SPOT [20] to construct an analysis operator.
The wavelet filter is chosen from the Daubechies family
and has length 8. In some cases, we retain only the high-
pass or low-pass coefficients. The rows of the wavelet
operator Ω might have non-trivial linear dependencies.

For a general analysis operator Ωpˆn, we first randomly
select S among the subsets of t1, ..., pu with size s. Then, we
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check whether ΩSPnullpΩSq
is the trivial 0 operator or not. In

the trivial case, we regenerate S and repeat the test; otherwise,
we form x via

x “ PnullpΩSq
w,

where w is such that Ωx ‰ 0. In this paper, as we would like
to highlight the difference between the new error bound and
the existing ones, we focus on a subclass of analysis sparse
vectors. More specifically, whenever there are non-trivial linear
dependencies among the columns of the analysis operator (fat
or tall), we generate x according to the procedure explained
in Section IV-A. Whenever the analysis operator is of type
Random 2 (with highly coherent rows), we generate x as

x “ PnullpΩSq
pw ` αvrq, (42)

where w P Rn and α P R are arbitrary quantities and
vr is the right singular vector of ΩSPnullpΩSq

correspond-
ing to the minimum non-zero singular value (indeed, r “
rankpΩSPnullpΩSq

q). With this choice, the denominator of the
error bound (21) simplifies to

}ΩSPnullpΩSq
w ` ασrur}1

}PnullpΩSq
w ` αPnullpΩSq

vr}2
, (43)

where ur is the rth left singular vector of ΩSPnullpΩSq
.

For highly coherent analysis operators where the minimum
singular value is very small, by increasing α, the denominator
of the error bound (21) is likely to decrease.

For the tall analysis operators of type Random 1 in (41),
we construct pairs of pΩ,xq as follows. We set

ΩS “D1 U|S|ˆnV
H,

ΩS “D2 U|S|ˆnV
H, (44)

where D1 and D2 are arbitrary diagonal matrices with non-
negative values of size |S| ˆ |S| and |S| ˆ |S|, respectively,
and U|S|ˆn is a sub-matrix of Upˆp restricted to the rows and
columns in S and rns, respectively. We further generate x as

x “ PnullpU|S|ˆnV
Hqpw ` αv

1
minq, (45)

where α ą 0 is an arbitrary real, w is an arbitrary vector in
Rn and v1min is the right singular vector corresponding to the
minimum singular value σmin of U|S|ˆnV

HPnullpU|S|ˆnV
Hq.

Then, the denominator of the error bound (21) becomes

}ΩSx}1
}x}2

“

}D1U|S|ˆnV
HPnullpU

|S|ˆnV Hqw`ασminD1u
1
min}1

}PnullpU
|S|ˆnV Hqw`αPnullpU

|S|ˆnV Hqv
1
min}2

, (46)

where u1min is the left singular vector corresponding to σmin.
As we have full control over α and the diagonal elements
of D1, we can make the error bound (21) arbitrarily large
(decreasing the diagonal elements of D1 while increasing α).

Table III compares the two error bounds for various exam-
ples of tall analysis operators. We observe that our error bound
(31) is considerably superior to the error estimate (21). We use
three kinds of analysis operators: Random 1, 2 and Daubechies
wavelet for different sparsity levels and dimensions. Notice

0 5 10 15 20

Sparsity

0

0.5

1

1.5

2
10

-3

Previous error bound

New error bound

Figure 1: Two strategies of obtaining the error of δpDpf,xqq from (5) in case
of f “ } ¨ }1. The previous and new error bounds come from (24) and (31),
respectively.

1 2 3 4 5 6 7 8 9 10

Block sparsity

0

0.5

1

1.5

2
10

-3

Previous error bound

New error bound

Figure 2: Comparison of the error (6) in case of f “ } ¨ }1,2. The previous
and new error bounds come from (25) and (31), respectively.

that the Daubechies wavelet of size 2048ˆ1024 is constructed
by retaining the high-pass components of a 2-level Daubechies
wavelet of size 3072 ˆ 1024. The wavelet transformation
is computed by the SPOT package [20]. The procedure of
computing ωpDp}Ω ¨ }1,xq X Bnq in (31) is explained in
Appendix E.

In Table IV, we examine fat analysis operators including
Random 1 and 2 structures, TV and Daubechies wavelet.
Again, our bound (31) confirms that Uδ is close to δpDp}Ω ¨

}1,xqq, while the error bound (21) is inconclusive.
Different from the above mentioned strategies for generating

analysis-sparse signals, we also construct signals (shown by
Random 1* in Table III and TV* in Table IV) as x “

PnullpΩSq
c where c is uniformly distributed on the unit sphere.

In these cases, we observe that the error estimate (21) is
effective.

VII. CONCLUSION

In this work, we presented an error estimate bound for the
statistical dimension. This new bound shows that the statistical
dimension is well described by its common upper-bound (5)
in some settings of TV structure and `1 analysis.

APPENDIX A
PROOF OF THEOREM 2 (31)

Before beginning the proof, we define some parameters and
provides a proof sketch to enhance the readability. Given λ ą
0, we define the parameters

α :“ Ertgs `
λ

}z0}2
, (47)

tg :“ argmin
tě0

distpg, tBfpxqq, (48)
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Figure 3: Comparison of the error (6) in case of f “ } ¨ }˚. The previous
and new error bounds come from (27) and (31), respectively.

and the function

φpgq :“ dist2pg, αBfpxqq ´ dist2pg, conepBfpxqqq. (49)

Notice that due to [1, Lemma C.1], whenever f is a proper
convex function (as is the case in this paper), tg is well-defined
and unique. Define the event

E “
!

|tg ´ Ertgs| ă
λ

}z0}2

)

. (50)

For fixed g, by considering the condition (30), tg is a 1
}z0}2

Lipschitz function of g [17, Lemma 3]5. Hence, by a concen-
tration inequality for Lipschitz functions of Gaussian vectors
(see, for example, [21, Theorem 8.40]), we get that

PtEu ě p0 :“ 1´ 2e´
λ2

2 . (51)

Proof skech . The goal is to find an upper-bound for Eδ .
Instead of bounding Eδ , we bound the expression

E dist2pg, αBfpxqq ´ δpDpf,xqq “
E dist2pg, αBfpxqq ´ E dist2pg, conepBfpxqqq “ Eφpgq,

which is counted as its upper-bound. To reach this goal, we
do the following steps:

1) When E holds, we find that

φ1pgq :“ φpgq ´ 4λβdistpg, conepBfpxqqq ď 4λ2β2.

2) We obtain a lower-bound for the probability of the event
φ1pgq ď 4λ2β2.

3) Then, we obtain a concentration inequality for the expres-
sion φ1pgq which is associated with Eφ1pgq (see Lemma
1).

4) Combining the concentration inequality in Item 3 and the
lower-bound in Item 2, we reach a contradiction unless
we have that Eφ1pgq is bounded above by a certain
expression.

5) Finally, the upper-bound on Eφpgq (and thus bound
on Eδ) is directly obtained using the upper-bound on
Eφ1pgq.

We now prove each of the above mentioned parts in details.
Suppose that E holds. Define z˚ such that

dist2pg, tgBfpxqq “ }g ´ tgz
˚}22. (52)

5The proof of [17, Lemma 3] does not need z0 to be an element of Bfpxq.

Take

z “
tg
α
z˚ ` p1´

tg
α
qz1 P Bfpxq, (53)

where z1 is defined in (35). That this is an element of Bfpxq
follows from the fact that both z1 and z˚ are in Bfpxq, and
that E implies that tg{α ă 1. Then, we can find an upper-
bound for φpgq as follows:

dist2pg, αBfpxqq ď }g ´ αz}22 “ }g ´ tgz
˚ ` tgz

˚ ´ αz}22

“ }g ´ tgz
˚}22 ` }tgz

˚ ´ αz}22 ` 2xg ´ tgz
˚, tgz

˚ ´ αzy

ď dist2pg, conepBfpxqqq

` ptg ´ αq
2}z1}

2
2 ` 2|tg ´ α|xg ´ tgz

˚, z1y

ď dist2pg, conepBfpxqqq

` 4λ2β2 ` 4λβdistpg, conepBfpxqqq, (54)

where for the last inequality we use the fact that E holds, the
definition of β (34), and the Cauchy-Schwartz inequality. In
the following, we obtain a lower-bound for the probability of
the event φ1pgq ď 4λ2β2.

P
!

φ1pgq ď 4λ2β2
)

“ P
!

φ1pgq ď 4λ2β2
ˇ

ˇE
)

PtEu`

P
!

φ1pgq ď 4λ2β2
ˇ

ˇE
)

PtEu ě PtEu ě p0, (55)

where we used (54), which implies P
!

φ1pgq ď 4λ2β2
ˇ

ˇE
)

“

1, and (51).
In what follows, we propose a lemma that provides a

relation between φ1pgq and Eφ1pgq.

Lemma 1. Let g P Rn be a standard normal i.i.d. vector.
Then, for given λ, ζ ą 0,

Ptφ1pgq ´ Eφ1pgq ď ´γpζ ` E distpg, coneBfpxqq

`2λβqu ď p0, (56)

where

γ :“
?
72

d

ln
3

1´ 4e´
λ2

2 ´ 2e´
ζ2

2

,

as defined in (33).

The proof of this Lemma is postponed to Appendix C.
By considering (55) and (56), we reach a contradiction

unless

Erφ1pgqs ď γpζ ` 2λβ ` Edistpg, conepBfpxqqqq ` 4λ2β2.
(57)

By expressing φ1 in terms of φ and identifying the expected
distance to the subdifferential cone as the Gaussian width, we
reach the right-hand side of (31). The left-hand side is obtained
by applying the Jensen’s inequality on the infimum of an affine
function (which is always concave).

APPENDIX B
PROOF OF THEOREM 2 (32)

Our approach in this part is to a great extent, similar to
the proof of Result 2. However, the difference lies in the fact
that [17, Proposition 1] needs the condition (22), while our
proof needs the condition (30) which holds for more general
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structure-inducing functions including `1 analysis. However,
this bound is not an error estimate for the task of predicting
the phase transition (see the explanations in Remark 2) and
is used in our analysis in proving (31). We proceed with an
overview of the proof. We first define

φ2pgq :“ distpg, αBfpxqq ´ distpg, coneBfpxqq. (58)

Proof skech . The goal is to find an upper-bound for the
expression

inf
tě0
E distpg, tBfpxqq ´ ωpDpf,xq X Bnq. (59)

We instead intend to find an upper-bound for Eφ2pgq. To reach
this goal, we follow the below steps:

1) Under the assumption that the event E holds, we find that
φ2pgq ď 2λβ.

2) We obtain a lower-bound for the probability of the event
φ2pgq ď 2λβ.

3) We obtain a concentration inequality for the expression
φ2pgq which is a 2-Lipschitz function of g.

4) The concentration inequality in Item 3 and the lower-
bound in Item 2 contradict each other unless we have
that Eφ2pgq is bounded above by a certain expression.

We now provide the details of the proof. Suppose that (50)
holds. Define z˚ such that

distpg, tgBfpxqq “ }g ´ tgz
˚}2. (60)

By recalling (53) and (47), we have that

distpg, αBfpxqq ď }g ´ αz}2 “ }g ´ tgz
˚ ` tgz

˚ ´ αz}2

ď }g ´ tgz
˚}2 ` }tgz

˚ ´ αz}2 ď }g ´ tgz
˚}2`

|tg ´ α|}z1}2 ď distpg, coneBfpxqq ` 2λβ. (61)

Since PtEu ě p0, we have that

Ptφ2pgq ď 2λβu ě p0, (62)

by the argument in (55). Moreover, since φ2pgq is a 2-
Lipschitz function of g, the concentration inequality for Lip-
schitz functions [21, Theorem 8.40], implies that

P
!

φ2pgq ´ Erφ2pgqs ď ´r
)

ď e´
r2

8 . (63)

With a change of variables, we reach:

P
!

φ2pgq ´ Erφ2pgqs ď ´

c

8 ln
1

p0

)

ď p0. (64)

Note that (62) and (64) contradict each other unless

Etφ2pgqu ď

c

8 ln
1

p0
` 2λβ. (65)

Finally, by setting λ “ 2 we reach (32).

APPENDIX C
PROOF OF LEMMA 1

Define the functions

f1pgq :“ distpg, αBfpxqq,

f2pgq :“ distpg, conepBfpxqqq,

h1pgq :“ f21 pgq,

h2pgq :“ f22 pgq, (66)

and the event

E1 :“

#

f2pgq ´ Ef2pgq ď ζ

+

. (67)

Suppose that E and E1 hold. Then,

|h1pgq ´ h1pg
1q| “ |f1pgq ´ f1pg

1q||f1pgq ` f1pg
1q| ď

2}g ´ g1}2pζ ` Ef2pgq ` 2λβq, (68)

where the second inequality comes from the fact that f1 is
1-Lipschitz function of g. The last inequality is the result of
f1pgq ď f2pgq ` 2λβ (61). Now suppose that only E1 holds,
Then, with the same reasoning, we have:

|h2pgq ´ h2pg
1q| “ |f2pgq ´ f2pg

1q||f2pgq ` f2pg
1q| ď

}g ´ g1}2p|f2pgq| ` |f2pg
1q|q ď 2}g ´ g1}2pζ ` Ef2pgqq,

(69)

P
!

h1 ´ Erh1s ď ´
r

3

ˇ

ˇ

ˇ

ˇ

E , E1
)

ď e
´ r2

72pζ`Ef2pgq`2λβq2 ,

P
!

h2 ´ Erh2s ě
r

3

ˇ

ˇ

ˇ

ˇ

E1
)

ď e
´ r2

72pζ`Ef2pgqq
2 . (70)

Consequently,

Ptφ1pgq ´ Erφ1pgqs ď ´ru “

P
!

h1 ´ Erh1s ´ h2 ` Erh2s ´ 4λβf2 ` 4λβErf2s ď ´r
)

ď Pth1 ´ Erh1s ď ´
r

3
u ` Pth2 ´ Erh2s ě

r

3
u`

Ptf2 ´ Erf2s ě
r

12λβ
u ď P

!

h1 ´ Erh1s ď ´
r

3

ˇ

ˇ

ˇ
E1
)

PtE1u

` P
!

h1 ´ Erh1s ď ´
r

3

ˇ

ˇ

ˇ
E1

)

PtE1u`

P
!

h2 ´ Erh2s ě
r

3

ˇ

ˇ

ˇ
E1
)

PtE1u`

P
!

h2 ´ Erh2s ě
r

3

ˇ

ˇ

ˇ
E1

)

PtE1u ` Ptf2 ´ Erf2s ě
r

12λβ
u ď

e
´ r2

72pζ`Ef2pgq`2λβq2 ` 2e´
λ2

2 ` e´
ζ2

2 ` e
´ r2

72pζ`Ef2pgqq
2 ` e´

ζ2

2

` e
´ r2

72ˆ4λ2β2 ď 3e
´ r2

72pζ`Ef2pgq`2λβq2 ` 2e´
λ2

2 ` 2e´
ζ2

2 ,
(71)

where in the third inequality, we used

P
!

h1 ´ Erh1s ď ´
r

3

ˇ

ˇ

ˇ
E1
)

“ P
!

h1 ´ Erh1s ď ´
r

3

ˇ

ˇ

ˇ
E1, E

)

PtEu

` P
!

h1 ´ Erh1s ď ´
r

3

ˇ

ˇ

ˇ
E1, E

)

PtEu, (72)

and (70). With a change of variable, we reach (56).
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APPENDIX D
PROOF OF PROPOSITION 2

The condition (30) for function f “ }Ω ¨ }1 can be stated
as:

Dz0 : xΩTw ´ z0, z0y “ 0 : @w P B} ¨ }1pΩxq. (73)

By setting w “ sgnpΩxq ` vS where }vS}8 ď 1, we have:

xΩT sgnpΩxq `ΩT
S rvS , z0y “ }z0}

2
2,

@rvS with }rvS}8 ď 1. (74)

Since z0 and sgnpΩxq are fixed and both rvS and ´rvS satisfy
}rvS}8 ď 1, it holds that:

xΩT
S rvS , z0y “ 0. (75)

The expressions (74) and (75) lead to:

z0 P nullpΩSq, (76)

xΩT sgnpΩxq, z0y “ }z0}
2
2. (77)

To satisfy (76) and (77) simultaneously, we choose the vector

z0 “
A1

A2
PnullpΩSq

c0, (78)

where

A1 “ xΩ
T sgnpΩxq,PnullpΩSq

c0y,

A2 “ }PnullpΩSq
c0}

2
2,

and c0 is an arbitrary vector. By choosing c0 “ ΩT sgnpΩxq,
we have:

z0 “ PnullpΩSq
ΩT sgnpΩxq (79)

APPENDIX E
NUMERICAL COMPUTATION OF THE GAUSSIAN WIDTH

The Gaussian width ωpDpf,xq X Bnq plays a key role in
our proposed error estimate in Theorem 2. In this appendix,
we explain how to compute this quantity numerically. This
approach is adapted from [11, Section B.2]. Recall that this
quantity is defined as

ωpDpf,xq X Bnq :“ E sup
yPDpf,xq
}y}2ď1

xy, gy. (80)

By choosing a sufficiently small t, e.g. t “ 0.01 in (11) (the
rationale of this choice is discussed in [11, Section B.2]), the
expression inside E can be simplified as the simple convex
program:

ωpDpf,xq X Bnq « E sup
fpx`tyqďfpxq

}y}2ď1

xy, gy, (81)

that can be solved using the CVX package [22].

APPENDIX F
THE WEAK DECOMPOSABILITY CONDITION FOR

`1-ANALYSIS

With a counterexample, we show that the mentioned de-
composability condition does not hold in general. Let Ωpˆn

be a tall analysis operator in general position and xnˆ1 be an
analysis-sparse vector such that S “ supppΩxq with |S| ě
p ´ n (see [14, Section 2.1]). For the weak decomposability
condition of [17] to hold for pΩ,S,xq, we shall have that

Dw0 P B} ¨ }1pΩxq,

@w P B} ¨ }1pΩxq : xΩT pw ´w0q , ΩTw0y “ 0. (82)

In particular, we can set w “ sgnpΩxq ` vS , where vpˆ1 is
an arbitrary vector with }v}8 ď 1. Since pΩxqS “ 0pˆ1, we
can write that

@v, }v}8 ď 1 :

xΩT sgnpΩxq `ΩT
S rvS , ΩTw0y “ }Ω

Tw0}
2
2. (83)

By setting v “ 0 and applying the result for general v, we
obtain

xΩT
S rvS , ΩTw0y “ 0, (84)

for arbitrary v with }v}8 ď 1, or equivalently, for arbitrary
v. This implies that

xrvS , ΩS ΩTw0y “ 0, (85)

or equivalently

ΩS ΩTw0 “ 0. (86)

As w0 P B} ¨ }1pΩxq, we know that w0 “ sgnpΩxq`v0S for
some }v0}8 ď 1.Therefore,

ΩS ΩT
S Ăv0S “ ´ΩS ΩT sgnpΩxq “ ´ΩS ΩT

S sgnpΩS xq.
(87)

Because Ω is in general position, ΩS ΩT
S is invertible and we

can express Ăv0S as

Ăv0S “ ´
`

ΩS ΩT
S

˘´1
ΩS ΩT

S sgnpΩS xq. (88)

Now, the contradiction comes from the fact that the entries
v0 in the above equation are not necessarily confined to the
interval r´1, 1s. We show this by a numerical example:

x “

„

´.4472
.8944



,Ω “

»

–

1 1
2 1
1 2

fi

fl ,S “ t1, 3u,S “ t2u. (89)

For the latter signal, it holds that

rv0S “ ´1.4, (90)

which obviously contradicts the constraint }v0S}8 ď 1.
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APPENDIX G
ASYMPTOTIC BEHAVIOR OF β WHEN Ω IS GAUSSIAN

ENSEMBLE

We find an upper-bound on β when the analysis operator
is a Gaussian ensemble (whether fat or tall). Recall that an
upper-bound for β is obtained in (38) as follows:

β ď
}ΩT

S sgnpΩSxq}2
}PnullpΩSq

ΩT
S sgnpΩSxq}2

. (91)

Since ΩS is statistically independent of ΩS , PnullpΩSq
defines

a projection onto an n ´ |S| subspace that is independently
and uniformly oriented with respect to v “

ΩTS sgnpΩS xq

}ΩTS sgnpΩS xq}2
.

In addition

β ď
1

}PnullpΩSq
v}2

. (92)

As the relative orientation of v with respect to nullpΩSq

determines the upper-bound for β, we can fix v on the unit
sphere and randomly rotate nullpΩSq with a uniform Haar
measure. Equivalently, we can fix nullpΩSq and randomly
select v with a uniform distribution on the unit sphere. In fact,
the choice v “ g

}g}2
where g is an i.i.d. random vector with

standard normal distribution independent of nullpΩSq fulfills
this requirement. With this choice, we can rewrite the upper-
bound on β as

β ď
}g}2

}PnullpΩSq
g}2

. (93)

It is straightforward to check that }PnullpΩSq
¨ }2 and } ¨ }2

are 1-Lipschitz functions. Therefore, in high dimensions, we
know that }PnullpΩSq

g}2 and }g}2 are concentrated around
E}PnullpΩSq

g}2 and E}g}2, respectively. Also, by [23, Corol-
lary 3.2] and [21, Proposition 8.1], it holds that

E}PnullpΩSq
g}2 ě

b

E}PnullpΩSq
g}22 ´ 1,

E}g}2 ď
?
n. (94)

Let ru1, . . . ,un´|S|s be a basis for nullpΩSq. Then, we have

E}PnullpΩSq
g}22 “

n´|S|
ÿ

i“1

E|xui, gy|
2 “

n´|S|
ÿ

i“1

uTi Egg
Tui.

(95)

Because EggH “ I , we can now simplify (95) as

E}PnullpΩSq
g}22 “

n´|S|
ÿ

i“1

uTi ui
loomoon

1

“ n´ |S|. (96)

As a result, due to (94) and (96), we reach

β ď

?
n

b

n´ |S| ´ 1
.

APPENDIX H
ANALYSIS OPERATORS WITH ORTHOGONAL ROWS

In this section, we consider a fat analysis operator Ω P

Rpˆn that is constructed via the recipe in Item 1 of Section
VI. The result, however, holds for all analysis operators for
which ΩΩT is diagonal.

When Ω in (41) is fat with full row-rank, we have r “ p
and Ω can be expressed as

Ω “DpˆpUpˆpV
T
nˆp. (97)

Using MATLAB matrix notations, we have:

ΩS “DpS,SqUpS, rpsqV prns, rpsqT,
ΩS “DpS,SqUpS, rpsqV prns, rpsqT. (98)

As a consequence, it holds that

ΩSΩT
S “DpS,SqUpS, rpsqUTpS, rpsqDpS,Sq. (99)

Since UpS, rpsqUTpS, rpsq is a submatrix of UUT “ Ip, we
have that

ΩSΩT
S “ 0. (100)

Thus, the denominator of β becomes

}PnullpΩSq
ΩT sgnpΩxq}2 “ }pIn ´Ω:SΩSqΩ

T
S sgnpΩSxq}2

“ }ΩT
S sgnpΩSxq}2. (101)

By checking the gradient of the cost in the optimization in the
definition of β (numerator), we can check that

zS “ ´pΩSΩT
S q
´1ΩSΩT

S sgnpΩSxq “ 0 (102)

is the unique minimizer (the gradient of the cost is zero at zS ,
and zS satisfies the constraints). Also, the minimum value of
the cost (value of the numerator) becomes }ΩT sgnpΩxq}2
with this choice of zS . This reveals that the numerator of β
equals its denominator, i.e., β “ 1.
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