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Abstract

The performance of low-density parity-check (LDPC) codes in the error floor region is closely

related to some substructures of the code’s Tanner graph, collectively referred to as trapping sets (TSs). In

this paper, we study the asymptotic average number of different types of trapping sets such as elementary

TSs (ETS), leafless ETSs (LETS), absorbing sets (ABS), elementary ABSs (EABS), and stopping sets (SS),

in random variable-regular and irregular LDPC code ensembles. We demonstrate that, regardless of the

type of the TS, as the code’s length tends to infinity, the average number of a given structure tends to

infinity, to a positive constant, or to zero, if the structure contains no cycle, only one cycle, or more

than one cycle, respectively. For the case where the structure contains a single cycle, we derive the

asymptotic expected multiplicity of the structure by counting the average number of its constituent

cycles and all the possible ways that the structure can be constructed from the cycle. This, in general,

involves computing the expected number of cycles of a certain length with a certain given combination

of node degrees, or computing the expected number of cycles of a certain length expanded to the desired

structure by the connection of trees to its nodes. The asymptotic results obtained in this work, which

are independent of the block length and only depend on the code’s degree distributions, are shown to

be accurate even for finite-length codes.

Index Terms: Low-density parity-check (LDPC) codes, random LDPC codes, trapping sets (TS),

elementary trapping sets (ETS), leafless elementary trapping sets (LETS), absorbing sets (ABS),

elementary absorbing sets (EABS), stopping sets (SS).
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I. INTRODUCTION

The performance of low-density parity-check (LDPC) codes in the error floor region is closely

related to some substructures of the code’s Tanner graph, here referred to collectively as trapping

sets (TS). A trapping set S is often identified by its number of variable nodes a, and the number

of unsatisfied check nodes b in its subgraph.1 In this case, the set S is said to belong to the

(a, b) class. For a given LDPC code, the harmful trapping sets would depend on the degree

distributions of the code, the channel model, the decoding algorithm, the quantization scheme,

and the structure of the code’s Tanner graph. Some categorizations of TSs include stopping

sets (SS), elementary TSs (ETS), leafless ETSs (LETS), absorbing sets (ABS), and elementary

ABSs (EABS). Stopping sets are known to be the problematic structures of the belief propagation

algorithm over the binary erasure channel (BEC) [1]. Leafless ETSs are relevant for soft-decision

iterative decoding of LDPC codes over the additive white Gaussian noise (AWGN) channel and

have been widely studied in the literature, see, e.g., [2], [3], [4], and the references therein. In

fact, LETS structures appear to form an overwhelming majority of dominant trapping sets of

variable-regular LDPC codes over the AWGN channel [4]. The broader category of ETSs are

harmful sets for irregular codes over the AWGN channel [2], [5]. Absorbing sets are the fixed

points of bit-flipping decoding algorithms [6], [7], and are also shown to be relevant in the

context of quantized decoders over the AWGN channel [7].

Regardless of the type of the TS, the problem of counting and/or enumerating trapping sets

in a given code is a hard problem. It was shown in [8] that for a given a, finding an (a, b)

TS with the smallest b is an NP-hard problem. Also, finding an (a, b) ETS with the smallest

a for a given b is a hard problem [8]. Very recently, similar hardness results were proved for

LETSs and EABSs [9]. Furthermore, it was proved in [10] that for a given Tanner graph G and a

positive integer t, determining whether G has a stopping set of size t is NP-complete. Despite the

intrinsic difficulty of such combinatorial problems, many advances are made on characterization

of trapping sets and the development of efficient search algorithms to find them [11], [12], [13],

[14], [15], [2], [16], [3], [17], [4], [5].

1The term “unsatisfied” is used for check nodes that are connected to an odd number of variable nodes in the trapping set.

This term (in the case of binary LDPC codes) implies that if the variable nodes in the trapping set S are set to one, and all the

other variable nodes in the Tanner graph are set to zero, then these check nodes will be unsatisfied, i.e., the modulo-2 addition

of the variables connected to the check node is non-zero.
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More related to the work presented in this paper, asymptotic results on the distribution of

trapping sets in different ensembles of LDPC codes were established in [18], [19], [20], [21],

[22]. The distribution of stopping sets in Tanner graph ensembles was first studied in [18]. In [19],

using tedious combinatorial methods, Orlitsky et al. studied the asymptotic average distribution

of stopping sets and the stopping number (the size of the smallest nonempty stopping set in

a code) in regular and irregular LDPC code ensembles, as the code’s block length n tends to

infinity. In particular, they proved that for almost all codes with smallest variable degree greater

than two, stopping number increases linearly with n. Milenkovic et al. [20] used random matrix

enumeration techniques and large deviations theory to study the asymptotic distribution of SSs

and TSs of size constant and linear in n, in random regular and irregular LDPC code ensembles.

Specifically, for regular ensembles with variable degree dv, they demonstrated that as n tends

to infinity, for constant a and b values, the average number of ETSs in the (a, b) class tends to

cna+ b−adv
2 , where c is a constant with respect to n, but depends on a, b, and dv. Abu-Surra et

al. [21] studied the ensemble stopping set and trapping set enumerators for protograph-based

LDPC codes both in finite-length and asymptotic regimes. The focus in [21] was to determine

whether or not the typical relative smallest size of trapping or stopping sets grows linearly

with the block length. Using a technique similar to that of [20], Amiri et al. [22] studied the

asymptotic distribution of ABSs and fully ABSs (FABSs) of size linear in n, in random regular

LDPC code ensembles. They also derived simplified formulas for enumerating the asymptotic

average number of EABSs, and FEABSs in regular LDPC code ensembles with variable degrees

3 and 4.

In this paper, we focus on the case where a and b are constant values (with respect to n).

This case is of particular practical interest, as in practice, the size of the most harmful trapping

sets may not necessarily increase with the code’s block length. For the scenario of constant a

and b values, the limited existing results on the asymptotic average number of trapping sets, as

discussed in the previous paragraph, are consistent with the results of our analysis. In addition,

for this scenario, our analysis both extends and deepens the results of the literature. For example,

while the results in [20] are limited to TSs and ETSs, in this work, we also cover LETSs. As an

example of how the results of this work are more accurate and provide a deeper understanding

about the TS structures, we consider the only result of [20] on (a, b) ETSs with constant a

and b values. This result, which is limited to biregular ensembles, indicate that the asymptotic

expected number of (a, b) ETSs is equal to cna+ b−adv
2 , for some constant c. For the interesting
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case where b = a(dv − 2), this result implies that, on average, there are a constant (non-zero)

number of ETSs within the (a, b) class under consideration. In this work, we determine the exact

value of this constant as a function of the graph’s degree distributions and the values of a and

b. In addition, we obtain similar results for variable-regular and irregular ensembles.

Another major difference in comparison with the existing literature [19], [20], [22], is that

rather than focusing on a class of trapping sets, we focus on individual non-isomorphic structures

within a class. We show that such structures, although in the same class, may demonstrate

completely different asymptotic behavior. For example, the average number of one structure

may tend to a constant as n tends to infinity, while that of another structure, within the same

class, may tend to infinity. Or the asymptotic average number of one structure may be zero,

while that of another structure may be a non-zero constant. If one only considers the behavior

of the whole class, in the former case, the average number tends to infinity and in the latter,

to a constant. The granularity of our analysis is important since it is known that, in general,

different non-isomorphic trapping sets in the same class can differ in their harmfulness [23]. It

is thus important to know the average number of individual non-isomorphic TS structures within

a code ensemble. Finally, although the analysis in [19], [20], [22], may be conceptually easy to

understand, the derivations are tedious and the final formulas are often complicated. In contrast,

at the core of our analysis is a simple, yet general, asymptotic result that the expected number

of an structure S is equal to Θ(n|V (S)|−|E(S)|),2 where |V (S)| and |E(S)| are the number of

vertices (nodes) and the number of edges of S, respectively. This result is then easily translated

to an asymptotic result on the average multiplicity of the structure based on the number of cycles

in the structure. For the number of cycles equal to zero, one, or more than one, the average

multiplicity tends to infinity, a non-zero constant, or zero, respectively.

In an ensemble E of LDPC codes, for given a and b values, we say that the (a, b) class has a

consistent behavior in E , if all the structures within the class demonstrate the same asymptotic

behavior in E , i.e., the average number of every non-isomorphic structure in the class tends to

the same value (zero, infinity or a non-zero constant) in E , as n tends to infinity. Otherwise, we

say that the class has an inconsistent behavior in E . As an example of our results, we prove

that in random variable-regular LDPC codes, every class of ETSs and every class of LETSs

2We use the notation f(x) = Θ(g(x)), if for sufficiently large values of x, we have a× g(x) ≤ f(x) ≤ b× g(x), for some

positive a and b values.
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has a consistent behavior. In irregular LDPC codes, however, classes of ETSs and LETSs have

inconsistent behavior, in general.

In Table I, we have summarized our results on the asymptotic average number of (a, b) TSs

in variable-regular ensembles of LDPC codes with variable degree dv, for different types of

trapping sets, and for different values of a, b and dv. As we will discuss later, the asymptotic

expected multiplicity of trapping sets depends on the value of b/a in relation to dv − 2. This

can be seen in Table I through the distinction of different columns. In Table I, the notation N2a

denotes the asymptotic average number of cycles of length 2a in the Tanner graphs of the codes.

The entry “–” in the table is used to indicate that it is impossible to have trapping sets of a

particular type in the corresponding classes. In Table I, the value N2a is used as an asymptotic

approximation for the average number of TS structures that are isomorphic to a simple cycle

of length 2a. The value N2a was computed (approximated) recently in [24] for random regular

(irregular) Tanner graphs.

As another contribution of this work, as related to variable-regular graphs (Table I), we focus

on structures which are not simple cycles but contain only a single (simple) cycle. These are

the remaining structures (in addition to simple cycles) whose asymptotic expected multiplicity,

we have proved to be a non-zero constant. For such structures, we first characterize them as a

simple cycle appended by a number of trees of different sizes rooted at the variable nodes of

the cycle. We then use this characterization to count the number of such structures on average

in the asymptotic regime. The counting problem in this case is formulated recursively, and has

a solution which is a generalization of Catalan numbers [25]. These results correspond to the

entry Θ(1) in Table I.

We also investigate the asymptotic expected multiplicity of different types of TSs in irregular

graphs, in cases where such expected values are non-zero and finite. In particular, to compute

the asymptotic average multiplicity of LETS, ABS and SS structures in irregular graphs, we

generalize the results of [24] to count the number of cycles of different lengths with different

combinations of node degrees within irregular ensembles of bipartite graphs. Moreover, to

compute the asymptotic average multiplicity of ETS structures, we generalize the results derived

for regular graphs (recursively counting the single cycles appended by trees) to irregular graphs.

The organization of the rest of the paper is as follows: In Section II, we present some definitions

and notations. This is followed in Section III by our main result on the asymptotic average

number of an arbitrary local structure in the Tanner graph of random LDPC codes. In this
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TABLE I

THE ASYMPTOTIC AVERAGE NUMBER OF DIFFERENT TRAPPING SET STRUCTURES WITHIN (a, b) CLASSES OF

VARIABLE-REGULAR LDPC CODE ENSEMBLES WITH VARIABLE DEGREE dv .

TS Type b/a < dv − 2 b/a = dv − 2 b/a > dv − 2

dv ≥ 2 dv = 2 dv = 3 dv ≥ 4 dv ≥ 2

ETSs 0 Θ(1) ∞

LETSs 0 ∼ N2a –

EASs 0 ∼ N2a – –

SSs 0 ∼ N2a – –

section, we also apply the general result to different types of trapping sets including ETSs,

LETSs, ABSs, EABSs and SSs, for both variable-regular and irregular LDPC code ensembles. In

Section IV, we compute the expected number of SS, ABS and LETS structures whose asymptotic

average multiplicity is constant in irregular LDPC codes. Next, In Section V, we compute the

expected number of ETS structures whose asymptotic average multiplicity is constant in biregular,

variable-regular and irregular ensembles. Section VI is devoted to numerical results. The paper

is concluded with some remarks in Section VII.

II. DEFINITIONS AND NOTATIONS

For a graph G, we denote the node set and the edge set of G by V (G) and E(G), respectively.

In this work, we consider graphs with no loop or parallel edges, where a loop is defined as an

edge that connects a node to itself. For v ∈ V (G) and S ⊆ V (G), notations N(v) and N(S)

are used to denote the neighbor set of v, and the set of nodes of G which has a neighbor in S,

respectively. A path of length c in G is a sequence of distinct nodes v1, v2, . . . , vc+1 in V (G),

such that {vi, vi+1} ∈ E(G), for 1 ≤ i ≤ c. A cycle of length c is a sequence of distinct nodes

v1, v2, . . . , vc in V (G) such that v1, v2, . . . , vc form a path of length c− 1, and {vc, v1} ∈ E(G).

We may refer to a path or a cycle by the set of their nodes, or by the set of their edges, or by

both. A chordless or simple cycle in a graph is a cycle such that no two nodes of the cycle are

connected by an edge that does not itself belong to the cycle.

A graph G = (V,E) is called bipartite, if the node set V (G) can be partitioned into two

disjoint subsets U and W (i.e., V (G) = U ∪ W and U ∩ W = ∅), such that every edge in E

connects a node from U to a node from W . The Tanner graph of a low-density parity-check

(LDPC) code is a bipartite graph, in which U and W are referred to as variable nodes and
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check nodes, respectively. Parameters n and n′ in this case are used to denote |U | and |W |,

respectively. Parameter n is the length of the code, and the code rate R satisfies R ≥ 1− (n′/n).

The number of edges incident to a node v is called the degree of v, and is denoted by dv or

d(v). Also, we denote the maximum degree and the minimum degree of G by ∆(G) and δ(G),

respectively. A bipartite graph G = (U ∪W,E) is called biregular, if all the nodes on the same

side of the given bipartition have the same degree, i.e., if all the nodes in U have the same

degree dv and all the nodes in W have the same degree dc. It is clear that, for a biregular graph,

|U |dv = |W |dc = |E(G)|. A bipartite graph that is not biregular is called irregular. A Tanner

graph G = (U∪W,E) is called variable-regular with variable degree dv, if for each variable node

ui ∈ U , dui
= dv. Also, a (dv, dc)-regular Tanner graph is a variable-regular graph with variable

degree dv, in which for each check node wi ∈ W , dwi
= dc. The variable and check node degree

distributions of irregular LDPC codes are represented by polynomials λ(x) =
∑dvmax

i=dvmin
λix

i−1

and ρ(x) =
∑dcmax

i=dcmin
ρix

i−1, where λi and ρi denote the fraction of the edges in the Tanner

graph connected to degree-i variable and check nodes, respectively, and dvmin
, dvmax , dcmin

and

dcmax are the minimum and maximum variable and check node degrees in the Tanner graph,

respectively.

In a Tanner graph G = (U ∪ W,E), for a subset S of U , the induced subgraph of S in G,

denoted by G(S), is the graph with the set of nodes S ∪N(S), and the set of edges {{ui, wj} :

{ui, wj} ∈ E(G), ui ∈ S, wj ∈ N(S)}. The set of check nodes with odd and even degrees in

G(S) are denoted by No(S) and Ne(S), respectively. Also, the terms unsatisfied check nodes

and satisfied check nodes are used to refer to the check nodes in No(S) and Ne(S), respectively.

Throughout this paper, the size of an induced subgraph G(S) is defined to be the number of its

variable nodes (i.e., |S|).

For a given Tanner graph G, a set S ⊂ U , is said to be an (a, b) trapping set (TS) if |S| = a

and |No(S)| = b. Alternatively, set S is said to belong to the class of (a, b) TSs. A stopping set

(SS) S is a TS for which the degree of each check node in G(S) is at least two. An elementary

trapping set (ETS) is a TS for which all the check nodes in G(S) have degree one or two. A

leafless ETS (LETS) S is an ETS for which each variable node in S is connected to at least

two satisfied check nodes in G(S). An absorbing set (ABS) S is a TS for which all the variable

nodes in S are connected to more nodes in Ne(S) than in No(S). Also, an elementary absorbing

set (EABS) S is an ABS for which all the check nodes in G(S) have degree one or two. A

fully absorbing set (FABS) is an ABS with the extra constraint that each variable node in U \ S
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is connected to strictly fewer nodes in No(S) than in W \ No(S). Also, an elementary fully

absorbing set (EFABS) S is an FABS such that each check node in G(S) has degree one or two.

In the asymptotic analysis presented in this work, for a given ensemble of LDPC codes (Tanner

graphs), identified by certain degree distributions and the block length n, we consider the case

where n tends to infinity. In such an asymptotic scenario, we say that a structure S is local in a

Tanner graph G, if the definition of S depends on a constant number (with respect to n) of nodes

in G. In particular, as we are interested in subgraphs S = G(S) induced in G by a set of variable

nodes S, if such subgraphs are local, we refer to them as being locally induced subgraphs. For

example, if one considers a constant positive integer a, and Tanner graphs whose maximum

variable degree is a constant in n, then (a, b) ETSs, (a, b) LETSs, (a, b) ABSs, (a, b) EABSs,

and (a, b) SSs are all local structures. (Note that such sets can only exist for b ≤ a× dvmax , and

thus b is also a constant in n.) On the other hand, the definition of FABSs depends on all the

variable nodes in the Tanner graph, and thus FABSs are not local structures. In this work, our

focus is on (a, b) TSs with a and b being constants in n. We also consider Tanner graphs whose

maximum variable and check node degrees are constant. Thus, in this work, all ETSs, LETSs,

ABSs, EABSs and SSs are local structures. We note that the locality constraint is one of the

main assumptions required for the proof of our results including Theorem 1 in the next section.

We conclude this section with the definition of k-permutations that will be used in the proof

of our main result. The k-permutations of n objects are the different ordered arrangements of

k-element subsets of the n objects. The number of such permutations is equal to P (n, k) =

n(n− 1) · · · (n− k + 1).

III. ASYMPTOTIC AVERAGE NUMBER OF AN ARBITRARY LOCAL STRUCTURE IN LDPC

CODE (TANNER GRAPH) ENSEMBLES

A. Main Result

In this subsection, we find a lower and an upper bound on the average number of a locally

induced subgraph of a random Tanner graph with a given degree distribution, in the asymptotic

regime where the size of the graph tends to infinity.

Theorem 1. Let ∆ be a fixed natural number, such that ∆ ≥ d1 ≥ d2 ≥ . . . ≥ dn, and

∆ ≥ d′1 ≥ d′2 ≥ . . . ≥ d′n′ , and that
∑n

i=1 di =
∑n′

i=1 d
′
i = η. Consider the probability space G of

all Tanner graphs with node set (U,W ), where U = {u1, u2, . . . , un},W = {w1, w2, . . . , wn′},
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and d(ui) = di, d(wi) = d′i. Suppose that the degree sets {di} and {d′i} are selected according

to the distributions λ(x) and ρ(x), respectively, and that the graphs in G are selected uniformly

at random. For G ∈ G, denote by XS(G) the number of copies of a subgraph S, induced by a

constant number of variable nodes, in G. Then, in the asymptotic regime of n → ∞, we have

E(XS) = Θ(n|V (S)|−|E(S)|) , (1)

where E(XS) is the expected value of XS(G), and |V (S)| and |E(S)| are the number of nodes

and edges of S, respectively.

Proof. First, we introduce the method that we use to construct a random Tanner graph. The

method is the same as the one used in [24]. Suppose that the variable nodes are labeled as

{u1, u2, . . . , un}, and check nodes as {w1, w2, . . . , wn′}. For each node z with degree d(z),

we assign a bin that contains d(z) cells, and consider a random perfect matching (bijection)

to pair the cells on one side of the graph to the cells on the other side. The bipartite graphs

constructed by connecting any two paired cells with an edge are called configurations. There

are η! configurations, where η is the number of edges in the graph. In the rest of the proof,

we assume that configurations are selected uniformly at random. From each configuration, we

construct a Tanner graph such that if there is an edge between two cells, then we place an

edge between the corresponding nodes (bins) in the Tanner graph. The resulted Tanner graphs

can thus be considered as images of the configurations that are obtained from the random

perfect matchings. Following the notation in [24], we denote the ensemble of bipartite graphs

so constructed by G∗, and note that the graphs in G∗ can have parallel edges. We also note that

a uniform distribution over the configurations induces a non-uniform distribution over G∗. The

next step in the construction of G is to remove all the graphs with parallel edges from G∗. It

is now easy to see that a uniform distribution over the configurations, with the condition that

images with parallel edges are rejected, induces a uniform distribution over G. The reason is that

corresponding to each graph in G, we have the same number (d1!)(d2!) . . . (dn!)(d
′
1!)(d

′
2!) . . . (d

′
n′!)

of configurations.

It was proved in [24] that rather than working in the probability space G, one can work in G∗,

and that if a property holds true asymptotically almost surely (a.a.s.) for G∗, it also holds true

a.a.s. for G. (See the proof of Theorem 1 in [24].) We adopt the same approach here, and in

addition, instead of directly working in G∗, which has a non-uniform distribution, we perform

the calculations in the space of configurations (with uniform distribution).
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Consider a bipartite structure of interest S = (X∪Y,E ′), such that X = {x1, x2, . . . , xr} ⊂ U ,

Y = {y1, y2, . . . , yr′} ⊂ W , and r+ r′ = |V (S)|. We say there is a copy of S in a configuration

corresponding to a Tanner graph G = (U ∪ W,E), if there is a set of |E(S)| edges in the

configuration, whose image in G corresponds to a subgraph which is isomorphic to S. We

denote the number of copies of S in a configuration by CS . Now considering that, given a

set of |E(S)| edges, there are (η − |E(S)|)! configurations containing those edges, and that

configurations are selected uniformly at random, we have

E(XS) ∼ CS
(η − |E(S)|)!

η!
∼

CS

η|E(S)|
, (2)

where, the last equation is valid asymptotically since |E(S)| is a constant in n, and thus in the

number of edges η of the Tanner graph. In the following, we derive upper and lower bounds on

CS , and subsequently on E(XS).

Upper bound on CS : To form a copy of the structure S, we choose an r-permutation of the n bins

from U and an r′-permutation of the n′ bins from W (note that some of the permutations may

result in the same copy of S. By considering all possible r-permutations and r′-permutations,

we obtain an upper bound on CS). Next, after fixing the r-permutation and the r′-permutation,

for each i, 1 ≤ i ≤ r, for the ith bin in the r-permutation, we select d(xi) cells in order. We

note that if the number of cells in the ith bin is not equal to d(xi), then a copy of S cannot be

formed (by definition, the degree of a variable node in a subgraph induced by a set of variable

nodes must be equal to the degree of that variable node in the Tanner graph). On the check side,

for each i, 1 ≤ i ≤ r′, for the ith bin in the r′-permutation, we select d(yi) cells in order. If the

number of cells in the ith bin is less than d(yi), then a copy of S cannot be formed. (Note that

by considering all possible orderings for d(xi) cells and d(yi) cells, we find an upper bound on

CS , since some of those orderings may result in the same copy of S). The number of possible

choices of the cells on the variable side is thus upper bounded by
∏r

j=1

∏d(xj)−1
i=0 (d(xj)− i), that

can be further bounded from above by ∆|E(S)|. Similarly, the number of choices of the cells on

the check side is upper bounded by ∆|E(S)|. We therefore have
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CS ≤ ∆2|E(S)| × P (n, r)× P (n′, r′)

≤ ∆2|E(S)| × nr × n′r′

≤ ∆2|E(S)| × nr × nr′

= ∆2|E(S)| × n|V (S)| . (3)

Lower bound on CS: If any of the variable degrees of S is missing in the variable node degree

distribution λ(x) of the Tanner graph G, then, no copy of S can exist in G. Otherwise, assume

that there are α different variable degrees d1, . . . , dα, in S, and denote the number of variable

nodes with degree di by ri. We thus have r1+· · ·+rα = r. Denote by Ui the set of variable nodes

in G with degree di, i = 1, . . . , α. By the construction of the ensemble, we have |Ui| ≥ ci×n, for

some constant values ci, i = 1, . . . , α. On the check side, denote the set of all check nodes with

degree at least equal to the largest check degree in S by W ′. Here also, |W ′| ≥ c′×n′ ≥ c′′×n,

for some constants c′ and c′′. It is then easy to establish the following lower bound on CS :

CS ≥

(

|U1|

r1

)

· · ·

(

|Uα|

rα

)(

|W ′|

r′

)

, (4)

where
(

a
b

)

= a!/(b!(a − b)!). Using the linear lower bounds on |Ui|, i = 1, . . . , α, and |W ′|,

followed by the well-known lower bound
(

a
b

)

≥ (
a

b
)b, we obtain

CS ≥
(c1n

r1

)r1
· · ·

(cαn

rα

)rα(c′′n

r′

)r′

≥
min{c1, . . . , cα}

rnr

rr
×

c′′r
′
nr′

r′r′

≥
(c× n)|V (S)|

|V (S)||V (S)|
, (5)

where c = min{c′′, c1, . . . , cα} is a constant, and we have used r + r′ = |V (S)|.

The proof is then completed by combining (3) and (5) with (2), and noting that dvmin
× n ≤

η ≤ ∆× n, where dvmin
is the minimum variable degree in λ(x).

Theorem 1 shows that depending on the relative values of |V (S)| and |E(S)|, the expected

number of a structure S can tend to zero, infinity or a non-zero constant, as n tends to infinity.

The following lemma establishes a connection between the number of cycles in S, and the value

of |V (S)| − |E(S)|.
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Lemma 1. Consider a graph S with the set of nodes V (S), and the set of edges E(S). If

|V (S)| > |E(S)|, then S does not contain any cycle. Else, if |V (S)| < |E(S)|, then S contains

at least two cycles, and if |V (S)| = |E(S)|, then S contains only one (simple) cycle.

Based on Theorem 1 and Lemma 1, we have the following corollary.

Corollary 1. Consider a random ensemble of Tanner graphs and a given subgraph S induced by

a constant number of variable nodes in such Tanner graphs. Depending on whether S contains at

least two cycles, only one cycle, or no cycle, the average number of structure S in the ensemble

tends to zero, to a positive constant, or to infinity, as the size of the graphs (length of the codes)

tends to infinity.

In the following subsections, we apply the results of this subsection to different categories of

trapping sets, i.e., ETSs, LETSs, ABSs, EABSs and SSs, respectively.

B. Elementary Trapping Sets (ETS)

In this subsection, based on the general result of Theorem 1, we study the asymptotic behavior

of ETSs in both regular and irregular LDPC code ensembles.

The following results show that every (a, b) class of ETSs has a consistent behavior in variable-

regular LDPC codes, and that the behavior is fully determined by the ratio b/a and the variable

degree dv.

Proposition 1. Consider an (a, b) ETS S in a variable-regular Tanner graph with variable

degree dv. We then have

|V (S)| − |E(S)| = a+
b− adv

2
. (6)

Proof. Suppose that S is induced in a Tanner graph G by the set of variable nodes S. By

counting the number of edges in S = G(S) from the variable side, we have |E(S)| = a × dv.

We also have

|V (S)| = |S|+ |No(S)|+ |Ne(S)| = a+ b+
adv − b

2
= a+

adv + b

2
, (7)

where the second equality follows from the fact that all the satisfied and unsatisfied check nodes

have degree two and one, in the ETS, respectively. The proof is then completed by subtracting

|E(S)| = a× dv from (7).
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(a) (b) (c)

Fig. 1. Three ETS structures in variable-regular Tanner graphs with dv = 3, each satisfying one of the three conditions of

Theorem 2: (a) A (2, 4) ETS satisfying b/a > dv−2, (b) A (4, 2) ETS satisfying b/a < dv−2, and (c) A (2, 2) ETS satisfying

b/a = dv − 2.

The next theorem is resulted from Theorem 1 and Proposition 1, and describes the asymptotic

expected number of ETSs in different (a, b) classes of variable-regular LDPC code ensembles.

Theorem 2. Consider a random variable-regular LDPC code C with variable degree dv and

length n. Denote by NETS
(a,b) the number of (a, b) elementary trapping sets in C. Then, for a being

a constant in n, in the asymptotic regime where n → ∞, we have:

E(NETS
(a,b) ) = Θ(na+ b−adv

2 ) .

Thus, depending on whether b/a > dv − 2, b/a < dv − 2, or b/a = dv − 2, the expected value

E(NETS
(a,b) ) tends to infinity, zero, or a positive constant value in n.

Example 1. Figure 1 shows three ETS structures in variable-regular Tanner graphs with dv = 3,

each satisfying one of the conditions in Theorem 2. (Variable nodes, satisfied and unsatisfied

check nodes are shown by full circles, empty squares and full squares, respectively.)

In Section V, we study the case of b/a = dv − 2 in more details, and derive closed-form

formulas to calculate the expected multiplicity of (a, b) ETSs that satisfy b/a = dv − 2 in

biregular and variable-regular Tanner graphs.

Unlike variable-regular Tanner graphs, in irregular Tanner graphs, classes of ETSs demonstrate

an inconsistent behavior, i.e., in general, in an (a, b) class, one can find at least two structures
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Fig. 2. Three (4, 2) ETS structures in irregular Tanner graphs.

whose expected numbers tend to different values (infinity, zero or a non-zero constant), as

n → ∞. This is explained in the following example for the (4, 2) class.

Example 2. Figure 2 shows three ETS structures, all in the (4, 2) class, but each with a different

asymptotic behavior. While the asymptotic expected values of the leftmost and the rightmost

structures are infinity and zero, respectively, for the middle structure, the asymptotic expected

value is a positive constant (see, Corollary 1).

In Section V, we further discuss the ETSs whose average multiplicity tends to a constant in

irregular graphs asymptotically and derive formulas to compute such expected values.

C. Leafless Elementary Trapping Sets (LETS)

A LETS is a special case of an ETS, and thus the general results presented in Proposition 1

and Theorem 2 are also applicable to LETS structures of random variable-regular Tanner graphs.

For LETSs, however, from the three scenarios of b/a > dv − 2, b/a < dv − 2, and b/a = dv − 2,

only the last two can happen. This is proved in the following lemma.

Lemma 2. For any LETS structure in the (a, b) class of a variable-regular LDPC code with

variable degree dv, we have b/a ≤ dv − 2.

Proof. Consider an (a, b) LETS structure induced by the set of variable nodes S. Counting the

number of edges in the subgraph G(S) from the two sides of the graph, we have a × dv =

b + 2|Ne(S)|. Since G(S) is a LETS structure, each variable node is connected to at least 2

satisfied check nodes. This implies 2|Ne(S)| ≥ 2a, which together with the previous equation

complete the proof.

Theorem 3. Consider a random variable-regular LDPC code C with variable degree dv and

length n. Denote by NLETS
(a,b) the number of (a, b) leafless elementary trapping sets in C. Then,
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for a being a constant in n, in the asymptotic regime where n → ∞, we have:

E(NLETS
(a,b) ) = Θ(na+ b−adv

2 ) .

Thus, depending on whether b/a < dv−2, or b/a = dv−2, the expected value E(NLETS
(a,b) ) tends

to zero, or a positive constant value in n.

Based on Theorem 3, it is clear that, in the asymptotic regime, only the LETS classes with

b/a = dv − 2 are non-empty. All the structures in such classes contain only one cycle, and we

thus have the following result.

Corollary 2. In random variable-regular LDPC codes with variable degree dv and length n, as

n → ∞, the only non-empty classes of local (a, b) LETS structures are those with b/a = dv −2.

For each such class, all structures within the class correspond to a simple (chordless) cycle of

length 2a.

For irregular LDPC codes, the following result is in parallel with Lemma 2.

Lemma 3. For any LETS structure S in an irregular LDPC code, we have |V (S)| ≤ |E(S)|.

Proof. To prove the lemma, we show that any LETS structure S has a cycle. In S, each variable

node is connected to at least two satisfied check nodes. On the other hand, the degree of each

satisfied check node is two. Now, if we consider the subgraph formed by variable nodes, satisfied

check nodes and the edges in between, we have a graph with minimum degree two. It is well-

known that a graph with the minimum degree two has at least one cycle.

Based on Lemma 3, for irregular LDPC codes also, the asymptotic expected number of LETS

structures is either zero or a constant non-zero value. The classes of LETS structures in irregular

codes also demonstrate an inconsistent behavior, and among all the structures within an (a, b)

class, only those that correspond to simple cycles of length 2a have an asymptotically non-zero

expected value for their multiplicity. We thus have the following result.

Proposition 2. Consider random irregular LDPC codes with dvmin
≥ 2, and length n. As n → ∞,

for a constant value of a, the sum of the expected number of LETS structures in all the (a, b)

classes, for different values of b, tends to the expected value of the number of simple cycles of

length 2a in the code.
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The cycle structure of random regular and irregular Tanner graphs was studied in [24]. In

particular, it was shown in [24] that the asymptotic expected value of the number of cycles of

length c in irregular graphs with variable degrees {di}
n
i=1 and check node degrees {d′i}

n′

i=1, as

the size of the graph tends to infinity, is approximated by

E(Nc) ≈

(

(
2

|E|

n
∑

i=1

(

di
2

)

)(
2

|E|

n′
∑

i=1

(

d′i
2

)

)
)c/2

c
, (8)

where |E| =
∑n

i=1 di =
∑n′

i=1 d
′
i is the number of edges in the graph. This result for variable-

regular graphs with variable degree dv reduces to

E(Nc) ≈

(

(dv − 1)(
2

|E|

n′
∑

i=1

(

d′i
2

)

)
)c/2

c
, (9)

and for (dv, dc) biregular graphs to

E(Nc) ∼

(

(dv − 1)(dc − 1)
)c/2

c
. (10)

Considering that in the asymptotic regime of n → ∞, by Corollary 1, the expected number

of cycles with chords tends to zero, one can use the above approximations for chordless cycles,

and use them along with Corollary 2, to obtain asymptotic estimates on the average number of

LETS structures in different classes of regular graphs.

For irregular graphs, the result of Proposition 2 together with the approximation (8) can be

used to estimate the sum of (a, b) LETS structures for a given a and different b values. In

Section IV, we fine tune our analysis for irregular graphs and compute the expected number of

(a, b) LETS structures for any given values of a and b for which the expected multiplicity tends

to a constant.

D. Absorbing Sets (ABS)

The following result relates the number of nodes and edges of an ABS.

Lemma 4. For any ABS structure S within a Tanner graph with dvmin
≥ 2, we have |V (S)| ≤

|E(S)|.

Proof. Let S = G(S) be the ABS induced in the Tanner graph G by the set of variable nodes

S. By the definition of an ABS, each variable node in S is connected to more nodes in Ne(S)



17

than in No(S). Each node in S has thus at least two neighbors in Ne(S). On the other hand, the

degree of each node in Ne(S) within G(S) is at least two. Thus, if we consider the subgraph of

G(S) containing the nodes in S and Ne(S), and the edges in between, we obtain a graph with

minimum degree two. Such a graph, thus, has a cycle. This completes the proof.

Based on Theorem 1 and Lemma 4, it is clear that the average number of any ABS structure

tends to either zero or a positive constant (not to infinity) as the block length tends to infinity.

The following theorem distinguishes between the two cases depending on the variable degrees

of the Tanner graph.

Theorem 4. Consider random Tanner graphs with variable node degree distribution λ(x). If

dvmin
≥ 4, then all the classes of local ABSs have zero multiplicity asymptotically. Otherwise, if

dvmin
= 3, then all the local (a, b) classes of ABSs with a ≥ 2 and b 6= a, have zero multiplicity

asymptotically. In this case (dvmin
= 3), the structures in the local (a, a) class with asymptotically

non-zero multiplicity all correspond to simple cycles of length 2a consisting only of degree-3

variable nodes. Finally, if dvmin
= 2, then only the local ABS structures whose variable degrees

are only 2 or 3 can have non-zero multiplicity asymptotically. In the (a, b) classes with a given

a and different values of b ≤ a, such structures are all simple cycles of length 2a.

Proof. If dvmin
≥ 4, then each variable node in the ABS must be connected to at least three

satisfied check nodes. Now, consider the subgraph that consists of the variable nodes of the

ABS, its satisfied check nodes and the edges in between. This subgraph has minimum degree

two, and a node of degree at least three, and thus contains at least two cycles. This means that

the ABS itself contains at least two cycles and thus, based on Corollary 1, its multiplicity is

zero asymptotically. The same argument applies to any ABS structure that has at least one node

with degree greater than or equal to four (for the cases with dvmin
= 3 or 2).

If dvmin
= 3, thus, all ABS structures have asymptotically zero multiplicity, except those whose

variable nodes, all, have degree three. In this case, by the definition of an ABS, we must have

b ≤ a, as each degree-3 variable node must be connected to at least two satisfied check nodes.

Now consider the case where a ≥ 2 and b < a. For this case, we consider two scenarios and

show that for both scenarios the ABS structures will have more than one cycle and thus their

multiplicity is zero asymptotically: (1) all unsatisfied check nodes have degree one, (2) at least

one unsatisfied check node c has degree 3 or larger. In the first scenario, since b < a, there must



18

(a) (b)

Fig. 3. Two (4, 4) ABS structures with different asymptotic behaviors in Tanner graphs with dvmin
= 3.

exist a variable node v in the ABS that has no connection to unsatisfied check nodes. Node v

is thus connected to three satisfied check nodes, and with the same argument presented before,

the ABS will have more than one cycle. In the second scenario, consider the subgraph of the

ABS consisting of variable nodes, satisfied check nodes and the unsatisfied check node c plus

all the edges in between. This subgraph has minimum degree 2 and a node with degree at least

3, and thus has more than one cycle. Therefore, for the case of dvmin
= 3, the only classes of

ABSs with asymptotically non-zero multiplicity are (a, a) classes. The only elements within the

(a, a) class whose multiplicity is non-zero asymptotically are simple cycles consisting of only

degree-3 variable nodes, where each variable node is connected to one unsatisfied check node

of degree one, and the degree of all satisfied check nodes are two.

For graphs with dvmin
= 2, the proof of the statement of the proposition is similar. In this

case, the only structures whose average multiplicity tends to a constant are those with variable

degrees only 2 or 3, that contain only a simple cycle.

From Theorem 4, it can be seen that any class of ABSs has a consistent behavior in any

ensemble of variable-regular or irregular LDPC codes with dvmin
≥ 4. The same applies to any

class of (a, b) ABSs with a 6= b in any ensemble of LDPC codes with dvmin
= 3. One can,

however, easily provide examples where two ABS structures within the same (a, a) class have

different asymptotic behavior in an ensemble with dvmin
= 3. This is demonstrated in Fig. 3

for the (4, 4) class. While the structure in Fig. 3(a) has only one cycle and thus has an average

multiplicity tending to a non-zero constant, the structure in Fig. 3(b) contains more than one
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Fig. 4. Two (4, 1) ABS structures with different asymptotic behaviors in Tanner graphs with dvmin
= 2.

cycle and thus its multiplicity is zero asymptotically. For ensembles with dvmin
= 2, it can be

seen that, in general, an (a, b) class of ABSs with a ≥ 2 and b ≤ a, has an inconsistent behavior

(see Fig. 4, for two structures with different asymptotic behaviors in the (4, 1) class).

In addition to the asymptotic results of Theorem 4, the following finite-length result applies

to ABSs of variable-regular LDPC codes.

Lemma 5. There is no (a, b) ABS structure with b > a(⌈dv
2
⌉ − 1), in a variable-regular Tanner

graph with variable degree dv.

Proof. By the definition of an ABS, each variable node is connected to at least ⌊dv
2
⌋+1 satisfied

check nodes. The number of edges in the induced subgraph connected to unsatisfied check nodes

is thus at most a× dv − a(⌊dv
2
⌋+ 1) or a(⌈dv

2
⌉ − 1).

Corollary 3. There is no (a, b) ABS structure with b/a = dv − 2, in a variable-regular Tanner

graph with variable degree dv ≥ 4.

In Section IV, we complement the results of Theorem 4, by calculating the asymptotic expected

multiplicity of ABSs for irregular codes with dvmin
= 3 and dvmin

= 2, in (a, b) classes with

b ≤ a (see Corollaries 5 and 6).

E. Elementary Absorbing Sets (EABS)

Elementary ABSs are a special case of ABSs. All the results presented in the previous

subsection are thus applicable to EABSs as well. On the other hand, EABSs, for codes with

dvmin
≥ 2, are a special case of LETSs. Therefore, the results presented in Subsection III-C are

also applicable to EABSs. In fact, for the variable-regular graphs with dv = 2 or dv = 3, or

irregular graphs with variable degrees only 2 and 3, the sets of EABSs and LETSs are identical.
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In the asymptotic regime of n → ∞, for variable-regular Tanner graphs with dv ≥ 4, using

Theorem 4, one can see that all (a, b) EABS classes are empty. For the cases of dv = 2

and dv = 3, based of Corollary 2, the only non-empty classes (asymptotically) are those with

b/a = dv − 2, whose members are simple cycles of length 2a. The average multiplicity of such

classes can then be approximated by (9) or (10).

In general, for an irregular Tanner graph, the following result shows that among ABS struc-

tures, only those that are elementary can possibly have non–zero multiplicity in the asymptotic

regime of n → ∞. This implies that for graphs with dvmin
≥ 2, the asymptotic results presented

in Theorem 4, related to ABS structures with constant average multiplicity, applies directly to

EABSs.

Proposition 3. Any non-elementary local ABS structure S in a Tanner graph with dvmin
≥ 2

contains more than one cycle. The multiplicity of S in a random Tanner graph thus tends to

zero as the size of the graph tends to infinity.

Proof. The non-elementary ABS structure S has either (a) a satisfied check node with degree 4

or larger, or (b) an unsatisfied check node of degree 3 or larger. In addition, each variable node

in S is connected to at least two satisfied check nodes. For Case (a), consider the subgraph of S

consisting of all the variable nodes in S, all the satisfied check nodes and the edges in between.

This subgraph has minimum degree 2 and has a node with degree 4 or larger. It thus contains

more than one cycle, and so does the ABS structure S, itself. For Case (b), consider the subgraph

of S containing all the variable nodes, all the satisfied check nodes and the unsatisfied check

node with degree 3 or larger, as well as all the edges in between. This subgraph has minimum

degree 2 and has a node with degree 3 or larger, and thus contains more than one cycle.

F. Stopping sets (SS)

In stopping sets, each check node is connected to at least two variable nodes. For Tanner

graphs with dvmin
≥ 2, therefore, any SS structure has a minimum degree at least 2, and as a

result, contains at least one cycle. If we, however, further limit the degree distribution of Tanner

graphs to dvmin
≥ 3, any SS structure will have a minimum degree of two and at least one node

with degree 3 or larger. This implies that the SS structure will contain more than one cycle.
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Lemma 6. Any SS structure in a Tanner graph with dvmin
≥ 2 contains at least one cycle, i.e.,

|V (S)| ≤ |E(S)|. For Tanner graphs with dvmin
≥ 3, however, any SS structure contains more

than one cycle, i.e., |V (S)| < |E(S)|.

It is easy to see that, in general, the only SS structures that contain only one cycle are those

with all variable nodes having degree 2. For such stopping sets, we have the following result.

Lemma 7. Consider a stopping set that belongs to the (a, b) class, and in which all the variable

nodes have degree 2. We then have b < a. Moreover, among all such SS structures, only those

with b = 0 can contain only one cycle. Those in other classes all have more than one cycle.

Proof. Since in an SS, each check node has degree at least 2, the number of check nodes in

the SS (with all variable nodes having degree 2) must be less than or equal to the number of

variable nodes and thus b ≤ a. If b = a, however, since the degree of an odd-degree check node

in the SS is at least 3, then there will be 3b edges connected to odd-degree check nodes. This,

alone, will be larger than the total number of edges connected to variable nodes. Thus, we must

have b < a. For the second part of the lemma, we notice that any SS with b > 0 has at least

one check node of degree 3 or larger, and thus contains more than one cycle.

Based on Lemma 7, the only SS structures with only one cycle are codewords (b = 0). In

such structures, the number of variable and check nodes is the same, and all variable nodes and

check nodes have degree 2. In fact, these structures are all simple cycles of length 2a formed

by degree-2 variable nodes.

Theorem 5. Any (a, b) class of local stopping sets has a consistent behavior in any ensemble of

LDPC codes with dvmin
≥ 3, with the asymptotic multiplicity equal to zero. Moreover, the same

result applies to LDPC codes with dvmin
= 2 and stopping set classes with b > 0. In ensembles

with dvmin
= 2, (a, 0) classes, in general, however, do not demonstrate a consistent behavior.

The only stopping set structures in these classes whose average multiplicity tends to a non-zero

constant by increasing the block length are simple cycles of length 2a consisting of a degree-2

variable nodes. All the remaining structures have an asymptotic multiplicity of zero.

Fig. 5 shows two stopping sets, both having only variable nodes with degree 2, and both in

the (4, 0) class, but with different asymptotic behavior.
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Fig. 5. Two (4, 0) SS structures, consisting of only degree-2 variable nodes, with different asymptotic behavior.

In the following section, to complement the result of Theorem 5, in Corollary 4, we compute

the asymptotic expected multiplicity of stopping sets in the (a, 0) class.

IV. ASYMPTOTIC EXPECTED MULTIPLICITY OF STOPPING SET, ABS AND LETS

STRUCTURES IN IRREGULAR BIPARTITE GRAPHS

The key results that enable us to find the asymptotic expected value of stopping set, ABS and

LETS structures in irregular graphs are the following theorem, and its generalization in Theo-

rem 7, that compute the expected number of cycles of a given length with a given combination

of variable and check node degrees.

Theorem 6. Consider the probability space G of all bipartite graphs with variable and check

node degree distributions λ(x) =
∑z

i=z′ λix
i−1 and ρ(x) =

∑w
i=w′ ρix

i−1, respectively, where

the graphs in G are selected uniformly at random. Also, assume that z′ = dvmin
≥ 2, w′ =

dcmin
≥ 2, and that z = dvmax and w = dcmax are fixed natural numbers, and let the number

of variable nodes n and the number of check nodes n′ tend to infinity. Let ~αc = (αz′, . . . , αz)

and ~βc = (βw′, . . . , βw) be sequences of non-negative integers such that
∑z

i=z′ αi = c/2 and
∑w

j=w′ βj = c/2. For given vectors ~αc, ~βc and G ∈ G, denote by N~αc,~βc
(G) the number of cycles

of length c in G such that each cycle has αi variable nodes with degree i, for each i = z′, . . . , z,

and βj check nodes with degree j, for each j = w′, . . . , w. Then, for any fixed even value of

c ≥ 4, we have

E(N~αc,~βc
) ∼

(

c/2

αz′, . . . , αz

) z
∏

i=z′

(λi(i− 1))αi

(

c/2

βw′, . . . , βw

) w
∏

j=w′

(ρj(j − 1))βj

c
. (11)

Proof. We use the same model and notations as described in the proof of Theorem 1, where

bipartite graphs are images of configurations. Rather than working in the probability space

G to find the expected value, we then work in the probability space corresponding to the
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configurations. Using an approach similar to the one used in [24], one can show that the expected

values in the two spaces are asymptotically equal.

For a configuration, we define an (~αc, ~βc)-cycle to be a set of c edges, like {e1, e2, . . . , ec}, con-

necting c distinct bins, like Di1 , . . . , Dic . The connections are such that for each j ∈ {1, . . . , c},

the edge ej , connects a cell in bin Dij to a cell in bin Dij+1
, where Dic+1 = Di1 , and the two

cells in each bin Dij , connected to the two edges ej and ej−1, are distinct (e0 = ec). Also, for

the bins corresponding to variable nodes, for each i, there are αi bins, each with i cells, and for

the bins corresponding to check nodes, for each j, there are βj bins, each with j cells. We now

compute the number of (~αc, ~βc)-cycles, C~αc,~βc
, in a configuration.

For a bin with i cells, we have i(i − 1) choices for the two cells that are at the end points

of the edges connected to the bin. Hence, in order to choose all the cells on both sides of the

graph, we have
(

∑

σ
z′

⊂U
z′

,|σ
z′

|=α
z′

...
σz⊂Uz,|σz|=αz

z
∏

i=z′

(i(i− 1))αi

)(

∑

σ
w′⊂W

w′ ,|σw′ |=β
w′

...
σw⊂Ww,|σw|=βw

w
∏

j=w′

(j(j − 1))βj

)

choices, where Ui and Wi are the sets of variable and check nodes with degree i, respectively.

To count the number of (~αc, ~βc)-cycles in a configuration, we also need to consider different

orderings of the c/2 bins on each side of the graph. This results in

C~αc,~βc
=

(

∑

σ
z′

⊂U
z′

,|σ
z′

|=α
z′

...
σz⊂Uz,|σz|=αz

z
∏

i=z′

(i(i− 1))αi

)(

∑

σ
w′⊂W

w′ ,|σw′ |=β
w′

...
σw⊂Ww,|σw|=βw

w
∏

j=w′

(j(j − 1))βj

)(( c
2
)!( c

2
)!

c

)

, (12)

where the division by c is for counting each cycle in the above process c times. We thus have

E(N~αc,~βc
) ∼

C~αc,~βc
× (|E(G)| − c)!

|E(G)|!

∼
(

∑

σ
z′

⊂U
z′

,|σ
z′

|=α
z′

...
σz⊂Uz,|σz|=αz

z
∏

i=z′

(i(i− 1))αi

)(

∑

σ
w′⊂W

w′ ,|σw′ |=β
w′

...
σw⊂Ww,|σw|=βw

w
∏

j=w′

(j(j − 1))βj

)(( c
2
)!( c

2
)!

c

) 1

|E(G)|c
.

(13)

In the following, we simplify (13) in a number of steps. First,
(

∑

σ
z′

⊂U
z′

,|σ
z′

|=α
z′

...
σz⊂Uz,|σz |=αz

z
∏

i=z′

(i(i− 1))αi

)

=
z
∏

i=z′

(

|Ui|

αi

)

×
z
∏

i=z′

(i(i− 1))αi . (14)
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Also, for any two integers k, s, where k tends to infinity and s is a constant number, we have
(

k

s

)

∼
ks

s!
. (15)

By (14) and (15), we obtain

(

∑

σ
z′⊂U

z′ ,|σz′ |=α
z′

...
σz⊂Uz,|σz |=αz

z
∏

i=z′

(i(i− 1))αi

)

∼
z
∏

i=z′

|Ui|
αi

(αi)!
(i(i− 1))αi . (16)

Moreover, by the definition of degree distributions, for each i, we have:

|Ui|

n
=

|Ui|
∑

j |Uj |
=

λi/i
∑

j λj/j
,

|Wi|

n′
=

|Wi|
∑

j |Wj|
=

ρi/i
∑

j ρj/j
. (17)

Consequently, by (17) and (16), we have

(

∑

σ
z′

⊂U
z′

,|σ
z′

|=α
z′

...
σz⊂Uz,|σz|=αz

z
∏

i=z′

(i(i− 1))αi

)

∼
z
∏

i=z′

[( n
∑

j λj/j

)αi (λi(i− 1))αi

(αi)!

]

. (18)

Using
(

c/2
αz′ ,...,αz

)

= (c/2)!
(αz′ )!···(αz)!

in (18), we further obtain

(

∑

σ
z′

⊂U
z′

,|σ
z′

|=α
z′

...
σz⊂Uz,|σz|=αz

z
∏

i=z′

(i(i− 1))αi

)

∼

(

c/2
αz′ ,...,αz

)

(c/2)!

z
∏

i=z′

[( n
∑

j λj/j

)αi

(λi(i− 1))αi

]

=

(

c/2
αz′ ,...,αz

)

(c/2)!

( n
∑

j λj/j

)c/2
z
∏

i=z′

(λi(i− 1))αi . (19)

By counting the number of edges from the variable node side of the graph, and by (17), we

have

|E(G)|c/2 =
(

z
∑

i=z′

i|Ui|
)c/2

=
(

z
∑

i=z′

nλi
∑

j λj/j

)c/2

=
( n
∑

j λj/j

)c/2

. (20)

By substituting (19) and (20), for both sides of the graph, in (13), we obtain (11).

Remark 1. For a (dv, dc)-regular Tanner graph, the result of Theorem 6, obtained by replacing

αdv = c/2 and βdc = c/2 in (11), reduces to (10) obtained in [24].
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In the context of finding the asymptotic multiplicity of SS, ABS and LETS structures with only

one simple cycle, we are particularly concerned about the degrees of variable nodes involved in

the cycle, as these degrees determine the number of unsatisfied check nodes, b, in the trapping

set. The degrees of the check nodes in the cycle however, are of no consequence to the structure

of the trapping set. In the following, we address this new counting problem by generalizing the

result of Theorem 6 to the cases where some of the variable or check nodes can have degrees

that are freely chosen from the degree distributions.

Theorem 7. Consider the random ensemble of irregular bipartite graphs G, described in The-

orem 6, and let {di}
n
i=1 and {d′i}

n′

i=1 be the set of variable and check node degrees satisfying
∑n

i=1 di =
∑n′

i=1 d
′
i = |E(G)|, for G ∈ G. Let ~α′

c = (αz′, . . . , αz, α
′) and ~β ′

c = (βw′, . . . , βw, β
′)

be sequences of nonnegative integers such that α′ +
∑z

i=z′ αi = c/2 and β ′ +
∑w

j=w′ βj = c/2.

For vectors ~α′
c,

~β ′
c, and G ∈ G, denote by N ~α′

c,
~β′
c
(G) the number of cycles of length c in G such

that each cycle has at least αi variable nodes with degree i, for each i = z′, . . . , z, and at least

βj check nodes with degree j, for each j = w′, . . . , w.3 Then, as the size of the graph tends to

infinity, for any fixed even value of c ≥ 4, we have

E(N ~α′
c,
~β′
c
) ≈

(

c/2

αz′ , . . . , αz, α′

) z
∏

i=z′

(λi(i− 1))αi

(

c/2

βw′, . . . , βw, β ′

) w
∏

j=w′

(ρi(j − 1))βj

×
( 2

|E(G)|

n
∑

i=1

(

di
2

)

)α′( 2

|E(G)|

n′
∑

i=1

(

d′i
2

)

)β′ 1

c
, (21)

where the approximation is an asymptotic upper bound within the fixed multiplicative factor of

S(hu)
−α′

×S(hw)
−β′

from the exact value, with Specht’s ratio S(h) defined by S(h) = (h−1)h
1

h−1

e log h
,

for h 6= 1, and S(1) = 1 (e is Euler’s constant), and hu = z(z−1)
z′(z′−1)

, hw = w(w−1)
w′(w′−1)

.

Proof. Similar to the proofs of Theorems 1 and 6, here also, we work in the random ensemble of

configurations. For each i, z′ ≤ i ≤ z, let Ui be the set of variable nodes with degree i. Also, for

each j, w′ ≤ j ≤ w, let Wj be the set of check nodes with degree j. To form an (~α′
c,
~β ′
c)-cycle,

for each i, z′ ≤ i ≤ z, one needs to choose αi bins from Ui. Next, from the remaining unchosen

nodes in U , one needs to choose α′ bins. Similar selection process will need to be performed on

the check node side of the graph. Since the size of the graph tends to infinity and since c and

thus all αi and βj values are constants, in the selection of α′ variable nodes and β ′ check nodes,

3The cycle thus has α′ variable nodes and β′ check nodes, whose degrees are freely selected from the degree distributions.
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we can assume that the number of choices is asymptotically equal to the case where these nodes

are selected from the whole set of variable and check nodes, respectively. Therefore, by taking

similar steps as those taken to derive (12), we have the following equation for the number of

(~α′
c,
~β ′
c)-cycles in a configuration:

C ~α′
c,
~β′
c
∼

(

∑

σ
z′

⊂U
z′

,|σ
z′

|=α
z′

...
σz⊂Uz,|σz|=αz
σ′⊂U,|σ′|=α′

[

z
∏

i=z′

(i(i− 1))αi

∏

ui∈σ′

(di)(di − 1)
])

×
(

∑

σ
w′⊂W

w′ ,|σw′ |=β
w′

...
σw⊂Ww,|σw|=αw

σ′⊂W,|σ′|=β′

[

w
∏

j=w′

(j(j − 1))βj

∏

wi∈σ

(d′i)(d
′
i − 1)

])(( c
2
)!( c

2
)!

c

)

, (22)

where di = d(ui) and d′i = d(wi). By substituting (18) in (22), we obtain

C ~α′
c,
~β′
c
∼

(

(
n

∑

j λj/j
)c/2−α′

z
∏

i=z′

(λi(i− 1))αi

(αi)!

∑

σ′⊂U
|σ′|=α′

∏

ui∈σ′

(di)(di − 1)
)

×
(

(
n

∑

j ρj/j
)c/2−β′

w
∏

i=w′

(ρi(i− 1))βi

(βi)!

∑

σ′⊂W

|σ′|=β′

∏

wi∈σ′

(d′i)(d
′
i − 1)

)(( c
2
)!( c

2
)!

c

)

. (23)

In the following, we derive asymptotic upper and lower bounds on (23) that differ only in

a multiplicative factor. For this, we first use Maclaurin’s inequality (see [26], pp 117-119), as

described below. Let a1, a2, . . . , an be positive real numbers, and for k = 1, 2, . . . , n, define the

averages Sk as follows:

Sk =

∑

1≤i1<···<ik≤n

ai1ai2 · · · aik

(

n

k

) ,

where the summation is over all distinct sets of k indices. Maclaurin’s inequality then states:

S1 ≥
√

S2 ≥
3
√

S3 ≥ · · · ≥ n
√

Sn .

Using Maclaurin’s inequality, we thus have

(
n
∏

j=1

aj)
1
n ≤ α′

√

Sα′ ≤

∑n
j=1 aj

n
. (24)
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On the other hand [27],
1

S(h)
×

∑n
j=1 aj

n
≤ (

n
∏

j=1

aj)
1
n , (25)

where h = M
m
(≥ 1), with M and m equal to the maximum and minimum values of numbers

a1, a2, . . . , an, and Specht’s ratio S(h) is defined by

S(h) =
(h− 1)h

1
h−1

e log h
for h 6= 1, and S(1) = 1 , (26)

in which e is Euler’s number.

Combining (24) and (25), we have

S(h)−α′

(

n

α′

)

(

∑n
j=1 aj

n

)α′

≤
∑

1≤i1<···<iα′≤n

ai1ai2 · · · aiα′ ≤

(

n

α′

)

(

∑n
j=1 aj

n

)α′

. (27)

Now, let aik = dk(dk − 1). Focusing on the upper bound in (27), we then have

∑

σ′⊂U
|σ′|=α′

∏

ui∈σ′

(di)(di − 1) ≤

(

n

α′

)

(

∑

ui∈U
(di)(di − 1)

n

)α′

∼
nα′

α′!

(

∑

ui∈U
(di)(di − 1)

n

)α′

=
1

α′!

(

2
∑

ui∈U

(

di
2

)

)α′

. (28)

Similarly, we can establish the following asymptotic lower bound:

S(hu)
−α′

α′!

(

2
∑

ui∈U

(

di
2

)

)α′

≤
∑

σ′⊂U
|σ′|=α′

∏

ui∈σ′

(di)(di − 1) . (29)

Now, by applying (28) and (29) to (23) for both sides of the graph, we obtain the asymptotic upper

and lower bounds on E(N ~α′
c,
~β′
c
) = C ~α′

c,
~β′
c
(|E(G)| − c)!/|E(G)|! ∼ C ~α′

c,
~β′
c
/|E(G)|c. In particular,
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the asymptotic value of the upper bound for (23), being used to obtain the approximate value

of E(N ~α′
c,
~β′
c
), is calculated as follows:

C ~α′
c,
~β′
c
≈

[

(
n

∑

j λj/j
)c/2−α′

z
∏

i=z′

(λi(i− 1))αi

(αi)!
×

1

α′!

(

2
∑

ui∈U

(

di
2

)

)α′]

×
[

(
n

∑

j ρj/j
)c/2−β′

w
∏

i=w′

(ρi(i− 1))βi

(βi)!
×

1

β ′!

(

2
∑

wi∈W

(

d′i
2

)

)β′](( c
2
)!( c

2
)!

c

)

∼
[

(

c/2

αz′, . . . , αz, α′

)

(
n

∑

j λj/j
)c/2−α′

z
∏

i=z′

(λi(i− 1))αi

(

2
∑

ui∈U

(

di
2

)

)α′]

×
[

(

c/2

βw′, . . . , βw, β ′

)

(
n

∑

j ρj/j
)c/2−β′

w
∏

i=w′

(ρi(i− 1))βi

(

2
∑

wi∈W

(

d′i
2

)

)β′](1

c

)

. (30)

On the other hand, by (20), we have

|E(G)|c/2−α′

=
( n
∑

j λj/j

)c/2−α′

. (31)

This together with (30) and E(N ~α′
c,
~β′
c
) ∼ C ~α′

c,
~β′
c
/|E(G)|c result in (21).

The asymptotic lower bound on E(N ~α′
c,
~β′
c
) is equal to the upper bound of (21) multiplied by

S(hu)
α′
× S(hw)

β′
, proving the claim about the accuracy of the approximation.

Remark 2. In Theorem 7, consider the case where α′ = β ′ = c/2. In this case, we are interested

in cycles of length c without any constraint on the node degrees. One can see that in this case,

Equation (21) reduces to (8), obtained in [24].

Corollary 4. For the ensemble of irregular bipartite graphs discussed in Theorem 7, let dvmin
= 2.

Then, the expected multiplicity of local (a, 0) stopping sets is given by

E(NSS
(a,0)) ≈

( 2λ2

|E(G)|

n′
∑

i=1

(

d′i
2

)

)a

×
1

2a
.

Proof. Based on Theorem 5, we need to find the asymptotic expected number of simple cycles

of length 2a that consist of a variable nodes of degree 2. This can be estimated from Theorem 7

by counting the number of cycles of length c = 2a that consist of a degree-2 variable nodes

and a check nodes with free degrees, i.e., α2 = a and β ′ = a, and noting that in the asymptotic

regime, all such cycles are simple.
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Corollary 5. For an ensemble of irregular graphs with dvmin
= 3, the asymptotic average

multiplicity of (a, a) ABSs is given by

E(NABS
(a,a) ) ≈

( 4λ3

|E(G)|

n′
∑

i=1

(

d′i
2

)

)a

×
1

2a
.

Proof. Based on Theorem 4, the only ABS structures in the (a, a) class whose asymptotic

expected multiplicity is non-zero, are simple cycles consisting only of degree-3 variable nodes.

We can thus estimate the number of such cycles using Theorem 7 by counting cycles of length

c = 2a that consist of a degree-3 variable nodes, and a check nodes of free degree, i.e., α3 = a

and β ′ = a, and the fact that in the asymptotic regime, all such cycles are simple.

Corollary 6. For an ensemble of irregular graphs with dvmin
= 2, the asymptotic average

multiplicity of local (a, b) ABSs for an arbitrary value of a and different values of b ≤ a, is

given by

E(NABS
(a,b) ) ≈

(a− 1)!

2× b!× (a− b)!

(2λ3

λ2

)b( 2λ2

|E(G)|

n′
∑

i=1

(

d′i
2

)

)a

.

Proof. Based on Theorem 4, the only ABS structures in the (a, b) class whose asymptotic

expected multiplicity is non-zero, are simple cycles consisting only of degree-2 and degree-

3 variable nodes. We can thus estimate the number of such cycles using Theorem 7 by counting

cycles of length c = 2a that consist of α2 = a− b degree-2 and α3 = b degree-3 variable nodes,

and a check nodes of free degree, i.e., β ′ = a, and the fact that in the asymptotic regime, all

such cycles are simple. The result of the corollary then follows from Equation (21) after some

simplifications.

Based on the discussions in Subsection III-C, we know that the only LETS structures that have

finite non-zero multiplicity asymptotically are those with only a simple cycle. In Theorem 7,

we derived an asymptotic approximation for the expected number of such cycles with different

lengths and with different combination of variable degrees. The following proposition, whose

proof is straight forward, along with the results of Theorem 7 can be used to estimate the

asymptotic multiplicity of LETS structures in different classes for irregular codes.

Proposition 4. Consider an ensemble G of irregular LDPC codes, and suppose that constants a

and b are such that the asymptotic expected multiplicity of (a, b) LETSs in G is a finite non-zero

value. Then, the asymptotic average multiplicity of (a, b) LETSs in G is equal to the asymptotic
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expected number of simple cycles of length 2a in G whose variable node degrees add up to

2a+ b.

The following example explains how the combination of Theorem 7 and Proposition 4 can

be used to estimate the multiplicity of LETS structures in different classes for irregular codes.

Example 3. Consider the ensemble of irregular LDPC codes with degree distributions λ(x) =

λix
i−1 + λjx

j−1 and ρ(x) = xk−1, where i ≥ 2, j > i and k > 2 are constant integers.

For any fixed value of a ≥ 2, any class of (a, b) LETSs with the value of b in the range

a× (i− 2) ≤ b ≤ a× (j− 2) has a non-zero finite expected value asymptotically. For each such

class, with given a and b values, we can uniquely determine the number of variable nodes of

each degree, i and j, that exist in simple cycles belonging to the (a, b) LETS class. For this, one

needs to solve the following system of linear equations: iαi + jαj = 2a + b and αi + αj = a,

to find the number of variable nodes of degrees i and j in the cycle. Solving these equations

results in αj = (2a+ b− ia)/(j − i) and αi = a− αj . Using Theorem 7, we can then estimate

the asymptotic expected multiplicity of (a, b) LETSs by

E(NLETS
(a,b) ) ≈

(

a

αi, αj

)

((i− 1)λi)
αi((j − 1)λj)

αj (k − 1)a ×
1

2a
. (32)

V. ASYMPTOTIC EXPECTED MULTIPLICITY OF ETS STRUCTURES IN REGULAR AND

IRREGULAR BIPARTITE GRAPHS

The only trapping sets with finite non-zero asymptotic expected multiplicity are those which

contain a single (simple) cycle. One can thus see that in the asymptotic regime, ETS structures

with finite non-zero expected multiplicity consist of a simple cycle and a collection of trees

stemming from the variable nodes of that cycle. Each such tree is rooted at the corresponding

variable node and contains check nodes of degrees two and one, where degree-1 check nodes

form all the leaves of the tree. The problem of computing the multiplicity of ETSs with a variable

nodes can thus be broken into two subproblems: (i) calculating the multiplicity of simple cycles

of different length ℓ (≤ 2a) with different variable degrees (if the graph is irregular), and (ii)

calculation of the number of possible ways that a collection of trees with a− ℓ/2 variable nodes

(in addition to the roots) can be attached to the variable nodes of the cycle. To solve the first

subproblem, we use the results of [24] and those obtained in Section IV. To tackle the second
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subproblem, we formulate the problem as a recursive counting problem whose solution is a

generalization of Catalan numbers [25].

To formulate Subproblem (ii), we consider a simple cycle C of length ℓ = 2(a − i), where

0 ≤ i ≤ a− g/2. In this case, the number of variable nodes within the ETS but outside C is i.

For a given value of i, we partition i into a− i non-negative integers k1, . . . , ka−i, where each

kj, 1 ≤ j ≤ a−i, satisfies kj ≤ i, and corresponds to one of the variable nodes of C. The integer

kj , in fact, is used to denote the number of nodes outside C that are in the tree rooted at the

j-th variable node of C. We thus have the constraint
∑a−i

j=1 kj = i. We further use the notation

tp, 0 ≤ p ≤ i, to denote the multiplicity of kj’s with |kj| = p. Thus, we have
∑i

p=1 p×tp = i, and

t0 = a− i−
∑i

p=1 tp. We use the notation (t0, t1, . . . , ti ▽ a) for any sequence on non-negative

integers t0, . . . , ti that satisfy these two equations. For example, (8, 1, 0, 0, 1, 0▽ 15).

In the following, we first consider the case of biregular graphs and then generalize the results

to variable-regular and irregular cases.

A. Biregular Bipartite Graphs

Theorem 8. Consider the ensemble of (dv, dc)-regular graphs in which the number of nodes

tends to infinity. Given fixed values of a, dc and g, for dv = 3, we have

E(NETS
(a,a) ) ∼

a−g/2
∑

i=0

∑

t0,t1,...,ti
(t0,t1,...,ti▽a)

[2a−i(dc − 1)a

2(a− i)

(

a− i

t0, t1, t2, . . . , ti

) i
∏

j=1

(
1

j

(

2j

j − 1

)

)tj
]

, (33)

and for a constant dv ≥ 4, we have

E(NETS
(a,(dv−2)a)) ≈

a−g/2
∑

i=0

∑

t0,t1,...,ti
(t0,t1,...,ti▽a)

[(dv − 1)a−i(dc − 1)a

2(a− i)

(

a− i

t0, t1, t2, . . . , ti

) i
∏

j=1

(
1

j + 1

(

(dv − 1)(j + 1)

j

)

)tj
]

,

(34)

where the asymptotic approximation is an upper bound within a multiplicative factor of (a −

g/2 + 1)−a from the exact value.

Proof. We first note that based on Theorem 2, the only classes of ETSs with finite non-zero

asymptotic expected multiplicity are those with b = a(dv − 2). These classes, which consist

of all the structures that contain a single (simple) cycle, are the focus of this theorem. In the

asymptotic regime, any (a, a(dv − 2)) ETS S contains a simple cycle C whose neighborhood

within any constant radius is a forest with probability one. The structure of this forest follows

the degree distribution of the ensemble, i.e., any tree rooted at one of the variable nodes of C is
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connected to dv−2 check nodes and each such check node is connected to dc−1 other variable

nodes, which in turn are each connected to dv − 1 other check nodes and so on. The ETS S, in

addition to C, consists of some trees, each rooted at one of the variable nodes of C. Consider a

variable node v of C, which is the root of a tree Tv within S. The tree Tv is a subgraph of the

neighborhood tree of C rooted at v. We refer to the collection of trees such as Tv, which are

part of the ETS S, and each are rooted at one of the variable nodes of C, as the forest of S.

Each tree Tv in this forest, is called a basic tree. The number of variable nodes other than the

root in a basic tree is called the variable-size of the tree or “v-size,” in brief. Variable-size zero

for a basic tree Tv implies that variable node v is connected to dv − 2 check nodes of degree-1

within the ETS. Basic trees have the following properties: (i) the root has degree dv − 2, (ii) the

degree of check nodes is either two or one, (iii) the degree of all the variable nodes in the tree,

except the root, is dv, and (iv) the leaves of the tree are all check nodes (with degree one).

We use the notation R(j, dv, dc) to denote the number of possible basic trees with constant

v-size j initiated from an arbitrary variable node of an arbitrary simple cycle within a Tanner

graph from the ensemble of (dv, dc)-regular graphs in the asymptotic regime. One can then see

that

NETS
(a,(dv−2)a) ∼

a−g/2
∑

i=0

∑

t0,t1,...,ti
(t0,t1,...,ti▽a)

[

N2(a−i)

(

a− i

t0, t1, t2, . . . , ti

)

×
i

∏

j=1

R(j, dv, dc)
tj
]

. (35)

In (35), the outer summation is to count simple cycles of different length 2(a− i), and the inner

summation is responsible for counting all the possible ways that the i variable nodes that are not

part of the cycle can be partitioned into subsets of different size j. The multinomial coefficient

describes the number of ways that the a− i variable nodes of the simple cycle can be connected

to basic trees of different v-sizes.

To calculate R(j, dv, dc), we note that any of the j variable nodes in a basic tree has a check

node of degree 2 as its parent. We thus have

R(j, dv, dc) = (dc − 1)j × Bdv
j+1 , (36)

where Bdv
j+1 denotes the number of possible rooted trees with j+1 nodes such that in each tree,

the root has degree at most dv − 2, and all the other nodes have degree at most dv. The term

(dc − 1)j in (36) accounts for the fact that at each non-leaf check node of a basic tree, one has

dc − 1 choices to select the variable node child.
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By replacing (36) in (35), we obtain

NETS
(a,(dv−2)a) ∼

a−g/2
∑

i=0

∑

t0,t1,...,ti
(t0,t1,...,ti▽a)

[

N2(a−i)

(

a− i

t0, t1, t2, . . . , ti

)

× (dc − 1)i
i

∏

j=1

(

Bdv
j+1

)tj]

. (37)

Taking the expected value of the above expression and replacing E(N2(a−i)) in the expected

value with (10), we have

E(NETS
(a,(dv−2)a)) ∼

a−g/2
∑

i=0

∑

t0,t1,...,ti
(t0,t1,...,ti▽a)

[(dv − 1)a−i(dc − 1)a

2(a− i)

(

a− i

t0, t1, t2, . . . , ti

) i
∏

j=1

(

Bdv
j+1

)tj]

.

(38)

By the definition of Bdv
j+1, we have

Bdv
j+1 =

∑

k1,...,kdv−2≥0

k1+···+kdv−2=j

Cdv
k1

× Cdv
k2

× · · · × Cdv
kdv−2

, (39)

where Cdv
j is the number of rooted trees with j nodes such that the root has degree at most dv−1

and each other node has degree at most dv. To calculate Cdv
j , we can then use the following

recursion

Cdv
j =

∑

k1,...,kdv−1≥0

k1+···+kdv−1=j−1

Cdv
k1

× Cdv
k2

× · · · × Cdv
kdv−1

, (40)

with base cases Cdv
0 = Cdv

1 = 1. The solution to the recursion (40) is a generalization of Catalan

numbers [25], and is given by

Cdv
j =

1

j

(

j(dv − 1)

j − 1

)

. (41)

For the case dv = 3, by (39), we have B3
j+1 = C3

j , and thus,

B3
j+1 =

1

j

(

2j

j − 1

)

. (42)

By replacing B3
j+1 with (42) in (38), we obtain (33).

To derive (34), we first establish an upper and a lower bound on Bdv
j+1 in terms of Cdv

j+1. For

the upper bound, it is clear that

Bdv
j+1 ≤ Cdv

j+1 (43)

For the lower bound, by the definition of Cdv
j+1, we have

Cdv
j+1 =

j
∑

i=0

Bdv
j+1−i × Cdv

i . (44)
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On the other hand, for each i in the above summation, the following inequality holds:

Bdv
j+1−i × Cdv

i ≤ Bdv
j . (45)

Combining (45) with (44), we obtain

Cdv
j+1 ≤ (j + 1)× Bdv

j . (46)

This together with Bdv
j ≤ Bdv

j+1 results in

Cdv
j+1

j + 1
≤ Bdv

j+1 . (47)

By replacing Bdv
j+1 with the upper bound of (43) in (38), and using (41) for Cdv

j+1, we obtain the

asymptotic upper bound of (34).

To obtain the asymptotic lower bound that determines the accuracy of Estimate (34), we apply

the lower bound of (47) on Bdv
j+1 to (38). This results in the following lower bound

a−g/2
∑

i=0

∑

t0,t1,...,ti
(t0,t1,...,ti▽a)

[(dv − 1)a−i(dc − 1)a(a− i)!

2(a− i)(t0)!(t1)! · · · (ti)!

i
∏

j=1

(
1

(j + 1)2

(

(dv − 1)(j + 1)

j

)

)tj
]

.

This lower bound can be further bounded from below by the following equation:

a−g/2
∑

i=0

∑

t0,t1,...,ti
(t0,t1,...,ti▽a)

[(dv − 1)a−i(dc − 1)a(a− i)!

2(a− i)(t0)!(t1)! · · · (ti)!

i
∏

j=1

(
1

j + 1

(

(dv − 1)(j + 1)

j

)

)tj
]

×
1

(a− g/2 + 1)a
.

(48)

To obtain (48), we have used the following sequence of inequalities:

i
∏

j=1

1

(j + 1)tj
≥

i
∏

j=1

1

(i+ 1)tj
=

1

(i+ 1)
∑i

j=1 tj
≥

1

(i+ 1)a−i
≥

1

(a− g/2 + 1)a
.

Remark 3. We note that (34) is, in general, less accurate than (33), in the sense that while

(33) is asymptotically equal to the true expected value E(NETS
(a,(dv−2)a)), Equation (34) provides

only an asymptotic upper bound for E(NETS
(a,(dv−2)a)). It should, however, be noted that in (38),

we present an asymptotic value for E(NETS
(a,(dv−2)a)) even when dv ≥ 4. To use (38), one needs

to calculate the exact value of Bdv
j+1 using (39) and (41). This can be easily performed for the

cases where j and dv are relatively small. In Table II, we have listed the values of Bdv
j+1 for

some small values of dv and j.
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TABLE II

VALUES OF Bdv
j+1 FOR dv = 4, 5, AND j = 0, 1, 2, 3.

Bdv
1 Bdv

2 Bdv
3 Bdv

4

dv = 4 1 2 7 30

dv = 5 1 3 15 91

B. Variable-regular bipartite graphs

Theorem 9. Consider the random ensemble G of variable-regular bipartite graphs with variable

degree dv and check node degree distribution ρ(x), corresponding to the set of check node degrees

{d′i}
n′

i=1, and let the number of nodes in the graphs tend to infinity. In G, for fixed values a, dv,

dcmax and g, we have

E(NETS
(a,a(dv−2))) ≈

a−g/2
∑

i=0

∑

t0,t1,...,ti
(t0,t1,...,ti▽a)

[

(2(dv − 1)

ndv

n′
∑

i=1

(

d′i
2

)

)a−i

2(a− i)

(

a− i

t0, t1, t2, . . . , ti

)

×

(dc − 1)i
i

∏

j=1

(
1

j + 1

(

(dv − 1)(j + 1)

j

)

)tj
]

. (49)

where dc is the average check node degree, and the approximation is an asymptotic upper bound

within the fixed multiplicative factor of [(a − g/2 + 1) × S(hw)]
−a from the exact value, with

S(h) being Specht’s ratio, defined in Theorem 7, and hw = dcmax (dcmax−1)
dcmin

(dcmin
−1)

.

Proof. Using similar discussions as those in the proof of Theorem 8, we obtain the following

equation:

NETS
(a,a(dv−2)) ∼

a−g/2
∑

i=0

∑

t0,t1,...,ti
(t0,t1,...,ti▽a)

[

N2(a−i)

(

a− i

t0, t1, t2, . . . , ti

)

×
i

∏

j=1

tj
∏

k=1

Rk(j, dv, ρ(x))
]

, (50)

in which Rk(j, dv, ρ(x)) denotes the number of possible basic trees of v–size j in the ensemble

that are rooted at the kth variable node out of tj variables nodes (of the cycle) whose basic trees

all have v-size j. The terms Rk(j, dv, ρ(x)) are random variables due to the randomness in the

degree of check nodes participating in the basic trees. For different values of k, these random

variables are independent and identically distributed, and have the following expected value:

E(Rk(j, dv, ρ(x))) = (dc − 1)j ×Bdv
j+1, (51)
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where Bdv
j+1 was defined in the proof of Theorem 8. To derive (51), we have used the fact that

each check node that is a parent of one of the j variable nodes in a basic tree of v-size j has

a degree selected randomly and independently from the distribution ρ(x). Taking the expected

value of (50), replacing (51) for E(Rk(j, dv, ρ(x))) in the expected value, and considering the

fact that random variables Rk(j, dv, ρ(x))) are independent for different values of k and j, we

obtain

E(NETS
(a,a(dv−2))) ∼

a−g/2
∑

i=0

∑

t0,t1,...,ti
(t0,t1,...,ti▽a)

[

E(N2(a−i))

(

a− i

t0, t1, t2, . . . , ti

)

(dc − 1)i ×
i

∏

j=1

(Bdv
j+1)

tj
]

.

(52)

By replacing E(N2(a−i)) with (9), Bdv
j+1 with the upper bound of (43), and using (41) for Cdv

j+1

in (52), we derive (49). To prove the accuracy claimed in the theorem, we derive an asymptotic

lower bound which is equal to the upper bound of (49) multiplied by [(a−g/2+1)×S(hw)]
−a.

The term (a − g/2 + 1)−a is due to lower bounding Bdv
j+1 with the exact same steps as those

taken in the proof of Theorem 8. The term S(hw)
−a is due to lower bounding E(N2(a−i)) with

S(hw)
−(a−i) times the asymptotic upper bound of (9), as explained in Theorem 1 of [24], and

then taking the smallest value of S(hw)
−(a−i), by setting i = 0.

C. Irregular bipartite graphs

In irregular bipartite graphs, for a given value of a, the (a, b) ETSs whose asymptotic mul-

tiplicity is a non-zero constant on average can have a variety of b values. In Proposition 2, we

estimated the sum of all such ETSs over different values of b. In this subsection, we derive

asymptotic estimates for the expected number of ETSs in a given (a, b) class. For a given value

of a, we start from the smallest b value, i.e., a(dvmin
− 2). This corresponds to ETSs that consist

of a simple cycle and some trees connected to the variable nodes of that simple cycle, and all

the variable nodes in the ETS have degree dvmin
. This class is of particular interest since it is

well-known that among (a, b) ETSs with the same value of a, those with the smallest b value

are most harmful.

Theorem 10. Consider the random ensemble G of irregular bipartite graphs with variable and

check node degree distributions λ(x) =
∑

i λix
i−1 and ρ(x) =

∑

i ρix
i−1, respectively, where
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ρ(x) corresponds to the set of check node degrees {d′i}
n′

i=1. Let the number of nodes in the graphs

of G tend to infinity. In G, for fixed values a, dvmax , dcmax and g, we have

E(NETS
(a,a(dvmin

−2))) ≈

a−g/2
∑

i=0

∑

t0,t1,...,ti
(t0,t1,...,ti▽a)

[(2λq(q − 1)

|E(G)|

n′
∑

i=1

(

d′i
2

)

)(a−i)

×
1

2(a− i)

×

(

a− i

t0, t1, t2, . . . , ti

)

(dc − 1)i × (
λq/q

∑

j λj/j
)i

×
i

∏

j=1

(
1

j + 1

(

(q − 1)(j + 1)

j

)

)tj
]

, (53)

where q = dvmin
, |E(G)| is the number of edges in the graph G ∈ G, and the approximation is

an asymptotic upper bound within the fixed multiplicative factor of [(a − g/2 + 1)× S(hw)]
−a

from the exact value, with Specht’s ratio S(h) defined in Theorem 7, and hw = dcmax (dcmax−1)
dcmin(dcmin−1)

.

Proof. Using similar discussions as those in the proof of Theorem 8, we obtain the following

equation:

NETS
(a,a(dvmin

−2)) ∼

a−g/2
∑

i=0

∑

t0,t1,...,ti
(t0,t1,...,ti▽a)

[

N ′
2(a−i)

(

a− i

t0, t1, t2, . . . , ti

)

×
i

∏

j=1

tj
∏

k=1

R′
k(j, λ(x), ρ(x))

]

, (54)

where N ′
2(a−i) is the number of cycles of length 2(a − i) in which the degree of each variable

node is q, and R′
k(j, λ(x), ρ(x)) denotes the number of basic trees of v-size j, whose roots have

degree q− 2 and whose other variable nodes all have degree q, in the ensemble. The index k is

used to identify the root of the basic tree out of tj variables nodes (of the cycle) whose basic

trees all have v-size j.

Considering that each variable node in a basic tree has degree q with probability pq given

below:

pq =
λq/q

∑

j λj/j
,

one can see that

R′
k(j, λ(x), ρ(x)) = pjqRk(j, q, ρ(x)) ,

where Rk(j, q, ρ(x)) is defined in the proof of Theorem 9, with its expected value calculated in

(51). We thus have

E(R′
k(j, λ(x), ρ(x))) = (dc − 1)j × pjq × Bq

j+1 . (55)
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Taking the expected value of (54), and replacing E(R′
k(j, λ(x), ρ(x))) with (55) in the expected

value, we obtain

E(NETS
(a,a(dvmin

−2))) ∼

a−g/2
∑

i=0

∑

t0,t1,...,ti
(t0,t1,...,ti▽a)

[

E(N ′
2(a−i))

(

a− i

t0, t1, t2, . . . , ti

)

(dc − 1)i × piq ×
i

∏

j=1

(Bq
j+1)

tj
]

.

(56)

To calculate the expected value E(N ′
2(a−i)), we use the result of Theorem 7 and obtain

E(N ′
2(a−i)) ≈ (λq(q − 1))(a−i)

( 2

|E(G)|

n′
∑

i=1

(

d′i
2

)

)a−i 1

2(a− i)
. (57)

By replacing E(N ′
2(a−i)) with (57), Bq

j+1 with the upper bound of (43), and using (41) for Cq
j+1

in (56), we derive (53).

The proof for the accuracy of the estimate follows the same steps as those used in the proof

of Theorem 9 for the accuracy of Estimate (49).

Remark 4. One can use (56) along with (57) and the exact values of Bq
j+1 (see Table II), to

obtain a more accurate estimate compared to (53).

In an irregular ensemble, for a given value of a, ETSs in (a, b) classes with b in the range of

(dvmin
− 2)a ≤ b ≤ (dvmax − 2)a have finite non-zero asymptotic expected multiplicity. One can

use an approach similar to that of Theorem 10 to estimate such expected values. The derivations,

however, are in general tedious, as the calculations involve ETSs that are in the same class but

consist of different combinations of variable nodes with different degrees.

VI. NUMERICAL RESULTS

In this section, we present some numerical results in relation to the theoretical results presented

in previous sections. In particular, we provide the multiplicities of different trapping set structures

within randomly constructed LDPC codes and compare the results to the average values predicted

by the asymptotic analysis. We first focus on LETS structures, and use the exhaustive search

algorithms of [4] and [5] to find the multiplicity of LETS structures within different classes.

For the first experiment, we consider random biregular (3, 6) and (4, 8) LDPC codes with

different block lengths as listed in Table III. The multiplicities of LETS structures in different

(a, b) classes with a ≤ 12, b ≤ 5, for the (3, 6) codes, and with a ≤ 10, b ≤ 10, for the

(4, 8) codes, are listed in Tables IV and V, respectively. In both tables, we have also listed the
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TABLE III

BIREGULAR LDPC CODES FROM [28] USED IN THE FIRST EXPERIMENT

Code C1 C2 C3 C4 C5 C6 C7 C8 C9

n 816 1008 4000 20000 50000 4000 8000 10000 20000

R 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

dv 3 3 3 3 3 4 4 4 4

asymptotic average number of LETS structures within each class obtained based on Corollary 2.

For (3, 6) and (4, 8) codes, the asymptotic average value is non-zero only for classes with

b/a = 1 and b/a = 2, respectively. For these cases, the asymptotic average multiplicity of (a, a)

and (a, 2a) classes is approximated by (10) as 10a/(2a) and 21a/(2a), respectively.

The results of Tables IV and V show that the non-zero expected values provide a good approx-

imation for the multiplicity of LETSs in (a, a) and (a, 2a) classes, for (3, 6) and (4, 8) codes,

respectively, even at relatively short block lengths. The results also show that the multiplicity of

other classes decrease with increasing n (and tend asymptotically to zero). The rate of decrease,

however, depends on the class and is faster for some classes than others.

In the second experiment, we consider irregular LDPC codes with degree distributions λ(x) =

0.4286x2 + 0.5714x3, and ρ(x) = x6, and construct random codes of block lengths n =

500, 1000, 4000, 10000, and 20000. All the codes have rate 0.5 and girth 6. To obtain the

asymptotic expected number of LETS structures for this ensemble, we use the results presented

in Section IV. For any given a, we note that the asymptotic expected multiplicity is only non-

zero for b values in the range of a ≤ b ≤ 2a. We also note that the degree distribution of this

ensemble matches the one discussed in Example 3. Using the notations of Example 3, for the

ensemble under consideration, we have i = 3, j = 4, k = 7, αj = b − a and αi = 2a − b.

Replacing these in (32), we obtain

E(NLETS
(a,b) ) ≈

(

a

2a− b, b− a

)

(2× 0.4286)2a−b(3× 0.5714)b−a ×
6a

2a
. (58)

Using (58), for a = 3, 4, 5, 6, we obtain the results listed in the last column of Tables VI–IX,

respectively. In each table, the results for different values of b in the range of 3 ≤ b ≤ 2a, are

provided. As explained before, the asymptotic multiplicities are non-zero only for b ≥ a. In each

table, we have also given the actual multiplicities of different (a, b) LETSs for the five random
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TABLE IV

MULTIPLICITIES OF (a, b) LETSS WITHIN THE RANGE a ≤ 12, b ≤ 5, FOR (3, 6) REGULAR LDPC CODES OF TABLE III, IN

COMPARISON WITH THE ASYMPTOTIC EXPECTED VALUES OF COROLLARY 2

Code C1 C2 C3 C4 C5 Expected value

(a, a)

(3,3) 132 165 171 161 178 166.6

(4,4) 1491 1252 1219 1260 1268 1250

(5,5) 9169 10019 9935 10046 10231 10000

(a, b), b 6= a

(4,2) 3 6 1 0 0 0

(5,3) 90 100 21 2 1 0

(6,2) 2 5 0 0 0 0

(6,4) 2463 1885 476 95 52 0

(7,3) 110 116 10 0 1 0

(7,5) 33406 29736 7661 1540 640 0

(8,2) 1 3 0 0 0 0

(8,4) 4199 2961 183 4 1 0

(9,3) 195 169 4 0 0 0

(9,5) 84378 63787 4001 167 21 0

(10,2) 15 4 0 0 0 0

(10,4) 7965 4869 74 1 0 0

(11,3) 290 219 1 0 0 0

(11,5) 211273 134236 2278 8 2 0

(12,2) 15 6 0 0 0 0

(12,4) 17838 9041 36 0 0 0

codes. The comparison shows a good match between the theoretical asymptotic value and the

finite-length numerical results even at relatively short block lengths.

As the next experiment, we consider the ensemble of biregular (3, 6) LDPC codes and find

the asymptotic average multiplicity of (a, a) ETSs for different values of 3 ≤ a ≤ 5. For a given

a, the (a, a) ETS class is the only class with finite non-zero asymptotic multiplicity for this

ensemble. We use (33) of Theorem 8 for the derivations, and assume that the girth g = 6.

For a = 3, since g = 6, in (33), we have a − g/2 = 0. The outer summation therefore has

only one term corresponding to i = 0. This implies that the inner summation has only one term

that counts the expected number of cycles of length 6, which by (10) is equal to 103/6 = 166.6,
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TABLE V

MULTIPLICITIES OF (a, b) LETSS WITHIN THE RANGE a ≤ 10, b ≤ 10, FOR (4, 8) REGULAR LDPC CODES OF TABLE III, IN

COMPARISON WITH THE ASYMPTOTIC EXPECTED VALUES OF COROLLARY 2

Code C6 C7 C8 C9 Expected value

(a, 2a)

(3,6) 1563 1620 1598 1531 1543

(4,8) 24269 24107 24241 24368 24310

(5,10) 402513 406289 406754 407743 408410

(a, b), b 6= 2a

(4,6) 91 55 33 17 0

(5,6) 2 2 1 0 0

(5,8) 4640 2303 1910 934 0

(6,8) 588 196 107 22 0

(6,10) 185544 96525 76621 37075 0

(7,8) 53 10 7 0 0

(7,10) 39794 10698 6649 1682 0

(8,8) 5 0 0 0 0

(8,10) 7006 1116 567 60 0

(9,8) 1 0 0 0 0

(9,10) 1145 101 53 0 0

(10,10) 185 13 4 0 0

asymptotically. We thus have

E(NETS
(3,3) ) ∼ 166.6 .

For a = 4, the outer summation in (33) has two terms corresponding to i = 0, 1. For the case

of i = 0, the inner summation is responsible for counting the expected number of chordless

8-cycles, which by (10) is equal to 104/8 = 1250, asymptotically. For the case of i = 1, there

is only one sequence of t0, t1 values that satisfies (t0, t1▽ 4), and that is t0 = 2 and t1 = 1. For

these values, the term inside the double-summation of (33) is calculated as:

23(6− 1)4

2(3)

(

3

2, 1

)

(
1

1

(

2

0

)

)1 = 2500 . (59)

By adding the results for i = 0 and i = 1, we obtain

E(NETS
(4,4) ) ∼ 3750 .
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TABLE VI

MULTIPLICITIES OF LETSS OF SIZE THREE IN THE TANNER GRAPHS OF RANDOM IRREGULAR LDPC CODES WITH DEGREE

DISTRIBUTIONS λ(x) = 0.4286x2 + 0.5714x3 , ρ(x) = x6, AND WITH DIFFERENT BLOCK LENGTHS IN COMPARISON WITH

THE EXPECTED VALUES FROM EQUATION (58)

Multiplicity of LETSs Block Length Expected values

for 3 ≤ b ≤ 6 500 1000 4000 10000 20000 from Equation (58)

(3, 3) 26 22 18 22 31 22

(3, 4) 145 146 127 148 123 136

(3, 5) 312 254 281 269 257 272

(3, 6) 168 176 191 165 189 181

TABLE VII

MULTIPLICITIES OF LETSS OF SIZE FOUR IN THE TANNER GRAPHS OF RANDOM IRREGULAR LDPC CODES WITH DEGREE

DISTRIBUTIONS λ(x) = 0.4286x2 + 0.5714x3 , ρ(x) = x6, AND WITH DIFFERENT BLOCK LENGTHS IN COMPARISON WITH

THE EXPECTED VALUES FROM EQUATION (58)

(4, b) LETS classes Block Length Expected values

for 3 ≤ b ≤ 8 500 1000 4000 10000 20000 from Equation (58)

(4, 3) 5 4 0 1 0 0

(4, 4) 130 102 72 95 93 87

(4, 5) 841 726 735 731 713 699

(4, 6) 2240 2122 2122 2075 2090 2098

(4, 7) 2884 2830 2743 2741 2871 2797

(4, 8) 1273 1389 1384 1412 1402 1398

For a = 5, there are three terms in the outer summation involving the following calculations:

(a) i = 0; The inner summation counts the asymptotic expected number of chordless cycles of

length 10, which is 105/10 = 10000. (b) i = 1; In this case, there is only one sequence t0, t1,

that satisfies (t0, t1 ▽ 5), and that is t0 = 3, t1 = 1. For this sequence, we have

24(6− 1)5

2(4)

(

4

3, 1

)

(
1

1

(

2

0

)

)1 = 25000 . (60)

(c) i = 2; In this case, we have two possible sequences of t0, t1, t2, satisfying (t0, t1, t2 ▽ 5),

and they are 1, 2, 0, and 2, 0, 1. These sequences have the following contributions, respectively:

23(6− 1)5

2(3)

(

3

1, 2, 0

)

(
1

1

(

2

0

)

)2 = 12500 , (61)
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TABLE VIII

MULTIPLICITIES OF LETSS OF SIZE FIVE IN THE TANNER GRAPHS OF RANDOM IRREGULAR LDPC CODES WITH DEGREE

DISTRIBUTIONS λ(x) = 0.4286x2 + 0.5714x3 , ρ(x) = x6, AND WITH DIFFERENT BLOCK LENGTHS IN COMPARISON WITH

THE EXPECTED VALUES FROM EQUATION (58)

(5, b) LETS classes Block Length Expected values

for 3 ≤ b ≤ 10 500 1000 4000 10000 20000 from Equation (58)

(5, 3) 12 2 1 0 0 0

(5, 4) 143 58 11 6 1 0

(5, 5) 1055 654 436 420 374 359

(5, 6) 5549 4471 3649 3638 3657 3598

(5, 7) 16731 15904 14657 14480 14412 14392

(5, 8) 29850 29089 29248 28661 28693 28780

(5, 9) 27041 28434 28390 28795 28909 28777

(5, 10) 9753 11108 11172 11637 11584 11509

23(6− 1)5

2(3)

(

3

2, 0, 1

)

(
1

2

(

4

1

)

)1 = 25000 . (62)

By adding the results of Case (a), (60) for Case (b), and (61) and (62), for Case (c), we obtain

E(NETS
(5,5) ) ∼ 72500 .

The asymptotic expected values of (33), just derived, are listed along with the multiplicity of

(a, a) ETSs in Codes C1−C5 in Table X. The comparison shows a good match between the two

values across the range of block lengths. For the sake of completeness, for C1 − C5, we present

the non-zero multiplicities of the other ETS classes within the range a ≤ 7, b ≤ 5, in Table XI.

As expected, by increasing the block length the multiplicities decrease (and asymptotically tend

to zero).

As another example to compare the asymptotic theoretical results of this paper for ETSs with

those of finite-length random codes, we consider the (4, 8)-regular ensemble from which the

codes C6 − C9 in Table III are selected. Based on the results of Theorem 8, the asymptotic

expected multiplicity of (a, 2a) ETS classes for this ensemble can be approximated by (34), or

more accurately by (38). (This is the only class of (a, b) ETSs with non-zero asymptotic expected

multiplicity for different values of b.) In the following, we use (38) to estimate the multiplicity

of (a, 2a) ETSs for a = 3, 4, 5.
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TABLE IX

MULTIPLICITIES OF LETSS OF SIZE SIX IN THE TANNER GRAPHS OF RANDOM IRREGULAR LDPC CODES WITH DEGREE

DISTRIBUTIONS λ(x) = 0.4286x2 + 0.5714x3 , ρ(x) = x6, AND WITH DIFFERENT BLOCK LENGTHS IN COMPARISON WITH

THE EXPECTED VALUES FROM EQUATION (58)

(6, b) LETS classes Block Length Expected values

for 3 ≤ b ≤ 12 500 1000 4000 10000 20000 from Equation (58)

6, 2) 1 0 0 0 0 0

(6, 3) 10 0 0 0 0 0

(6, 4) 179 53 9 5 4 0

(6, 5) 1771 717 132 75 18 0

(6, 6) 11080 5840 2474 2015 1785 1542

(6, 7) 48495 32305 21896 19933 19267 18507

(6, 8) 142776 116436 99340 94744 93575 92527

(6, 9) 282304 265229 254057 247637 247219 246710

(6, 10) 352158 364261 371165 369248 368437 370022

(6, 11) 247006 276543 288721 295189 295669 295983

(6, 12) 71956 89281 93021 98685 98889 98649

TABLE X

MULTIPLICITY OF (a, a) ETSS IN BIREGULAR (3, 6) LDPC CODES IN COMPARISON WITH THE ASYMPTOTIC EXPECTED

VALUE OF (33)

(a, a) ETS class C1 C2 C3 C4 C5 Expected value of (33)

(3, 3) 132 165 171 161 178 166.6

(4, 4) 3459 3700 3777 3675 3938 3750

(5, 5) 67559 70783 72468 71446 75626 72500

For a = 3, a− g/2 = 0, and there is only one term corresponding to i = 0, and t0 = 3 in the

double-summation of (38). This term counts the asymptotic average number of cycles of length

6 through (10), and is equal to 213/6 = 1543.5. We thus have

E(NETS
(3,6) ) ∼ 1543.5 .

For a = 4, there are two terms in the outer summation: (a) i = 0; In this case, the only term

in the inner summation corresponds to t0 = 4, and is equal to the asymptotic average number

of chordless cycles of length 8, obtained from (10) to be 214/8 = 24310. (b) i = 1; In this
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TABLE XI

MULTIPLICITY OF (a, b) ETSS IN BIREGULAR (3, 6) LDPC CODES WITHIN THE RANGE a ≤ 7, b ≤ 5, AND THE

ASYMPTOTIC EXPECTED VALUE FROM THEOREM 2

(a, b) ETS class C1 C2 C3 C4 C5 Expected Value

(4, 2) 3 6 1 0 0 0

(5, 3) 120 160 31 2 1 0

(6, 2) 2 5 0 0 0 0

(6, 4) 4152 4080 916 125 67 0

(7, 3) 130 163 10 0 1 0

(7, 5) 98465 97852 23550 3886 1899 0

case there is only one sequence t0 = 2, t1 = 1 that satisfies (t0, t1 ▽ 4). The contribution of this

sequence in (38), considering that B4
2 = 2 from Table II, is given by

(dv − 1)3(dc − 1)4

2(3)

(

3

2, 1

)

(B4
2)

1 = 64827 .

By adding the results for i = 0 and i = 1, we obtain

E(NETS
(4,8) ) ∼ 89137 .

For a = 5, there are three terms in the outer summation of (38): (a) i = 0; For this case, we

have the contribution of 215/10 = 408410, which counts the asymptotic expectted number of

chordless 10-cycles. (b) i = 1; In this case there is only one sequence satisfying (t0, t1 ▽ 5),

i.e., t0 = 3, t1 = 1, with the following contribution:

(dv − 1)4(dc − 1)5

2(4)

(

4

3, 1

)

(B4
2))

1 = 1361367 . (63)

(c) i = 2; In this case, we have two possible sequences t0, t1, t2, satisfying (t0, t1, t2 ▽ 5). They

are 1, 2, 0, and 2, 0, 1, with contributions:

(dv − 1)3(dc − 1)5

2(3)

(

3

1, 2, 0

)

(B4
2)

2 = 907578 , (64)

and
(dv − 1)3(dc − 1)5

2(3)

(

3

2, 0, 1

)

(B4
3)

1 = 1588261.5 , (65)

respectively. (Note that from Table III, we have B4
3 = 7.) By adding the results of Case (a),

(63), (64) and (65), we obtain

E(NETS
(5,10)) ∼ 4265616.5 .
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TABLE XII

MULTIPLICITY OF (a, 2a) ETSS IN BIREGULAR (4, 8) LDPC CODES IN COMPARISON WITH THE ASYMPTOTIC EXPECTED

VALUE OF (38)

(a, 2a) ETS class C5 C6 C7 C8 Expected value of (38)

(3, 6) 1563 1620 1598 1531 1543

(4, 8) 89467 91891 91186 88578 89137

(5, 10) 4232030 4345623 4325691 4236433 4265616

The theoretical results, just derived, are listed in Table XII along with multiplicities of ETSs

in (a, 2a) classes of random codes. One can see a good match for different block lengths.

We end this section with deriving approximations for the asymptotic expected multiplicity of

(a, a) ETSs for a = 3, 4, 5, within the irregular ensemble with the following degree distributions:

λ(x) = 0.4286x2 +0.5714x3, and ρ(x) = x6. This is the same ensemble we discussed earlier in

this section for LETS distributions. We use the results of Theorem 10, and in particular Equations

(56) and (57) to derive the expected values. (See Remark 4.) We assume g = 6, and note that

for this ensemble dvmin
= 3, and thus Equation (56) can be used to find E(NETS

(a,a) ) for different

values of a. For a given value of a, the (a, a) ETS class has the smallest b value among all the

classes with non-zero asymptotic expected multiplicity for this ensemble.

For (3, 3) ETSs, we have a− g/2 = 0, and the only term in the double-summation of (56) is

E(N ′
6), which is calculated by (57) as (2× 0.4286)3 × 63/6 = 22.7. We thus have

E(NETS
(3,3) ) ≈ 22.7 .

For (4, 4) ETSs, there are two term in the outer summation of (56): (a) i = 0; For this case, the

inner summation is E(N ′
8), which can be calculated by (57) as (2 × 0.4286)4 × 64/8 = 87.5.

(b) i = 1; In this case there is only one sequence t0 = 2, t1 = 1, that satisfies (t0, t1 ▽ 4). The

contribution of this sequence in the inner summation of (56) is

E(N ′
6)

(

3

2, 1

)

(dc − 1)1 × p1q × (B3
2)

1 .

By substituting E(N ′
6) = 22.7, dc = dc = 7, pq = 0.5, and B3

2 = 1, in the above equation, we

obtain the value 204. By adding the results of Cases (a) and (b), we have

E(NETS
(4,4) ) ≈ 291.5 .
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For (5, 5) ETSs, the outer summation of (56) has three terms: (a) i = 0; For this case, the inner

summation is E(N ′
10), which by (57) has a value 359. (b) i = 1; In this case, there is only one

sequence t0 = 3, t1 = 1, that satisfies (t0, t1 ▽ 5). The contribution of this sequence is

E(N ′
8)

(

4

3, 1

)

(dc − 1)1 × p1q × (B3
2)

1 = 1049 . (66)

(c) i = 2; In this case we have two sequences t0, t1, t2, that satisfy (t0, t1, t2 ▽ 5), and they are

1, 2, 0, and 2, 0, 1. For the first sequence the contribution is

E(N ′
6)

(

3

1, 2, 0

)

(dc − 1)2 × p2q × (B3
2)

2 × (B3
3)

0 = 612 . (67)

For the second sequence, the contribution is

E(N ′
6)

(

3

2, 0, 1

)

(dc − 1)2 × p2q × (B3
2)

0 × (B3
3)

1 = 1224 . (68)

By adding the result of Case (a) with that of Case (b), i.e., (66), and those of Case (c), (67) and

(68), we obtain

E(NETS
(5,5) ) ≈ 3244 .

The above results along with the multiplicity of corresponding ETS classes in randomly selected

LDPC codes of different block length from the ensemble are listed in Table XIII.

TABLE XIII

MULTIPLICITIES OF (a, a) ETSS IN THE TANNER GRAPHS OF RANDOM IRREGULAR LDPC CODES WITH DEGREE

DISTRIBUTIONS λ(x) = 0.4286x2 + 0.5714x3 , AND ρ(x) = x6, AND WITH DIFFERENT BLOCK LENGTHS IN COMPARISON

WITH THE EXPECTED VALUES FROM THEOREM 10

(a, a) ETS Block Length Expected values

classes 500 1000 4000 10000 20000 from Theorem 10

(3, 3) 26 22 18 22 31 22.7

(4, 4) 341 287 216 272 304 291.5

(5, 5) 3979 3158 2340 2759 2883 3244

VII. CONCLUSION

In this paper, we studied the asymptotic behavior of local structures within the Tanner graph

of randomly constructed regular and irregular LDPC codes, as the code’s block length tends to

infinity. Examples of such structures are different categories of trapping sets, such as stopping
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sets, elementary trapping sets, or absorbing sets, that are harmful in the error floor region of

LDPC codes. We derived a simple asymptotic relationship for the expected number of such

structures based on the difference between the number of nodes and the number of edges of the

structure. This was then related to the number of cycles in the structure, where we demonstrated

that depending on the structure having, zero, one, or more than one cycle, the asymptotic expected

value is infinity, a constant non-zero value, or zero, respectively. This general result was then

applied to different categories of trapping sets to derive more specific results on the asymptotic

expected values of different structures and classes of structures. In particular, for the case where

the asymptotic expected value of a structure is a non-zero constant, we derived the exact value

or approximations for the constant value in terms of the girth and the degree distributions of the

ensemble. For these derivations, we used the existing asymptotic results of [24] on the average

number of cycles. We also extended the results of [24] to count the number of cycles with

specific combination of variable and check node degrees. Moreover, to count the number of

elementary trapping sets, we formulated the counting problem recursively, and solved it using

a generalization of Catalan numbers. We also demonstrated through numerical results that the

asymptotic results derived in this paper are rather accurate even at finite block lengths.

An important aspect of this work was to demonstrate that different (non-isomorphic) structures

within the same class of trapping sets can, in general, behave differently, in the asymptotic regime

of infinite block length. This was not investigated in previous studies where the focus had been

on the asymptotic behavior of the whole class rather than its individual members. In addition,

to the best of our knowledge, the results presented here, are the most general in the literature,

in the sense that the framework developed in this work is applicable to any local substructure

of a Tanner graph. Previous works were limited to specific categories of substructures such as

stopping sets, elementary trapping sets or absorbing sets. In fact, the results presented here for

leafless elementary trapping sets, which are the vast majority of dominant trapping sets over

the AWGN channel and the BSC, are the first of their kind. We also believe that the results

presented in this work on the cases where the asymptotic expected multiplicity of a structure is

a non-zero constant are the first of their kind, in the sense that, while the fact that the asymptotic

average multiplicity of a certain class of structures tends to a constant was reported in the existing

literature, the exact value of that constant was not determined. In this work, the exact value or

an estimate for such constants is provided as a function of girth and degree distributions of the

ensemble.
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