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Multilevel constructions: coding, packing and

geometric uniformity

Maiara F. Bollauf, Ram Zamir and Sueli I. R. Costa

Abstract

Lattice and special nonlattice multilevel constellations constructed from binary codes, such as

Constructions A, C, and D, have relevant applications in Mathematics (sphere packing) and in Com-

munication (multi-stage decoding and efficient vector quantization). In this work, we explore some

properties of Construction C, in particular its geometric uniformity. We then propose a new multilevel

construction, inspired by bit interleaved coded modulation (BICM), that we call Construction C?. We

investigate the geometric uniformity, laticeness, and minimum distance properties of Construction C?

and discuss its superior packing efficiency when compared to Construction C.

Index Terms

Lattice constructions, Construction C, Construction C?, geometrically uniform constellation, mini-

mum distance.

I. INTRODUCTION

Lattices are discrete sets in Rn which are described as all integer linear combinations of a set

of independent vectors. Some efficient lattice constructions are based on linear codes, a topic that

have been stimulated by the comprehensive approach in Conway and Sloane [8]. Construction
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C [24] is a multilevel code construction [22], [30], which if based on linear codes satisfying

certain nesting relations, forms a lattice.

When we consider a single level with a linear code, Construction C is the well known lattice

Construction A [8]. However, when the number of levels L > 1, the resulting construction

is not always a lattice, even if the component codes are linear. The work of Kositwattanarerk

and Oggier [23] explored the relation between Construction C and the lattice Construction D.

They showed that if we consider a family of nested linear binary codes C1 ⊆ · · · ⊆ CL ⊆ Fn2 ,

where this chain is closed under Schur product, then both constructions coincide and we obtain

a lattice (an extension of this result for codes over a q−ary alphabet can be found in [28]).

Regarding general properties, for linear component codes case, all points of the constellation

defined by Construction C have the same minimum distance [8], but not necessarily the same

kissing number (see Example 3). A notable example of a lattice Construction C is the Barnes-

Wall lattice, generated by the family of Reed-Muller codes [13], [14].

Through multi-stage decoding, Construction C can achieve the high SNR uniform-input ca-

pacity of an additive white Gaussian noise (AWGN) channel asymptotically as the dimension

n goes to infinity [16]. Another interesting example of nonlattice construction is presented by

Agrell and Eriksson in [1], who proved that the “Dn+” tessellation [8], which is a 2−level

Construction C, exhibits a lower normalized second moment (and then a better quantization

efficiency) than any known lattice tessellation in dimensions 7 and 9.

Our first objective in this paper is to study the properties of a general Construction C with

underlying binary codes, and to find out how close to a lattice this construction can be, in case it

does not satisfy the conditions required in [23]. We show that a two-level (L = 2) Construction

C is geometrically uniform (a result that can be deduced from [15]), however for three levels or

more (L ≥ 3) the distance spectrum may vary between the points of the constellation.

A recent coded modulation scheme, referred to as bit interleaved coded modulation (BICM)

[29], motivates the second contribution of this paper: the proposal and study of a new multilevel

construction, Construction C?, which arises as a generalization of Construction C.

The BICM, first introduced by Zehavi [35], requires mainly to have: a length−nL binary code

C, an interleaver (permutation) π, and a one-to-one binary labeling map µ̃ : {0, 1}L → X , where

X is a signal set X = {0, 1, . . . , 2L−1} (alphabet). The code and interleaved bit sequence c ∈ C
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is partitioned into L subsequences ci, i = 1, . . . , L, of length n :

c = (c1, . . . , cL), with ci = (ci1, ci2, . . . , cin).

The bits cj are mapped at a time index j to a symbol xj chosen from the 2L−ary signal

constellation X , according to the binary labeling map µ̃. Hence, for a length−nL binary code

C to encode all bits, we have the scheme below:

codeword c → interleaver π → partitioning into L subsequences of length n → mapping µ̃ →

xj = µ̃(c1j , . . . , cLj), j = 1, . . . , n

By defining the natural labeling µ : C → X n as µ(c1, c2, , . . . , cL) = c1 + 2c2 + · · · + 2L−1cL

and assuming π(C) = C, it is possible to define an extended BICM constellation in a way very

similar to the multilevel Construction C, which we denote by Construction C?.

The constellation produced via Construction C? is always a subset of the associated constella-

tion produced via Construction C for the same projection codes and it does not usually results in a

lattice. We explore here some facets of this original construction by mainly presenting a necessary

and sufficient condition for it to be a lattice, and also describing the Leech lattice Λ24 via

Construction C?. Besides that, we study some properties of Construction C?, such as geometric

uniformity and minimum distance, in order to analyze and compare packing efficiencies of

Construction C? and Construction C.

This paper is organized as follows. Section II is devoted to preliminary concepts and results.

In Section III we point out known properties of Construction C and present a detailed discussion

about its geometric uniformity. In Section IV we exhibit general geometrically uniform constel-

lations and as a consequence, an alternative proof to the geometric uniformity of an L = 2

Construction C. In Section V we introduce Construction C? and illustrate it with examples,

including a special characterization of the Leech lattice. In Section VI we investigate properties

of Construction C? such as geometric uniformity and latticeness. Section VII is devoted to

the study of the minimum distance of a constellation defined by Construction C? and packing

density relations between Constructions C and C?. Section VIII brings an asymptotic analysis

of a random Construction C? comparing its packing efficiency with the best known packing

efficiency of Construction C and finally Section IX concludes the paper.
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II. LATTICE BASICS AND CONSTRUCTIONS FROM LINEAR CODES

This section is devoted to present some basic concepts, results and notations [8], [34] to be

used in the next sections.

We will denote by + the real addition and by ⊕ the sum in F2, i.e., x⊕ y = (x+ y) mod 2.

A linear binary code C of length n and rank k is a linear subspace of dimension k over

the vector space Fn2 . It can also be written as the image of an injective linear transformation

φ : Fk2 → Fn2 , (a1, . . . , ak) 7→ GC · (a1, . . . , ak)
T , where GC ∈ Fn×k2 is a generator matrix of C.

The columns of GC compose a basis for C.
The Hamming distance between two elements x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn2 is the

number of different symbol in the two codewords,

dH(x, y) = |{i : xi 6= yi, 1 ≤ i ≤ n}|. (1)

The Hamming weight ω(c) is the number of nonzero elements in a codeword c ∈ C.
The minimum distance of a binary code C is the minimum Hamming distance between all

distinct codewords, i.e.,

dH(C) = dmin(C) = min{dH(x, y) : x, y ∈ C, x 6= y}. (2)

For a linear code, the minimum distance is also the minimum Hamming weight of a nonzero

codeword.

A linear binary code of length n and rank k, with 2k codewords and minimum distance

d = dmin(C) is said to be an (n, k, d)−code. The rate of such a code is

R =
1

n
log2 2k =

k

n
bits/symbol. (3)

A lattice Λ ⊂ RN is the set of all integer linear combinations of independent vectors

v1, v2, . . . , vn ∈ RN , n ≤ N and {v1, v2, . . . , vn} is called a basis of Λ. A matrix GΛ ∈ RN×n,

whose columns compose a basis of Λ, is called generator matrix of Λ. In other words, a lattice

is a discrete additive subgroup of Rn. We consider here only full rank (n = N) lattices.

For a lattice Λ ⊂ Rn, the minimum distance is the smallest Euclidean distance between any

two lattice points

dE(Λ) = dmin(Λ) = inf{||x− y|| : x, y ∈ Λ, x 6= y}. (4)

The Voronoi region V(λ) of a lattice point λ ∈ Λ is the open subset of Rn containing all

points nearer to λ than to any other lattice point. The closure of a Voronoi region tesselates Rn

by translations given by lattice points.
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The packing radius rpack(Λ) of a lattice Λ is half of the minimum distance between lattice

points and the packing density ∆(Λ) is the fraction of space that is covered by balls B(λ, rpack(Λ))

of radius rpack(Λ) in Rn centered at lattice points λ ∈ Λ, i.e.,

∆(Λ) =
vol B(0, rpack(Λ))

vol(Λ)
, (5)

where vol(Λ) = | det(GΛ)| = vol(V(λ)). The effective radius reff(Λ) is the radius of a ball with

the same volume, i.e., vol(Λ) = Vnr
n
eff(Λ), where Vn denotes the volume of the unit ball. The

packing efficiency is defined as

ρpack(Λ) =
rpack(Λ)

reff(Λ)
= (∆(Λ))1/n. (6)

A constellation1 Γ ⊂ Rn is said to be geometrically uniform [15] if for any two elements

c, c′ ∈ Γ there exists a distance-preserving transformation T such that c′ = T (c) and T (Γ) = Γ.

Every lattice Λ is geometrically uniform, due to the fact that any translation Λ + x by a lattice

point x ∈ Λ is just Λ and this implies that every point of the lattice has the same number of

neighbors at each distance and all Voronoi regions are congruent, V(λ) = V(0) + λ.

From linear codes, it is possible to derive lattice constellations using the well known Con-

structions A and D [8].

Definition 1. (Construction A) Let C be an (n, k, d)−linear binary code. We define Construction

A from C2 as

ΛA = C + 2Zn. (7)

Definition 2. (Construction D) Let C1 ⊆ · · · ⊆ CL ⊆ Fn2 be a family of nested linear binary

codes. Let ki = dim(Ci) and let {b1, b2, . . . , bn} be a basis of Fn2 such that {b1, . . . , bki} span

Ci. The lattice ΛD consists of all vectors of the form

ΛD =
L∑
i=1

2i−1

ki∑
j=1

α
(i)
j ψ(bj) + 2Lz (8)

where α(i)
j ∈ {0, 1}, z ∈ Zn and ψ is the natural embedding of Fn2 in Zn.

1A constellation is a discrete set of points in Rn.
2Construction A can be defined also using a nonlinear code, but then the resulting constellation is not a lattice.
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Another well studied construction, that in general does not produce lattice constellation, even

when the underlying codes are linear is Construction C, defined below following the Code-

Formula terminology from [13] (more details and applications also in [1]). Observe that this

particular case does not enforce the minimum distance conditions imposed in [8, pp. 150].

Definition 3. (Construction C) Consider L binary codes C1, . . . , CL ⊆ Fn2 , not necessarily nested

or linear. The infinite constellation ΓC in Rn, called Construction C, is defined as:

ΓC = C1 + 2C2 + · · ·+ 2L−1CL + 2LZn, (9)

or equivalently

ΓC := {c1 + 2c2 + · · ·+ 2L−1cL + 2Lz : ci ∈ Ci, i = 1, . . . , L, z ∈ Zn}. (10)

Note that if L = 1, i.e., if we consider a single level with a linear code, then this construction

reduces to lattice Construction A (Definition 1).

Example 1. (A nonlattice Construction C) Consider C1 = {(0, 0), (1, 1)} and C2 = {(0, 0)}. The

2−level Construction C from these codes is given by ΓC = C1 + 2C2 + 4Z2. Geometrically, we

can see this constellation in Figure 1 and clearly ΓC is not a lattice.

Fig. 1. 2- level Construction C from C1 = {(0, 0), (1, 1)} and C2 = {(0, 0)}.

Definition 4. (Schur product) For x = (x1, . . . , xn) and y = (y1, . . . , yn) both in Fn2 , we define

x ∗ y = (x1y1, . . . , xnyn).

Consider ψ : Fn2 → Rn as the natural embedding. Then, for x, y ∈ Fn2 , it is valid that

ψ(x) + ψ(y) = ψ(x+ y) + 2ψ(x ∗ y). (11)
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In order to simplify, we abuse the notation, writing Equation (11) as

x+ y = x⊕ y + 2(x ∗ y). (12)

Kositwattanarerk and Oggier [23] provided a condition that, if satisfied, guarantees that Con-

struction C will provide a lattice which coincides with Construction D.

Theorem 1. [23] (Latticeness of Construction C) Given a family of nested binary linear codes

C1 ⊆ · · · ⊆ CL ⊆ Fn2 , then the following statements are equivalent:

1. ΓC is a lattice.

2. C1 ⊆ · · · ⊆ CL ⊆ Fn2 is closed under Schur product.

3. ΓC = ΛD.

Example 2. (Dn+ as Construction C) The Dn+ tessellation [8] can be written as a 2−level

Construction C if we consider C1 as the (n, 1, n)−repetition code and C2 as the (n, n−1, 2)−even

parity check code. For n even, this construction represents a lattice, because we would have

nested linear codes that are closed under Schur product. Otherwise, when n is odd, we obtain a

nonlattice constellation Construction C. In particular, for dimensions n = 7 and 9 it was proved

that Dn+ has a lower normalized second moment than any known lattice tessellation [1].

III. PROPERTIES OF CONSTRUCTION C

We summarize next some known properties of Construction C already explored in the literature

(III-A, III-B, III-C) and we present a counterexample to show that for three levels and up,

Construction C is not geometrically uniform in general (III-D).

A. Minimum distance

If the underlying codes of Construction C are linear, then the squared minimum distance can

be expressed [8, pp. 150] as

d2
min(ΓC) = min{dH(C1), 22dH(C2), . . . , 22(L−1)dH(CL), 22L}. (13)

Indeed, observe that sets defined as ΓCi = {0+2·0+· · ·+2i−1ci+· · ·+2L−1 ·0+2L ·0, ci ∈ Ci},

where 0 ∈ Rn, are subsets of ΓC , i.e., ΓCi ⊆ ΓC for all i = 1, . . . , L, then it follows that

d2
Emin

(ΓC) ≤ min{dH(C1), 22dH(C2), . . . , 22(L−1)dH(CL), 22L}.

On the other hand, according to the discussion in [8, pp. 150], if the lowest component in

which two elements in ΓC differ is the i−th component, then their squared distance is always
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greater than or equal to 2(i−1)dH(Ci), for i = 1, . . . , L. Hence, it follows that d2
Emin

(ΓC) ≥

min{dH(C1), 22dH(C2), . . . , 22(L−1)dH(CL), 22L} and we conclude that Equation (13) holds.

From the formula of the squared minimum distance, we can also conclude that all points in

Construction C attains the same minimum distance.

B. Kissing number

The kissing number (number of nearest neighbors) of an element of Construction C may vary

between the elements even when the underlying codes are linear, as it can be seen in the 3−level

construction in Example 3, Section III-D. It follows, in particular, that the points of Construction

C may not have the same distance spectrum, hence it is not geometrically uniform in general.

C. Geometric uniformity

The geometric uniformity of a two-level (L = 2) Construction C, i.e. ΓC = C1 + 2C2 + 4Zn,

can be deduced from the work of G. D. Forney [15] if we consider a 2−level Construction C as a

group code with isometric labeling over Z/4Z (i.e., a 2−level binary coset code over Z/2Z/4Z).

He proved that this type of construction produces a geometrically uniform generalized coset code.

In Section IV, we provide an alternative proof, based on explicit isometric transformation.

D. Equi-distance spectrum and geometric uniformity for L ≥ 3

Geometric uniformity implies, in particular, that all points have the same set of Euclidean

distances to their neighbors.

Definition 5. (Distance spectrum) For a discrete constellation Γ ⊂ Rn, the distance spectrum is

N(c, d) = number of points in the constellation at an Euclidean distance d from an element c

in the constellation.

Definition 6. (Equi-distance spectrum) A discrete constellation Γ ⊂ Rn is said to have equi-

distance spectrum (EDS) if N(c, d) is the same for all c ∈ Γ.

We also introduce here the terminology of equi-minimum distance, where each point in the

constellation has at least one neighbor at minimum distance, i.e., for all c ∈ Γ, there exist c′ ∈ Γ,

such that d(c, c′) = dmin(Γ).
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Since geometric uniformity implies equi-distance spectrum, in particular for a 2−level Con-

struction C, N(c, d) = N(0, d) for all c ∈ ΓC . However for L ≥ 3 the equi-distance spectrum

and hence the geometric uniformity property does not hold in general, as we will see in the

upcoming example.

Example 3. (Non-EDS two dimensional Construction C) Consider an n = 2 and L = 3

Construction C with the following three linear component codes:

C1 = C2 = {(0, 0), (1, 1)}, C3 = {(0, 0)}. (14)

We can write ΓC = C1 + 2C2 + 4C3 + 8Z3 (Figure 2) in this case as ΓC = {(8k1 + j, 8k2 + j) :

k1, k2 ∈ Z, j = 0, 1, 2, 3}. One can notice that N((3, 3),
√

2) = 1 6= 2 = N((1, 1),
√

2), so it is

not geometrically uniform.

Fig. 2. Some elements of Construction C, with C1 = C2 = {(0, 0), (1, 1)} and C3 = {(0, 0)}.

IV. GENERAL GEOMETRICALLY UNIFORM CONSTELLATIONS

The next theorem provides a way to construct a geometrically uniform constellation, from

which we can derive the geometric uniformity of Construction C for L = 2 levels.

Theorem 2. (Geometric uniformity of Λ + C) If Λ ⊂ Rn is a lattice which is symmetric with

respect to all coordinate axes, i.e., (x1, . . . , xn) ∈ Λ then (x1, . . . , xi−1,−xi, xi+1, . . . , xn) ∈ Λ

for all i and C ⊆ Fn2 is a linear binary code, then Γ = Λ + C is geometrically uniform.

Proof. Given x = λ1 + c1 ∈ Γ, where λ1 ∈ Λ and c1 ∈ C, consider first the linear map

Tc1 : Rn → Rn, Tc1(z) = [Tc1 ] · z (z in the column format), where [Tc1 ] is defined as
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[Tc1 ] =


(−1)c11 0 . . . 0

0 (−1)c12 . . . 0

0 0
. . . 0

0 0 . . . (−1)c1n


(n×n)

, (15)

c1 = (c11, c12, . . . , c1n). Observe that Tc1 is an isometry and Tc1
−1 = Tc1 .

The map Fx : Rn → Rn, Fx(y) = Tc1(y − x) is an isometry and we show next that its

restriction Fx|Γ : Γ→ Γ is also an isometry with Fx(x) = 0.

First, note that for c1, c2 ∈ C it holds that Tc1(c2 − c1) = c1 ⊕ c2. In fact,

(Tc1(c2 − c1))i =



0, if (c1i, c2i) = (0, 0)

1, if (c1i, c2i) = (1, 0)

1, if (c1i, c2i) = (0, 1)

0, if (c1i, c2i) = (1, 1)

(16)

what implies Tc1(c2 − c1) = c1 ⊕ c2.

Given y ∈ Γ = Λ + C, y = λ2 + c2,

Fx(y) = Tc1(y − x) = Tc1(λ2 − λ1 + c2 − c1) = Tc1(λ2 − λ1) + Tc1(c2 − c1)

= λ3 + (c1 ⊕ c2) ∈ Γ = Λ + C, (17)

since Λ is axes-symmetric. Therefore, Fx(Γ) ⊆ Γ.

As Fx is injective, it remains to prove that for any w = λ̃ + c̃ ∈ Γ there exists y ∈ Γ such

that w = Fx(y). By straightforward calculation we can see that

Fx(y) = λ̃+ c̃ ⇒ Tc1(y − (λ1 + c1)) = λ̃+ c̃⇒ Tc1(Tc1(y − (λ1 + c1))) = Tc1(λ̃+ c̃)

⇒ y = Tc1(λ̃) + λ1 + Tc1(c̃) + c1 = Tc1(λ̃) + λ1 + Tc1(c̃+ 0− c1)

⇒ y = Tc1(λ̃) + λ1 + Tc1(c̃− c1) = Tc1(λ̃) + λ1︸ ︷︷ ︸
∈Λ

+ c̃⊕ c1︸ ︷︷ ︸
∈C

∈ Γ. (18)

To conclude the proof, given any x ∈ Γ and w ∈ Γ, we can consider the isometry F−1
w ◦ Fx

which takes x to w.

Corollary 1. (Special geometrically uniform Construction C) If an L−level Construction C has

just two nonzero linear codes Ci and CL, for some 1 ≤ i ≤ L−1, then ΓC = 2i−1Ci+2L−1CL+

2LZn is geometrically uniform.
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Proof. We can write ΓC = 2i−1(Ci+2L−i(CL+2Zn)). Since the Construction A lattice CL+2Zn is

axes-symmetric and so its scaling by 2L−i, it follows from Theorem 2 that Ci+2L−i(CL−1+2Zn),

i = 1, . . . , L− 1, is geometrically uniform, and this fact also applies to the scaled version.

Remark 1. The fact that a 2−level Construction C is geometrically uniform (Section III-C) is

a special case of Corollary 1 for L = 2 and i = 1.

V. CONSTRUCTION C? : AN INTER-LEVEL CODED VERSION OF CONSTRUCTION C

In this section, we introduce a new method to construct constellations from binary codes,

called Construction C?, which generalizes the multilevel Construction C.

Definition 7. (Construction C?) Let C be a length−nL binary code, C ⊆ FnL2 , which we denote

by main code. Then Construction C? is a discrete subset of Rn defined as

ΓC? := {c1 + 2c2 + · · ·+ 2L−1cL + 2Lz : (c1, c2, . . . , cL) ∈ C,

ci ∈ Fn2 , i = 1, . . . , L, z ∈ Zn}. (19)

Definition 8. (Projection codes) Let c = (c1, c2, ..., cL) be a partition of a codeword c =

(c11, . . . , c1n, ...., cL1, . . . , cLn) ∈ C ⊆ Fn2 into length−n subvectors ci = (ci1, ...., cin), i =

1, . . . , L. Then, a projection code Ci consists of all subvectors ci that appear as we scan through

all possible codewords c ∈ C. Note that if C is linear, then every projection code Ci, i = 1, . . . , L

is also linear.

Remark 2. Construction C? is a generalization of Construction C. Specifically, if the main code

in FnL2 is given as C = C1 × C2 × · · · × CL, then Construction C? becomes Construction C,

because the projection codes are independent.

Definition 9. (Associated Construction C) Given a Construction C? defined by a binary code

C ⊆ FnL2 , we call the associated Construction C the constellation defined as

ΓC = ΓC(ΓC?) = C1 + 2C2 + · · ·+ 2L−1CL + 2Zn, (20)

where C1, C2, . . . , CL ⊆ Fn2 are the projection codes of C (Definition 8).

Remark 3. Construction C? is always a subset of its associated Construction C, i.e., ΓC? ⊆ ΓC ,

because in general the main code C restricts the possible combinations of the component codes

(unless they are independent as in Remark 2).
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Example 4. (A nonlattice Construction C? and its associated Construction C) Consider a linear

binary code C with length nL = 4 (L = n = 2), where C = {(0, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0),

(0, 0, 1, 1)} ⊆ F4
2. Thus, any element x(c, z) ∈ ΓC? can be written as

x(c, z) =



(0, 0) + 4z, if c1 = (0, 0) and c2 = (0, 0)

(1, 2) + 4z, if c1 = (1, 0) and c2 = (0, 1)

(3, 0) + 4z, if c1 = (1, 0) and c2 = (1, 0)

(2, 2) + 4z, if c1 = (0, 0) and c2 = (1, 1),

(21)

where (c1, c2) ∈ C and z ∈ Z2. Geometrically, the resulting constellation is given by the blue

circles represented in Figure 3. We can notice that ΓC? is not a lattice. However, if we consider the

associated Construction C with codes C1 = {(0, 0), (1, 0)} and C2 = {(0, 0), (1, 1), (0, 1), (1, 0)},

we have a lattice (pink points in Figure 3), because C1 and C2 satisfy the condition given by

Theorem 1.

Fig. 3. (Nonlattice) Construction C? constellation in blue and its associated (lattice) Construction C constellation in red.

The next example presents a case where both Construction C? and its associated Construction

C are lattices, but they are not equal.

Example 5. (Lattice Constructions C? and associated C) Let a linear binary code C = {(0, 0, 0, 0),

(0, 0, 1, 0), (1, 0, 0, 1), (1, 0, 1, 1)} ⊆ F4
2 (nL = 4, L = n = 2), so the projection codes are

C1 = {(0, 0), (1, 0)} and C2 = {(0, 0), (1, 0), (0, 1), (1, 1)}. An element x(c, z) ∈ ΓC? can be
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described as

x(c, z) =



(0, 0) + 4z, if c1 = (0, 0) and c2 = (0, 0)

(1, 2) + 4z, if c1 = (1, 0) and c2 = (0, 1)

(2, 0) + 4z, if c1 = (0, 0) and c2 = (1, 0)

(3, 2) + 4z, if c1 = (1, 0) and c2 = (1, 1),

(22)

with z ∈ Z2. This construction is represented by black circles in Figure 4. Note that ΓC? is a

lattice and C 6= C1×C2, which implies that ΓC? 6= ΓC . Nevertheless, the associated Construction

C is also a lattice (Figure 4).

One can clearly observe the advantage of ΓC? over the associated ΓC in this case, because

the packing densities are, respectively ∆ΓC? = Π
4
≈ 0.7853 and ∆ΓC

= Π
8
≈ 0.3926.

Fig. 4. (Lattice) Construction C? constellation in black and its associated (lattice) Construction C constellation in blue.

We can also describe the densest lattice in dimension 24, the Leech lattice Λ24, as a Con-

struction C? with 3 levels.

Example 6. (Leech lattice from Construction C?) Based on the construction given by Conway

and Sloane [8] (pp. 131-132) and Amrani et al [2], we start by considering the following three

linear binary codes:

• C1 = {(0, . . . , 0), (1, . . . , 1)} ⊆ F24
2 ;

• C2 as a Golay code C24 ⊂ F24
2 achieved by adding a parity bit to the original [23, 12, 7]−binary

Golay code C23, which consists in a quadratic residue code of length 23;
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• C3 = C̃3 ∪ C3 = F24
2 , where C̃3 = {(x1, . . . , x24) ∈ F24

2 :
∑24

i=1 x1 ≡ 0 mod 2} and

C3 = {(y1, . . . , y24) ∈ F24
2 :
∑24

i=1 y1 ≡ 1 mod 2}.

Observe that C1, C2 and C3 are linear codes. Consider a code C ⊆ F72
2 whose codewords are

described in one of two possible ways:

C = {(0, . . . , 0︸ ︷︷ ︸
∈C1

, a1, . . . , a24︸ ︷︷ ︸
∈C2

, x1, . . . , x24︸ ︷︷ ︸
∈C̃3

), (1, . . . , 1︸ ︷︷ ︸
∈C1

, a1, . . . , a24︸ ︷︷ ︸
∈C2

, y1, . . . , y24︸ ︷︷ ︸
∈C3

)}. (23)

Thus, we can define the Leech lattice Λ24 as the 3−level Construction C? given by

Λ24 = ΓC? = {c1 + 2c2 + 4c3 + 8z : (c1, c2, c3) ∈ C, z ∈ Z24}. (24)

Observe that ΓC? 6= ΓC and in this case, the associated Construction C has packing density

∆ΓC
≈ 0.00012 < 0.001929 ≈ ∆ΓC? , which is the packing density of Λ24, the best known

packing density in dimension 24 even for nonlattices [7].

VI. GEOMETRIC UNIFORMITY AND LATTICENESS OF CONSTRUCTION C?

We verified previously (Section III-C and Remark 1) that a 2−level Construction C, ΓC =

C1 +2C2 +Zn, where C1, C2 ⊆ Fn2 are linear codes, is always geometrically uniform even when it

is not a lattice. Another question that emerges is: is a 2−level Construction C? also geometrically

uniform? As we show in a sequel, the answer is affirmative.

Theorem 3. (Geometric uniformity of a 2−level Construction C?) For any binary linear code

C ⊆ F2n
2 , the 2−level Construction C? defined as ΓC? = {c1 + 2c2 + 4z : (c1, c2) ∈ C, z ∈ Zn}

is geometrically uniform.

Proof. Assuming the same isometry Tc1 given by Equation (15), for a fixed x = c1 + 2c2 + 4z ∈

ΓC? , with (c1, c2) ∈ C and given y = c̃1 + 2c̃2 + 4z̃ ∈ ΓC? , (c̃1, c̃2) ∈ C, it is true that

Tc1(y − x) = ((c̃1 − c1) mod 2) + 2((c̃2 − c2) mod 2) + 4z′, where z′ ∈ Z is suitably chosen

according to the value of the difference in each coordinate. Clearly, by the linearity of the code,

((c̃1−c1) mod 2, (c̃2−c2) mod 2) ∈ C, then Tc1(y−x) ∈ ΓC? . To prove that Tc1(ΓC?−x) = ΓC? ,

we use arguments as the ones in Theorem 2. Therefore, we can conclude that for L = 2, ΓC? is

geometrically uniform.

As we have seen in Example 3, Construction C is not geometrically uniform for general

L ≥ 3. The same holds for Construction C?, because if we consider C as the Cartesian product
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C = C1 × C2 × · · · × CL, then ΓC = ΓC? and therefore, it is also not geometrically uniform in

general for L ≥ 3.

The work of Kositwattanarerk and Oggier [23] motivated our search for the latticeness of

Construction C?. Note that in [23], the requirements for Construction C to be a lattice are

imposed by a comparison between Constructions C and D. This is not possible for Construction

C?, which requires a different strategy. In the upcoming discussion, we present a simple sufficient

condition (Theorem 4) followed by a necessary and sufficient condition (Theorem 5) for ΓC? to

be a lattice.

We define now the antiprojection set, which is an important notion to state the lattice conditions

of Construction C?.

Definition 10. (Antiprojection) The antiprojection (inverse image of a projection) Si(c1, . . . , ci−1,

ci+1, . . . , cL) consists of all vectors ci ∈ Ci, i = 1, . . . , L that appear as we scan through all

possible codewords c ∈ C, while keeping c1, . . . , ci−1, ci+1, . . . , cL fixed:

Si(c1, ..., ci−1, ci+1, ..., cL) = {ci ∈ Ci : (c1, . . . , ci︸︷︷︸
i-th posititon

, . . . , cL) ∈ C}. (25)

Example 7. (Antiprojection set) In Example 5, we can define the antiprojection S2(c1) = {c2 ∈

C2 : (c1, c2) ∈ C}. For c1 = (0, 0) ∈ C1 we have S2(c1) = {(0, 0), (1, 0)} and for c1 = (1, 0) ∈ C1,

S2(c1) = {(0, 1), (1, 1)}.

We now can state a sufficient condition for the latticeness of Construction C?.

Theorem 4. (A sufficient lattice condition for ΓC?) If C ⊆ FnL2 is a linear binary code with

projection codes C1, C2, . . . , CL such that C1 ⊆ S2(0, . . . , 0) ⊆ C2 ⊆ · · · ⊆ CL−1 ⊆ SL(0, . . . , 0) ⊆

CL ⊆ Fn2 and where Ci−1 ⊆ Si(0, . . . , 0) is closed under the Schur product for i = 2, . . . , L, then

ΓC? is a lattice.

The proof will be presented in what follows after the statement of an auxiliary result. One

can observe that the mathematical intuition behind the conditions for ΓC? to be a lattice lies in

the fact that, since a+ b = a⊕ b+ 2(a ∗ b) for a, b ∈ Fn2 , when adding two points in ΓC or ΓC? ,

each level i ≥ 2 has the form of ci⊕ c̃i⊕ carry(i−1), where carry(i−1) is the “carry” term vector

of the 2(a ∗ b) coordinates from the addition in the lower level. Since the projection code Ci is

linear, ci ⊕ c̃i is a codeword in the i−th level. Hence, closeness of ΓC? under addition amounts
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to the fact that carry(i−1) is also a codeword in Ci, for i = 2, 3, . . . , L. The next result presents

a detailed description of these “carry” terms.

Lemma 1. (Sum in ΓC?) Let C ⊆ FnL2 be a binary linear code. If x, y ∈ ΓC? are such that

x = c1 + 2c2 + · · ·+ 2L−1cL + 2Lz (26)

y = c̃1 + 2c̃2 + · · ·+ 2L−1c̃L + 2Lz̃, (27)

with (c1, c2, . . . , cL), (c̃1, c̃2, . . . , c̃L) ∈ C and z, z̃ ∈ Zn, then

x+ y = c1 ⊕ c̃1 + 2(s1 ⊕ (c2 ⊕ c̃2)) + · · ·+ 2L−1(sL−1 ⊕ (cL ⊕ c̃L)) + 2L(s?L + z + z̃), (28)

where si ∈ Fn2 is the “carry” from level i to level i+ 1, given by

si = (ci ∗ c̃i)⊕ r(1)
i ⊕ r

(2)
i ⊕ · · · ⊕ r

(i−1)
i = (ci ∗ c̃i)

i−1⊕
j=1

r
(j)
i ,

r
(1)
i = (ci ⊕ c̃i) ∗ (ci−1 ∗ c̃i−1), r

(j)
i = r

(j−1)
i ∗ r(j−1)

i−1 ,

2 ≤ j ≤ i− 1, i = 2, . . . , L− 1 (29)

s0 = (0, . . . , 0), s1 = c1 ∗ c̃1 and the formula for s?i is the same for si but with real sum instead

of modulo-2 sum.

Proof. Through induction in the number L of levels:

Base case: For L = 1 level, C ⊆ Fn2 has only one subcode C1. Consider x, y ∈ ΓC? such that

x = c1 + 2z and y = c̃1 + 2z̃. Then

x+ y = c1 + c̃1 + 2(z + z̃) = c1 ⊕ c̃1 + 2(c1 ∗ c̃1︸ ︷︷ ︸
s1∈Zn

+z + z̃) (30)

and the result is valid.

Induction step: Assume that the formula in Equation (28) is valid for L = k−1, where the main

code C̃ ∈ Fn(k−1)
2 has subcodes C1, . . . , Ck−1 ∈ Fn2 . Therefore, our induction hypothesis affirms

that for x, y ∈ ΓC? such that

x = c1 + 2c2 + · · ·+ 2k−2ck−1 + 2k−1z (31)

y = c̃1 + 2c̃2 + · · ·+ 2k−2c̃k−1 + 2k−1z̃, (32)
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with z, z̃ ∈ Zn, is true that

x+ y = c1 ⊕ c̃1 + 2(s1 ⊕ (c2 ⊕ c̃2)) + · · ·+ 2k−2(sk−2 ⊕ (ck−1 ⊕ c̃k−1))

+ 2k−1(s?k−1 + z + z̃), (33)

where s?k−1 is sk−1 and si, i = 1, . . . , L as in Equation (29).

We aim to prove that the formula presented in Equation (28) is also satisfied for L = k. So,

consider the main code C ∈ Fnk2 with subcodes C1, . . . , Ck−1, Ck ∈ Fn2 . Suppose x, y ∈ ΓC? such

that

x = c1 + 2c2 + · · ·+ 2k−2ck−1 + 2k−1ck + 2kz (34)

y = c̃1 + 2c̃2 + · · ·+ 2k−2c̃k−1 + 2k−1c̃k + 2kz̃. (35)

So we can write, applying the induction hypothesis

x+ y = c1 ⊕ c̃1 + 2(s1 ⊕ (c2 ⊕ c̃2)) + · · ·+ 2k−2(sk−2 ⊕ (ck−1 ⊕ c̃k−1)) +

2k−1(s?k−1 + ck + c̃k) + 2k(z + z̃), (36)

where s?k−1 is sk−1 with the real sum instead of modulo−2 sum. By doing all the decompositions

to change the real sum s?k−1 + ck + c̃k to sk−1 ⊕ ck ⊕ c̃k we have

x+ y = c1 ⊕ c̃1 + 2(s1 ⊕ (c2 ⊕ c̃2)) + · · ·+ 2k−2(sk−2 ⊕ (ck−1 ⊕ c̃k−1)) +

2k−1(sk−1 ⊕ (ck ⊕ c̃k)) + 2k((ck ∗ c̃k) + r
(1)
k + r

(2)
k + · · ·+ r

(k−1)
k︸ ︷︷ ︸

s?k

+z + z̃). (37)

This formula is exactly as we expected and it concludes the proof.

At this point, we are ready to present the proof of Theorem 4.

Proof. For any x, y ∈ ΓC? , written as in Equations (31) and (32), we have x + y as given in

Lemma 1 (Equations (28) and (29)) and we need to verify if x+ y ∈ ΓC? .

Clearly x+ y ∈ C1 + 2C2 + · · ·+ 2L−1CL + 2LZn. It remains to demonstrate that (c1⊕ c̃1, s1⊕

c2 ⊕ c̃2, . . . , sL−1 ⊕ cL ⊕ c̃L) ∈ C, where s1, . . . , sL−1 are the “carry” terms defined in Equation

(29). Using the fact that Ci−1 ⊆ Si(0, . . . , 0) for all i = 2, . . . , L are closed under the Schur

product, it holds that

(c1 ⊕ c̃1, s1 ⊕ c2 ⊕ c̃2, . . . , sL−1 ⊕ cL ⊕ c̃L) = (c1 ⊕ c̃1, c2 ⊕ c̃2, . . . , cL ⊕ c̃L)︸ ︷︷ ︸
∈C

⊕

⊕ (0, s1, . . . , 0)︸ ︷︷ ︸
∈C

⊕ · · · ⊕ (0, . . . , 0, sL−1)︸ ︷︷ ︸
∈C

∈ C. (38)
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Observe that any nL−tuple (0, . . . , si−1, . . . , 0) ∈ C because by hypothesis, the chain Si(0, . . . , 0)

closes Ci−1 under Schur product, hence Si(0, . . . , 0) contains (ci−1∗c̃i−1), r
(1)
i−1, ...., r

(i−2)
i−1 which is

sufficient to guarantee that si−1 ∈ Si(0, . . . , 0) so (0, . . . , si−1, . . . , 0) ∈ C, for all i = 2, . . . , L−1.

Also, if x ∈ ΓC? , it is also valid that −x ∈ ΓC? .

While Si(0, . . . , 0) ⊆ Ci, i = 1, . . . , L by construction, note that the assumption that Ci ⊆

Si+1(0, . . . , 0), i = 1, . . . , L− 1 in Theorem 4 is not always satisfied by a general Construction

C?, even when Construction C? is a lattice (Example 9). On the other hand, the conditions

provided by Theorem 4 are easier to verify, as it can be seen, for example, in the case of the

Leech lattice.

Example 8. (Latticeness of the Leech lattice via Theorem 4) We want to check whether the

proposed codes C1, C2 and C3 in Example 6 satisfy the conditions stated by Theorem 4.

Initially, one can observe that S2(0, . . . , 0) = C2 and S3(0, . . . , 0) = C̃3 = {(x1, . . . , x24) ∈

F24
2 :
∑24

i=1 x1 ≡ 0 mod 2}. Hence, we need to verify that C1 ⊆ S2(0, . . . , 0) ⊆ C2 ⊆ S3(0, . . . , 0) ⊆

C3 and that Si(0, . . . , 0) closes Ci−1 under Schur product for i = 2, 3. Indeed C1 ⊆ S2(0, . . . , 0) =

C2, since (0, . . . , 0) ∈ C2 and if we consider the parity check matrix H ∈ F12×24
2 of the

[24, 12, 8]−Golay code denoted previously as C2,

H =
(
B12×12 | I12×12

)
, (39)

where

B12×12 =



1 1 0 1 1 1 0 0 0 1 0 1

1 0 1 1 1 0 0 0 1 0 1 1

0 1 1 1 0 0 0 1 0 1 1 1

1 1 1 0 0 0 1 0 1 1 0 1

1 1 0 0 0 1 0 1 1 0 1 1

1 0 0 0 1 0 1 1 0 1 1 1

0 0 0 1 0 1 1 0 1 1 1 1

0 0 1 0 1 1 0 1 1 1 0 1

0 1 0 1 1 0 1 1 1 0 0 1

1 0 1 1 0 1 1 1 0 0 0 1

0 1 1 0 1 1 1 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 0



(40)
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it is straightforward to see that H · (1, . . . , 1)T = 0 ∈ F12
2 , so (1, . . . , 1) ∈ C2 which implies

that C1 ⊆ S2(0, . . . , 0). Moreover, an element c2 ∈ C2 can be written as c2 = G · a, where

G =

 I12×12

B12×12

 is the generator matrix of the Golay code and a ∈ F12
2 . Thus, when we sum all

the coordinates of the resulting vector c2 = G · a we have 8a1 + 8a2 + 8a3 + 8a4 + 8a5 + 8a6 +

8a7 + 8a8 + 8a9 + 8a10 + 8a11 + 12a12 ≡ 0 mod 2⇒ c2 ∈ C̃3 = S3(0, . . . , 0). Hence,

C1 ⊆ S2(0, . . . , 0) ⊆ C2 ⊆ S3(0, . . . , 0) ⊆ C3. (41)

We still need to prove that

• S2(0, . . . , 0) closes C1 under Schur product and this is clearly true because the Schur product

of all elements in C1 belong to S2(0, . . . , 0).

• S3(0, . . . , 0) closes C2 under Schur product: if we consider c2 = G ·a ∈ C2 and c̃2 = G.ã ∈

C2, it can be verified (using the software Mathematica [33]) that the sum of all coordinates

of the Schur product c2 ∗ c̃2 sum zero modulo 2, i.e., c2 ∗ c̃2 ∈ S3(0, . . . , 0) = C̃3.

We establish next a necessary and sufficient condition regarding the latticeness of ΓC? .

Theorem 5. (Lattice condition for ΓC?) Let C ⊆ FnL2 be a linear binary code that generates

ΓC? and let the set S = {(0, s1, . . . , sL−1)} ⊆ FnL2 defined for all pairs c, c̃ ∈ C (including the

case c = c̃), where si, i = 1, . . . , L− 1 are defined as in Equation (29). Then, the constellation

ΓC? is a lattice if and only if S ⊆ C.

Proof. (⇒) Assume ΓC? to be lattice. This implies that if x, y ∈ ΓC? then x + y ∈ ΓC? . From

the notation and result from Lemma 1, more specifically Equations (28), (29), (31) and (32), it

means that

(c1 ⊕ c̃1, s1 ⊕ (c2 ⊕ c̃2), . . . , sL−1 ⊕ (cL ⊕ c̃L)) ∈ C. (42)

We can write this L−tuple as

(c1 ⊕ c̃1, s1 ⊕ (c2 ⊕ c̃2), . . . , sL−1 ⊕ (cL ⊕ c̃L))︸ ︷︷ ︸
∈C

=

(c1 ⊕ c̃1, c2 ⊕ c̃2, . . . , cL ⊕ c̃L)︸ ︷︷ ︸
∈C, by linearity of C

⊕(0, s1, . . . , sL−1)⇒ (0, s1, . . . , sL−1) ∈ C, (43)

which is the same as saying that for all x, y ∈ ΓC? , S ⊆ C.
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(⇐) The converse is immediate, because given x, y ∈ ΓC? as in Equations (31) and (32), from

the fact that C is linear and S ⊆ C, it is valid that

(c1 ⊕ c̃1, c2 ⊕ c̃2, . . . , cL ⊕ c̃L)⊕ (0, s1, . . . , sL−1) ∈ C

⇒ (c1 ⊕ c̃1, s1 ⊕ (c2 ⊕ c̃2), . . . , sL−1 ⊕ (cL ⊕ c̃L)) ∈ C (44)

and x+y ∈ ΓC? . We still need to prove that −x ∈ ΓC? . It is true that for x ∈ ΓC? , x+x ∈ ΓC? .

If we do this sum recursively, i.e., x+ x+ x+ · · ·+ x︸ ︷︷ ︸
2L times

= 2Lj, for a suitably j ∈ Zn. So, if we

consider y = x+ x+ · · ·+ x︸ ︷︷ ︸
2L−1 times

+2L(−j) ∈ ΓC? , because it is a sum of elements in ΓC? for a

convenient −j ∈ Zn and it follows that x+ y = 0 ∈ Rn and y = −x.

Remark 4. Note that if C = C1 × C2 × · · · × CL, i.e., ΓC? = ΓC , then Theorem 5 specializes

to the Kositwattanarerk and Oggier [23] condition for the latticeness of Construction C. That

is, S ⊆ C is equivalent to the condition C1 ⊆ C2 ⊆ · · · ⊆ CL and the chain being closed under

Schur product. Indeed,

i) S ⊆ C ⇒ C1 ⊆ C2 ⊆ · · · ⊆ CL and the chain is closed under Schur product: we know that

S ⊆ C for any pair c, c̃ of codewords, so we take in particular c̃ = c and it follows that

C1 ⊆ C2 ⊆ · · · ⊆ CL. The fact that C = C1 × C2 × · · · × CL allows us to guarantee that the

element (0, c1 ∗ c̃1, c2 ∗ c̃2, . . . , cL−1 ∗ c̃L−1) ∈ S ⊆ C and then the above chain will being

closed under Schur product.

ii) C1 ⊆ C2 ⊆ · · · ⊆ CL and the chain is closed under Schur product ⇒ S ⊆ C : consider an

element (0, s1, s2, . . . , sL−1) ∈ S, we want to prove that this element is also in C and to

do that it is enough to prove that s1 ∈ C2, s2 ∈ C3 . . . sL−1 ∈ CL. Indeed, due to the chain

being closed under Schur product,

s1 = c1 ∗ c̃1 ∈ C2 (45)

s2 = ((c1 ∗ c̃1) ∗ (c2 ⊕ c̃2))︸ ︷︷ ︸
∈C3

⊕ (c2 ∗ c̃2)︸ ︷︷ ︸
∈C3

∈ C3 (46)

s3 = ((c3 ⊕ c̃3) ∗ (c2 ∗ c̃2)) ∗ (c2 ⊕ c̃2 ∗ (c1 ∗ c̃1))︸ ︷︷ ︸
∈C4

⊕ ((c3 ⊕ c̃3) ∗ (c2 ∗ c̃2))︸ ︷︷ ︸
∈C4

⊕ (c3 ∗ c̃3)︸ ︷︷ ︸
∈C4

∈ C4 (47)

...

and proceeding recursively, we can prove that si ∈ Ci+1, i = 1, . . . , L− 1.
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Example 9. (A lattice Construction C?) Let C = {(0, 0, 0, 0, 0, 0), (1, 0, 1, 1, 0, 1), (0, 0, 1, 0, 1, 1),

(1, 0, 0, 1, 1, 0), (0, 0, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1), (1, 0, 0, 1, 0, 0), (1, 0, 1, 1, 1, 1)} ⊆ F6
2, with L =

3, n = 2. One can notice that C1 = {(0, 0), (1, 0)} * S2(0, 0, 0, 0) = {(0, 0)} and Theorem 4 can-

not be applied to this case. However, the set S = {(0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 1, 1), (0, 0, 0, 0, 1, 0),

(0, 0, 1, 0, 0, 1)} ⊆ C and Theorem 5 guarantees that ΓC? is a lattice.

Remark 4 leads to the result below regarding the latticeness of the associated Construction C.

Corollary 2. (Latticeness of associated Construction C) Let C ⊆ FnL2 . If ΓC? is a lattice then

the associated Construction C is also a lattice.

Proof. If ΓC? is a lattice, then according to Theorem 5, S ⊆ C. In the associated Construction C,

we make C = C1×C2×· · ·×CL, where C1, C2, . . . , CL are the projection codes. Hence, according

to the Remark 4, S ⊆ C is equivalent to C1 ⊆ C2 ⊆ · · · ⊆ CL and the chain being closed under

Schur product, which is sufficient to guarantee that ΓC is a lattice.

VII. MINIMUM EUCLIDEAN DISTANCE OF CONSTRUCTION C?

An important observation is that unlike Construction C, Construction C? is not equi-minimum

distance, i.e., in general if the minimum distance d is achieved by a pair of points x, y ∈ ΓC? ,

i.e., ||x− y|| = d, there may be some other x′ ∈ ΓC? such that there is no y′ ∈ ΓC? that makes

||x′ − y′|| = d.

Example 10. (A non-equi-minimum distance Construction C?) Consider an L = 3 and n = 1

Construction C? with main code C = {(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0)} ⊆ F3
2. Thus, elements

in ΓC? are

ΓC? = {0 + 8z, 5 + 8z, 6 + 8z, 3 + 8z}, z ∈ Z. (48)

The minimum Euclidean distance of ΓC? is ||6− 5|| = 1, but if we fix x′ = 0 ∈ ΓC? there is

no element y′ ∈ ΓC? such that ||y′|| = 1.

In order to fix notation, we introduce the following two definitions.

Definition 11. (Points in the constellation induced by a fixed c ∈ C) We denote by ΓC?(c), the

set of points in ΓC? generated by a fixed element c ∈ C ⊆ FnL2 . In other words, ΓC?(c) is a shift

of 2LZn by c.
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Definition 12. (Squared minimum distances) We denote by d2
min(Γ) the squared minimum distance

between any two distinct points in a constellation Γ ⊂ Rn and by d2
min(Γ, 0) the squared minimum

distance of any nonzero element c ∈ Γ to zero.

If ΓC? is equi-minimum distance, d2
min(ΓC?) = d2

min(ΓC? , 0), we know that to each c ∈ C ⊆

FnL2 , c 6= 0 we associate a unique element x(c) ∈ ΓC? ⊂ Rn in the hypercube [−2L−1, 2L−1]n,

which gives the minimum distance of ΓC?(c). An explicit expression for the nearest constellation

point in ΓC?(c) to zero is

d2
min(ΓC?(c), 0) = m1 + 22m2 + 32m3 + · · ·+ (2L−1 − 1)

2
m2L−1−1 + (2L−1)

2
m2L−1 , (49)

where each mi, i = 1, . . . , 2L−1 are obtained as follows. For c = (c11, . . . , c1n, c21, . . . , c2n, . . . ,

cL1, . . . , cLn) we consider the L−tuples c̃1 = (c11, . . . , cL1), c̃2 = (c12, . . . , cL2), . . . , c̃L =

(c1n, . . . , cLn) and mi, i = 1, . . . , 2L−1 as

mi = number of L− tuples cj, j = 1, . . . , n, such that cj is the binary representation

of i or the binary representation of 2L−1 − i. (50)

To be more specific,

m1 = number of ci such that ci = (1, 0, 0, . . . , 0) or ci = (1, 1, . . . , 1),

m2 = number of ci such that ci = (0, 1, 0, . . . , 0) or ci = (0, 1, . . . , 1),

m3 = number of ci such that ci = (1, 1, 0, . . . , 0) or ci = (1, 0, 1, . . . , 1),

...
...

m2L−1−1 = number of ci such that ci = (1, 0, . . . , 1, 0) or ci = (1, 1, . . . , 0, 1, )

m2L−1 = number of ci such that ci = (0, 0, 0, . . . , 0, 1). (51)

Note that the second choices have the same coordinates as the first ones up to the first nonzero

coordinate and after that, all coordinates are different. Moreover,
2L−1∑
i=1

mi = n.

Remark 5. From the expression above, we can see that, given a codeword c ∈ C of weight

ω(c) = w, d2
min(ΓC?(c), 0) ≥ w

L
, since the minimum distance will be achieved when the projection

codewords of c have the largest number of coincident coordinates as possible. Hence, if the

minimum distance of the code is such that dH(C) ≥ L22L, we can assert that d2
min(ΓC? , 0) = 22L.
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Example 11. (Minimum distance of Construction C?) For L = 2 and w ≥ 32, (n ≥ 16), we

have that d2
min(ΓC? , 0) = 24.

A more concise expression for the minimum distance to zero in ΓC? can also be derived from

(50), by observing that for c = (c1, c2, . . . , cL) ∈ C, c 6= 0, ci = (ci1, ci2, . . . , cin), i = 1, . . . , L :

d2
min(ΓC?(c), 0) = ||2L−1cL − 2L−2cL−1 − · · · − 2c2 − c1||2. (52)

It follows that

d2
min(ΓC? , 0) = min

c=(c1,c2,...,cL)∈C
c6=0

{||2L−1cL −
L−1∑
i=1

2i−1ci||2, 22L}. (53)

If ΓC? is geometrically uniform, the above expression provides a closed-form formula for

the minimum distance of ΓC? , otherwise it is an upper bound for this distance. Therefore (53)

presents a closed-form formula for the minimum distance of a 2−level Construction C? and also

when ΓC? is a lattice, for example.

From Equation (53), it could be expected that given a code C ⊆ FnL2 with minimum weight

of projection codes dH(C1), . . . , dH(CL), a larger minimum distance will be achieved as dH(Ci)

increases with i, with i = 1, . . . , L. For example, for L = 2 and weights of projection codes

given by dH(C1) and dH(C2), respectively, if dH(C2) > dH(C1), by considering ||2c2 − c1||2 =

〈2c2 − c1, 2c2 − c1〉, we can derive from (53) that

d2
min(ΓC?) ≥ min{4dH(C2)− 3dH(C1), 16}. (54)

Regarding to general upper and lower bounds, since ΓC? is a subset of ΓC , d
2
min(ΓC?) ≥

d2
min(ΓC), where ΓC is the associated Construction C (Definition 9). A loose and direct upper

bound for d2
min(ΓC?) is given by:

d2
min(ΓC?) ≤ d2

min(ΓC? , 0) ≤ d2
min(S) = min

dH(Si(0,...,0))6=0
{22(i−1)dH(Si(0, . . . , 0)), 22L}, (55)

for i = 1, . . . , L.

Next we compare minimum distances of ΓC? and the associated ΓC for some previous

examples using Equations (53) and (55).

Example 12. (Bounds for the minimum distance of Construction C?)

1) For the Leech lattice presented in Example 6, we have that d2
min(ΓC) = min{24, 32, 32, 64} =

24, d2
min(S) = min{32, 32, 64} = 32 as S1(0, . . . , 0) is a null set and d2

min(ΓC? , 0) = 32.

In this case, d2
min(ΓC?) = 32.
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2) In Example 9, d2
min(ΓC) = min{1, 4, 16} = 1 and d2

min(S) = min{16} = 16 as S1(0, . . . , 0)

and S2(0, . . . , 0) are null sets. Also, d2
min(ΓC? , 0) = 5, which coincides with d2

min(ΓC?),

because in this case Construction C? is a lattice.

3) In Example 10, if we consider the associated Construction C, we have d2
min(ΓC) =

min{1, 4, 16, 64} = 1, d2
min(S) = min{64} = 64 as Si(0, . . . , 0) are null sets for all

i = 1, 2, 3 and d2
min(ΓC? , 0) = 2. Here, d2

min(ΓC?) = 1.

To derive a condition that states when Construction C? have a better packing density than

associated Construction C, we observe that both constellations ΓC? and its associated ΓC contains

the lattice 2LZn, i.e., 2LZn ⊆ ΓC? ⊆ ΓC . If the number of points of ΓC? and ΓC inside the

hypercube [0, 2L]n are respectively |C| and |C1| . . . |CL|, where Ci, i = 1, . . . , L are the projection

codes, we can assert

∆(ΓC?) =
|C| vol

(
B
(
0, d1

2

))
2nL

and ∆(ΓC) =
|C1| . . . |CL| vol

(
B
(
0, d2

2

))
2nL

, (56)

where d1 = dmin(ΓC?) and d2 = dmin(ΓC). Hence, we can write the following remark:

Remark 6. 1) ∆(ΓC?) ≥ ∆(ΓC) if and only if
(
d1

d2

)n
≥ |C1| . . . |CL|

|C|
,

2) ρpack(ΓC?) ≥ ρpack(ΓC) if and only if
d1

d2

≥
(
|C1| . . . |CL|
|C|

)1/n

, for ρpack(Γ) = (∆(Γ))1/n.

Example 13. (Comparing packing densities of 2−level Constructions C? and C) Let C ⊆ F2n
2 ,

i.e., we are considering a Construction C? with L = 2 levels (which are geometrically uniform). If

the minimum distance of the projection codes are dH(C1) = 1 and dH(C2) = 4, then, according

to (54), d2
min(ΓC?) ≥ min{13, 16} = 13 and d2

min(ΓC) = 1. From the previous discussion,

∆(ΓC?) ≥ ∆(ΓC) if

(13)n/2 ≥ |C1||C2|
|C|

. (57)

Example 14. (Packing densities of Constructions C? and C) Consider ΓC? with L = 2 and n = 4,

generated by the main code C = {(0, 0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1, 0, 0), (0, 0, 0, 0, 1, 1, 1, 1),

(1, 1, 1, 1, 0, 0, 1, 1)}. Observe that from (53), d2
min(ΓC?) = d2

min(ΓC) = 4 and |ΓC |/|ΓC?| = 2

and the associated Construction C presents a better packing density in this case.

However, if we consider a code C obtained as permutation of the projection codes of C, i.e.,

c = (c1, c2) ∈ C if and only if c = (c2, c1) ∈ C, we can see from (53) that d2
min(ΓC?) = 4,
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d2
min(ΓC) = 2 and again |ΓC |/|ΓC?| = 2. Here,

(
2√
2

)4

> 2 and ΓC? has a better packing

density.

Table VII summarizes density properties of previous examples according to the discussion

presented in this subsection. The notation � below indicates those examples which are nonlattice

constellations.

TABLE I

PROPERTIES OF CONSTRUCTION C? AND ITS ASSOCIATED CONSTRUCTION C

Example Dimension d2min(ΓC?) d2min(ΓC) ∆(ΓC?) ∆(ΓC) ρpack(ΓC?) ρpack(ΓC)

4� 2 1 1 π/16 π/8 0.4431 0.6266

5 2 4 1 π/4 π/8 0.8862 0.4431

6 24 32 24 0.001929 0.00012 0.7707 0.6236

9 2 5 1 0.8781 0.7853 0.9209 0.8861

10� 1 1 1 0.5 1 0.5 1

VIII. ASYMPTOTIC PACKING DENSITY OF RANDOM CONSTRUCTION C?

It is common to assess the ultimate potential of coded modulation schemes by looking on their

asymptotic random-coding performance [16], [18], [27]. In the case of multilevel Constructions

C and C?, this amounts to using random (linear or nonlinear) binary component codes, and

taking both the number of levels L and the block length n to infinity.

From a sphere-packing viewpoint, a good reference for comparison is the Minkowski bound

[6], [8], [34], which states that, in each dimension there exists a lattice whose packing efficiency

is at least one half, i.e.,

max
Λ∈Rn

ρpack(Λ) ≥ 1

2
. (58)

It is believed that this bound represents the best asymptotically achievable packing efficiency by

a lattice or an infinite nonlattice constellation. For AWGN channel coding, the corresponding

goodness measures are the Poltyrev unconstrained capacity and the Poltyrev exponent [26]. The

latter represents the best achievable error exponent over the high-SNR AWGN channel at rates

near capacity, or (with its expurgated version) at rates far below capacity [12].

In this section we use a simple random coding argument to demonstrate that Construction

C? can achieve the Minkowski bound ρpack(ΓC?) = 1
2

for each block length n. Combining

this with the conjecture that the best asymptotic packing efficiency of Construction C is only
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ρpack(ΓC) ≈ 0.4168 (by the Erez multilevel “Gilbert-Varshamov bound (GVB)-achieving” coded

modulation [10]), we conclude that Construction C? is asymptotically superior to Construction

C from a sphere packing viewpoint.

For the AWGN channel, the same random-coding argument implies that Construction C? with

Euclidean decoding achieves the Poltyrev capacity and error exponent3. We thus conclude that

Construction C? is asymptotically optimal for packing as well as for modulation over the AWGN

channel.

A. A modified Loeliger ensemble of Construction C?

Let Zq denote the ring of integers modulo q, i.e., Zq = {0, 1, . . . , q − 1}, with alphabet size

q = 2L, and define the q−ary code Cq? in Znq as the set

Cq? = {(c1 + 2c2 + 4c3 + · · ·+ 2L−1cL) mod q : (c1, . . . , cL) ∈ C}. (59)

where C ⊆ FnL2 is the main code that generates ΓC? . Construction C? is then given by lifting

the q−ary code Cq? into the Euclidean space and replicating it by the cubic lattice qZn.

Our asymptotic analysis of Construction C? follows the analysis of the Loeliger ensemble

[11], [25], [34, Sec. 7.9]. The Loeliger ensemble is used to prove the existence of a lattice

which is asymptotically good for packing, covering, modulation, and quantization. It is based on

scaling and randomization of a q−ary Construction A lattice. That is, we lift a linear q−ary code

C̃q to the Euclidean space, replicate it by qZn, and multiply by a suitable scalar. In the Loeliger

analysis, the alphabet size q is taken to be a prime number and the elements of the generator

matrix of C̃q are drawn independently and uniformly over Zq. Although the q−ary code Cq? as

defined in Equation (59) is not linear modulo q (unless ΓC? satisfies the latticeness condition of

Theorem 5), and although q = 2L is not a prime number for L > 1, random generation of the

main code C is sufficient to prove asymptotic goodness.

Specifically, we can prove the existence of a good constellation in a randomized q−ary code-

based construction (lattice or nonlattice) if it satisfies the following conditions:

1) each (nonzero) element of the underlying q−ary code is uniformly distributed over Znq ;

2) each pair of elements of the q−ary code is statistically independent;

3Euclidean decoding is fundamentally different than (the more practical yet suboptimal) parallel-bit decoding, assumed in the

analysis of BICM, where performance is bounded by the BSC error exponent [20], [32].
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3) the constellation is scaled to a fixed point density, independent of q and n;

4) the period4 of the scaled constellation grows like
√
n, as q, n→∞;

5) the resolution5 of the scaled constellation goes to zero, as q, n→∞.

To guarantee these properties in Construction C?, suppose that each bit cij of the main code

C = {cij : i = 1, . . . ,M, j = 1, . . . , n} ⊆ FnL2 is drawn independently with a fair coin flip.

Clearly, the resulting nonlinear random binary code C induces a q−ary code Cq? which satisfies

Conditions 1 and 2, i.e., each element in Cq? is uniformly distributed over Znq , and each distinct

pair of elements is statistically independent. Moreover, the two conditions continue to hold even

if C is a linear binary code, where each bit of its k×n generator matrix is drawn independently

with a fair coin flip. See [17, Section 6.2].

Remark 7. To gain some insight into these random properties, let us contrast them with

randomized Construction C. Specifically, suppose that ΓC is generated by lifting and replication

of the q−ary code

Cq = {c1 + 2c2 + 4c3 + · · ·+ 2L−1cL : c1 ∈ C1, . . . , cL ∈ CL}, (60)

where the component codes C1, . . . , CL ⊆ Fn2 are drawn at random. While Condition 1 above

holds, i.e. each element in Cq is uniform over Znq , distinct pairs in Cq are statistically independent

only if they do not coincide in some of the levels. For example, for L = 2, while the elements

c1 + 2c2 and c′1 + 2c′2 are statistically independent, the elements c1 + 2c2 and c1 + 2c′2 are not,

because they share the same least significant bit (LSB) vector c1. Thus, randomized Construction

C fails to satisfy Condition 2.

Intuitively, statistical dependence between the elements in the randomized q−ary code tends to

generate closer points after lifting to the Euclidean space, hence a smaller minimum Euclidean

distance. In this respect, Construction C? better exploits the benefit of multiple levels compared

to Construction C. This intuition is further quantified in Section VIII-B below.

Returning to Construction C?, we shall guarantee that the remaining Conditions 3, 4 and 5

mentioned above hold following the same derivation as for the Loeliger ensemble in [34, Sec.

7.9]. Specifically, let R = k/n, 0 < R < 1 denote the rate of the main code C, and let M = 2nLR

4The period of a constellation Γ is the smallest number m such that γ mod m ∈ Γ, for all γ ∈ Γ.

5Resolution is the largest number δ such that the constellation Γ ⊆ δZn.
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denote the number of points in Cq? . Then, the scaled constellation a?ΓC? , where a? is a scalar

given by

a? =
2LR

q
=

1

q1−R (61)

has a unit point density,
M

(a?q)n
= 1, (62)

independent of q and n, as required by Condition 3. Furthermore, the period of a?ΓC? is qR

(instead of q in the unscaled constellation) and the resolution is 1
q1−R (instead of 1). If we now

let the alphabet size q grow with n like O(n1/2R), then on the one hand the period will grow

to infinity like
√
n (so the intra-coset distance would not dominate the minimum Euclidean

distance), and on the other hand the resolution will shrink to zero as n goes to infinity, thus

satisfying Conditions 4 and 5.

In what follows, we summarize a previous known result showing that Construction C does

not asymptotically achieve the Minkowski bound, which asserts the aforementioned superiority

of Construction C?.

B. The Erez “GVB achieving codes” Construction C

In unpublished class notes [10], Erez computed the packing efficiency of multilevel coded

modulation in the limit of an infinite number of levels L → ∞. Clearly, in this limit, coded

modulation and Construction C are equivalent. Erez assumed that the component binary codes

have balanced Hamming distances [8], i.e., the Hamming distance dH(Ci) of Ci is 4 times smaller

than dH(Ci−1) for i = 2, . . . , L. He also admitted that all component codes satisfy the Gilbert-

Varshamov bound with equality [19], [31]. Since the GVB is believed to characterize the best

asymptotic tradeoff between coding rate and minimum Hamming distance of a binary code, his

computation amounts to the best packing efficiency of Construction C.

GVB-achieving codes are those whose size is related to their minimum Hamming distance

d = dH(C) via

|C| ≥ 2n

|B(d− 1, n)|
, (63)

where B(r, n) denotes an n−dimensional zero-centered Hamming ball of radius r, which corre-

sponds to the set of all n length binary vectors with Hamming weight smaller than or equal to

r. For a large n, |B(r, n)| .= 2nH(r/n) and H(p) = −p log2 p− (1− p) log2(1− p) is the binary

entropy function for p ∈ [0, 1].
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GVB achieving codes can be generated by a “cookie cutting” greedy construction [9, pp. 266]

[19], [21], or asymptotically for large n using expurgated random binary codes [17] or random

linear codes [3], [31]

We now assume that the component codes of Construction C are balanced, where α1 =

dH(C1)/n and αi = dH(Ci)/n = α1/2
2(i−1), for i = 2, . . . , L. In addition, if we admit that the

codes satisfy the GVB with equality, then we obtain a total number of codewords inside the qn

cube given by

M = M1 ·M2 · . . . ·ML =
2nL

2n[H(α1)+···+H(αL)]
, (64)

for large n. Hence, the point density is (2n[H(α1)+···+H(α1/22(L−1))])−1 points per unit volume for

large n, and the minimum Euclidean distance of this constellation is dmin(ΓC) =
√
dH(C1) =

√
α1n for large L. Recalling Equation (6), writing ρpack(ΓC) = dmin(ΓC)/2

reff(ΓC)
and considering the

asymptotic volume of a unit ball Vn ≈
(

2πe
n

)n/2
, we obtain, for large L and n, the following

formula for the packing efficiency

ρpack(ΓC) =

√
α1πe√

2 · 2H(α1) · . . . · 2H(α1/22(L−1))
. (65)

0.1 0.2 0.3 0.4 0.5
α1

0.1

0.2

0.3

0.4

0.5

ρpack ( ΓC )

Fig. 5. Packing efficiency of Erez “GVB achieving” Construction C

Figure 5 shows Equation (65) as a function of α1. We can see that the highest value is achieved

by α1 ≈ 0.195 and a correspondent packing efficiency of ρpack(ΓC) ≈ 0.4168, which is strictly

below the Minkowski bound ρpack = 1
2
, asymptotically achieved by Construction C?, as discussed

in Section VIII-A above.
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IX. CONCLUSION

In this paper we provide a detailed investigation about the geometric uniformity of Construction

C, including the description of how to produce general geometrically uniform constellations. We

introduce a new method of constructing multilevel constellations, denoted by Construction C?,

which is a generalization of Construction C and is inspired by bit-interleaved coded modulation

(BICM). In regard to this construction, we explore some of its properties, including an asymptotic

analysis comparing Constructions C? and C in terms of their packing efficiencies.

Perspectives for future work include changing the natural labeling µ to the Gray map, which is

the standard mapping used in BICM, developing a suitable decoding algorithm for Construction

C?, taking advantage of the structure of the main code C ⊆ FnL2 , and extending our results

to codes defined over a general q−ary alphabet. In addition to that, focusing on practical

applications, it could be interesting to combine both Constructions C and C? in a hybrid scheme.
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