
ar
X

iv
:1

81
0.

04
61

1v
1

 [
cs

.I
T

]
 1

0
O

ct
 2

01
8

Scalar MSCR Codes via the Product Matrix

Construction
Yaqian Zhang, Zhifang Zhang

KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Emails: zhangyaqian15@mails.ucas.ac.cn, zfz@amss.ac.cn

Abstract

An (n, k, d) cooperative regenerating code provides the optimal-bandwidth repair for any t (t>1) node failures in a cooperative
way. In particular, an MSCR (minimum storage cooperative regenerating) code retains the same storage overhead as an (n, k)
MDS code. Suppose each node stores α symbols which indicates the sub-packetization level of the code. A scalar MSCR code
attains the minimum sub-packetization, i.e., α = d − k + t. By now, all existing constructions of scalar MSCR codes restrict to
very special parameters, eg. d = k or k = 2, etc. In a recent work, Ye and Barg construct MSCR codes for all n, k, d, t, however,
their construction needs α ≈ exp(nt) which is almost infeasible in practice. In this paper, we give an explicit construction of
scalar MSCR codes for all d ≥ max{2k− 1− t, k}, which covers all possible parameters except the case of k ≤ d ≤ 2k− 2− t

when k < 2k − 1− t. Moreover, as a complementary result, for k < d < 2k − 2− t we prove the nonexistence of linear scalar
MSCR codes that have invariant repair spaces. Our construction and most of the previous scalar MSCR codes all have invariant
repair spaces and this property is appealing in practice because of convenient repair. As a result, this work presents an almost full
description of linear scalar MSCR codes.

I. INTRODUCTION

A central issue in large-scale distributed storage systems (DSS) is the efficient repair of node failures. Suppose a data file

is stored across n nodes such that a data collector can retrieve the original file by reading the contents of any k nodes. When

some node fails, a self-sustaining storage system tends to regenerate the failed node by downloading data from some surviving

nodes (i.e. helper nodes), which is called the node repair problem. An important metric for the node repair efficiency is the

repair bandwidth, namely, the total amount of data downloaded during the repair process. In a celebrated work [1], Dimakis et

al. proposed the regenerating codes which achieve the tradeoff (i.e. the cut-set bound) between the repair bandwidth and the

amount of data stored per node. That is, fixing the repair bandwidth, the storage cannot be further reduced, and vice versa.

In particular, regenerating codes with the minimum storage and with the minimum repair bandwidth are respectively called

MSR codes and MBR codes. Constructing MSR codes and MBR codes for general parameters has been extensively studied

in a series of works [2]–[7].

Regenerating codes typically deal with single node failures, however, the scenarios of multiple node failures are quite

common in DSS. For example, in Total Recall [8] a repair process is triggered only after the total number of failed nodes

has reached a predefined threshold. There are two typical models for repairing multiple node failures. One is the centralized

repair model where a special node called data center is assumed to complete all repairs. That is, suppose t nodes fail, then

the data center downloads data from helper nodes and is responsible for generating all the t new nodes. The other model is

the cooperative repair where t new nodes are generated in a distributed and cooperative way. It was proved in [9] that an

MDS code achieving the optimal bandwidth with cooperative repair must also have optimal bandwidth with centralized repair.

Therefore, cooperative repair can be viewed as a harder problem than the centralized repair. Moreover, due to the distributed

pattern, the cooperative repair fits DSS better than the centralized repair. Regenerating codes with centralized repair are studied

in [6], [10], [11]. In this paper, we focus on regenerating codes with cooperative repair.

The idea of cooperative repair was proposed by Hu et al. in [12]. Specifically, suppose t new nodes (i.e. newcomers) are to

be generated as replacements of t failed nodes respectively. Then the regenerating process is carried out in two phases. Firstly,

each newcomer connects to d surviving nodes (i.e. helper nodes) and downloads β1 symbols from each. Note that different

newcomers may choose different d helpler nodes; Secondly, each newcomer downloads β2 symbols from each of the other

t− 1 newcomers. Therefore the repair bandwidth for repairing one failed node is γ = dβ1 + (t− 1)β2. In [12], [13] a cut-set

bound was derived for regenerating codes with cooperative repair, i.e.,

B ≤

s∑

i=1

limin{α, (d−

i−1∑

h=1

lh)β1 + (t− li)β2},

where B is the size of the original data file, α is the size of data stored in each node, and l1, ..., ls, s are the integers satisfying

l1 + · · ·+ ls = k and 1 ≤ l1, ..., ls ≤ t. The cut-set bound, along with other necessary conditions on the parameters, define a

α-γ tradeoff curve and codes with parameters lying on this curve are called cooperative regenerating codes. In particular, the

http://arxiv.org/abs/1810.04611v1

2

two extreme points on the tradeoff curve respectively correspond to MBCR (minimum bandwidth cooperative regenerating)

and MSCR (minimum storage cooperative regenerating) codes. Parameters of the two types of codes are given below:

For MBCR codes,

α = γ = (2d+ t− 1)β2, β1 = 2β2, β2 =
B

k(2d− k + t)
.

For MSCR codes,

α =
B

k
= (d− k + t)β2, β1 = β2 =

B

k(d− k + t)
. (1)

It can be seen that B,α, β1 are all integral multiples of β2. When β2 = 1, the corresponding code is called a scalar code.

Moreover, α is called the sub-packetization which indicates the sub-block size in the encoding phase. Since the sub-packetization

also decides the smallest file size and the number of operations needed in encoding and repairing, regenerating codes with

small sub-packetization are preferred. Obviously, a scalar regenerating code has the smallest sub-packetization, however, for

some parameters scalar codes cannot exist.

About the constructions of MBCR and MSCR codes, Shum et al. [13] first explicitly constructed scalar MSCR codes for

d = k. Then Shum and Hu [14] also built MBCR codes for the case of d = k and n = d + t. Later, Wang and Zhang [15]

gave an explicit construction of scalar MBCR codes for all n, k, d, t. However, constructing MSCR codes seems to be a much

harder problem. In [16] the author built scalar MSCR codes for the case k = 2 and d = n − t. Then Chen and Shum [17]

designed a scalar (n = 2k, k, d = 2k − 2, t = 2) MSCR code. After that, they generalized the construction and obtained

(n = 2k, k, d = n − t, 2 ≤ t ≤ n − k) scalar MSCR codes but the failed nodes must be systematic nodes [18]. An obvious

drawback of all existing constructions of MSCR codes is that they all restrict to very limited parameters. Until recently, Ye

and Barg [9] gave an explicit construction of MSCR codes for all parameters, i.e., 2 ≤ t ≤ n − k, d ≥ k + 1. However, the

sub-packetization of their codes is extraordinarily large, i.e. α=
(

(d − k + t)(d − k)t−1
)(nt)≈ exp(nt). Note that scalar MSCR

codes have sub-packetization α = d− k + t.

In this paper, we present an explicit construction of scalar MSCR codes for all d ≥ max{2k − 1 − t, k}, which almost

covers all parameters except for an augment of d when k > t+ 1. Besides, the authors of [20] have proved nonexistence of

linear scalar MSR codes for k < d < 2k− 3, we continue to prove that there exist no linear scalar MSCR codes with invariant

repair space for k < d < 2k− 2− t. It’s worth noting that our codes presented here are exactly the linear scalar MSCR codes

with invariant repair spaces. Thus our construction gives an almost full description of such codes. Moreover, our construction

can be viewed as an extension of the product matrix construction for MSR codes proposed by Rashmi et al. [3] to cooperative

regenerating codes.

The remaining of this paper is organized as follows. First, a brief introduction to the product matrix framework is given in

Section II. Then the construction of MSCR codes is presented in three steps respectively in Section III-V. Specifically, Section

III deals with the case t = 2 and d = 2k − 3, Section IV extends to any 2 ≤ t ≤ k − 1 and d = 2k − 1 − t, and Section V

further extends to all 2 ≤ t ≤ n− k and d ≥ max{2k− 1− t, k}. Section VI proves the nonexistence of linear scalar MSCR

codes for k < d < 2k − 2− t. Finally, Section VII concludes the paper.

II. THE PRODUCT MATRIX FRAMEWORK

Let [n] stand for {1, 2, ..., n}. We recall the product matrix framework proposed in [3]. First, each codeword is represented

by an n × α matrix C with the i-th row stored in the i-th node for all i ∈ [n]. Moreover, the codeword is generated as a

product of two matrices, i.e.,

C = GM,

where G is an n×d encoding matrix, and M is a d×α message matrix. More specifically, the matrix M contains all message

symbols while some entries may be linear combinations of the message symbols, and G is a predefined matrix which is

independent of the message. To store a data file (i.e., a message) consisting of B symbols, we firstly arrange the B symbols

into the message matrix M properly, and then calculate C = GM to obtain a codeword which will be stored across n nodes.

Denote by ψi the i-th row of G, then the content stored in node i is represented by

ci = ψiM,

for i ∈ [n]. Throughout this paper, we use bold letters (eg. ψ,ϕ, c, etc.) to denote vectors and capital letters (eg. C,M,Φ,

etc.) denote matrices.

Next we use the construction of scalar MSR codes to describe how this framework works for building regenerating codes.

For simplicity, we just consider the case d = 2k − 2.

First, the parameters of the scalar MSR code with d = 2k − 2 are as follows:

α = d− k + 1 = k − 1, β = 1, B = kα = k(k − 1).

3

Let α1, ..., αn be n distinct nonzero elements in a finite field Fq such that αk−1
i 6= αk−1

j for any i 6= j. Then the n × d

encoding matrix is set to be

G =




1 α1 · · · α2k−3
1

1 α2 · · · α2k−3
2

...
...

...
...

1 αn · · · α2k−3
n


 . (2)

The d× α message matrix is defined as

M =

(
S1

S2

)
,

where S1 and S2 are two (k − 1) × (k − 1) symmetric matrices each filled with
k(k−1)

2 message symbols. Thus the total

number of symbols contained in M is k(k − 1) = B. For i ∈ [n], the i-th node stores a row vector of length α = k − 1:

ci = ψiM =
(
1 αi · · · α2k−3

i

)
M.

Then we illustrate the above construction gives a scalar MSR code. Actually, we need to verify the following two properties:

1) Node repair: Suppose the i-th node fails, then a newcomer can recover the content stored in the i-th node by connecting

to any d helper nodes and downloading β = 1 symbol from each.

Let R ⊆ [n] \ {i} be the set of d helper nodes and define a row vector ϕi = (1, αi, · · · , α
k−2
i). Then each node j ∈ R

sends the symbol

cjϕ
τ
i = ψjMϕτ

i

to the newcomer, where τ denotes the transpose. Thus the newcomer obtains the symbols: ΨrepairMϕτ
i , where Ψrepair

is the matrix G restricted to the rows indexed by the elements in R. Since Ψrepair is a d × d Vandermonde matrix, by

multiplying the inverse of Ψrepair the newcomer obtains

Mϕτ
i =

(
S1ϕ

τ
i

S2ϕ
τ
i

)
.

Since S1 and S2 are both symmetric, then ϕiS1 and ϕiS2 are obtained by a transposition. Finally, the newcomer computes

ϕiS1 + αk−1
i ϕiS2 = ψiM = ci which are exactly the contents stored in the i-th node.

2) Data reconstruction: A data collector can recover the original data file by reading the contents stored in any k nodes.

Suppose the data collector connects to k nodes i1, i2, ..., ik ∈ [n]. Let Ψ be the k × d sub-matrix of G consisting of the

rows ψi1 , ...,ψik , then the data collector reads the kα symbols

ΨM = Ψ

(
S1

S2

)

= ΦS1 +∆ΦS2,

where Φ is the k×(k−1)matrix consisting of the first k−1 columns of Ψ, i.e.,

Φ =




1 αi1 · · · αk−2
i1

1 αi2 · · · αk−2
i2

...
...

...
...

1 αik · · · αk−2
ik


 , (3)

and ∆ is a k×k diagonal matrix diag[αi1
k−1, αi2

k−1, ..., αik
k−1]. Obviously, Φ is a Vandermonde matrix and Ψ=(Φ ∆Φ).

The data collector can recover the data file due to the following lemma which is also a result in [3]. We leave the proof

of this lemma in Appendix A.

Lemma 1. Let Φ be a k × (k − 1) Vandermonde matrix defined as in (3), and ∆ be a k × k diagonal matrix with distinct

and nonzero diagonal elements. Suppose

X = ΦS +∆ΦT,

where S and T are two (k − 1)× (k − 1) symmetric matrices. Then S and T can be uniquely computed from X,Φ and ∆.

4

III. MSCR CODES WITH d = 2k − 3 AND t = 2

As a warm-up, we first construct a scalar MSCR code for the special case of t = 2 and d = 2k − 3. By the parameters of

MSCR codes given in (1), we know in this case

α = d− k + t = k − 1, B = kα = k(k − 1) .

Since we are to give the construction using the product matrix framework, the key point is to design the encoding matrix G

and the message matrix M .

Let α1, α2, ..., αn be n distinct nonzero elements in Fq such that αk−2
i 6= αk−2

j for 1 ≤ i 6= j ≤ n. In particular, set

q − 1 ≥ n and q − 1 coprime with k − 2, then any n distinct elements in F
∗
q can be chosen as αi’s. Our encoding matrix is

defined as follows, which is an n× d Vandermonde matrix.

G =




1 α1 · · · α2k−4
1

1 α2 · · · α2k−4
2

...
...

...
...

1 αn · · · α2k−4
n


 .

The message matrix M is a d× α matrix which has the following form.

M =

(
Sk−1

0k−2

)
+

(
0k−2

Tk−1

)
,

where S and T are two (k−1)×(k−1) symmetric matrices each filled with
k(k−1)

2 message symbols chosen from Fq. Thus

the total number of message symbols contained in M is k(k − 1) = B. The subscript k − 1 or k − 2 denotes the number of

rows, thus here 0k−2 means a (k−2)×(k−1) all-zero matrix.

Remark 1. Note that the symmetric matrices S and T respectively form the first and the last k−2 rows of M , while interweave

in the (k−1)-th row of M . This partial interweaving structure is the key idea in our design of MSCR codes. Actually, comparing

with MSR codes which have α = d− k + 1, MSCR codes have α = d− k + t for t ≥ 2. That is, fixing α, the MSCR codes

have d less than the MSR codes by t−1. Since the message matrix has d rows, the reduction on d for MSCR codes is realized

by interweaving S and T in t − 1 rows. On the other hand, the interweaved message symbols just can be unpicked through

the exchanging phase between t newcomers in the cooperative repair.

In the next, we illustrate the data reconstruction and the t-node cooperative repair for the construction.

Theorem 2. (Data reconstruction) The B message symbols can be recovered from any k nodes.

Proof. For any k nodes i1, i2, ..., ik ∈ [n], denote by Ψ the sub-matrix of G restricted to the rows corresponding to the k

nodes. Then the data collector can obtain the symbols

ΨM = Ψ

(
S

0

)
+Ψ

(
0
T

)

= ΦS +∆ΦT,

where Φ denotes the k × (k − 1) matrix formed by the first k − 1 columns of Ψ, and ∆ = diag[αk−2
i1

, αk−2
i2

, ..., αk−2
ik

]. For

the second equality above, one needs to note the sub-matrix formed by the last k − 1 columns of Ψ equals ∆Φ.

Then the theorem follows from Lemma 1.

Theorem 3. (Cooperative repair) Suppose node i1 and i2 fail. Then two newcomers can regenerate node i1 and i2 respectively

through a cooperative repair in two phases:

Phase 1: Each newcomer connects to any d = 2k − 3 surviving nodes as helper nodes and downloads one symbol from

each helper node.

Phase 2: Two newcomers exchange one symbol with each other.

Proof. For simplicity, the two newcomers are also called node i1 and i2 respectively. For i ∈ [n], denote by ψi the i-th row

of G, then the data stored in the i-th node is ci = ψiM = (ci,1, ..., ci,k−1). Moreover, define ϕi = (1, αi, ..., α
k−2
i), then

ci = ψiM = ϕiS + αk−2
i ϕiT.

Therefore, node i1 needs to recover ci1 = ϕi1S + αk−2
i1

ϕi1T , and node i2 needs to recover ci2 = ϕi2S + αk−2
i2

ϕi2T .

In Phase 1, suppose the set of helper nodes connected by node i1 is R1 ⊆ [n] \ {i1, i2} with |R1| = 2k− 3. Then for each

j ∈ R1, node j sends the symbol

cjϕ
τ
i1
= ψjMϕτ

i1
(4)

5

to node i1. Thus node i1 obtains the symbols ΨrepairMϕτ
i1

, where Ψrepair is a (2k−3)×(2k−3) invertible matrix consisting

of the rows ψj , j ∈ R1. Therefore, node i1 can derive the symbols Mϕτ
i1

by multiplying the inverse of Ψrepair.

Furthermore, we will show the symbols Mϕτ
i1

can be used to derive partial data of ci1 . For convenience, denote

M =

(
S

0

)
+

(
0
T

)
=




u1

...

uk−2

uk−1

0

...

0




+




0

...

0

v1
v2
...

vk−1




=




u1

...

uk−2

uk−1 + v1
v2
...

vk−1




,

where ui and vi are the i-th row of S and T respectively, i ∈ [k − 1]. Due to the symmetry of S and T , uτ
i and vτi are also

the i-th column of S and T respectively. Therefore,

Mϕτ
i1
=




u1 ·ϕ
τ
i1

...

uk−2 ·ϕ
τ
i1

(uk−1 + v1) · ϕ
τ
i1

v2 ·ϕ
τ
i1

...

vk−1 · ϕ
τ
i1




=




ϕi1 · u
τ
1

...

ϕi1 · u
τ
k−2

ϕi1 · (u
τ
k−1 + v

τ
1)

ϕi1 · v
τ
2

...

ϕi1 · v
τ
k−1




=




ω1

...

ωk−2

ωk−1

ωk

...

ω2k−3




, (5)

where the second equality comes from the transposition, and ωi denotes the i-th coordinate of Mϕτ
i1

for i ∈ [2k − 3]. Recall

that node i1 is to recover ci1 = (ci1,1, ..., ci1,k−1) = ϕi1S+αk−2
i1

ϕi1T . That is, for j ∈ [k− 1], ci1,j = ϕi1u
τ
j +αk−2

i1
ϕi1v

τ
j .

Actually, after obtaining Mϕτ
i1
= (ω1, ..., ω2k−3)

τ node i1 computes the following




ω1 + αk−2
i1

ωk−1 + α
2(k−2)
i1

ω2k−3,

ω2 + αk−2
i1

ωk,

ω3 + αk−2
i1

ωk+1,
...

ωk−2 + αk−2
i1

ω2k−4.

It can be verified that

ω1 + αk−2
i1

ωk−1 + α
2(k−2)
i1

ω2k−3

= ϕi1 · u
τ
1 + αk−2

i1
ϕi1 · (u

τ
k−1 + v

τ
1) + α

2(k−2)
i1

ϕi1 · v
τ
k−1

= ϕi1 · (u
τ
1 + αk−2

i1
vτ1) + αk−2

i1
ϕi1 · (u

τ
k−1 + αk−2

i1
vτk−1)

= ci1,1 + αk−2
i1

ci1,k−1.

while for j ∈ {2, ..., k − 2},

ωj + αk−2
i1

ωj+k−2 = ϕi1 · u
τ
j + αk−2

i1
ϕi1 · v

τ
j = ci1,j .

That is, after Phase 1 node i1 gets d symbols Mϕτ
i1

, from which it further recovers ci1,2, ..., ci1,k−2 and ci1,1 + αk−2
i1

ci1,k−1.

Similarly, by connecting to d helper nodes and downloading cjϕ
τ
i2

from each helper node j, node i2 can get d symbols

Mϕτ
i2

, from which it can further recover ci2,2, ..., ci2,k−2 and ci2,1 + αk−2
i2

ci2,k−1.

In Phase 2, node i1 sends the symbol ψi2Mϕτ
i1

to i2, and node i2 sends the symbol ψi1Mϕτ
i2

to i1. So, node i1 gets

ψi1Mϕτ
i2
= ci1ϕ

τ
i2
= (ci1,1, ..., ci1,k−1)




1
αi2

...

αk−2
i2


 ,

from which node i1 can obtain the value of ci1,1+αk−2
i2

ci1,k−1 because node i1 has already obtained ci1,j for j ∈ {2, ..., k−2}
after Phase 1. Thus ci1,1 and ci1,k−1 can be solved from

{
ci1,1 + αk−2

i1
ci1,k−1

ci1,1 + αk−2
i2

ci1,k−1

6

since αk−2
i1

6= αk−2
i2

.

In the same way, node i2 can further recover ci2,1 and ci2,k−1 after Phase 2.

IV. MSCR CODES WITH d = 2k − 1− t AND 2 ≤ t ≤ k − 1

In this section, the construction for t = 2 is extended to that for more general t, i.e. 2 ≤ t ≤ k − 1, while d is restricted

to d = 2k − 1 − t. The restrictions on the parameters are explained in Remark 2. Obviously, in this case we still have

α = d− k + t = k − 1 and B = kα = k(k − 1).
We first define the n × d encoding matrix G and the d × α message matrix M . For simplicity, denote µ = k − t. Let

α1, ..., αn be n distinct nonzero elements in Fq such that α
µ
i 6= α

µ
j for 1 ≤ i 6= j ≤ n. Then, define

G =




1 α1 · · · α2k−2−t
1

1 α2 · · · α2k−2−t
2

...
...

...
...

1 αn · · · α2k−2−t
n


 , M =

(
Sk−1

0µ

)
+

(
0µ

Tk−1

)
,

where S and T are two (k− 1)× (k− 1) symmetric matrices each filled with
k(k−1)

2 message symbols chosen from Fq. Thus

the total number of message symbols contained in M is k(k − 1) = B. Note that k − 1 + µ = k − 1 + k − t = d, thus M is

a d× α matrix.

The data reconstruction can be verified as before. Specifically, suppose the data collector connects to k nodes i1, ..., ik ∈ [n].
Let Ψ be the k × d sub-matrix of G consisting of the rows ψij , j ∈ [k], then the data collector has access to the symbols

ΨM = Ψ

(
S

0

)
+Ψ

(
0
T

)

= ΦS +∆′ΦT,

where Φ is a k×(k−1) matrix consisting of the first k−1 columns of Ψ and ∆′ is the k×k diagonal matrix diag[αµ
i1
, α

µ
i2
, ..., α

µ
ik
].

The diagonal elements of ∆′ are all distinct and nonzero by our construction. Thus the matrix S and T can be reconstructed

from the k nodes by Lemma 1.

Remark 2. The reason d is restricted to d = 2k − 1 − t is that we want to keep α = d − k + t = k − 1 unchanged so that

Lemma 1 still can be used to ensure the data reconstruction. On the other hand, in this section we have 2 ≤ t ≤ k − 1 rather

than the most general condition 2 ≤ t ≤ n− k 1, because t ≤ k − 1 implies t − 1 < k − 1 which means the two symmetric

matrices S and T are not totally interweaved and thus the diagonal matrix ∆′ has k distinct diagonal elements as required by

Lemma 1.

Next we mainly illustrate the cooperative repair of t nodes.

Theorem 4. (Cooperative repair) Without loss of generality, suppose the set of failed nodes is {1, 2, ..., t}. Then t newcomers

can recover the t failed nodes respectively by each connecting to d surviving nodes as helpers nodes and downloading one

symbol from each of the helper nodes in Phase 1, and then downloading one symbol from each of the other t− 1 newcomers

in Phase 2. Therefore, the repair bandwidth for recovering every failed node is d+ t− 1.

Proof. For simplicity, the t newcomers are also called node 1, ..., t respectively in the following. Using the notations defined

before, the data stored in node i is

ci = ψiM = ϕiS + α
µ
i ϕiT = (ci,1, ..., ci,k−1) . (6)

That is, node i is to recover ci for i ∈ [t].
In Phase 1, fix i ∈ [t], and let Ri ⊆ [n] \ [t] with |Ri| = d be the set of helper nodes connected by node i. Then for each

j ∈ Ri, node j sends node i the following symbol

cjϕ
τ
i = ψjMϕτ

i . (7)

Thus node i receives the symbols {ψjMϕτ
i |j ∈ Ri}. Since all the ψj’s, j ∈ Ri, form a d× d invertible matrix, then node i

can obtain the symbols Mϕτ
i .

1The condition t ≤ n− k is necessary to ensure the surviving nodes (i.e., n− t ≥ k nodes) can recover the original data file.

7

Similar to (5), it has

Mϕτ
i =




u1 ·ϕ
τ
i

...

uµ · ϕτ
i

(uµ+1 + v1) · ϕ
τ
i

...

(uk−1 + vt−1) ·ϕ
τ
i

vt ·ϕ
τ
i

...

vk−1 · ϕ
τ
i




=




ϕi · u
τ
1

...

ϕi · u
τ
µ

ϕi · (u
τ
µ+1 + v

τ
1)

...

ϕi · (u
τ
k−1 + v

τ
t−1)

ϕi · v
τ
t

...

ϕi · v
τ
k−1




=




ω1

...

ωµ

ωµ+1

...

ωk−1

ωk

...

ω2k−1−t




,

where the second equality comes from the transposition. Therefore, for each l ∈ [2k − 1− t],

ωl =





ϕiu
τ
l , 1 ≤ l ≤ µ

ϕi(u
τ
l + vτl−µ), µ+ 1 ≤ l ≤ k − 1

ϕiv
τ
l−µ, k ≤ l ≤ 2k − 1− t.

Then we will give some calculations on the symbols ω1, ..., ω2k−1−t which help to recover ci. In particular, denote d =
2k − 1− t = zµ+ r for some integers z and r where 0 ≤ r ≤ µ− 1. Then α = k − 1 = d− µ = (z − 1)µ+ r. Next node i

computes the following µ symbols





ω1 + α
µ
i ωµ+1 + α

2µ
i ω2µ+1 + · · ·+ α

(z−1)µ
i ω(z−1)µ+1 + α

zµ
i ωzµ+1,

...

ωr + α
µ
i ωµ+r + α

2µ
i ω2µ+r + · · ·+ α

(z−1)µ
i ω(z−1)µ+r + α

zµ
i ωzµ+r,

ωr+1 + α
µ
i ωµ+r+1 + α

2µ
i ω2µ+r+1 + · · ·+ α

(z−1)µ
i ω(z−1)µ+r+1,

...

ωµ + α
µ
i ω2µ + α

2µ
i ω3µ + · · ·+ α

(z−1)µ
i ωzµ.

(8)

Recall that from (6) it has ci,j = ϕiu
τ
j + α

µ
i ϕiv

τ
j for j ∈ [k − 1]. Then, it can be verified that for 1 ≤ l ≤ r,

ωl + α
µ
i ωµ+l + · · ·+ α

(z−1)µ
i ω(z−1)µ+l + α

zµ
i ωzµ+l

= ϕi

(
uτ
l + α

µ
i (u

τ
µ+l + v

τ
l) + · · ·+ α

(z−1)µ
i (uτ

(z−1)µ+l + v
τ
(z−2)µ+l) + α

zµ
i v

τ
(z−1)µ+l

)

= ϕi

((
uτ
l + α

µ
i v

τ
l

)
+ α

µ
i

(
uτ
µ+l + α

µ
i v

τ
µ+l

)
+ · · ·+ α

(z−1)µ
i

(
uτ
(z−1)µ+l + α

µ
i v

τ
(z−1)µ+l

))

= ci,l + α
µ
i ci,µ+l + · · ·+ α

(z−1)µ
i ci,(z−1)µ+l,

while for r + 1 ≤ l ≤ µ,

ωl + α
µ
i ωµ+l + · · ·+ α

(z−2)µ
i ω(z−2)µ+l + α

(z−1)µ
i ω(z−1)µ+l

a
= ϕi

(
uτ
l + α

µ
i (u

τ
µ+l + v

τ
l) + · · ·+ α

(z−2)µ
i (uτ

(z−2)µ+l + v
τ
(z−3)µ+l) + α

(z−1)µ
i vτ(z−2)µ+l

)

= ϕi

((
uτ
l + α

µ
i v

τ
l

)
+ α

µ
i

(
uτ
µ+l + α

µ
i v

τ
µ+l

)
+ · · ·+ α

(z−2)µ
i

(
uτ
(z−2)µ+l + α

µ
i v

τ
(z−2)µ+l

))

= ci,l + α
µ
i ci,µ+l + · · ·+ α

(z−2)µ
i ci,(z−2)µ+l,

where the equality
a
= is due to the fact that when r+ 1 ≤ l ≤ µ, ω(z−1)µ+l = ϕiv

τ
(z−2)µ+l

. Therefore, the calculations in (8)

actually give µ linear equations on ci,1, ci,2, ..., ci,k−1. Furthermore, write the µ linear equations in the matrix form Hi,1c
τ
i ,

then the coefficient matrix Hi,1 has the form :

Hi,1 =
(
Iµ α

µ
i Iµ · · · α

(z−2)µ
i Iµ α

(z−1)µ
i I

(r)
µ

)
,

where Iµ denotes the µ× µ identity matrix, and I
(r)
µ denotes the µ× r matrix consisting of the first r columns of Iµ.

Now we turn to Phase 2 and still fix i ∈ [t]. Since each node j ∈ [t] \ {i} has known Mϕτ
j after Phase 1, then node j sends

the symbol ψiMϕτ
j = ciϕ

τ
j to node i. Thus in Phase 2 node i receives t − 1 more symbols {ciϕ

τ
j | j ∈ [t], j 6= i} which

8

correspond to t− 1 linear equations on ci,1, ci,2, ..., ci,k−1. Write these t− 1 linear equations in matrix form Hi,2c
τ
i , then the

coefficient matrix Hi,2 has the form

Hi,2 =




1 α1 α2
1 · · · · · · αk−2

1
...

...
...

...
...

1 αi−1 α2
i−1 · · · · · · αk−2

i−1

1 αi+1 α2
i+1 · · · · · · αk−2

i+1
...

...
...

...
...

1 αt α2
t · · · · · · αk−2

t




.

Therefore, after the two phases, node i obtains µ + t− 1 = k − t+ t− 1 = k − 1 linear equations on ci,1, ci,2, ..., ci,k−1.

Moreover, this linear system has coefficient matrix

H =

(
Hi,1

Hi,2

)
=

(
Iµ α

µ
i Iµ α

2µ
i Iµ ... α

(z−2)µ
i Iµ α

(z−1)µ
i I

(r)
µ

P ∆̃P ∆̃2P · · · ∆̃z−2P ∆̃z−1P (r)

)
, (9)

where P denotes the (t − 1) × µ matrix consisting of the first µ columns of Hi,2, P (r) is the (t − 1) × r sub-matrix of P

restricted to the first r columns, and ∆̃ = diag[αµ
1 , ..., α

µ
i−1, α

µ
i+1, ..., α

µ
t].

Finally, we will show that the coefficient matrix H in (9) is invertible, thus node i can solve ci,1, ci,2, ..., ci,k−1. Note that

the k− 1 columns of H are divided into z column blocks where the first z− 1 blocks each has µ columns while the last block

has r columns. Then executing elementary column transformations on H , i.e., multiplying the first r columns of the (z− 1)-th
block by α

µ
i , and subtracting from the z-th block, we can get

H ′ =

(
Iµ α

µ
i Iµ α

2µ
i Iµ · · · α

(z−2)µ
i Iµ 0

P ∆̃P ∆̃2P · · · ∆̃z−2P (∆̃− α
µ
i It−1)∆̃

z−2P (r)

)
.

For j = z − 2, z − 3, ..., 1, multiply the j-th block by α
µ
i , and subtract from the (j + 1)-th block, then we finally get

H ′′ =

(
Iµ 0 0 · · · 0 0

P (∆̃− α
µ
i It−1)P (∆̃− α

µ
i It−1)∆̃P · · · (∆̃− α

µ
i It−1)∆̃

z−3P (∆̃− α
µ
i It−1)∆̃

z−2P (r)

)

=

(
Iµ 0µ×(t−1)

P (∆̃− α
µ
i It−1)P̃

)
,

where P̃ = (P ∆̃P · · · ∆̃z−3P ∆̃z−2P (r)) is a (t− 1)× (t− 1) Vandermonde matrix and thus is invertible. Note that

∆̃− α
µ
i It−1 is a (t− 1)× (t− 1) diagonal matrix diag[αµ

1 − α
µ
i , ..., α

µ
i−1 − α

µ
i , α

µ
i+1 − α

µ
i , ..., α

µ
t − α

µ
i]. Since α

µ
i 6= α

µ
j for

1 ≤ i 6= j ≤ n, thus ∆̃ − α
µ
i It−1 is also invertible. As a result, the matrix H ′′ is invertible. Since only elementary column

transformations are executed from H to H ′′, it immediately follows that H is an invertible matrix.

For fixed i ∈ [t], we have shown that node i can recover ci as required by the cooperative repair property. The repair of

other failed nodes goes in the same way and the theorem is proved.

V. MSCR CODES WITH d ≥ max{2k − 1− t, k} AND 2 ≤ t ≤ n− k

In this section, we first show that any MSCR code can be transformed into a systematic MSCR code with the same parameters.

In particular, the codes constructed in Section IV could have a systematic form. Then by applying a shortening technique to

these codes, we build scalar MSCR codes for all 2 ≤ t ≤ n− k and d ≥ max{2k − 1− t, k}.

A. Systematic MSCR codes

Since B = kα for MSCR codes, the original data file can be denoted as (m1, ...,mk) where each mi, i ∈ [k], consists

of α symbols. An MSCR code is called systematic if there exist k nodes (called systematic nodes) which store mi, i ∈ [k],
respectively. In fact, through a reverse application of the data reconstruction, we can turn any MSCR code into a systematic

one.

Theorem 5. Suppose there exists an MSCR code C with parameters (n, k, d, t, α, β), then for any I ⊆ [n] with |I| = k, there

exists an (n, k, d, t, α, β) systematic MSCR code C′ taking the nodes in I as systematic nodes.

Proof. In general, we define the MSCR code C by using its encoding map E : FB → (Fα)n, E(m) = (c1, ..., cn), that is,

for a data file m of size B, node i stores ci for i ∈ [n].
From the data reconstruction property, the content stored in any k nodes uniquely determines the data file. In particular, for

I ⊆ [n] with |I| = k, there exists a reconstruction function RI : (Fα)k → FB such that

RI

(
E|I(m)

)
=m, ∀m ∈ FB , (10)

9

where E|I(m) denotes E(m) restricted to the nodes in I . Moreover, (10) implies that both RI and E|I are one-to-one maps

and E|I = R−1
I .

For any data file m ∈ FB = F kα, denote m = (m1, ...,mk) where mi ∈ Fα for i ∈ [k]. Then we define a new MSCR

code by the encoding function E ′ : FB → (Fα)n, such that

E ′(m) = E(RI(m1, ...,mk)) .

Then we will say that E ′ actually defines the systematic MSCR code C′ as required by the theorem.

First, because RI and E|I′ are one-to-one maps, it follows that E ′|I′ is a one-to-one map for any I ′ ⊆ [n] with |I ′| = k.

Define the inverse map of E ′|I′ as the reconstruction function for I ′, then C′ satisfies the data reconstruction property. Moreover,

E ′|I(m) = E|I(RI(m1, ...,mk))

= R−1
I (RI(m1, ...,mk))

= (m1, ...,mk) ,

so the k nodes in I are systematic nodes. For the repair property, since C′ and C, the original MSCR code, have the same

codeword space except that they have different encoding maps, the repair property of C are maintained in C′. It is easy to

verify that C′ and C have the same parameters. The theorem is proved.

In particular, for the (n, k, d, t) scalar MSCR code constructed under the product matrix framework, if we want the nodes

{1, ..., k} to be systematic nodes, then for any data file m = (m1, ...,mk) ∈ (Fα)k we first solve the message matrix M(m)
from ΨM(m) = W (m) through the data reconstruction process, where Ψ denotes the encoding matrix G restricted to the

first k rows, and W (m) is the k × α matrix whose k rows are exactly m1, ...,mk. Thus we obtain a systematic (n, k, d, t)
scalar MSCR code which encodes the data file m as C = GM(m).

B. Scalar MSCR codes with d ≥ max{2k − 1− t, k} and 2 ≤ t ≤ n− k

In Section IV, we have constructed scalar MSCR codes for any 2 ≤ t ≤ k− 1 and d = 2k− 1− t. Next we show by proper

shortening from these codes, one can derive scalar MSCR codes for all d ≥ max{2k − 1 − t, k} and 2 ≤ t ≤ n − k. First,

Theorem 6 states the relations between the parameters of the original MSCR code and the shortened code. The shortening

technique is specifically described in the proof of Theorem 6. Then in Corollary 7, applying the shortening technique to a

previously constructed MSCR code, it gives the code we want in this Section.

Theorem 6. If there exists an (n′ = n+ δ, k′ = k + δ, d′ = d+ δ, t) scalar MSCR code C′ for some δ ≥ 0, then there must

exist an (n, k, d, t) scalar MSCR code C.

Proof. By Theorem 5, we can assume that C′ is an (n′, k′, d′, t) systematic scalar MSCR code with systematic nodes 1, ..., k′.
From (1) we know that

α′ = d′ − k′ + t

= d− k + t

and

B′ = k′α′

= (k + δ)(d− k + t) ,

while a scalar MSCR code with parameters (n, k, d, t) has

α = d− k + t, B = kα .

Thus it has

α′ = α, B′ = B + δα .

Now consider all the codewords in C′ that have zeros in the first δ nodes and then puncture these codewords in the first δ

nodes, it gives the desired (n, k, d, t) MSCR code C.

More specifically, in the data reconstruction any k nodes in C plus δ imaginary systematic nodes that store all zeros correspond

to k′ nodes in C′ which uniquely determines a data file of length B′ with the first δα symbols being zeros, therefore any

k nodes in C uniquely determines a data file of size B′ − kδ = B. The cooperative repair of any t nodes in C with each

connecting to d helper nodes can be done as the cooperative repair of the t nodes in C′ with each connecting to the d helper

nodes and δ imaginary nodes that store all zeros. Therefore, one can see that C is an (n, k, d, t) scalar MSCR code.

Corollary 7. For any 2 ≤ t ≤ n− k and d ≥ max{2k − 1− t, k}, there exists an (n, k, d, t) scalar MSCR code.

10

Proof. Define δ = d− (2k − 1− t) ≥ 0, and let n′ = n+ δ, k′ = k + δ, d′ = d+ δ. It is easy to verify that d′ = 2k′ − 1− t.

Since t ≤ d − k + t = k′ − 1, then we can obtain an (n′, k′, d′, t) scalar MSCR code from the construction in Section IV.

Thus the desired (n, k, d, t) scalar MSCR code can be constructed as in Theorem 6.

As a result, when 2k − 1− t ≤ k, i.e., k ≤ t+ 1, our construction presents scalar MSCR codes for all d ≥ k which covers

all possible parameters for (n, k, d, t) cooperative regenerating codes. When 2k − 1− t > k, i.e., k > t+ 1, our construction

restricts to the case d ≥ 2k− 1− t. As a complementary result, in the next section we will prove the nonexistence of a family

of linear scalar MSCR codes for k < d < 2k − 2 − t. Recall that, the existence of scalar MSCR codes for d = k has been

ensured in [13].

VI. NONEXISTENCE OF LINEAR SCALAR MSCR CODES FOR k < d < 2k − 2− t

The nonexistence result relies on an assumption that the linear MSCR codes have invariant repair spaces. In the following,

we first describe the linear model for MSCR codes and explain the property of invariant repair space. Then we derive the

interference alignment property for such MSCR codes and prove the nonexistence result under the condition k < d < 2k−2−t.

A. Linear MSCR codes with invariant repair space

Suppose there exists an (n, k, d, t, α, β) linear MSCR code C over Fq . By Theorem 5, we can always assume that C is

systematic and has the following generator matrix

G =




Iα
Iα

. . .

Iα
A1,1 A1,2 · · · A1,k

...

Ar,1 Ar,2 · · · Ar,k




, (11)

where Iα denotes the α×α identity matrix, Ai,j is a α×α matrix over Fq for i ∈ [r], j ∈ [k], and r = n− k. For simplicity,

every α consecutive rows of G are regarded as a thick row, thus G has n thick rows which exactly correspond to the n storage

nodes. For any data vector m ∈ F
kα
q , node i stores an α-dimensional vector cτi = Gim

τ , where Gi denotes the i-th thick row

of G and i ∈ [n]. Since m is independently and uniformly chosen from F
kα
q , we can also view node i as storing the linear

space spanned by the rows of Gi, denoted by 〈Gi〉, which is a subspace of F
kα
q . Then the data reconstruction requirement

can be restated as follows.

Data reconstruction. The subspaces stored in any k nodes can generate the entire space, namely, for any i1, . . . , ik ∈ [n],∑k

j=1〈Gij 〉 = F
kα
q .

Obviously, the data reconstruction requirement implies that each Ai,j is invertible for all i ∈ [r] and j ∈ [k].
Then we describe the cooperative repair process. Suppose F ⊂ [n] is the set of failed nodes and |F| = t. For each i ∈ F ,

let Hi ⊆ [n] \F denote the set of helper nodes for repairing node i and |Hi| = d. In the first phase of the repair process, each

node j ∈ Hi transmits Sj→i,F ,Hc
τ
j = Sj→i,F ,HGjm

τ to repair node i, where Sj→i,F ,H is a β1 × α matrix corresponding

to the linear transformation performed on node j and H = (Hi)i∈F . From the view of linear spaces, we call 〈Sj→i,F ,HGj〉
as the repair space of node j for repairing node i with respect to the failed node set F and the helper node set H. In the

second phase of the repair process, the nodes in F exchange data with each other. Specifically, for any node i ∈ F , each node

i′ ∈ F \ {i} transmits to node i a β2-dimensional repair space 〈γi′→i,F ,H〉, where γi′→i,F ,H is a β2 × kα matrix generated

from
∑

j∈Hi′
〈Sj→i′ ,F ,HGj〉. Then the node repair requirement can be restated as follows.

Cooperative repair. For any i ∈ F , the space stored by node i can be recovered from the repair spaces collected by node

i in the two phases of the cooperative repair process, i.e., 〈Gi〉 ⊆
∑

j∈Hi
〈Sj→i,F ,HGj〉+

∑
i′∈F\{i}〈γi′→i,F ,H〉.

Definition 8. A linear MSCR code with the generator matrix defined in (11) is said to have invariant repair spaces if for

any i, j ∈ [n], the repair space 〈Sj→i,F ,HGj〉 is independent of F and H, or equivalently, the repair matrix Sj→i,F ,H is

independent of F and H.

As a result, for a linear MSCR code with invariant repair spaces, we denote the repair matrix by Sj→i instead of Sj→i,F ,H,

which means so long as node j is connected to repair node i in a cooperative repair of t failed nodes containing i, node j

always performs the same linear transformation Sj→i on its stored data in spite of the identity of other failed nodes and other

helper nodes. This property brings great convenience to the repair process in practice. Actually, most of the existing scalar

MSCR codes have invariant repair spaces, such as the codes constructed in [17]–[19]. Moreover, the construction in this paper

also satisfies this property.

11

B. Interference alignment and nonexistence result

Next we consider only linear scalar MSCR codes that have invariant repair spaces. Since for scalar MSCR codes, it holds

β1 = β2 = 1 and α = d − k + t, the repair spaces 〈Sj→iGj〉 and 〈γi′→i,F ,H〉 are both 1-dimensional subspaces, thus are

denoted as 〈sj→iGj〉 and 〈γi′→i,F ,H〉 respectively. Moreover, we always assume the scalar MSCR code is systematic and has

a generator matrix as defined in (11). Note that the property of having invariant repair spaces is maintained after transforming

a linear MSCR code to a systematic one as illustrated in Theorem 5.

Lemma 9. (Interference alignment) Given a linear scalar MSCR code as described above, then we have,

(a) For any i, j ∈ [k], i 6= j,

sk+1→iA1,j ∼ sk+2→iA2,j ∼ · · · ∼ sk+α→iAα,j ,

where for two vectors x and x′, the notation x ∼ x′ means x = cx′ for some nonzero c ∈ F
∗
q .

(b) Suppose k ≥ t, then for any i ∈ [k] and any j1, . . . , jt−1 ∈ [k] \ {i},

rank




sk+1→iA1,i

...

sk+α→iAα,i

γ
(i)
j1→i,F ,H

...

γ
(i)
jt−1→i,F ,H




= α,

where γ
(i)
jl→i,F ,H ∈ F

α
q denotes the i-th component of γjl→i,F ,H, that is, γjl→i,F ,H = (γ

(1)
jl→i,F ,H, ...,γ

(k)
jl→i,F ,H), 1 ≤ l ≤ t−1,

F = {i, j1, ..., jt−1} ⊆ [k] and Hi′ = [k + α] \ F for all i′ ∈ F .

Proof. Note that k + α = k + (d− k+ t) = d+ t ≤ n and α = d− k + t ≥ t. The lemma is proved by considering the node

repair requirement in different repair patterns.

(a) Let F = {1, k + α− t+ 2, . . . , k + α}, and Hi = {2, . . . , k} ∪ {k + 1, . . . , k + α − t+ 1} for all i ∈ F . That is, one

systematic node and t − 1 parity nodes fail, and the remaining k − 1 systematic nodes and other d − k + 1 parity nodes are

helper nodes. Then after the repair process, node 1 collects the space

Ω1 =




s2→1

. . .

sk→1

sk+1→1A1,1 sk+1→1A1,2 · · · sk+1→1A1,k

...
...

...
...

sk+α−t+1→1Aα−t+1,1 sk+α−t+1→1Aα−t+1,2 · · · sk+α−t+1→1Aα−t+1,k

γ
(1)
k+α−t+2→1,F ,H γ

(2)
k+α−t+2→1,F ,H · · · γ

(k)
k+α−t+2→1,F ,H

...
...

...
...

γ
(1)
k+α→1,F ,H γ

(2)
k+α→1,F ,H · · · γ

(k)
k+α→1,F ,H




.

The node repair requirement implies that there exists an α× (d+ t− 1) matrix B = (bτ2 · · · bτk+α) such that

BΩ1 = G1 =
(
Iα 0 · · · 0

)
,

where each bτi is an α× 1 column vector for 2 ≤ i ≤ k + α. More specifically,

(
bτk+1 · · · bτk+α−t+1 bτk+α−t+2 · · · bτk+α

)




sk+1→1A1,1

...

sk+α−t+1→1Aα−t+1,1

γ
(1)
k+α−t+2→1,F ,H

...

γ
(1)
k+α→1,F ,H




= Iα, (12)

12

and for j ∈ {2, . . . , k},

(
bτj bτk+1 · · · bτk+α−t+1 bτk+α−t+2 · · · bτk+α

)




sj→1

sk+1→1A1,j

...

sk+α−t+1→1Aα−t+1,j

γ
(j)
k+α−t+2→1,F ,H

...

γ
(j)
k+α→1,F ,H




= 0. (13)

It follows from (12) that

rank
(
bτk+1 · · · bτk+α−t+1 bτk+α−t+2 · · · bτk+α

)
= α.

As a result, the matrix (
bτj bτk+1 · · · bτk+α−t+1 bτk+α−t+2 · · · bτk+α

)

is an α× (α+ 1) matrix of rank α. Then from the equality (13) we have for 2 ≤ j ≤ k,

rank




sj→1

sk+1→1A1,j

...

sk+α−t+1→1Aα−t+1,j

γ
(j)
k+α−t+2→1,F ,H

...

γ
(j)
k+α→1,F ,H




≤ 1.

Therefore,

sj→1 ∼ sk+1→1A1,j ∼ · · · ∼ sk+α−t+1→1Aα−t+1,j .

Consider a new repair pattern by exchanging the positions of node k+1 and k+α− t+2, i.e. let k+1 be a failed node and

k + α − t + 2 be a helper node, then we can derive sj→1 ∼ sk+α−t+2→1Aα−t+2,j , for j ∈ {2, . . . , k}. Continue this way,

then we finally obtain

sj→1 ∼ sk+1→1A1,j ∼ · · · ∼ sk+α→1Aα,j , 2 ≤ j ≤ k.

Substituting node 1 by an arbitrary i ∈ [k], then (a) is obtained.

(b) Without loss of generality, suppose i = 1 and {j1, . . . , jt−1} = {2, . . . , t}. With respect to the F and H defined in (b),

node 1 receives the repair space

Ω2 =




st+1→1

. . .

sk→1

sk+1→1A1,1 sk+1→1A1,2 · · · sk+1→1A1,t sk+1→1A1,t+1 · · · sk+1→1A1,k

...
...

...
...

...
...

...

sk+α→1Aα,1 sk+α→1Aα,2 · · · sk+α→1Aα,t sk+α→1Aα,t+1 · · · sk+α→1Aα,k

γ
(1)
2→1,F ,H γ

(2)
2→1,F ,H · · · γ

(t)
2→1,F ,H γ

(t+1)
2→1,F ,H · · · γ

(k)
2→1,F ,H

...
...

...
...

...
...

...

γ
(1)
t→1,F ,H γ

(2)
t→1,F ,H · · · γ

(t)
t→1,F ,H γ

(t+1)
t→1,F ,H · · · γ

(k)
t→1,F ,H




.

Since 〈G1〉 ⊆ 〈Ω2〉, it is easy to see that (b) holds.

Lemma 10. Suppose d ≤ 2k− 1− t, then for any p ∈ {k+ 1, . . . , k+α}, any α out of the k vectors {sp→1, . . . , sp→k} are

linearly independent.

Proof. Assume on the contrary that for some p ∈ {k+1, . . . , k+α}, there exist α linearly dependent vectors in {sp→1, . . . , sp→k}.

Without loss of generality, assume p = k + 1 and

sk+1→1 ∈ 〈sk+1→2, . . . , sk+1→α〉, (14)

13

where the notation 〈sk+1→2, . . . , sk+1→α〉 denotes the space spanned by {sk+1→2, . . . , sk+1→α}. In the following, we will

show the linear dependence in (14) can be extended to all k + j for 1 ≤ j ≤ α, which will then lead to a contradiction to

Lemma 9 (b).

Since d ≤ 2k− 1− t, then k ≥ d− k+ t+1 = α+1, which means that there exists the (α+1)-th component. Multiplying

the invertible matrix A1,α+1 on both sides of (14), we have

sk+1→1A1,α+1 ∈ 〈sk+1→2A1,α+1, . . . , sk+1→αA1,α+1〉.

By Lemma 9 (a), we can further obtain that for j ∈ {1, . . . , α},

sk+j→1Aj,α+1 ∈ 〈sk+j→2Aj,α+1, . . . , sk+j→αAj,α+1〉.

Note that all the Aj,α+1’s are invertible from the data reconstruction requirement. Multiplying the inverse A−1
j,α+1, we have

sk+j→1 ∈ 〈sk+j→2, . . . , sk+j→α〉, 1 ≤ j ≤ α. (15)

From d ≤ 2k−1−t it also follows k ≥ d−k+t+1 > t, thus consider the repair pattern F = [t] ⊂ [k] and Hi = [k+α]\F for

all i ∈ F . From Lemma 9 (b), we know 〈{sk+j→1Aj,1|1 ≤ j ≤ α}∪{γ
(1)
2→1,F ,H, . . . ,γ

(1)
t→1,F ,H}〉 has dimension α. However,

by the definition of γ
(1)
2→1,F ,H, it has γ

(1)
2→1,F ,H ∈ 〈sk+1→2A1,1, . . . , sk+α→2Aα,1〉 = 〈sk+1→2A1,1〉 where the equality follows

from Lemma 9 (a). In a similar way, we get γ
(1)
i→1,F ,H ∈ 〈sk+1→iA1,1, . . . , sk+α→iAα,1〉 = 〈sk+1→iA1,1〉 for 2 ≤ i ≤ t.

Therefore,

〈{sk+j→1Aj,1|1 ≤ j ≤ α} ∪ {γ
(1)
2→1,F ,H, . . . ,γ

(1)
t→1,F ,H}〉

⊆ 〈{sk+j→2Aj,1, . . . , sk+j→αAj,1|1 ≤ j ≤ α} ∪ {sk+1→2A1,1, . . . , sk+1→tA1,1}〉 (16)

⊆ 〈{sk+1→2A1,1, . . . , sk+1→αA1,1}〉, (17)

where (16) comes from (15), and (17) comes from Lemma 9 (a) and the fact that α = d − k + t ≥ t. So, (17) implies that

〈{sk+j→1Aj,1|1 ≤ j ≤ α}∪{γ
(1)
2→1,F ,H, . . . ,γ

(1)
t→1,F ,H}〉 has dimension at most α− 1 which contradicts to Lemma 9 (b).

Theorem 11. For k < d < 2k − 2− t, there exist no linear scalar (n, k, d, t) MSCR codes that have invariant repair spaces.

Proof. Assume on the contrary there exists such an MSCR code for some n, k, d, t with k < d < 2k− 2− t. As stated before,

by Theorem 5 we can always assume this MSCR code is systematic and has a generator matrix as defined in (11). Since

d < 2k − 2− t, it follows k > d− k + t+ 2 = α+ 2, i.e. k ≥ α+ 3 > t.

We first consider the repair of node α+ 1 and node α+ 2 by the helper nodes k + j, 1 ≤ j ≤ α. In particular, we restrict

to the (α+ 2)-th and the (α+ 3)-th components. That is, by Lemma 9 (a), we have

sk+1→α+1A1,α+2 ∼ sk+2→α+1A2,α+2 ∼ · · · ∼ sk+α→α+1Aα,α+2, (18)

sk+1→α+1A1,α+3 ∼ sk+2→α+1A2,α+3 ∼ · · · ∼ sk+α→α+1Aα,α+3, (19)

sk+1→α+2A1,α+3 ∼ sk+2→α+2A2,α+3 ∼ · · · ∼ sk+α→α+2Aα,α+3. (20)

Then our proof goes along the following line. First, represent both sk+j→α+1 and sk+j→α+2 as linear combinations of

{sk+j→1, ..., sk+j→α} (by Lemma 10). Then by Lemma 9 (a) and (18), (19) we can derive a relation between the (α+ 2)-th
and the (α+3)-th components. With this relation we can finally substitute the Aj,α+3’s in (20) with Aj,α+2’s and then obtain

a contradiction to Lemma 9 (b). The details are as follows.

From Lemma 10, we know that for 1 ≤ j ≤ α, the α vectors sk+j→1, . . . , sk+j→α each of length α are linearly independent,

thus sk+j→α+1 can be represented as a linear combination of {sk+j→1, . . . , sk+j→α}. Specifically, suppose

sk+j→α+1 = λk+j,α+1



sk+j→1

...

sk+j→α


 =

(
λ
(1)
k+j,α+1 · · · λ

(α)
k+j,α+1

)


sk+j→1

...

sk+j→α


 ,

where λk+j,α+1 = (λ
(1)
k+j,α+1 · · · λ

(α)
k+j,α+1) ∈ F

α
q . Moreover, we claim that λ

(i)
k+j,α+1 6= 0 for 1 ≤ i ≤ α. Otherwise, it leads

to a contradiction to Lemma 10. Similarly, for 1 ≤ j ≤ α, we can write sk+j→α+2 as

sk+j→α+2 = λk+j,α+2



sk+j→1

...

sk+j→α


 =

(
λ
(1)
k+j,α+2 · · · λ

(α)
k+j,α+2

)


sk+j→1

...

sk+j→α


 ,

where λk+j,α+2 ∈ (F∗
q)

α.

14

For simplicity, we denote for 1 ≤ j ≤ α,

Bj =



sk+j→1

...

sk+j→α


Aj,α+2 =



sk+j→1Aj,α+2

...

sk+j→αAj,α+2


 ,

Cj =



sk+j→1

...

sk+j→α


Aj,α+3 =



sk+j→1Aj,α+3

...

sk+j→αAj,α+3


 .

Obviously, all the Bj , Cj’s are invertible, and (18)-(20) can be respectively rewritten as below.

λk+1,α+1B1 ∼ λk+2,α+1B2 ∼ · · · ∼ λk+α,α+1Bα, (21)

λk+1,α+1C1 ∼ λk+2,α+1C2 ∼ · · · ∼ λk+α,α+1Cα, (22)

λk+1,α+2C1 ∼ λk+2,α+2C2 ∼ · · · ∼ λk+α,α+2Cα. (23)

From Lemma 9 (a), we know that there exist diagonal matrices Λj and Γj such that Bj = ΛjB1 and Cj = ΓjC1 for

2 ≤ j ≤ α. Since B1 and C1 are invertible, it follows from (21)-(23) that

λk+1,α+1 ∼ λk+2,α+1Λ2 ∼ · · · ∼ λk+α,α+1Λα, (24)

λk+1,α+1 ∼ λk+2,α+1Γ2 ∼ · · · ∼ λk+α,α+1Γα, (25)

λk+1,α+2 ∼ λk+2,α+2Γ2 ∼ · · · ∼ λk+α,α+2Γα. (26)

Then (24) and (25) imply that for 2 ≤ j ≤ α,

λk+j,α+1Λj ∼ λk+j,α+1Γj ,

i.e. (
λ
(1)
k+j,α+1 · · · λ

(α)
k+j,α+1

)
Λj ∼

(
λ
(1)
k+j,α+1 · · · λ

(α)
k+j,α+1

)
Γj .

Since all the components of λk+j,α+1 are nonzero, it follows

Λj ∼ Γj , i.e., Λj = cΓj for some c ∈ F
∗
q . (27)

As a result, it follows from (26) and (27) that λk+1,α+2 ∼ λk+2,α+2Λ2 ∼ · · · ∼ λk+α,α+2Λα. Multiply each term by B1

on the right, then we get λk+1,α+2B1 ∼ λk+2,α+2B2 ∼ · · · ∼ λk+α,α+2Bα, i.e.,

sk+1→α+2A1,α+2 ∼ · · · ∼ sk+α→α+2Aα,α+2. (28)

However, by Lemma 9 (b), we know that

rank



sk+1→α+2A1,α+2

...

sk+α→α+2Aα,α+2


 ≥ α− t+ 1 = d− k + 1 ≥ 2,

which contradicts to (28). Thus the theorem is proved.

VII. CONCLUSIONS

We explicitly construct scalar MSCR codes for all d ≥ max{2k− 1− t, k}. The construction can be viewed as an extension

of the product matrix code construction proposed in [3] for MSR and MBR codes. Just as in [3] where the product matrix-based

MSR codes only applies when d ≥ 2k− 2, our construction of MSCR codes also restricts to d ≥ 2k− 1− t. Both restrictions

lead to the same limit on the information rate, i.e., k
n
≤ 1

2 +
1
2n . As complementary results, the nonexistence of certain scalar

MSR codes for k < d < 2k−3 was presented in [20] and the nonexistence of certain scalar MSCR codes for k < d < 2k−t−2
are given in this paper. Along with this work, several results achieved so far for cooperative regenerating codes can be seen

as the counterparts of the corresponding results in regenerating codes, such as the cut-set bound ([1] and [12], [13]) and the

general construction of high-rate MSR codes and MSCR codes ([6] and [9]). On the one hand, both the parameter bound and

the constructions for cooperative regenerating codes degenerate into those for regenerating codes. However, on the other hand,

it is nontrivial to extend the results of regenerating codes to derive their counterparts in cooperative regenerating codes. An

interesting question is how to generally build a cooperative regenerating code for repairing t > 1 erasures from regenerating

codes that are designed for repairing individual node failures. Although we cannot solve this problem right now, we can predict

that there should be more extensions in cooperative regenerating codes based on the fruitful research in regenerating codes.

15

REFERENCES

[1] A. G. Dimakis, P. G. Godfrey, Y. Wu, and M. O. Wainwright, K. Ramchandran, “Network Coding for Distributed Storage Systems”, in IEEE Trans.

Inform. Theory, vol. 56, no. 9, pp. 4539-4551, 2010.
[2] C. Suh, K. Ramchandran, “Exact-Repair MDS Code Construction Using Interference Alignment”, in IEEE Transactions on Information Theory, vol.

57, pp. 1425-1442, Feb. 2011.
[3] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-

Matrix Construction”, in IEEE Trans. Inform. Theory, vol. 57, no. 8, pp. 5227-5239, 2011.
[4] S. Goparaju, A. Fazeli, A. Vardy, “Minimum Storage Regenerating Codes For All Parameters”, in IEEE International Symposium on Information

Theory, Oct. 2016, pp. 76-80.
[5] B. Sasidharan, A. Fazeli, G. K. Agarwal, and P. V. Kumar, “A High-Rate MSR Code With Polynomial Sub-Packetization Level”, in IEEE International

Symposium on Information Theory, Oct. 2015.
[6] M. Ye, A. Barg, “Explicit constructions of high rate MDS array codes with optimal repair bandwidth”, in IEEE Trans. Inform. Theory, vol. 63, no. 4,

pp. 2001-2014, 2017.
[7] M. Ye, A. Barg, “Explicit constructions of optimal-access MDS codes with nearly optimal sub-packetization”, in IEEE Trans. Inform. Theory, vol. 63,

no. 10, pp. 6307-6317, 2017.
[8] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker, “Total recall: system support for automated availability management”, in Proc. of the 1st

Conf. on Networked Systems Design and Implementation, San Francisco, Mar. 2004.
[9] M. Ye, A. Barg, “Cooperative repair: Constructions of optimal MDS codes for all admissible parameters”, in IEEE Transactions on Information Theory,

2018, 1-1.
[10] V. R. Cadambe, S. A. Jafar, V. Lalitha, and H. Maleki, “Asymptotic Interference Alignment for Optimal Repair of MDS Codes in Distributed Storage”,

in IEEE Trans. Inform. Theory, vol. 59, no. 5, pp. 2974-2987, 2013.
[11] Z. Wang, I. Tamo, J. Bruck, “Optimal Rebuilding of Multiple Erasures in MDS Codes”, in IEEE Trans. Inform. Theory, vol. 63, no. 2, pp. 1084-1101,

2017.
[12] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, “Cooperative recovery of distributed storage systems from multiple losses with network coding”, in IEEE

J. on Selected Areas in Commun, vol. 28, no. 2, pp. 268-275, Feb. 2010.
[13] Kenneth W. Shum, “Cooperative regenerating codes for distributed storage systems”, in IEEE Int. Conf. Comm. (ICC), Kyoto, Jun. 2011.
[14] Kenneth W. Shum, Yuchong Hu, “Exact minimum-repair-bandwidth cooperative regenerating codes for distributed storage systems”. ISIT 2011: 1442-

1446.
[15] A. Wang and Z. Zhang, “Exact cooperative regenerating codes with minimum-repair-bandwidth for distributed storage”, in IEEE International Confer-

ence on Computer Communications, INFOCOM2013, pp. 400-404.
[16] N. Le Scouarnec, “Exact scalar minimum storage coordinated regenerating codes”, in IEEE International Symposium on Information Theory, 2012.
[17] J. Chen and K. W. Shum, “Repairing multiple failures in the Suh-Ramchandran regenerating codes”, in IEEE International Symposium on Information

Theory, 2013, pp. 1441-1445.
[18] K. W. Shum and J. Chen, “Cooperative repair of multiple node failures in distributed storage systems”, in International Journal of Information and

Coding Theory, vol. 3, no. 4, pp. 299-323, 2016.
[19] J. Li and B. Li, “Cooperative repair with minimum-storage regenerating codes for distributed storage”, in IEEE International Conference on Computer

Communications, 2014, pp. 316-324.
[20] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Interference Alignment in Regenerating Codes for Distributed Storage: Necessity and

Code Constructions”, in IEEE Transactions on Information Theory, vol. 58, no. 4, pp. 2134-2158, 2009.

APPENDIX A

PROOF OF LEMMA 1

Lemma 1. Let Φ be a k× (k− 1) Vandermonde matrix defined as in (3), and ∆ be a k× k diagonal matrix with distinct and

nonzero diagonal elements. Suppose

X = ΦS +∆ΦT,

where S and T are two (k − 1)× (k − 1) symmetric matrices. Then S and T can be uniquely computed from X,Φ and ∆.

Proof. Multiply ΦS +∆ΦT on the right side by Φτ , then we get

XΦτ = ΦSΦτ +∆ΦTΦτ .

Define
A = ΦSΦτ

B = ΦTΦτ .

Since S and T are symmetric, then A and B are also symmetric. For i, j ∈ [k], let aij and bij denote the (i, j)-entries of A

and B respectively. And denote by λi the i-th diagonal element of ∆, i ∈ [k].
Then for i, j ∈ [k], i 6= j, the (i, j)-th entry of A+∆B (= XΦτ) is

aij + λibij , (29)

while the (j, i)-th entry of A+∆B is

aji + λjbji. (30)

Due to the symmetry of A and B, it has aij = aji, bij = bji. Thus aij and bij can be solved from (29) and (30) since λi 6= λj

for i 6= j. Exhausting all i, j ∈ [k], i 6= j, then all the non-diagonal elements of A and B can be obtained.

Next we consider the matrix A. Fix some i ∈ [k], consider the k − 1 symbols {aij |j ∈ [k], j 6= i}. Each aij is the product

of the i-th row of ΦS and the j-th column of Φτ . Since the matrix containing any k− 1 columns of Φτ is a (k− 1)× (k− 1)

16

Vandermonde matrix which is invertible, the i-th row of ΦS is solvable from {aij |j ∈ [k], j 6= i}. After collecting k− 1 rows

of ΦS, the matrix S can be recovered since any k − 1 rows of Φ also form an invertible matrix.

In the same way, the matrix T can be obtained from non-diagonal elements of B.

	I Introduction
	II The Product matrix framework
	III mscr codes with d=2k-3 and t=2
	IV MSCR codes with d=2k-1-t and 2tk-1
	V MSCR codes with dmax{2k-1-t,k} and 2tn-k
	V-A Systematic MSCR codes
	V-B Scalar MSCR codes with dmax{2k-1-t,k} and 2tn-k

	VI Nonexistence of linear scalar MSCR codes for k<d<2k-2-t
	VI-A Linear MSCR codes with invariant repair space
	VI-B Interference alignment and nonexistence result

	VII Conclusions
	References
	Appendix A: Proof of Lemma ??

