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Binary MDS Array Codes with Optimal Repair

Hanxu Hou and Patrick P. C. Lee

Abstract

Consider a binary maximum distance separable (MDS) array code composed of an m × (k + r)

array of bits with k information columns and r parity columns, such that any k out of k + r columns

suffice to reconstruct the k information columns. Our goal is to provide optimal repair access for binary

MDS array codes, meaning that the bandwidth triggered to repair any single failed information or parity

column is minimized. In this paper, we propose a generic transformation framework for binary MDS

array codes, using EVENODD codes as a motivating example, to support optimal repair access for

k + 1 ≤ d ≤ k + r − 1, where d denotes the number of non-failed columns that are connected for

repair; note that when d < k + r − 1, some of the chosen d columns in repairing a failed column

are specific. In addition, we show how our transformation framework applies to an example of binary

MDS array codes with asymptotically optimal repair access of any single information column and

enables asymptotically or exactly optimal repair access for any column. Furthermore, we present a new

transformation for EVENODD codes with two parity columns such that the existing efficient repair

property of any information column is preserved and the repair access of parity column is optimal.

Index Terms

Binary MDS array codes, EVENODD codes, repair bandwidth, repair access.

I. INTRODUCTION

Large-scale storage systems typically introduce redundancy into data storage to provide fault

tolerance and maintain storage reliability. Erasure coding is a redundancy technique that signifi-

cantly achieves higher reliability than replication at the same storage overhead [1], and has been

widely adopted in commercial storage systems [2], [3]. One important class of erasure codes is
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maximum distance separable (MDS) codes, which achieve the maximum reliability for a given

amount of redundancy. Specifically, an MDS code transforms k information symbols into k+ r

encoded symbols of the same size for some configurable parameters k and r, such that any k

out of k + r symbols are sufficient to retrieve all k information symbols. Reed-Solomon (RS)

codes [4] are one well-known example of MDS codes.

In this paper, we examine a special class of MDS codes called binary MDS array codes, which

have low computational complexity since the encoding and decoding procedures only involve

XOR operations. Examples of binary MDS array codes are EVENODD [5]–[7], X-code [8], and

RDP [9], [10]. Specifically, we consider a binary MDS array code that is composed of an array

of size m × (k + r), where each element in the array is a bit. In this work, we assume that

the code is systematic, meaning that k columns are information columns that store information

bits, and the remaining r columns are parity columns that store parity bits encoded from the k

information columns. The code is MDS, meaning that any k out of k+r columns can reconstruct

all the original k information columns. We distribute the k + r columns across k + r distinct

storage nodes, such that the bits in each column are stored in the same node. We use the terms

“column” and “node” interchangeably in this paper.

In large-scale storage systems, node failures are common and the majority of all failures are

single node failures [11]. Thus, it is critical to design an efficient repair scheme for repairing

the lost bits of a single failed node, while providing fault tolerance for multiple node failures.

The problem of repairing a single node failure was first formulated by Dimakis et al. [12], in

which it is shown that the amount of symbols downloaded for repairing a single node failure

(called the repair bandwidth) of an m× (k + r) MDS array code is at least (in units of bits):

dm

d− k + 1
, (1)

where d (k ≤ d ≤ k + r − 1) is the number of nodes connected to repairing the failed node.

Many constructions [13]–[17] of MDS array codes have been proposed to achieve the optimal

repair bandwidth in (1). If the repair bandwidth of a binary MDS array code achieves the optimal

value in (1), we say that the code has optimal repair bandwidth. If the repair does not require

any arithmetic operations on the d connected nodes, then the repair is called uncoded repair. A

binary MDS array code is said to achieve optimal repair access if the repair bandwidth is (1)

with uncoded repair.

DRAFT August 29, 2019



3

A. Related Work

There are many related studies on binary MDS array codes along different directions, such as

new constructions [6], [7], [18]–[20], efficient decoding methods [21]–[26] and the improvement

of the repair problem [27]–[33].

In particular, EVENODD is well explored in the literature, and has been extended to STAR

codes [21] with three parity columns and generalized EVENODD [6], [7] with more parity

columns. The computational complexity of EVENODD is optimized in [20] by a new construc-

tion. A sufficient condition for the generalized EVENODD to be MDS with more than eight

parity columns is given in [34].

RDP is another important class of binary MDS array codes with two parity columns. It is

extended to RTP codes [18] to tolerate three column failures. Blaum [10] generalized RDP

to correct more than three column failures and showed that the generalized EVENODD and

generalized RDP share the same MDS property condition. The authors in [25] proposed a

unified form of generalized EVENODD and generalized RDP, and presented an efficient decoding

method for some patterns of failures.

The above constructions are based on the Vandermonde matrix. Some constructions of binary

MDS array codes based on Cauchy matrix are Cauchy Reed-Solomon codes [35], Rabin-like

codes [26], [36] and circulant Cauchy codes [37].

Most of the decoding methods focus on generalized EVENODD [21], [22] and generalized

RDP [18], [24] with three parity columns. The study [25] shows an efficient erasure decoding

method based on the LU factorization of Vandermonde matrix for EVENODD and RDP with

more than two parity columns.

There have been many studies [27], [28], [31]–[33], [38]–[42] on the repair problem of binary

MDS array codes. Some optimal repair schemes reduce I/O for RDP [28], X-code [38] and

EVENODD [27] by approximately 25%, but the repair bandwidth is sub-optimal. ButterFly codes

[41], [42] are binary MDS array codes with optimal repair for information column failures, but

only has two parity columns (i.e., r=2). MDR codes [39], [40] are constructed with r = 2 and

have optimal repair bandwidth for k information columns and one parity column. Binary MDS

array codes with more than two parity columns are proposed in [31]–[33]; however, the repair

bandwidth is asymptotically optimal and the d helper columns are specifically selected.
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B. Contributions

The contributions of this paper are summarized as follows.

1) First, we propose a generic transformation for an m × (k + r) EVENODD code. The

transformed EVENODD code is of size m(d− k + 1)× (k + r) and has three properties:

(1) the transformed EVENODD code achieves optimal repair access for the chosen d−k+1

columns; (2) the property of optimal repair access for the chosen d − k + 1 columns of

the transformed EVENODD code is preserved if we apply the transformation once more

for the transformed EVENODD code; and (3) the transformed EVENODD code is MDS.

2) Second, we present a family of m(d−k+1)⌈
k

d−k+1
⌉+⌈ r

d−k+1
⌉×(k+r) multi-layer transformed

EVENODD codes with r ≥ 2, such that it achieves optimal repair access for all columns

based on the EVENODD transformation, where k + 1 ≤ d ≤ k + r − 1. Some of the d

helper columns need to be specifically selected.

3) Third, the efficient decoding method of the original EVENODD code is also applicable to

the proposed family of multi-layer transformed EVENODD codes.

4) Lastly, the other binary MDS array codes, such as RDP [10] and codes in [26], [31]–

[33], [35]–[37], can also be transformed to achieve optimal repair access and the efficient

decoding methods of the original binary MDS array codes are maintained in the trans-

formed codes. By applying the transformation with well-chosen encoding coefficients for an

example of binary MDS array codes [33] that have asymptotically optimal repair access for

any information column, we show that the obtained transformed codes have asymptotically

optimal repair access for any information column and optimal repair access for any parity

column. We also show how to design a transformation for EVENODD codes with two

parity columns such that the transformed codes have optimal repair access for any single

parity column and the repair access of any single information column of the transformed

codes is roughly 3/4 of all the information bits.

A closely related work to ours is [16], which also proposes a transformation for non-binary

MDS codes to enable optimal repair access. The main differences between the work in [16] and

ours are two-fold. First, our transformation is designed for binary MDS array codes, while the

transformation in [16] is designed for non-binary MDS codes. The minimum operation unit of

our transformed codes is a bit, so that we can carefully choose the encoding coefficients of the

transformation to combine the efficient repair property of existing or newly designed binary MDS
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array codes for any single information column as well as the optimal repair of the transformed

codes for any parity column. In contrast, the minimum operation unit of the transformation [16]

for non-binary MDS codes is a field element, so we cannot directly apply the transformation [16]

for binary MDS array codes. Even though we can view each column of some binary MDS array

codes (such as EVENODD codes with p being a special prime number [6]) as a field element, if

we apply the transformation [16] for such binary MDS array codes, the efficient repair property

of such binary MDS array codes for any single information column cannot be maintained, as the

efficient repair property of binary MDS array codes is achieved by downloading some bits from

the chosen columns but not all the bits (field element) from the chosen columns. We illustrate

the transformation of an example of binary MDS array codes [33] with asymptotically optimal

repair access for any single information column to obtain the transformed array codes that have

asymptotically optimal repair for any information column and optimal repair access for any parity

column in Section IV. We also design a new transformation for EVENODD codes with r = 2

parity columns such that the repair access of any single information column of the transformed

codes is roughly 3/4 of all the information bits and the repair access of each parity column is

optimal in Section IV-B. Second, our work allows a more flexible number of nodes connected

for repairing the failed node. In particular, our work allows k + 1 ≤ d ≤ k + r − 1, while the

work in [16] requires d = k + r − 1.

II. TRANSFORMATION OF EVENODD CODES

We first review the definition of EVENODD codes. We then present our transformation

approach.

A. Review of EVENODD Codes

An EVENODD code is an array code of size (p− 1)× (k + r), where p is a prime number

with p ≥ max{k, r}. Given the (p − 1) × (k + r) array [ai,j] for i = 0, 1, . . . , p − 2 and

j = 0, 1, . . . , k + r − 1, the p− 1 bits a0,j , a1,j, . . . , ap−2,j in column j can be represented as a

polynomial

aj(x) = a0,j + a1,jx+ · · ·+ ap−2,jx
p−2.

Without loss of generality, we store the information bits in the k leftmost columns and the

parity bits in the remaining r columns. The first k polynomials a0(x), . . . , ak−1(x) are called

August 29, 2019 DRAFT
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information polynomials, and the last r polynomials ak, . . . , ak+r−1(x) are parity polynomials.

The r parity polynomials are computed as

[

ak(x) · · · ak+r−1(x)
]

=
[

a0(x) · · · ak−1(x)
]















1 1 · · · 1

1 x · · · xr−1

...
...

. . .
...

1 xk−1 · · · x(r−1)(k−1)















(2)

over the ring F2[x]/(1 + x+ · · ·+ xp−1). The matrix on the right-hand side of (2) is called the

encoding matrix.

B. The Transformation

We will present the transformation that can convert a (p−1)×(k+r) EVENODD code into a

(p−1)(d−k+1)× (k+ r) transformed code with optimal repair access for any chosen d−k+1

columns, where k+1 ≤ d ≤ k+ r− 1. For the ease of presentation, we assume that the chosen

d− k + 1 columns are the first d− k + 1 columns in the following discussion.

1) The First Transformation: Given the codewords of a (p− 1)× (k + r) EVENODD code

a0(x), . . . , ak+r−1(x), we first generate d − k + 1 instances a0,ℓ(x), . . . , ak+r−1,ℓ(x) for ℓ =

0, 1, . . . , d−k. Specifically, the r parity polynomials ak,ℓ(x), . . . , ak+r−1,ℓ(x) are computed by the

multiplication of [a0,ℓ(x), . . . , ak−1,ℓ(x)] and the encoding matrix in (2), where ℓ = 0, 1, . . . , d−k.

For i = 0, 1, . . . , d− k, the polynomials in column i are

ai,0(x) + a0,i(x), ai,1(x) + a1,i(x), . . . , ai,i−1(x) + ai−1,i(x),

ai,i(x), ai,i+1(x) + (1 + xe)ai+1,i(x),

ai,i+2(x) + (1 + xe)ai+2,i(x), . . . , ai,d−k(x) + (1 + xe)ad−k,i(x),

(3)

where e is a positive integer with 1 ≤ e ≤ p−1. On the other hand, for i = d−k+1, . . . , k+r−1,

the polynomials in column i are

ai,0(x), ai,1(x), . . . , ai,d−k(x).

The above transformation is called the first transformation and the obtained codes are called

transformed EVENODD codes. Each column of the transformed EVENODD codes has d−k+1

polynomials. Table I shows an example of the first transformed EVENODD code with k = 4,

r = 2, d = 5 and e = 1.
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TABLE I: The first transformation for EVENODD codes with k = 4, r = 2, d = 5 and e = 1.

Column 0 Column 1 Column 2 Column 3 Column 4 Column 5

a0,0(x) a1,0(x)+ a2,0(x) a3,0(x) a4,0(x) = a0,0(x) + a1,0(x)+ a5,0(x) = a0,0(x) + xa1,0(x)+

a0,1(x) a2,0(x) + a3,0(x) x2a2,0(x) + x3a3,0(x)

a0,1(x)+ a1,1(x) a2,1(x) a3,1(x) a4,1(x) = a0,1(x) + a1,1(x)+ a5,1(x) = a0,1(x) + xa1,1(x)+

(1 + x)a1,0(x) a2,1(x) + a3,1(x) x2a2,1(x) + x3a3,1(x)

Remark. For i < j ∈ {0, 1, . . . , d−k}, columns i and j contain the following two polynomials

ai,j(x) + (1 + xe)aj,i(x), aj,i(x) + ai,j(x).

We can solve xeaj,i(x) by summing the above two polynomials. Then, we can obtain aj,i(x) by

multiplying xeaj,i(x) by xp−e, and ai,j(x) by summing aj,i(x) + ai,j(x) and aj,i(x). Therefore,

we can solve two information polynomials aj,i(x), ai,j(x) from columns i and j. If ℓ columns are

chosen that are in the first d−k+1 columns, then we can solve ℓ(ℓ−1) information polynomials

from the chosen ℓ columns, where ℓ = 2, 3, . . . , d− k + 1.

2) The Second Transformation: Note that the above transformed code is a non-systematic

code. To obtain the systematic code, we can first replace ai,ℓ(x) + aℓ,i(x) by a′i,ℓ(x) and replace

aℓ,i(x) + (1 + xe)ai,ℓ(x) by a′ℓ,i(x) for ℓ < i, to obtain that







ai,ℓ(x) = xp−ea′i,ℓ(x) + xp−ea′ℓ,i(x),

aℓ,i(x) = (1 + xp−e)a′i,ℓ(x) + xp−ea′ℓ,i(x).
(4)

Then, we can show the equivalent systematic transformed code as follows. For i = 0, 1, . . . , k−1,

the d−k+1 polynomials in column i are ai,ℓ(x) for ℓ = 0, 1, . . . , d−k. Recall that the polynomial

ai,ℓ(x) is computed by

ai,ℓ(x) =

k−1
∑

j=0

xj(i−k)aj,ℓ(x)

for i = k, k+1, . . . , k+r−1 and ℓ = 0, 1, . . . , d−k. We update r(d−k+1) polynomials ai,ℓ(x)

for i = k, k+1, . . . , k+ r− 1 and ℓ = 0, 1, . . . , d− k, by replacing the component xj(i−k)aj,ℓ(x)

August 29, 2019 DRAFT
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[

1 xi−k · · · x(k−1)(i−k)
]

·


































a0,0(x) xp−ea0,1(x) + (1 + xp−e)a1,0(x) · · · xp−ea0,d−k(x) + (1 + xp−e)ad−k,0(x)

xp−e(a1,0(x) + a0,1(x)) a1,1(x) · · · xp−ea1,d−k(x) + (1 + xp−e)ad−k,1(x)
...

...
. . .

...

xp−e(ad−k,0(x) + a0,d−k(x)) xp−e(ad−k,1(x) + a1,d−k(x)) · · · ad−k,d−k(x)

ad−k+1,0(x) ad−k+1,1(x) · · · ad−k+1,d−k(x)
...

...
. . .

...

ak−1,0(x) ak−1,1(x) · · · ak−1,d−k(x)



































.

(5)

of ai,ℓ(x) by xj(i−k)(xp−eaj,ℓ(x) + (1 + xp−e)aℓ,j(x)) for j < ℓ, and replacing the component

xj(i−k)aj,ℓ(x) of ai,ℓ(x) by xj(i−k)(xp−eaj,ℓ(x) + xp−eaℓ,j(x)) for j > ℓ, i.e.,

ai,ℓ(x) =

(

ℓ−1
∑

j=0

xj(i−k)(xp−eaj,ℓ(x) + (1 + xp−e)aℓ,j(x))

)

+

xℓ(i−k)aℓ,ℓ(x) +

(

d−k
∑

j=ℓ+1

xj(i−k)(xp−eaj,ℓ(x) + xp−eaℓ,j(x))

)

+

(

k−1
∑

j=d−k+1

xj(i−k)aj,ℓ(x)

)

.

The d − k + 1 polynomials in column i for i = k, k + 1, . . . , k + r − 1 are ai,ℓ(x) for ℓ =

0, 1, . . . , d−k. In other words, the d−k+1 polynomials in column i for i = k, k+1, . . . , k+r−1

are ai,0(x), . . . , ai,d−k(x), which are computed by (5) over the ring F2[x]/(1 + x+ · · ·+ xp−1).

The above transformation is called the second transformation. The transformed EVENODD code

is denoted by EVENODD1. Note that each column of EVENODD codes has one polynomial,

and each column of EVENODD1 obtained by applying the transformation for EVENODD codes

has d− k + 1 polynomials.

When k = 4, r = 2, d = 5 and e = 1, the EVENODD1 code with the second transformation

is shown in Table II. We claim that we can recover all the information polynomials from any

four columns. We can obtain the information polynomials from columns 0, 1, 2 and 3 directly.

Consider that we want to recover the information polynomials from one parity column and three

information columns, say columns 0, 2, 3 and 4. We can obtain a1,0(x) by

x(a4,0(x) + a0,0(x) + xp−1a0,1(x) + a2,0(x) + a3,0(x)),
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and a1,1(x) by

a4,1(x) + xp−1a0,1(x) + (1 + xp−1)a1,0(x) + a2,1(x) + a3,1(x).

Suppose that we want to solve the information polynomials from two information columns and

two parity columns, say columns 1, 2, 4 and 5. First, we compute the following two polynomials

by subtracting a1,1(x), a2,1(x) from a4,1(x), a5,1(x),

p1(x) =a4,1(x) + (1 + xp−1)a1,0(x) + a1,1(x) + a2,1(x)

=xp−1a0,1(x) + a3,1(x),

p2(x) =a5,1(x) + (1 + xp−1)a1,0(x) + xa1,1(x) + x2a2,1(x)

=xp−1a0,1(x) + x3a3,1(x).

Then, we can solve a3,1(x) by
p1(x)+p2(x)

1+x3 ,1 and a0,1(x) by x(a3,1(x) + p1(x)). The other two

information polynomials a0,0(x), a3,0(x) can be solved similarly.

The repair access of each of the first two columns is optimal. Suppose that the first column

fails. We can first solve a0,0(x) and xp−1(a1,0(x) + a0,1(x)) by accessing four polynomials

a2,0(x), a3,0(x), a4,0(x), a5,0(x) due to the MDS property of EVENODD codes, and then recover

a0,1(x) by computing x(xp−1(a1,0(x) + a0,1(x)) + xp−1a1,0(x)). Therefore, we can recover two

information polynomials by downloading five polynomials from five helper columns, and the

repair bandwidth achieves the minimum value in (1). The repair of the second column is similar.

C. Properties of Transformed EVENODD Codes

The next theorem shows that the second transformed EVENODD code is also MDS code.

Theorem 1. If the (k + r, k) EVENODD code is MDS code, then the second transformed

EVENODD code is also MDS.

Proof. The code is an MDS code if any k out of k + r columns can retrieve all information

bits. It is equivalent to show that the k information columns can be reconstructed from any t

information columns and any k− t parity columns, where max{0, k− r} ≤ t ≤ k. When t = k,

we can obtain the k information columns directly.

11 + x3 is invertible in F2[x]/(1 + x+ · · ·+ xp−1) due to the MDS property of EVENODD codes given in Proposition 2.2

in [6].
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TABLE II: The second transformation for EVENODD codes with k = 4, r = 2, d = 5 and

e = 1.

Column 0 Column 1 Column 2 Column 3 Column 4 Column 5

a0,0(x) a1,0(x) a2,0(x) a3,0(x) a0,0(x) + xp−1a1,0(x)+ a0,0(x) + a1,0(x) + a0,1(x)

xp−1a0,1(x) + a2,0(x) + a3,0(x) +x2a2,0(x) + x3a3,0(x)

a0,1(x) a1,1(x) a2,1(x) a3,1(x) xp−1a0,1(x) + (1 + xp−1)a1,0(x)+ xp−1a0,1(x) + (1 + xp−1)a1,0(x)+

a1,1(x) + a2,1(x) + a3,1(x) xa1,1(x) + x2a2,1(x) + x3a3,1(x)

In the following, we consider the case of t < k. Suppose that columns i1, i2, . . . , it and columns

j1, j2, . . . , jk−t are connected with 0 ≤ i1 < . . . < it ≤ k−1 and k ≤ j1 < . . . < jk−t ≤ k+r−1.

We need to recover k − t information columns e1, e2, . . . , ek−t, where

e1 < e2 < · · · < ek−t ∈ {0, 1, . . . , k − 1} \ {i1, i2, . . . , it}.

Recall that we can obtain t(d − k + 1) information polynomials ai1,ℓ(x), . . . , ait,ℓ(x) and (k −

t)(d − k + 1) parity polynomials aj1,ℓ(x), . . . , ajk−t,ℓ(x) from the connected columns, where

ℓ = 0, 1, . . . , d− k.

We divide the proof into two cases: i1 < d − k and i1 ≥ d − k. We first assume that

i1 < d− k. By subtracting t(d− k + 1) information polynomials from k − t parity polynomials

aj1,i1(x), . . . , ajk−t,i1(x) each, we obtain k−t syndrome polynomials over F2[x]/(1+x+· · ·+xp−1)

as

[xp−eae1,i1(x) · · · xp−eaeα,i1(x) aeα+1,i1(x) · · · aek−t,i1(x)]














xe1(j1−k) xe1(j2−k) · · · xe1(jk−t−k)

xe2(j1−k) xe2(j2−k) · · · xe2(jk−t−k)

...
...

. . .
...

xek−t(j1−k) xek−t(j2−k) · · · xek−t(jk−t−k)















,

where α is an integer that ranges from 1 to k − t − 1 with eα ≤ d − k and eα+1 ≥ d − k + 1.

In the decoding process from columns 1, 2, 4 and 5 of the example in Table II, we have k = 4,

t = 2, e = 1, i1 = 1, e1 = 0, e2 = 3, j1 = k, j2 = k + 1 and α = 1. The two syndrome

polynomials are

[

p1(x) p2(x)
]

=
[

xp−1a0,1(x) a3,1(x)
]

·





1 1

1 x3



 .

DRAFT August 29, 2019



11

As the (k + r, k) EVENODD code is MDS, we can recover the polynomials

xp−eae1,i1(x), . . . , x
p−eaeα,i1(x), aeα+1,i1(x), . . . , aek−t,i1(x),

and therefore, ae1,i1(x), ae2,i1(x), . . . , aek−t,i1(x) can be recovered. Let c be an integer with 2 ≤

c ≤ t such that ic−1 < d−k and ic ≥ d−k. By the same argument, we can recover polynomials

ae1,ih(x), ae2,ih(x), . . . , aek−t,ih(x) for h = 2, 3, . . . , c− 1. Once the polynomials

ae1,ih(x), ae2,ih(x), . . . , aek−t,ih(x)

for h = 1, 2, . . . , c−1 are known, we can recover all the other failed polynomials by first subtract-

ing all t(d−k+1) information polynomials and the known polynomials ae1,ih(x), ae2,ih(x), . . . , aek−t,ih(x)

with h = 1, 2, . . . , c − 1 from parity polynomials aj1,iℓ(x), . . . , ajk−t,iℓ(x), followed by solving

the failed polynomials according to the MDS property of the (k+ r, k) EVENODD code, where

ℓ ∈ {0, 1, . . . , d− k} \ {i1, i2, . . . , ic−1}.

If i1 ≥ d − k, then it > · · · > i1 ≥ d − k and we can obtain the following syndrome

polynomials by subtracting all t(d− k+1) information polynomials from all (k− t)(d− k+1)

parity polynomials

[

a∗e1,ℓ(x) a∗e2,ℓ(x) · · · a∗ek−t,ℓ
(x)
]

·















xe1(j1−k) xe1(j2−k) · · · xe1(jk−t−k)

xe2(j1−k) xe2(j2−k) · · · xe2(jk−t−k)

...
...

. . .
...

xek−t(j1−k) xek−t(j2−k) · · · xek−t(jk−t−k)















,

where

a∗ei,ℓ(x) =



















aei,ℓ(x) if ei = ℓ,

xp−eaei,ℓ(x) + (1 + xp−e)aℓ,ei(x) if ei < ℓ,

xp−eaei,ℓ(x) + xp−eaℓ,ei(x) if ei > ℓ,

(6)

ℓ = 0, 1, . . . , d− k. The polynomials a∗e1,ℓ(x), a
∗
e2,ℓ

(x), . . . , a∗ek−t,ℓ
(x) can be recovered, because

(k + r, k) EVENODD code is MDS. Then, we can obtain aℓ,ℓ(x) directly, aei,ℓ(x) for ei > ℓ by

a∗ei,ℓ(x) + a∗ℓ,ei(x), and aei,ℓ(x) for ei < ℓ by xe(aℓ,ei(x) + a∗ℓ,ei(x)).

We show in the next theorem that the second transformed EVENODD code has optimal access

for the first d− k + 1 columns.

Theorem 2. The repair bandwidth and repair access of column i of the second transformed

EVENODD code for i = 0, 1, . . . , d− k is optimal.
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Proof. For i = 0, 1, . . . , d− k, column i can be repaired by downloading one polynomial from

each of d helper columns. Among d columns, d − k columns are columns 0, 1, . . . , i − 1, i +

1, . . . , d−k and other k columns are chosen from columns d−k+1, . . . , k+ r−1. Specifically,

we can recover the polynomials ai,i(x), x
p−eaj,i(x)+(1+xp−e)ai,j(x) for j < i and xp−e(aℓ,i(x)+

ai,ℓ(x)) for ℓ > i, by downloading k polynomials ah1,i(x), . . . , ahk,i(x) from columns h1, . . . , hk,

where h1 6= . . . 6= hk ∈ {d − k + 1, . . . , k + r − 1}, due to the MDS property of EVENODD

codes. Then we download d− k polynomials a0,i(x), . . . , ai−1,i(x), ai+1,i(x), . . . , ad−k,i(x) from

columns 0, 1, . . . , i − 1, i + 1, . . . , d − k. Finally, we subtract the downloaded polynomials

a0,i(x), . . . , ai−1,i(x), ai+1,i(x), . . . , ad−k,i(x) from the recovered polynomials xp−eaj,i(x) + (1 +

xp−e)ai,j(x) for j < i and xp−e(aℓ,i(x)+ai,ℓ(x)) for ℓ > i, to obtain polynomials ai,0(x), ai,1(x), . . . , ai,i−1(x), ai,i+1(x), . . . , ai,d−k(x).

This completes the proof.

Note that EVENODD1 with the first transformation also satisfies Theorem 1 and Theorem 2,

as the two transformations are equivalent. In the following, let EVENODD1 be the transformed

code with the first transformation and EVENODD2 be the transformed code by applying the first

transformation for the columns from d− k + 1 to 2d− 2k + 1 of EVENODD1. Specifically, we

can obtain EVENODD2 as follows. Let

t = d− k + 1.

We first generate t instances of the code EVENODD1 and view the t polynomials stored in each

column of EVENODD1 as a vector. For ℓ = 0, 1, . . . , d − k and h = 0, 1, . . . , n− 1, the vector

stored in column h of instance ℓ of EVENODD1 is denoted as vℓ
h. For i = 0, 1, . . . , d−k, column

t+ i of EVENODD2 stores the following t vectors (t2 polynomials)

v
0
t+i + v

i
t,

v
1
t+i + v

i
t+1, . . . ,

v
i−1
t+i + v

i
t+i−1,

v
i
t+i,

v
i+1
t+i + (1 + xe)vi

t+i+1,

v
i+2
t+i + (1 + xe)vi

t+i+2, . . . ,

v
d−k
t+i + (1 + xe)vi

t+d−k,

(7)

where 1 ≤ e ≤ p− 1. Note that the multiplication of a polynomial xe and a vector

v =
[

v0 v1 . . . vd−k

]
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is defined as

xe
v =

[

xev0 xev1 . . . xevd−k

]

and the addition of two vectors

v
1 =

[

v10 v11 . . . v1d−k

]

and

v
2 =

[

v20 v21 . . . v2d−k

]

is

v
1 + v

2 =
[

v10 + v20 v11 + v21 . . . v1d−k + v2d−k

]

.

For h ∈ {0, 1, . . . , n− 1} \ {t, t+ 1, . . . , 2t− 1}, column h stores t vectors (t2 polynomials)

v
0
h,v

1
h, . . . ,v

d−k
h .

For ℓ = 0, 1, . . . , d− k and h = t, t+ 1, . . . , n− 1, we have that

v
ℓ
h =

[

ah,ℓt(x) ah,ℓt+1(x) · · · ah,(ℓ+1)t−1(x)
]

according to the first transformation. Table III shows the storage of the first 2t columns of

EVENODD2 by (7). We show in the next theorem that the optimal repair access property of the

first d− k + 1 columns of EVENODD1 code is maintained in EVENODD2.

Theorem 3. The repair access of column i of EVENODD2 code for i = 0, 1, . . . , 2d− 2k+1 is

optimal.

Proof. By Theorem 2, we can repair t vectors (t2 polynomials) in column i for i = t, t +

1 . . . , 2t− 1 by downloading k vectors (kt polynomials)

v
i−t
h1

,vi−t
h2

, . . . ,vi−t
hk

(8)

from columns hj with j = 0, 1, . . . , k − 1, where hj = j for j = 0, 1, . . . , t − 1 and hj ∈

{2t, . . . , k + r − 1} for j = t, t + 1, . . . , k − 1, and the following d − k vectors ((d − k)t

polynomials)

v
i−t
t + (1 + xe)v0

i , . . . ,v
i−t
i−1 + (1 + xe)vi−t−1

i ,vi−t
i+1 + v

i−t+1
i , . . . ,vi−t

2t−1 + v
t−1
i . (9)

Specifically, we can first compute vectors

v
i−t
t ,vi−t

t+1, . . . ,v
i−t
2t−1
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TABLE III: The storage of the first 2t columns of EVENODD2, where t = d− k + 1.

Column 0 Column 1 · · · Column d− k

a0,0(x) a1,0(x) + a0,1(x) · · · ad−k,0(x) + a0,d−k(x)

a0,1(x) + (1 + xe)a1,0(x) a1,1(x) · · · ad−k,1(x) + a1,d−k(x)

.

.

.
.
.
.

. . .
.
.
.

a0,d−k(x) + (1 + xe)ad−k,0(x) a1,d−k(x) + (1 + xe)ad−k,1(x) · · · ad−k,d−k(x)

.

.

.
.
.
.

.

.

.
.
.
.

a0,(d−k)t(x) a1,(d−k)t(x) + a0,(d−k)t+1(x) · · · ad−k,(d−k)t(x) + a0,t2−1(x)

a0,(d−k)t+1(x) + (1 + xe)a1,(d−k)t(x) a1,(d−k)t+1(x) · · · ad−k,(d−k)t+1(x) + a1,t2−1(x)

.

.

.
.
.
.

. . .
.
.
.

a0,t2−1(x) + (1 + xe)ad−k,(d−k)t(x) a1,t2−1(x) + (1 + xe)ad−k,(d−k)t+1(x) · · · ad−k,t2−1(x)

Column t Column t + 1 · · · Column 2t − 1

at,0(x) at+1,0(x) + at,t(x) · · · a2t−1,0(x) + at,(d−k)t(x)

at,1(x) at+1,1(x) + at,t+1(x) · · · a2t−1,1(x) + at,(d−k)t+1(x)

.

.

.
.
.
. · · ·

.

.

.

at,d−k(x) at+1,d−k(x) + at,2t−1(x) · · · a2t−1,d−k(x) + at,t2−1(x)

at,t(x) + (1 + xe)at+1,0(x) at+1,t(x) · · · a2t−1,t(x) + at+1,(d−k)t(x)

at,t+1(x) + (1 + xe)at+1,1(x) at+1,t+1(x) · · · a2t−1,t+1(x) + at+1,(d−k)t+1(x)

.

.

.
.
.
. · · ·

.

.

.

at,2t−1(x) + (1 + xe)at+1,d−k(x) at+1,2t−1(x) · · · a2t−1,2t−1(x) + at+1,t2−1(x)

.

.

.
.
.
. · · ·

.

.

.

at,(d−k)t(x) + (1 + xe)a2t−1,0(x) at+1,(d−k)t(x) + (1 + xe)a2t−1,t(x) · · · a2t−1,(d−k)t(x)

at,(d−k)t+1(x) + (1 + xe)a2t−1,1(x) at+1,(d−k)t+1(x) + (1 + xe)a2t−1,t+1(x) · · · a2t−1,(d−k)t+1(x)

.

.

.
.
.
. · · ·

.

.

.

at,t2−1(x) + (1 + xe)a2t−1,d−k(x) at+1,t2−1(x) + (1 + xe)a2t−1,2t−1(x) · · · a2t−1,t2−1(x)

from k vectors in (8), and then recover the t vectors in column i with the above t vectors and

the downloaded d− k vectors in (9).

Consider the repair of column i with i = 0, 1, . . . , d − k. We can repair t2 polynomials in

column i by downloading (2t−1)t polynomials from 2t−1 columns 0, 1, . . . , i−1, i+1, . . . , t−

1, t, t+ 1, . . . , 2t− 1 in rows i+ 1, i+ 1+ t, . . . , i+1+ (t− 1)t, and (d− 2t+1)t polynomials

from d − 2t + 1 columns h1, . . . , hd−2t+1 in rows i + 1, i + 1 + t, . . . , i + 1 + (t − 1)t with

indices 2t ≤ h1 < . . . < hd−2t+1 ≤ n − 1. Note that the t2 polynomials downloaded from

columns t to 2t− 1 are in (10) (in the next page). We can compute at+1,i(x) and at,t+i(x) from

at+1,i(x) + at,t+i(x) and at,t+i(x) + (1 + xe)at+1,i(x) by

(at,t+i(x) + (1 + xe)at+1,i(x))− (at+1,i(x) + at,t+i(x))

xe
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at,i(x) at+1,i(x) + at,t+i(x) · · · a2t−1,i(x) + at,(d−k)t+i(x)

at,t+i(x) + (1 + xe)at+1,i(x) at+1,t+i(x) · · · a2t−1,t+i(x) + at+1,(d−k)t+i(x)
...

...
. . .

...

at,(d−k)t+i(x) + (1 + xe)a2t−1,i(x) at+1,(d−k)t+i(x) + (1 + xe)a2t−1,t+i(x) · · · a2t−1,(d−k)t+i(x)

















.

(10)

and

(1 + xe)(at+1,i(x) + at,t+i(x))− (at,t+i(x) + (1 + xe)at+1,i(x))

xe
,

respectively. Similarly, we can compute t2 polynomials

at,ℓt+i(x), at+1,ℓt+i(x), . . . , a2t−1,ℓt+i(x),

from t2 polynomials in (10) (in the next page), where ℓ = 0, 1, . . . , d − k. Together with (d −

2t+ 1)t polynomials

ah1,ℓt+i(x), ah2,ℓt+i(x), . . . , ahd−2t+1,ℓt+i(x),

with ℓ = 0, 1, . . . , d− k downloaded from d− 2t+ 1 columns h1, . . . , hd−2t+1, we can compute

the following t2 polynomials

a0,ℓt+i(x), a1,ℓt+i(x), . . . , ad−k,ℓt+i(x),

with ℓ = 0, 1, . . . , d−k. Finally, we can recover all t2 polynomials with the above t2 polynomials

and the downloaded (t−1)t polynomials from t−1 columns 0, 1, . . . , i−1, i+1, . . . , t−1.

Each column of EVENODD1 stores d − k + 1 polynomials, we can repair each of the first

d − k + 1 columns by accessing one polynomial from each of the d columns according to

Theorem 2 and the repair access is optimal according to (1). In EVENODD2, each column has

(d− k + 1)2 polynomials. According to Theorem 3, the (d− k + 1)2 polynomial in each of the

first 2(d− k + 1) columns can be recovered by accessing d − k + 1 polynomials from each of

the d columns and the repair access is optimal according to (1).
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TABLE IV: EVENODD2 by applying the first transformation twice for EVENODD codes with

k = 4, r = 2, d = 5 and e = 1.

Column 0 Column 1 Column 2 Column 3 Column 4 Column 5

a0,0(x) a1,0(x) + a0,1(x) a2,0(x) a3,0(x) + a2,2(x) a4,0(x) a5,0(x)

a0,1(x) + (1 + x)a1,0(x) a1,1(x) a2,1(x) a3,1(x) + a2,3(x) a4,1(x) a5,1(x)

a0,2(x) a1,2(x) + a0,3(x) a2,2(x) + (1 + x)a3,0(x) a3,2(x) a4,2(x) a5,2(x)

a0,3(x) + (1 + x)a1,2(x) a1,3(x) a2,3(x) + (1 + x)a3,1(x) a3,3(x) a4,3(x) a5,3(x)

Table IV shows the EVENODD2 by applying the first transformation twice for EVENODD

codes with k = 4, r = 2, d = 5 and e = 1. We can repair column 0 by downloading the

following 10 polynomials

a1,0(x) + a0,1(x), a2,0(x), a3,0(x) + a2,2(x), a4,0(x),

a5,0(x), a1,2(x) + a0,3(x), a2,2(x) + (1 + x)a3,0(x),

a3,2(x), a4,2(x), a5,2(x).

Specifically, we first compute a2,2(x) and a3,0(x) from a3,0(x)+a2,2(x) and a2,2(x)+(1+x)a3,0(x).

Then, we can compute a0,0(x), a1,0(x) and a0,2(x), a1,2(x) from

a2,0(x), a3,0(x), a4,0(x), a5,0(x),

and

a2,2(x), a3,2(x), a4,2(x), a5,2(x),

respectively, according to the MDS property of EVENODD codes. Finally, we can recover

a0,1(x) + (1 + x)a1,0(x) and a0,3(x) + (1 + x)a1,2(x) by (a1,0(x) + a0,1(x)) + xa1,0(x) and

(a1,2(x) + a0,3(x)) + xa1,2(x), respectively. According to Theorem 3, we can repair each of the

first four columns by downloading 10 polynomials and the repair access is optimal.

Consider the systematic EVENODD2 code with k = 4, r = 2, d = 5 and e = 1 in Table V.

The repair access of column i for i = 0, 1, 2, 3 is optimal. We can recover the four polynomials

in column 0 by downloading 10 polynomials

a1,0(x), a1,2(x), a2,0(x), a2,2(x), a3,0(x), a3,2(x),

a4,0(x), a4,2(x), a5,0(x), a5,2(x).
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TABLE V: Systematic EVENODD2 code by applying the second transformation twice for

EVENODD code with k = 4, r = 2, d = 5 and e = 1.

Information columns Parity column 0

a0,0(x) a1,0(x) a2,0(x) a3,0(x) a0,0(x) + (xp−1a1,0(x) + xp−1a0,1(x)) + a2,0(x) + (xp−1a3,0(x) + xp−1a2,2(x))

a0,1(x) a1,1(x) a2,1(x) a3,1(x) xp−1a0,1(x) + (1 + xp−1)a1,0(x) + a1,1(x) + a2,1(x) + xp−1a3,1(x) + xp−1a2,3(x)

a0,2(x) a1,2(x) a2,2(x) a3,2(x) a0,2(x) + (xp−1a1,2(x) + xp−1a0,3(x)) + xp−1a2,2(x) + (1 + xp−1)a3,0(x) + a3,2(x)

a0,3(x) a1,3(x) a2,3(x) a3,3(x) xp−1a0,3(x) + (1 + xp−1)a1,2(x) + a1,3(x) + xp−1a2,3(x) + (1 + xp−1)a3,1(x) + a3,3(x)

Parity column 1

a0,0(x) + a1,0(x) + a0,1(x) + x2a2,0(x) + (x2a3,0(x) + x2a2,2(x))

xp−1a0,1(x) + (1 + xp−1)a1,0(x) + xa1,1(x) + x2a2,1(x) + x2a3,1(x) + x2a2,3(x)

a0,2(x) + (a1,2(x) + a0,3(x)) + xa2,2(x) + (x+ x2)a3,0(x) + x3a3,2(x)

xp−1a0,3(x) + (1 + xp−1)a1,2(x) + xa1,3(x) + xa2,3(x) + (x+ x2)a3,1(x) + x3a3,3(x)

By subtracting polynomials a1,0(x), a2,0(x), a3,0(x) and a2,2(x) from a4,0(x) and a5,0(x) each,

we can obtain two polynomials

p1(x) =a0,0(x) + xp−1a0,1(x),

p2(x) =a0,0(x) + a0,1(x).

Thus, we can recover a0,0(x) and a0,1(x) by
p1(x)+xp−1p2(x)

1+xp−1 and
p1(x)+p2(x)

1+xp−1 , respectively. Similarly,

we can first obtain

p3(x) =a0,2(x) + xp−1a0,3(x),

p4(x) =a0,2(x) + a0,3(x),

by subtracting polynomials a1,2(x), a2,2(x), a3,2(x) and a3,0(x) from a4,2(x) and a5,2(x) each, and

then recover the other two polynomials in column 0 by
p3(x)+xp−1p4(x)

1+xp−1 and
p3(x)+p4(x)

1+xp−1 . Column 1

can be recovered by downloading

a0,1(x), a0,3(x), a2,1(x), a2,3(x), a3,1(x), a3,3(x),

a4,1(x), a4,3(x), a5,1(x), a5,3(x).

The first transformed EVENODD codes also satisfy the above three theorems, as the two

transformations are equivalent. The EVENODD1 codes have optimal repair for each of the first

d − k + 1 columns according to Theorem 2. By applying the second transformation for the

columns from d − k + 1 to 2d − 2k + 1 of EVENODD1 codes, we obtain EVENODD2 codes
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that have optimal repair for each of the columns from 0 to 2d− 2k+1 according to Theorem 3.

Similarly, we can transform the original EVENODD codes for the columns between i(d−k+1)

and ((i + 1)(d − k + 1)− 1) mod n to obtain the transformed EVENODD codes with optimal

repair with the columns between i(d − k + 1) and ((i + 1)(d − k + 1) − 1) mod n, where

i = 1, 2, . . . , ⌈ n
d−k+1

⌉ − 1. The polynomial 1 + xe used in the transformation in (3) is called the

encoding coefficient associated with the transformation. We may replace the encoding coefficient

1+xe by other polynomials in F2[x]/(1+x+· · ·+xp−1), such as xe, as long as the three theorems

in Section II-C still hold under the specific binary MDS array codes. It is easy to check that the

three theorems in Section II-C hold for EVENODD codes, if we replace the encoding coefficient

1+xe by xe. More generally, we can view the d− k+1 polynomials in (3) as d− k+1 vectors

with length p − 1 and compute the vectors by the summation of some permutated vectors, as

long as the three theorems in Section II-C hold. With more general transformation, we may

combine the transformation and the existing binary MDS array codes with efficient repair for

any single information column to obtain the transformed codes that have efficient repair for

both information and parity columns. Recall that there are some efficient repair schemes for

any information column of RDP [28], X-code [38], EVENODD [27] and the binary MDS array

codes [33]. In Section IV, we will take an example of EVENODD to show how to design the

specific transformation for EVENODD to enable optimal repair for each of the parity columns

and preserve the efficient repair property for any single information column. We also give the

transformation for the binary MDS array codes [33] with efficient repair access for any single

information column such that the transformed codes have optimal repair access for any single

parity column and asymptotically optimal repair access for any single information column in

Section IV.

III. CONSTRUCTION OF MULTI-LAYER TRANSFORMED EVENODD CODES

In the section, we first present the construction of multi-layer transformed EVENODD codes

by applying the transformation given in Section II. We then give a repair algorithm for any

single column with optimal repair access.

A. Construction

The codes considered herein have k information columns and r parity columns. For notational

convenience, we divide k information columns into ⌈ k
d−k+1

⌉ information partitions, each of the
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information partitions has d−k+1 columns. For i = 1, 2, . . . , ⌈ k
d−k+1

⌉−1, information partition

i contains columns between (i−1)(d−k+1) and (i(d−k+1)−1). Information partition ⌈ k
d−k+1

⌉

contains the last d−k+1 information columns. Similarly, the r parity columns are divided into

⌈ r
d−k+1

⌉ parity partitions and parity column i contains parity columns between (i−1)(d−k+1)

and (i(d − k + 1) − 1) for i = 1, 2, . . . , ⌈ r
d−k+1

⌉ − 1. Parity partition ⌈ r
d−k+1

⌉ contains the last

d− k + 1 parity columns. Therefore, we obtain ⌈ k
d−k+1

⌉+ ⌈ r
d−k+1

⌉ partitions, contains ⌈ k
d−k+1

⌉

information partitions and ⌈ r
d−k+1

⌉ parity partitions. We label the index of the partitions from 1

to ⌈ k
d−k+1

⌉ + ⌈ r
d−k+1

⌉. The construction is given in the following.

By applying the transformation for the first information partition (the first d− k+1 columns)

of EVENODD code, we can obtain EVENODD1 with each column having d−k+1 polynomials,

such that EVENODD1 is MDS according to Theorem 1 and has optimal repair bandwidth for

the first d−k+1 information columns according to Theorem 2. By applying the transformation

for the second partition (columns between d − k + 1 and 2(d − k + 1) − 1) of EVENODD1,

we obtain EVENODD2 with each column having (d − k + 1)2 polynomials that is MDS code

according to Theorem 1 and has optimal repair bandwidth for the first 2(d− k+1) information

columns according to Theorem 2 and Theorem 3.

For j = 1, 2, . . . , ⌈ k
d−k+1

⌉ − 1, by recursively applying the transformation for information

partition i + 1 of EVENODDj code, we can obtain EVENODD⌈ k
d−k+1

⌉. Specifically, we can

obtain EVENODDj+1 by applying the transformation for EVENODDj as follows, where j =

1, 2, . . . , ⌈ k
d−k+1

⌉ − 1. We generate d − k + 1 instances of the code EVENODDj and view the

(d−k+1)j polynomials stored in each column of EVENODDj as a vector. For ℓ = 0, 1, . . . , d−k

and h = 0, 1, . . . , n − 1, denote (d − k + 1)j polynomials stored in column h of instance ℓ of

EVENODDj as the vector vℓ
h. For i = 0, 1, . . . , d− k, column j(d− k+1)+ i of EVENODDj+1

stores the following d− k + 1 vectors ((d− k + 1)j+1 polynomials)

v
0
(d−k+1)+i + v

i
(d−k+1),

v
1
(d−k+1)+i + v

i
(d−k+1)+1, . . . ,

v
i−1
(d−k+1)+i + v

i
(d−k+1)+i−1,

v
i
(d−k+1)+i,

v
i+1
(d−k+1)+i + (1 + xe)vi

(d−k+1)+i+1,

v
i+2
(d−k+1)+i + (1 + xe)vi

(d−k+1)+i+2, . . . ,

v
d−k
(d−k+1)+i + (1 + xe)vi

(d−k+1)+d−k,
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where 1 ≤ e ≤ p−1. For h ∈ {0, 1, . . . , n−1} \ {j(d−k+1), j(d−k+1)+1, . . . , (j+1)(d−

k + 1)− 1}, column h stores d− k + 1 vectors ((d− k + 1)j+1 polynomials)

v
0
h,v

1
h, . . . ,v

d−k
h .

Note that the transformation from EVENODDj to EVENODDj+1 is the same as the transformation

from EVENODD1 to EVENODD2, and we can show that the optimal repair property of the first

j(d − k + 1) columns of EVENODDj is maintained in EVENODDj+1 by the similar proof

of Theorem 3. Therefore, we can obtain the code EVENODD⌈ k
d−k+1

⌉ and each column has

(d−k+1)⌈
k

d−k+1
⌉ polynomials. EVENODD⌈ k

d−k+1
⌉ is MDS code according to Theorem 1 and we

can repair each of the first k columns by downloading (d−k+1)⌈
k

d−k+1
⌉−1 polynomials from each

of the chosen d columns, the repair bandwidth of each of the first k columns is optimal according

to Theorem 2 and Theorem 3. To obtain optimal repair bandwidth for parity columns, we can

transform EVENODD⌈ k
d−k+1

⌉ code ⌈ r
d−k+1

⌉ times into EVENODD⌈ k
d−k+1

⌉+⌈ r
d−k+1

⌉ code by the first

transformation. In EVENODD⌈ k
d−k+1

⌉+⌈ r
d−k+1

⌉ code, each column has (d− k + 1)⌈
k

d−k+1
⌉+⌈ r

d−k+1
⌉

polynomials and we can repair each column by downloading (d − k + 1)⌈
k

d−k+1
⌉+⌈ r

d−k+1
⌉−1

polynomials from each of the chosen d columns. Therefore, EVENODD⌈ k
d−k+1

⌉+⌈ r
d−k+1

⌉ code

has optimal repair bandwidth for any column.

B. Repair Algorithm

In the following, we present the repair algorithm for a single column failure that is stated in

Algorithm 1. Note that there is a requirement when choosing the d helper columns in Algorithm 1.

We show in the next lemma that we can always choose the d helper columns that satisfy the

requirement for all f .

Lemma 4. For f = 0, 1, . . . , k + r − 1, column f belongs to partition mf + 1. The first d− k

helper columns are chosen to be the other surviving columns of partition mf +1, and the other

k helper columns hi for i = d − k + 1, . . . , d satisfy that if hi belongs to a partition ℓ with

ℓ > mf + 1, then all d− k + 1 columns of the partition ℓ are in {hd−k+1, . . . , hd}.

Proof. We first consider the information failure, i.e., 0 ≤ f ≤ k−1. The case of k ≤ f ≤ k+r−1

can be proven similarly.

If k is a multiple of d−k+1, then we can choose k helper columns hi for i = d−k+1, . . . , d

as all the columns of any k/(d−k+1) partitions, except partition mf +1. If k is not a multiple
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Algorithm 1 Algorithm of repairing a single failed column f , where 0 ≤ f ≤ k + r − 1.

1: The column f is failed.

2: if f ∈ {0, 1, . . . , k−1}, denote f = (d−k+1)mf + rf , where mf , rf are two integers with

0 ≤ mf and 0 ≤ rf ≤ d− k. then

3: Repair the polynomials in column f by downloading ah1,ℓ(x), ah2,ℓ(x), . . . , ahd,ℓ(x), for

ℓ mod (d−k+1)mf+1 ∈ {rf ·(d−k+1)mf , rf ·(d−k+1)mf+1, . . . , (rf+1)·(d−k+1)mf−1},

where {h1, h2, . . . , hd−k} = {f −mf , f −mf + 1, . . . , f − 1, f + 1, . . . , f −mf + d− k}

and columns hd−k+1, . . . , hd are chosen as follows. For i = d−k+1, . . . , d, if hi belongs

to a partition ℓ with ℓ > mf + 1, then all d − k + 1 columns of the partition ℓ are in

{hd−k+1, . . . , hd}.

4: return

5: if f ∈ {k, k + 1 . . . , k + r− 1}, denote f − k = (d− k + 1)mf + rf , where mf , rf are two

integers with 0 ≤ mf and 0 ≤ rf ≤ d− k. then

6: Repair the polynomials in column f by downloading ah1,ℓ(x), ah2,ℓ(x), . . . , ahd,ℓ(x), for

ℓ mod (d− k+1)⌈
k

d−k+1
⌉+mf+1 ∈ {rf · (d− k+1)⌈

k
d−k+1

⌉+mf , rf · (d− k+1)⌈
k

d−k+1
⌉+mf +

1, . . . , (rf + 1) · (d − k + 1)⌈
k

d−k+1
⌉+mf − 1}, where {h1, h2, . . . , hd−k} = {f −mf , f −

mf +1, . . . , f − 1, f +1, . . . , f −mf + d− k} and columns hd−k+1, . . . , hd are chosen as

follows. For i = d− k+ 1, . . . , d, if hi belongs to a partition ℓ with ℓ > mf + 1, then all

d− k + 1 columns of the partition ℓ are in {hd−k+1, . . . , hd}.

7: return

of d − k + 1, we can divide the proof into two cases: mf = 0 and mf > 0. When mf = 0,

We can choose k helper columns hi for i = d− k + 1, . . . , d as all the columns of information

partitions ⌈ k
d−k+1

⌉−1 and ⌈ k
d−k+1

⌉, and any other ⌈ k
d−k+1

⌉−2 partitions except partition mf +1.

When mf > 0, we can choose k helper columns hi for i = d−k+1, . . . , d as all the columns of

α partitions except partition mf + 1 and β columns that belong to information partition ℓ with

1 ≤ ℓ ≤ mf , where (d− k + 1)α+ β = k. This completes the proof.

We first consider the repair algorithm of information column f , i.e., 0 ≤ f ≤ k−1. There exist

two integers mf and rf such that f = (d− k + 1)mf + rf , where 0 ≤ mf and 0 ≤ rf ≤ d− k.

Note that EVENODD⌈ k
d−k+1

⌉+⌈ r
d−k+1

⌉ code is transformed from EVENODD code for ⌈ k
d−k+1

⌉+

⌈ r
d−k+1

⌉ times. The optimal repair of columns in partition i is enabled by the i-th transfor-
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mation, where i = 1, 2, . . . , ⌈ k
d−k+1

⌉ + ⌈ r
d−k+1

⌉. According to Theorem 3, the optimal re-

pair property of columns in partition i of EVENODDi is preserved in EVENODDi+1 (also in

EVENODD⌈ k
d−k+1

⌉+⌈ r
d−k+1

⌉) for i = 1, 2, . . . , ⌈ k
d−k+1

⌉ − 1 if either all d − k + 1 columns of

partition i + 1 are chosen as helper columns or all d − k + 1 columns of partition i + 1 are

not chosen as helper columns. In addition, the other d− k surviving columns of partition i are

required to recover the failed column in partition i. Therefore, the d helper columns of the failed

column f are comprised of d−k columns in partition mf +1, and other k columns. If a column

of partition ℓ with ℓ > mf +1 is chosen as helper column, then all d−k+1 columns of partition

ℓ are chosen as the helper columns. By Lemma 4, we can always find the d helper columns that

satisfy the requirement in Algorithm 1.

We can recover column f of EVENODDmf+1 by downloading polynomials ah1,ℓ(x), ah2,ℓ(x), . . . , ahd,ℓ(x)

from the chosen d helper columns, for ℓ ∈ {rf ·(d−k+1)mf , rf ·(d−k+1)mf +1, . . . , 2rf ·(d−k+

1)mf − 1}. Because the optimal repair algorithm of column f of EVENODDmf+1 is preserved

in EVENODD⌈ k
d−k+1

⌉+⌈ r
d−k+1

⌉ and the number of polynomials of EVENODD⌈ k
d−k+1

⌉+⌈ r
d−k+1

⌉ is

extended to be (d− k + 1)⌈
k

d−k+1
⌉+⌈ r

d−k+1
⌉ that is a multiple of (d− k + 1)mf+1 (the number of

polynomials of EVENODDmf+1). Therefore, we can recover column f by step 3 in Algorithm 1.

It can be counted that the number of polynomials that are downloaded to recover column f is

d(d− k + 1)⌈
k

d−k+1
⌉+⌈ r

d−k+1
⌉, which is optimal by (1).

When f = k, k + 1, . . . , k + r − 1, the repair algorithm of column f is similar to the repair

algorithm of an information column. The only difference is that the optimal repair property

of parity column is enabled by the first transformation, while the optimal repair property of

information column is enabled by the second transformation.

C. Decoding Method

We present the decoding method of any ρ ≤ r erasures for EVENODD⌈ k
d−k+1

⌉+⌈ r
d−k+1

⌉ code.

Suppose that γ information columns a1, . . . , aγ and δ parity columns b1, . . . , bδ are erased with

0 ≤ a1 < . . . < aγ ≤ k − 1 and 0 ≤ b1 < . . . < bδ ≤ r − 1, where k > γ > 0, r ≥ δ ≥ 0 and

γ + δ = ρ ≤ r. Let

A := {0, 1, . . . , k − 1} \ {a1, a2, . . . , aγ}

be a set of indices of the available information columns, and let

B := {0, 1, . . . , r − 1} \ {b1, b2, . . . , bδ}
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be a set of indices of the available parity columns. We want to first recover the lost information

columns by reading k − γ information columns with indices s1, s2, . . . , sk−γ ∈ A, and γ parity

columns with indices c1, c2, . . . , cγ ∈ B, and then recover the failure parity column by multiplying

the corresponding encoding vector and the information polynomials.

In the construction, k + r columns are divided into ⌈ k
d−k+1

⌉ + ⌈ r
d−k+1

⌉ partitions with each

partition contains d − k + 1 columns. Columns in each partition are enabled optimal repair

access by recursively applying a transformation for each partition. In the decoding procedure,

we need to first return to the original EVENODD codes and then decode the failed information

polynomials for some rows recursively. The decoding procedure is briefly described as follows.

For i = 1, 2, . . . , γ, there exist two integers mci and rci such that ci = (d − k + 1)mci + rci ,

where 0 ≤ mci and 0 ≤ rci ≤ d − k. Similarly, we have si = (d − k + 1)msi + rsi for

i = 1, 2, . . . , k − γ, where 0 ≤ msi and 0 ≤ rsi ≤ d− k.

We consider the case that mc1 6= mc2 6= · · · 6= mcγ . The parity polynomials are either linear

combinations of the corresponding information polynomials or the summations of some linear

combinations of the information polynomials. According to Theorem 1, there exists at least one

row of the array codes, of which we can first obtain γ syndrome polynomials by subtracting

(k − γ)(d − k + 1) information polynomials from γ parity polynomials and then solve the

γ failed information polynomials by computing the γ × γ linear equations of the γ syndrome

polynomials. Finally, we can recover the failed information polynomials in other rows recursively

by subtracting the known information polynomials from the chosen parity polynomials.

For 1 ≤ i < j ≤ γ, if mci = mcj , then we can obtain two parity polynomials of EVENODD⌈ k
d−k+1

⌉

according to the remark at the end of Section II-B1. After solving the parity polynomials of

EVENODD⌈ k
d−k+1

⌉+1 for all i, j with mci = mcj , then we can find at least (d−k+1)⌈
k

d−k+1
⌉+mc1

rows such that all the γ parity polynomials in the each of the chosen rows are parity polynomials

of EVENODD⌈ k
d−k+1

⌉. By the similar decoding procedure of mc1 6= mc2 6= · · · 6= mcγ , all the

failed information polynomials can be solved.

D. Example

We present an example of k = 4, r = 2, d = 5 and e = 1 to illustrate the main ideas.

Table II shows the systematic transformed EVENODD1 code and Table V shows the systematic

transformed EVENODD2 code. While the systematic transformed EVENODD2+1 code is shown

in Table VI, and we focus on the transformed EVENODD2+1 code in the following.
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TABLE VI: Systematic transformed EVENODD2+1 code with k = 4, r = 2, d = 5 and e = 1.

Information columns Parity column 0

a0,0(x) a1,0(x) a2,0(x) a3,0(x) a0,0(x) + (xp−1a1,0(x) + xp−1a0,1(x)) + a2,0(x) + (xp−1a3,0(x) + xp−1a2,2(x))

a0,1(x) a1,1(x) a2,1(x) a3,1(x) xp−1a0,1(x) + (1 + xp−1)a1,0(x) + a1,1(x) + a2,1(x) + xp−1a3,1(x) + xp−1a2,3(x)

a0,2(x) a1,2(x) a2,2(x) a3,2(x) a0,2(x) + (xp−1a1,2(x) + xp−1a0,3(x)) + xp−1a2,2(x) + (1 + xp−1)a3,0(x) + a3,2(x)

a0,3(x) a1,3(x) a2,3(x) a3,3(x) xp−1a0,3(x) + (1 + xp−1)a1,2(x) + a1,3(x) + xp−1a2,3(x) + (1 + xp−1)a3,1(x) + a3,3(x)

a0,4(x) a1,4(x) a2,4(x) a3,4(x) a0,4(x) + (xp−1a1,4(x) + xp−1a0,5(x)) + a2,4(x) + (xp−1a3,4(x) + xp−1a2,6(x))+

(1 + x)(a0,0(x) + a1,0(x) + a0,1(x) + x2a2,0(x) + (x2a3,0(x) + x2a2,2(x)))

a0,5(x) a1,5(x) a2,5(x) a3,5(x) xp−1a0,5(x) + (1 + xp−1)a1,4(x) + a1,5(x) + a2,5(x) + xp−1a3,5(x) + xp−1a2,7(x)+

(1 + x)(xp−1a0,1(x) + (1 + xp−1)a1,0(x) + xa1,1(x) + x2a2,1(x) + x2a3,1(x) + x2a2,3(x))

a0,6(x) a1,6(x) a2,6(x) a3,6(x) a0,6(x) + (xp−1a1,6(x) + xp−1a0,7(x)) + xp−1a2,6(x) + (1 + xp−1)a3,4(x) + a3,6(x)+

(1 + x)(a0,2(x) + (a1,2(x) + a0,3(x)) + xa2,2(x) + (x+ x2)a3,0(x) + x3a3,2(x))

a0,7(x) a1,7(x) a2,7(x) a3,7(x) xp−1a0,7(x) + (1 + xp−1)a1,6(x) + a1,7(x) + xp−1a2,7(x) + (1 + xp−1)a3,5(x) + a3,7(x)+

(1 + x)(xp−1a0,3(x) + (1 + xp−1)a1,2(x) + xa1,3(x) + xa2,3(x) + (x+ x2)a3,1(x) + x3a3,3(x))

Parity column 1

a5,0(x) = a0,0(x) + a1,0(x) + a0,1(x) + x2a2,0(x) + (x2a3,0(x) + x2a2,2(x))+

a0,4(x) + (xp−1a1,4(x) + xp−1a0,5(x)) + a2,4(x) + (xp−1a3,4(x) + xp−1a2,6(x))

a5,1(x) = xp−1a0,1(x) + (1 + xp−1)a1,0(x) + xa1,1(x) + x2a2,1(x) + x2a3,1(x) + x2a2,3(x)+

xp−1a0,5(x) + (1 + xp−1)a1,4(x) + a1,5(x) + a2,5(x) + xp−1a3,5(x) + xp−1a2,7(x)

a5,2(x) = a0,2(x) + (a1,2(x) + a0,3(x)) + xa2,2(x) + (x+ x2)a3,0(x) + x3a3,2(x)+

a0,6(x) + (xp−1a1,6(x) + xp−1a0,7(x)) + xp−1a2,6(x) + (1 + xp−1)a3,4(x) + a3,6(x)

a5,3(x) = xp−1a0,3(x) + (1 + xp−1)a1,2(x) + xa1,3(x) + xa2,3(x) + (x+ x2)a3,1(x) + x3a3,3(x)+

xp−1a0,7(x) + (1 + xp−1)a1,6(x) + a1,7(x) + xp−1a2,7(x) + (1 + xp−1)a3,5(x) + a3,7(x)

a5,4(x) = a0,4(x) + a1,4(x) + a0,5(x) + x2a2,4(x) + (x2a3,4(x) + x2a2,6(x))

a5,5(x) = xp−1a0,5(x) + (1 + xp−1)a1,4(x) + xa1,5(x) + x2a2,5(x) + x2a3,5(x) + x2a2,7(x)

a5,6(x) = a0,6(x) + (a1,6(x) + a0,7(x)) + xa2,6(x) + (x+ x2)a3,4(x) + x3a3,6(x)

a5,7(x) = xp−1a0,7(x) + (1 + xp−1)a1,6(x) + xa1,7(x) + xa2,7(x) + (x+ x2)a3,5(x) + x3a3,7(x)

1) Decoding Procedure: We claim that we can recover all the information polynomials from

any four columns. From the first four columns, we can obtain all the information polynomials

directly. Suppose that the data collector connects to three information columns and one parity

column, say columns 0, 1, 2 and 5. From columns 0, 1 and 2, one can download information

polynomials a0,ℓ(x), a1,ℓ(x), a2,ℓ(x) for ℓ = 0, 1, . . . , 7 directly. By subtracting the downloaded

information polynomials from the parity polynomials a5,ℓ(x), we can obtain the following 8

DRAFT August 29, 2019



25

polynomials

x2a3,0(x) + xp−1a3,4(x), x
2a3,1(x) + xp−1a3,5(x),

(x+ x2)a3,0(x) + x3a3,2(x) + (1 + xp−1)a3,4(x) + a3,6(x),

(x+ x2)a3,1(x) + x3a3,3(x) + (1 + xp−1)a3,5(x) + a3,7(x),

x2a3,4(x), x
2a3,5(x), (x+ x2)a3,4(x) + x3a3,6(x),

(x+ x2)a3,5(x) + x3a3,7(x).

It is easy to recover the information polynomials a3,ℓ(x) for ℓ = 0, 1, . . . , 7 from the above

polynomials. The decoding of any three information columns and the first parity column is

similar.

Suppose that we want to decode the information polynomials from two information columns

and two parity columns, say columns 0, 2, 4 and 5. Denote

b0(x) =a0,4(x) + (xp−1a1,4(x) + xp−1a0,5(x)) + a2,4(x)+

(xp−1a3,4(x) + xp−1a2,6(x)),

b1(x) =xp−1a0,5(x) + (1 + xp−1)a1,4(x) + a1,5(x)+

a2,5(x) + xp−1a3,5(x) + xp−1a2,7(x),

b2(x) =a0,6(x) + (xp−1a1,6(x) + xp−1a0,7(x))+

xp−1a2,6(x) + (1 + xp−1)a3,4(x) + a3,6(x),

b3(x) =xp−1a0,7(x) + (1 + xp−1)a1,6(x) + a1,7(x)+

xp−1a2,7(x) + (1 + xp−1)a3,5(x) + a3,7(x),

August 29, 2019 DRAFT



26

and

c0(x) =a0,0(x) + a1,0(x) + a0,1(x) + x2a2,0(x)+

(x2a3,0(x) + x2a2,2(x)),

c1(x) =xp−1a0,1(x) + (1 + xp−1)a1,0(x) + xa1,1(x)+

x2a2,1(x) + x2a3,1(x) + x2a2,3(x),

c2(x) =a0,2(x) + (a1,2(x) + a0,3(x)) + xa2,2(x)+

(x+ x2)a3,0(x) + x3a3,2(x)

c3(x) =xp−1a0,3(x) + (1 + xp−1)a1,2(x) + xa1,3(x)+

xa2,3(x) + (x+ x2)a3,1(x) + x3a3,3(x).

We have that

a4,4(x) = b0(x) + (1 + x)c0(x), a5,0(x) = b0(x) + c0(x),

a4,5(x) = b1(x) + (1 + x)c1(x), a5,1(x) = b1(x) + c1(x),

a4,6(x) = b2(x) + (1 + x)c2(x), a5,2(x) = b2(x) + c2(x),

a4,7(x) = b3(x) + (1 + x)c3(x), a5,3(x) = b3(x) + c3(x).

Therefore, we can solve cℓ(x) by

cℓ(x) = xp−1(a4,4+ℓ(x) + a5,ℓ(x))

and bℓ(x) by cℓ(x)+a5,ℓ(x) for ℓ = 0, 1, 2, 3. Then, we can subtract the information polynomials

a0,ℓ(x), a2,ℓ(x) for ℓ = 0, 1, . . . , 7 from the polynomials a4,ℓ(x), a5,4+ℓ(x), bℓ(x), cℓ(x) for ℓ =
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0, 1, 2, 3, and obtain the polynomials

p0(x) = xp−1a1,0(x) + xp−1a3,0(x),

p1(x) = a1,0(x) + x2a3,0(x),

p2(x) = (1 + xp−1)a1,0(x) + a1,1(x) + xp−1a3,1(x),

p3(x) = (1 + xp−1)a1,0(x) + xa1,1(x) + x2a3,1(x),

p4(x) = xp−1a1,2(x) + (1 + xp−1)a3,0(x) + a3,2(x),

p5(x) = a1,2(x) + (x+ x2)a3,0(x) + x3a3,2(x),

p6(x) = (1 + xp−1)a1,2(x) + a1,3(x) + (1 + xp−1)a3,1(x) + a3,3(x),

p7(x) = (1 + xp−1)a1,2(x) + xa1,3(x) + (x+ x2)a3,1(x) + x3a3,3(x),

p8(x) = a1,4(x) + x2a3,4(x),

p9(x) = xp−1a1,4(x) + xp−1a3,4(x),

p10(x) = (1 + xp−1)a1,4(x) + xa1,5(x) + x2a3,5(x),

p11(x) = (1 + xp−1)a1,4(x) + a1,5(x) + xp−1a3,5(x),

p12(x) = xp−1a1,6(x) + (1 + xp−1)a3,4(x) + a3,6(x),

p13(x) = a1,6(x) + (x+ x2)a3,4(x) + x3a3,6(x),

p14(x) = (1 + xp−1)a1,6(x) + a1,7 + (1 + xp−1)a3,5(x) + a3,7(x),

p15(x) = (1 + xp−1)a1,6(x) + xa1,7 + (x+ x2)a3,5(x) + x3a3,7(x).

We can first compute

a3,0(x) =
p0(x) + xp−1p1(x)

x+ xp−1

and then compute a1,0(x) = p1(x) + x2a3,0(x). The other polynomials

a1,1(x), a3,1(x); a1,2(x), a3,2(x); a1,3(x), a3,3(x)

can be computed by recursively subtracting the known polynomials from

p2(x), p3(x); p4(x), p5(x); p6(x), p7(x).

Similarly, polynomials

a1,4(x), a3,4(x); a1,5(x), a3,5(x); a1,6(x), a3,6(x); a1,7(x), a3,7(x)
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can be computed from

p8(x), p9(x); p10(x), p11(x); p12(x), p13(x); p14(x), p15(x).

2) Repair Procedure: Next we show that any one column can be recovered by Algorithm 1

with optimal repair bandwidth. Suppose that column 4 (parity column 0) is failed, i.e., f = 4.

As k = 4, r = 2 and d = 5, we have mf = 0 and rf = 0 and all the surviving five columns are

selected as helper columns. By step 6 of Algorithm 1, we need to download polynomials

a0,ℓ(x), a1,ℓ(x), a2,ℓ(x), a3,ℓ(x), a5,ℓ(x)

from columns 0, 1, 2, 3, 5 for ℓ = 0, 1, 2, 3 to recover column 4. First, we can directly compute

the following four parity polynomials

a4,0(x) =a0,0(x) + (xp−1a1,0(x) + xp−1a0,1(x))+

a2,0(x) + (xp−1a3,0(x) + xp−1a2,2(x)),

a4,1(x) =xp−1a0,1(x) + (1 + xp−1)a1,0(x) + a1,1(x)+

a2,1(x) + xp−1a3,1(x) + xp−1a2,3(x),

a4,2(x) =a0,2(x) + (xp−1a1,2(x) + xp−1a0,3(x))+

xp−1a2,2(x) + (1 + xp−1)a3,0(x) + a3,2(x),

a4,3(x) =xp−1a0,3(x) + (1 + xp−1)a1,2(x) + a1,3(x)+

xp−1a2,3(x) + (1 + xp−1)a3,1(x) + a3,3(x),
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from the downloaded information polynomials. Then, we can compute the following four poly-

nomials

c0(x) =a0,0(x) + a1,0(x) + a0,1(x) + x2a2,0(x)+

(x2a3,0(x) + x2a2,2(x)),

c1(x) =xp−1a0,1(x) + (1 + xp−1)a1,0(x) + xa1,1(x)+

x2a2,1(x) + x2a3,1(x) + x2a2,3(x),

c2(x) =a0,2(x) + (a1,2(x) + a0,3(x)) + xa2,2(x)+

(x+ x2)a3,0(x) + x3a3,2(x)

c3(x) =xp−1a0,3(x) + (1 + xp−1)a1,2(x) + xa1,3(x)+

xa2,3(x) + (x+ x2)a3,1(x) + x3a3,3(x),

from the downloaded information polynomials. Lastly, we can recover the polynomials a4,4(x),

a4,5(x), a4,6(x) and a4,7(x) by computing

a4,4(x) =a5,0(x) + xc0(x),

a4,5(x) =a5,1(x) + xc1(x),

a4,6(x) =a5,2(x) + xc2(x),

a4,7(x) =a5,3(x) + xc3(x).

It can be checked that column 5 can be recovered by downloading a0,ℓ(x), a1,ℓ(x), a2,ℓ(x),

a3,ℓ(x) and a4,ℓ(x) from columns 0, 1, 2, 3, 4 for ℓ = 4, 5, 6, 7 according to Algorithm 1. Similarly,

we can recover column 2 and column 3 by downloading a0,ℓ(x), a1,ℓ(x), a3,ℓ(x), a4,ℓ(x), a5,ℓ(x) for

ℓ = 0, 2, 4, 6, and a0,ℓ(x), a1,ℓ(x), a2,ℓ(x), a4,ℓ(x), a5,ℓ(x) for ℓ = 2, 3, 6, 7, respectively. According

to Algorithm 1, column 0 and column 1 can be recovered by downloading a1,ℓ(x), a2,ℓ(x), a3,ℓ(x),

a4,ℓ(x), a5,ℓ(x) for ℓ = 0, 2, 4, 6, and a0,ℓ(x), a2,ℓ(x), a3,ℓ(x), a4,ℓ(x), a5,ℓ(x) for ℓ = 1, 3, 5, 7,

respectively.

IV. TRANSFORMATION FOR OTHER BINARY MDS ARRAY CODES

The transformation given in Section II-B can also be employed in other binary MDS array

codes, such as RDP and codes in [26], [31]–[33], [35]–[37].
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Specifically, for RDP and codes in [26], [35]–[37], the transformation is similar to that of

EVENODD in Section III-A. We only need to replace the original EVENODD by the new codes

and transform them for ⌈ k
d−k+1

⌉+ ⌈ r
d−k+1

⌉ times. We can show that the multi-layer transformed

codes also have optimal repair access for all columns, as in EVENODD⌈ k
d−k+1

⌉+⌈ r
d−k+1

⌉.

For codes with optimal repair access or asymptotically optimal repair access only for infor-

mation column, such as codes in [31]–[33], [41], [42], we can transform them for ⌈ r
d−k+1

⌉

times to enable optimal repair access for all r parity columns and the optimal repair property

of any information column is preserved. In the following, we take an example with k = 2,

r = 2 and d = 3 of the construction in [33] to illustrate how to apply the transformation to

obtain the transformed codes with optimal repair access for each of the two parity columns and

asymptotically optimal repair access for each of the two information columns.

A. Transformation for Array Codes in [33]

The array code in [33] is specified by parameters k, r, d, p and τ . Let k = 2, r = 2, d = 3,

p = 3 and τ = 4. The array of the example is of size 8×4. The first two columns are information

columns that store information bits and the last two columns are parity columns that store parity

bits. Let ai,j be the i-th bit in column j, where i = 0, 1, . . . , 7 and j = 0, 1, 2, 3. For j = 0, 1,

we define four extra bits a8,j, a9,j , a10,j, a11,j associated with column j as

a8,j = a0,j + a4,j ,

a9,j = a1,j + a5,j ,

a10,j = a2,j + a6,j ,

a11,j = a3,j + a7,j . (11)

Given the information bits, the parity bits a0,2, a1,2, . . . , a7,2 in column 2 are computed by

ai,2 = ai,0 + ai,1 for i = 0, 1, . . . , 7,

and the parity bits a0,3, a1,3, . . . , a7,3 in column 3 are computed by

ai,3 = ai−1,0 + ai−2,1 for i = 0, 1, . . . , 7.

Note that all the subscripts in the example are computed by modulo 12. Table VII shows the

example. Similar to the information column, we also define four extra bits a8,j, a9,j , a10,j, a11,j
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TABLE VII: An example of the array code in [33] with k = 2, r = 2, d = 3, p = 3 and τ = 4.

Column 0 Column 1 Column 2 Column 3

a0,0 a0,1 a0,2 = a0,0 + a0,1 a0,3 = a11,0 + a10,1

a1,0 a1,1 a1,2 = a1,0 + a1,1 a1,3 = a0,0 + a11,1

a2,0 a2,1 a2,2 = a2,0 + a2,1 a2,3 = a1,0 + a0,1

a3,0 a3,1 a3,2 = a3,0 + a3,1 a3,3 = a2,0 + a1,1

a4,0 a4,1 a4,2 = a4,0 + a4,1 a4,3 = a3,0 + a2,1

a5,0 a5,1 a5,2 = a5,0 + a5,1 a5,3 = a4,0 + a3,1

a6,0 a6,1 a6,2 = a6,0 + a6,1 a6,3 = a5,0 + a4,1

a7,0 a7,1 a7,2 = a7,0 + a7,1 a7,3 = a6,0 + a5,1

associated with column j as in (11). Note that we only store eight bits a0,j , a1,j, . . . , a7,j in

column j, where j = 0, 1, 2, 3, and we can compute the extra bits when necessary by (11).

We can repair four bits a0,0, a2,0, a4,0, a6,0 in column 0 by

a0,0 =a0,1 + a0,2, where a0,2 = a0,0 + a0,1,

a2,0 =a2,1 + a2,2, where a2,2 = a2,0 + a2,1,

a4,0 =a4,1 + a4,2, where a4,2 = a4,0 + a4,1,

a6,0 =a6,1 + a6,2, where a6,2 = a6,0 + a6,1,

and the other bits a1,0, a3,0, a5,0, a7,0 in column 0 by

a1,0 =a0,1 + a2,3, where a2,3 = a1,0 + a0,1,

a3,0 =a2,1 + a4,3, where a4,3 = a3,0 + a2,1,

a5,0 =a4,1 + a6,3, where a6,3 = a5,0 + a4,1,

a7,0 =a6,1 + a4,3 + a0,3, where a4,3 = a3,0 + a2,1

and a0,3 = a11,0 + a10,1.

We need to download 12 bits

a0,1, a2,1, a4,1, a6,1, a0,2, a2,2, a4,2, a6,2, a0,3, a2,3, a4,3, a6,3,
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to recover the eight bits in column 0. Therefore, the repair access of column 0 is optimal

according to (1). Column 1 can be recovered by downloading 14 bits

a0,0, a1,0, a3,0, a4,0, a5,0, a7,0, a0,2, a1,2,

a4,2, a5,2, a0,3, a1,3, a4,3, a5,3,

which are two bits more than the optimal repair access.

We argue that we can recover the information bits from any two columns. We can directly

obtain the information bits from column 0 and column 1. We can also obtain the information

bits from any one information column and any one parity column. For example, if we want

to decode the information bits from column 0 and column 2, we can subtract ai,0 from ai,2 to

obtain ai,1, for i = 0, 1, . . . , 7. Finally, we can decode the information bits from column 2 and

column 3 as follows. We can compute a7,1 by

a7,1 = a0,2 + a1,2 + a2,2 + a3,2 + a1,3 + a2,3 + a3,3 + a4,3.

Similarly, we can compute a8,1, a9,1, a10,1 by

a8,1 =a1,2 + a2,2 + a3,2 + a4,2 + a2,3 + a3,3 + a4,3 + a5,3,

a9,1 =a2,2 + a3,2 + a4,2 + a5,2 + a3,3 + a4,3 + a5,3 + a6,3,

a10,1 =a3,2 + a4,2 + a5,2 + a6,2 + a4,3 + a5,3 + a6,3 + a7,3.

Then, we can compute the other information bits iteratively.

Next, we show how to apply the first transformation for the above example to obtain the

transformed codes that have optimal repair access for each of columns 2 and 3, while the

efficient repair property of each of columns 0 and 1 is also preserved. For j = 0, 1, 2, 3, we

can represent the eight bits in column j and the four extra bits associated with column j by

polynomial

aj(x) = a0,j + a1,jx+ . . .+ a11,jx
11.

First, we can generate two instances a0(x), a1(x), a2(x), a3(x) and b0(x), b1(x), b2(x), b3(x). Then,

we compute polynomials b2(x)+x4a3(x), a3(x)+b2(x) over F2[x]/(1+x12). For j = 0, 1, column

j stores the eight coefficients of degrees from zero to seven of the polynomials aj(x) and bj(x);

while column 2 and column 3 stores the eight coefficients of degrees from zero to seven of the

polynomials a2(x), b2(x) + x4a3(x) and a3(x) + b2(x), b3(x), respectively. Table VIII shows the

transformed array codes.
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TABLE VIII: The transformed array code with k = 2, r = 2, d = 3, p = 3 and τ = 4.

Column 0 Column 1 Column 2 Column 3

a0,0 a0,1 a0,2 = a0,0 + a0,1 a0,3 + b0,2 = a11,0 + a10,1 + b0,0 + b0,1

b0,0 b0,1 b0,2 + a8,3 = b0,0 + b0,1 + a7,0 + a6,1 b0,3 = b11,0 + b10,1

a1,0 a1,1 a1,2 = a1,0 + a1,1 a1,3 + b1,2 = a0,0 + a11,1 + b1,0 + b1,1

b1,0 b1,1 b1,2 + a9,3 = b1,0 + b1,1 + a8,0 + a7,1 b1,3 = b0,0 + b11,1

a2,0 a2,1 a2,2 = a2,0 + a2,1 a2,3 + b2,2 = a1,0 + a0,1 + b2,0 + b2,1

b2,0 b2,1 b2,2 + a10,3 = b2,0 + b2,1 + a9,0 + a8,1 b2,3 = b1,0 + b0,1

a3,0 a3,1 a3,2 = a3,0 + a3,1 a3,3 + b3,2 = a2,0 + a1,1 + b3,0 + b3,1

b3,0 b3,1 b3,2 + a11,3 = b3,0 + b3,1 + a10,0 + a9,1 b3,3 = b2,0 + b1,1

a4,0 a4,1 a4,2 = a4,0 + a4,1 a4,3 + b4,2 = a3,0 + a2,1 + b4,0 + b4,1

b4,0 b4,1 b4,2 + a0,3 = b4,0 + b4,1 + a11,0 + a10,1 b4,3 = b3,0 + b2,1

a5,0 a5,1 a5,2 = a5,0 + a5,1 a5,3 + b5,2 = a4,0 + a3,1 + b5,0 + b5,1

b5,0 b5,1 b5,2 + a1,3 = b5,0 + b5,1 + a0,0 + a11,1 b5,3 = b4,0 + b3,1

a6,0 a6,1 a6,2 = a6,0 + a6,1 a6,3 + b6,2 = a5,0 + a4,1 + b6,0 + b6,1

b6,0 b6,1 b6,2 + a2,3 = b6,0 + b6,1 + a1,0 + a0,1 b6,3 = b5,0 + b4,1

a7,0 a7,1 a7,2 = a7,0 + a7,1 a7,3 + b7,2 = a6,0 + a5,1 + b7,0 + b7,1

b7,0 b7,1 b7,2 + a3,3 = b7,0 + b7,1 + a2,0 + a1,1 b7,3 = b6,0 + b5,1

First, we show that the efficient repair property of any one information column is preserved

in the transformed array codes. Consider the repair method of column 0. We can repair column

0 by downloading 24 bits

a0,1, a2,1, a4,1, a6,1, a0,2, a2,2, a4,2, a6,2, a0,3 + b0,2, a2,3 + b2,2,

a4,3 + b4,2, a6,3 + b6,2, b0,1, b2,1, b4,1, b6,1, b0,2 + a8,3,

b2,2 + a10,3, b4,2 + a0,3, b6,2 + a2,3, b0,3, b2,3, b4,3, b6,3.

Specifically, we can compute the four bits a0,0, a2,0, a4,0, a6,0 in column 0 by

a0,0 =a0,1 + a0,2, where a0,2 = a0,0 + a0,1,

a2,0 =a2,1 + a2,2, where a2,2 = a2,0 + a2,1,

a4,0 =a4,1 + a4,2, where a4,2 = a4,0 + a4,1,

a6,0 =a6,1 + a6,2, where a6,2 = a6,0 + a6,1,
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and a1,0, a3,0, a5,0, a7,0 in column 0 by

a3,0 =(b0,2 + a8,3) + (a0,3 + b0,2) + b2,1,

a5,0 =(b2,2 + a10,3) + (a2,3 + b2,2) + b4,1,

a7,0 =(b4,2 + a0,3) + (a4,3 + b4,2) + b6,1,

a1,0 =(b6,2 + a2,3) + (a6,3 + b6,2) + a0,1 + a4,1 + a5,0.

Similarly, we can compute b1,0, b3,0, b5,0, b7,0 in column 0 by

b1,0 =b0,1 + b2,3, where b2,3 = b1,0 + b0,1,

b3,0 =b2,1 + b4,3, where b4,3 = b3,0 + b2,1,

b5,0 =b4,1 + b6,3, where b6,3 = b5,0 + b4,1,

b7,0 =b6,1 + b0,3 + b4,3, where b4,3 = b3,0 + b2,1

and b0,3 = b11,0 + b10,1,

and b0,0, b2,0, b4,0, b6,0 in column 0 by

b0,0 =(b0,2 + a8,3) + b0,1 + a7,0 + a6,1,

b2,0 =(b2,2 + a10,3) + b2,1 + a1,0 + a5,0 + a0,1 + a4,1,

b4,0 =(b4,2 + a0,3) + b4,1 + a3,0 + a7,0 + a2,1 + a6,1,

b6,0 =(b6,2 + a2,3) + b6,1 + a1,0 + a0,1.

The repair access of column 0 is also optimal. Column 1 can be recovered by downloading 28

bits

a0,0, a1,0, a3,0, a4,0, a5,0, a7,0, a0,2, a1,2, a4,2, a5,2, a0,3 + b0,2,

a1,3 + b1,2, a4,3 + b4,2, a5,3 + b5,2, b0,0, b1,0, b3,0, b4,0, b5,0, b7,0,

b0,2 + a8,3, b1,2 + a9,3, b4,2 + a0,3, b5,2 + a1,3, b0,3, b1,3, b4,3, b5,3,

which are four bits more than the optimal repair access.
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According to Theorem 3, the repair access of each of column 2 and column 3 is optimal. We

can repair column 2 by downloading 24 bits

a0,0, a1,0, a2,0, a3,0, a4,0, a5,0, a6,0, a7,0,

a0,1, a1,1, a2,1, a3,1, a4,1, a5,1, a6,1, a7,1,

a0,3 + b0,2, a1,3 + b1,2, a2,3 + b2,2, a3,3 + b3,2,

a4,3 + b4,2, a5,3 + b5,2, a6,3 + b6,2, a7,3 + b7,2,

from columns 0, 1 and 3, and repair column 3 by downloading 24 bits

b0,0, b1,0, b2,0, b3,0, b4,0, b5,0, b6,0, b7,0,

b0,1, b1,1, b2,1, b3,1, b4,1, b5,1, b6,1, b7,1,

b0,2 + a8,3, b1,2 + a9,3, b2,2 + a10,3, b3,2 + a11,3,

b4,2 + a0,3, b5,2 + a1,3, b6,2 + a2,3, b7,2 + a3,3,

from columns 0, 1 and 2.

For the MDS array codes [31]–[33] with general parameters k and r, each column has (p−1)τ

bits, we can choose p to make the array codes satisfy the MDS property and choose τ to

achieve asymptotically optimal repair bandwidth for each of the k information columns. For

j = 0, 1, . . . , k+r−1, we can represent the (p−1)τ bits a0,j , a1,j, . . . , a(p−1)τ−1,j in column j and

τ extra bits a(p−1)τ,j , a(p−1)τ+1,j, . . . , apτ−1,j associated with column j by polynomial aj(x) =
∑pτ−1

i=0 ai,jx
i ∈ F2[x]/(1 + xpτ ), where the extra bit a(p−1)τ+µ,j with µ = 0, 1, . . . , τ − 1 is

computed by

a(p−1)τ+µ,j = aµ,j + aτ+µ,j + . . .+ a(p−2)τ+µ,j .

If we apply the first transformation with encoding coefficient being xe for the columns from k

to d of the MDS array codes, we can obtain the transformed codes with each column containing

d−k+1 polynomials. We should carefully choose the encoding coefficient in the transformation

in order to make sure that the efficient repair property of any information column of original

MDS array codes is preserved in the transformed MDS array codes. In the example with k = 2,

r = 2 and d = 3, we choose the encoding coefficient of the transformation to be x4. In fact, the

efficient repair property of any information column is also maintained if the encoding coefficient

is any polynomial of {1+x4, x8, 1+x8, x4+x8, 1+x4+x8}. However, the efficient repair property
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of any information column is not maintained if the encoding coefficient is other polynomial in

F2[x]/(1 + x12).

Note that the following two properties are the essential reasons to preserve the efficient repair

property. First, there is a cyclic structure in the ring F2[x]/(1+x12). The multiplication of x4 and

the polynomial a3(x) in F2[x]/(1 + x12) can be implemented by cyclicly shifting 4 positions of

a3(x). Second, the exponent of the encoding coefficient of the transformation, e = 4 is a multiple

of two. Otherwise, the efficient repair property of original array codes is not maintained. In the

example, we have d = k + r − 1, i.e., all the surviving columns are connected to recover a

failure column. By applying one transformation for the r parity columns, the transformed array

codes will have asymptotically or exactly optimal repair for any single column. However, if

d < k + r − 1, then we may need to employ the transformation for many times, as like the

transformation for EVENODD codes. When we apply multiple transformations for the array

codes in [31]–[33], we should not only carefully choose the encoding coefficient but also the

transformed columns in each transformation, in order to preserve the efficient repair property of

the information column.

B. Transformation for EVENODD to Preserve the Efficient Repair Property of Any Information

Column

The number of symbols stored in each column or node is also referred to as the sub-packetization

level. It is important to have a low sub-packetization level for practical consideration. It is shown

in [43] that the lower bound of sub-packetization of optimal access MDS codes over finite field

with d = n − 1 is r(k−1)/r. The sub-packetization of MDS code constructions over finite field

with optimal repair access presented in [16], [17] is (n − k)⌈
n

n−k
⌉, for d = n − 1. ǫ-minimum

storage regenerating (ǫ-MSR) codes are proposed in [44] to reduce the sub-packetization at a

cost of slightly more repair bandwidth. Existing constructions [33] of binary MDS array codes

with d = k + 1 and asymptotically optimal repair access for any single information column

show that the sub-packetization is strictly less than p · 2
k

r−1
+r−1 [33, Theorem 2], where p is a

prime and constant number. The existing constructions of MDS codes with asymptotically or

exactly optimal repair access have an exponential sub-packetization level. The construction of

MDS codes with efficient repair for any column with lower sub-packetization level is attractive.

In the following, we take EVENODD codes with r = 2 as an example to show how to design

new transformation to enable optimal repair for any single parity column and the repair access
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TABLE IX: The EVENODD code with k = 3, r = 2 and p = 5.

Column 0 Column 1 Column 2 Column 3 Column 4

a0,0 a0,1 a0,2 a0,3 = a0,0 + a0,1 + a0,2 a0,4 = a0,0 + a3,2 + (a3,1 + a2,2)

a1,0 a1,1 a1,2 a1,3 = a1,0 + a1,1 + a1,2 a1,4 = a1,0 + a0,1 + (a3,1 + a2,2)

a2,0 a2,1 a2,2 a2,3 = a2,0 + a2,1 + a2,2 a2,4 = a2,0 + a1,1 + a0,2 + (a3,1 + a2,2)

a3,0 a3,1 a3,2 a3,3 = a3,0 + a3,1 + a3,2 a3,4 = a3,0 + a2,1 + a1,2 + (a3,1 + a2,2)

of any single information column is roughly 3/4 of all the information bits, and thus the sub-

packetization level is low.

Consider the example of EVENODD codes with k = 3, r = 2 and p = 5. We have k = 3

information columns and r = 2 parity columns. Let a0,j , a1,j, a2,j , a3,j be the four bits in column

j, where j = 0, 1, 2, 3, 4. Table IX shows the example.

When we say one information bit is repaired by a parity column (the first parity column

or the second parity column), it means that we repair the bit by downloading the parity bit

in the parity column that contains the failed information bits and all the information bits that

are used to compute the downloaded parity bit except the failed information bit. For example,

the bit a0,0 is repaired by the first parity column, which means that we download the parity bit

a0,3 = a0,0+a0,1+a0,2 in the first parity column and two information bits a0,1, a0,2 to recover the

information bit a0,0. According to the repair method given in [27], we can repair two information

bits of the failed information column by the first parity column and the other information bits

by the second parity column. Consider column 1. We can repair a0,1, a1,1 by

a0,1 =a0,0 + a0,2 + a0,3, where a0,3 = a0,0 + a0,1 + a0,2,

a1,1 =a1,0 + a1,2 + a1,3, where a1,3 = a1,0 + a1,1 + a1,2,

and repair a2,1, a3,1 by

a3,1 =a1,0 + a0,1 + a2,2 + a1,4,

where a1,4 = a1,0 + a0,1 + a3,1 + a2,2,

a2,1 =a3,0 + a1,2 + a3,1 + a2,2 + a3,4,

where a3,4 = a3,0 + a2,1 + a1,2 + a3,1 + a2,2.
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We need to download 10 bits to recover column 1, i.e., the repair bandwidth of column 1 is

roughly 3/4 of all 12 information bits.

Next, we present the transformation for general parameters k and p of EVENODD codes with

r = 2 and d = k+1. Each column of the transformed EVENODD codes has 2(p− 1) bits. The

transformed EVENODD codes have optimal repair bandwidth for each parity column and the

repair bandwidth of each information column is roughly 3/4 of all the information bits.

Create two instances of EVENODD codes a0(x), a1(x), . . . , ak+1(x) and b0(x), b1(x), . . . , bk+1(x),

where aj(x) =
∑p−2

i=0 ai,jx
i and bj(x) =

∑p−2
i=0 bi,jx

i. The information polynomials are a0(x), a1(x), . . . , ak−1(x)

and b0(x), b1(x), . . . , bk−1(x), and the parity polynomials are computed by





ak(x) ak+1(x)

bk(x) bk+1(x)





=





a0(x) a1(x) · · · ak−1(x)

b0(x) b1(x) · · · bk−1(x)



















1 1

1 x
...

...

1 xk−1















.

Let aj = [a0,j , a1,j, . . . , ap−2,j]
T and bj = [b0,j , b1,j , . . . , bp−2,j]

T be the coefficients of polynomials

aj(x) and bj(x), respectively, where j = 0, 1, . . . , k + 1. Given a column vector a0, we define

a
∗
0 =[a1,0, a0,0, a3,0, a2,0, . . . , ap−2,0, ap−3,0]

T ,

ā0 =[a0,0, 0, a2,0, 0, . . . , ap−3,0, 0]
T .

The summation of two column vectors a0, a1 is define by

a0 ⊕ a1 = [a0,0 + a0,1, a1,0 + a1,1, . . . , ap−2,0 + ap−2,1]
T .

For example, when p = 5, we have

a0 ⊕ a1 = [a0,0 + a0,1, a1,0 + a1,1, a2,0 + a2,1, a3,0 + a3,1]
T ,

and

a
∗
0 =[a1,0, a0,0, a3,0, a2,0]

T ,

ā0 =[a0,0, 0, a2,0, 0]
T .
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For j = 0, 1, . . . , k− 1, column j stores 2(p− 1) information bits aj,bj. The first parity column

stores 2(p− 1) parity bits

ak ⊕ bk = [a0,k + b0,k, a1,k + b1,k, . . . , ap−2,k + bp−2,k]
T ,

bk+1 = [b0,k+1, b1,k+1, . . . , bp−2,k+1]
T ,

and the second parity column stores 2(p− 1) parity bits

ak ⊕ b̄k ⊕ b
∗
k =[a0,k + b0,k + b1,k, a1,k + b0,k, . . . ,

ap−3,k + bp−3,k + bp−2,k, ap−2,k + bp−3,k]
T ,

ak+1 =[a0,k+1, a1,k+1, . . . , ap−2,k+1]
T .

We show that the transformed EVENODD codes satisfy MDS property, i.e., we can retrieve

all 2k(p− 1) information bits from any k columns. Consider the k columns from columns 2 to

k + 1. First, we can compute (p− 1)/2 bits bi,k by (ai−1,k + bi−1,k) + (ai−1,k + bi−1,k + bi,k) for

i = 1, 3, . . . , p− 2 and compute ai,k by bi,k + (ai,k + bi,k) for i = 1, 3, . . . , p− 2. Then, we can

compute bi,k by ai+1,k+(ai+1,k+bi,k) for i = 0, 2, . . . , p−3 and compute ai,k by bi,k+(ai,k+bi,k)

for i = 0, 2, . . . , p − 3. Finally, we can obtain the information bits b0,0, b1,0, . . . , bp−2,0 and

b0,1, b1,1, . . . , bp−2,1 from b0,j , b1,j, . . . , bp−2,j for j = 2, 3, . . . , k + 1, as the EVENODD code is

MDS code. The information bits a0,0, a1,0, . . . , ap−2,0 and a0,1, a1,1, . . . , ap−2,1 can be computed

similarly. We can also retrieve all information bits from any k− 1 information columns and any

one parity column. Consider the k columns from column 1 to k. We can obtain k(p − 1) bits

b0,j , b1,j, . . . , bp−2,j for j = 1, 2, . . . , k from column 1 to k, and compute the information bits

b0,0, b1,0, . . . , bp−2,0. Then, we can compute bi,k from the information bits bi,0, bi,1, . . . , bi,k−1, and

compute ai,k by ai,k = bi,k+(ai,k+ bi,k) for i = 0, 1, . . . , p−2. Together with (k−1)(p−1) bits

a0,j , a1,j, . . . , ap−2,j with j = 1, 2, . . . , k from column 1 to k, we can compute p− 1 information

bits a0,0, a1,0, . . . , ap−2,0. The decoding method from any k − 1 information columns plus any

one parity column is similar.

Each parity column of the transformed EVENODD codes has optimal repair access. We can

repair column k by downloading bj from column j for j = 0, 1, . . . , k − 1 and ak ⊕ b̄k ⊕ b
∗
k

from column k+1. Specifically, we can compute bk,bk+1 from b0,b1, . . . ,bk−1, and ak ⊕bk

by (ak ⊕ b̄k ⊕ b
∗
k)⊕ b

∗
k ⊕ b̄k ⊕ bk. Similarly, we can repair column k + 1 by downloading aj

from column j for j = 0, 1, . . . , k − 1 and ak ⊕ bk from column k. In the next theorem, we
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show that the efficient repair property of any single information column of EVENODD codes

is preserved in the transformed EVENODD codes.

Theorem 5. In the (k + 2, k) EVENODD codes, suppose that p − 1 is a multiple of four and

we can download the bits ai,j for all i ∈ Sj and j = 0, 1, . . . , f − 1, f + 1, . . . , k + 1 to

recover column f , where 0 ≤ f ≤ k − 1, Sj denotes the set of indices of the downloaded

bits from column j and Sk = {0, 1, . . . , (p − 1)/2 − 1}. Then, column f of the transformed

EVENODD codes can be recovered by downloading ai,j , bi,j for all i ∈ Sj from column j for

j = 0, 1, . . . , f − 1, f + 1, . . . , k − 1, ai,k + bi,k for all i ∈ Sk = {0, 1, . . . , (p − 1)/2 − 1}

and bi,k+1 for all i ∈ Sk+1 from column k, ai,k + bi,k + bi+1,k and ai+1,k + bi,k for all i ∈

{0, 2, . . . , (p− 1)/2− 2} and ai,k+1 for all i ∈ Sk+1 from column k + 1.

Proof. Consider the repair of column f for the transformed EVENODD codes. We have received

the following bits





























Column 0 ai,0 ∀i ∈ S0 and bi,0 ∀i ∈ S0

· · · · · ·

Column k − 1 ai,k−1 ∀i ∈ Sk−1 and bi,k−1 ∀i ∈ Sk−1

Column k ai,k + bi,k ∀i ∈ Sk and bi,k+1 ∀i ∈ Sk+1

Column ai,k + bi,k + bi+1,k, ai+1,k + bi,k

k + 1 ∀i ∈ {0, 2, . . . , p−5
2 } and ai,k+1 ∀i ∈ Sk+1





























.

We can calculate bi,k by (ai−1,k + bi−1,k)+ (ai−1,k + bi−1,k + bi,k) for i = 1, 3, . . . , (p− 1)/2− 1,

and ai,k by bi,k + (ai,k + bi,k) for i = 1, 3, . . . , (p − 1)/2 − 1. Then, we can compute bi,k

by ai+1,k + (ai+1,k + bi,k) for i = 0, 2, . . . , (p − 5)/2 and ai,k by bi,k + (ai,k + bi,k) for i =

0, 2, . . . , (p − 5)/2. We thus obtain ai,k and bi,k for all i ∈ Sk = {0, 1, . . . , (p − 1)/2 − 1}.

Recall that we can recover a0,f , a1,f , . . . , ap−2,f by downloading the bits ai,j for all i ∈ Sj and

j = 0, 1, . . . , f − 1, f + 1, . . . , k + 1. Therefore, we obtain the bits ai,j, bi,j for all i ∈ Sj and

j = 0, 1, . . . , f−, f + 1, . . . , k + 1, and the bits a0,f , a1,f , . . . , ap−2,f and b0,f , b1,f , . . . , bp−2,f in

column f of the transformed EVENODD codes can be recovered.

By Theorem 5, the efficient repair property of any information column of EVENODD codes

with r = 2 is preserved after the transformation, if p− 1 is a multiple of four. When r ≥ 3, the

repair method of information column of EVENODD codes is different from that of EVENODD

codes with r = 2. We need to design new transformation carefully to preserve the efficient repair

property of information column and that will be our future work.
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TABLE X: The transformed EVENODD code with k = 3, r = 2 and p = 5.

Column 0 Column 1 Column 2 Column 3 Column 4

a0,0, b0,0 a0,1, b0,1 a0,2, b0,2 a0,3 + b0,3, b0,4 a0,4, a0,3 + b0,3 + b1,3

a1,0, b1,0 a1,1, b1,1 a1,2, b1,2 a1,3 + b1,3, b1,4 a1,4, a1,3 + b0,3

a2,0, b2,0 a2,1, b2,1 a2,2, b2,2 a2,3 + b2,3, b2,4 a2,4, a2,3 + b2,3 + b3,3

a3,0, b3,0 a3,1, b3,1 a3,2, b3,2 a3,3 + b3,3, b3,4 a3,4, a3,3 + b2,3

Table X shows an example of the transformed code with k = 3, r = 2 and p = 5. When

f = 1, we have S0 = {0, 1, 3}, S2 = {0, 1, 2}, S3 = {0, 1} and S4 = {1, 3} according to the

repair method of the EVENODD code in Table IX. According to Theorem 5, we can recover

column 1 of the transformed EVENODD code by downloading the following 20 bits.

a0,0, a1,0, a3,0, a0,2, a1,2, a2,2, b0,0, b1,0, b3,0, b0,2, b1,2, b2,2, a3,4,

a0,3 + b0,3, a1,3 + b1,3, b1,4, b3,4, a0,3 + b0,3 + b1,3, a1,3 + b0,3, a1,4.

Specifically, we can repair the bits a0,1, a1,1 and b0,1, b1,1 by

a0,1 =a0,0 + a0,2 + (a1,3 + b1,3) + (a1,3 + b0,3)+

(a0,3 + b0,3 + b1,3),

a1,1 =a1,0 + a1,2 + (a0,3 + b0,3) + (a1,3 + b1,3)+

(a0,3 + b0,3 + b1,3),

b0,1 =b0,0 + b0,2 + (a0,3 + b0,3) + (a1,3 + b1,3)+

(a0,3 + b0,3 + b1,3) + (a1,3 + b0,3),

b1,1 =b1,0 + b1,2 + (a0,3 + b0,3) + (a0,3 + b0,3 + b1,3),

and repair a2,1, a3,1, b2,1, b3,1 by

a3,1 =a1,0 + a0,1 + a2,2 + a1,4,

a2,1 =a3,0 + a1,2 + a3,1 + a2,2 + a3,4,

b3,1 =b1,0 + b0,1 + b2,2 + b1,4,

b2,1 =b3,0 + b1,2 + b3,1 + b2,2 + b3,4.
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Therefore, we can recover column 1 by downloading 20 bits and the efficient repair property of

column 1 is preserved in our transformation. We can also show that the efficient repair property

of any other information column is preserved similarly.

We can also show that any one parity column of the transformed code is optimal. We can

repair column 3 by downloading 16 bits

bi,j for i = 0, 1, 2, 3 and j = 0, 1, 2, and

a0,3 + b0,3 + b1,3, a1,3 + b0,3, a2,3 + b2,3 + b3,3, a3,3 + b2,3.

Specifically, we can compute bi,3, bi,4 from bi,0, bi,1, bi,2 for i = 0, 1, 2, 3, as EVENODD is MDS

code. Then, we can compute the other four bits in column 3 by

a0,3 + b0,3 =(a0,3 + b0,3 + b1,3) + b1,3,

a1,3 + b1,3 =(a1,3 + b0,3) + b0,3 + b1,3,

a2,3 + b2,3 =(a2,3 + b2,3 + b3,3) + b3,3,

a3,3 + b3,3 =(a3,3 + b2,3) + b2,3 + b3,3.

Therefore, the repair access of the first parity column is optimal. Similarly, we can repair column

4 by downloading 16 bits

ai,j for i = 0, 1, 2, 3 and j = 0, 1, 2, and

b0,3 + a0,3, b1,3 + a1,3, b2,3 + a2,3, b3,3 + a3,3,

and the repair access of column 4 is optimal.

In order to obtain binary MDS array codes with low sub-packetization that have efficient repair

for any column, we show in this section how to apply the transformation for the array codes in

[33] and EVENODD codes. Note that the transformation given in this section can be viewed as a

variant of the transformation in Section II-B. We can also apply the transformation given in this

section multiple times for EVENODD codes to obtain the multi-layer transformed EVENODD

codes that have optimal repair for any column, as the construction in Section III-A. The difference

between two transformations is that, the efficient repair property of any information column of

codes in [33] is maintained with the transformation given in this section, while not for the

transformation in Section II-B. The relationship of sub-packetization and repair bandwidth of

binary MDS array codes is one of our future work.
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V. DISCUSSION AND CONCLUSION

In this paper, we propose a generic transformation for EVENODD codes that can enable

optimal repair access for the chosen d − k + 1 columns. Based on the proposed EVENODD

transformation, we present the multi-layer transformed EVENODD⌈ k
d−k+1

⌉+⌈ r
d−k+1

⌉ that have opti-

mal repair access for all k+ r columns. In EVENODD⌈ k
d−k+1

⌉+⌈ r
d−k+1

⌉, the d helper columns can

be selected from k + 1 and k + r− 1, and some of the d helper columns should be specifically

selected. Moreover, we show that the proposed transformation can also be employed in other

existing binary MDS array codes, such as codes in [26], [31]–[33], [35]–[37], that can enable

optimal repair access. How to combine the existing binary MDS array codes with asymptotically

optimal repair access by our transformation to obtain the transformed binary MDS array codes

with asymptotically optimal repair access for all columns and lower sub-packetization is an

interesting and practical future work. The implementation of the proposed transformed binary

MDS array codes in practical storage systems is another one of our future works.
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