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On Inverses of Permutation Polynomials of Small
Degree Over Finite Fields

Yanbin Zheng, Qiang Wang , and Wenhong Wei

Abstract— Permutation polynomials (PPs) and their inverses
have applications in cryptography, coding theory and combina-
torial design theory. In this paper, we make a brief summary of
the inverses of PPs of finite fields, and give the inverses of all
PPs of degree ≤ 6 over finite fields Fq for all q and the inverses
of all PPs of degree 7 over F2n . The explicit inverse of a class of
fifth degree PPs is the main result, which is obtained by using
Lucas’ theorem, some congruences of binomial coefficients, and
a known formula for the inverses of PPs of finite fields.

Index Terms— Finite fields, permutation polynomials, inverses,
binomial coefficients.

I. INTRODUCTION

FOR a prime power q , let Fq denote the finite field with q
elements, F

∗
q = Fq\{0}, and Fq [x] the ring of polynomials

over Fq . A polynomial f ∈ Fq [x] is called a permutation
polynomial (PP) of Fq if it induces a bijection from Fq to
itself. Hence for any PP f of Fq , there exists a polynomial
f −1 ∈ Fq [x] such that f −1( f (c)) = c for each c ∈ Fq or
equivalently f −1( f (x)) ≡ x (mod xq −x), and f −1 is unique
in the sense of reduction modulo xq − x . Here f −1 is defined
as the composition inverse of f on Fq , and we simply call it
the inverse of f .
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PPs of finite fields have been extensively studied for their
applications in coding theory, combinatorial design theory,
cryptography, etc. For instance, some PPs of F2m were used
in [14] to construct binary cyclic codes. The Dickson PPs
of degree 5 of F3m were employed in [13] to construct
new examples of skew Hadamard difference sets, which are
inequivalent to the classical Paley difference sets. In block
ciphers, a permutation is often used as an S-box to build the
confusion layer during the encryption process and the inverse
is needed while decrypting the cipher. PPs are useful in the
construction of bent functions [11], [29], [30], which have
optimal nonlinearity for offering resistance against the fast
correlation attack on stream ciphers and the linear attack on
block ciphers. PPs were employed in [16] to construct circular
Costas arrays, which are useful in sonar and radar communi-
cations. PPs were also applied in the construction of check
digit systems that detect the most frequent errors [37], [47].

The study of PPs of finite fields has a long history. In 1897,
Dickson [12] listed all normalized PPs of degree ≤ 5 of Fq

for all q , and classified all PPs of degree 6 of Fq for odd q .
In 2010, the complete classification of PPs of degree 6 and 7
of F2n was settled in [22]. In recent years, a lot of progress has
been made on the constructions of PPs of finite fields; see for
example [18], [23], [27], [53], [54] for permutation binomials
and trinomials of the form xr h(xq−1) of Fq2 , see [42], [56] for
PPs of the form (xq − x +c)s + L(x) of Fq2 , see [26], [60] for
PPs of the form (axq + bx + c)rφ((axq + bx + c)s)+ uxq +
vx of Fq2 , see [3]–[6] for PPs of the form xs + γ h( f (x)),
see [24] for PPs with low boomerang uniformity. For a detailed
introduction to the developments on PPs, we refer the reader
to [19], [28], [32] and the references therein.

The problem of explicitly determining the inverses of these
PPs is a more challenging problem. In theory one could
directly use the Lagrange interpolation formula, but for large
finite fields this becomes very inefficient. In fact, there are
few known classes of PPs whose inverses have been obtained
explicitly. It is also interesting to note that the explicit formulae
of inverses of low degree PPs have been neglected in the
literature. This motivates us to give a short review of the
progress in this topic and find explicit expressions of inverses
of all classes of PPs of degree ≤ 7 in [12], [22], [38].

The rest of the paper is organized as follows. Section II gives
a brief summary of the results concerning the inverses of PPs
of finite fields. In Section III, we obtain the inverses of all
PPs of degree 6 of finite fields Fq for all q and the inverses
of all PPs of degree 7 of F2n . For simplicity, we only list
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TABLE I

ALL NORMALIZED PPS OF DEGREE ≤ 5 AND THEIR INVERSES

in Table I all normalized PPs of degree ≤ 5 and their inverses.
In particular, the inverse of PP F(x) = x5−2ax3+a2x of F5n

is the main result of this paper; see Theorem 8. Section IV
starts with a formula for the inverse of an arbitrary PP, which
was first presented in [33]. This formula provides all the
coefficients of the inverse of a PP f (x) by computing the
coefficients of xq−2 in f (x)k (mod xq −x) for 1 ≤ i ≤ q −2.
Based on this method, we convert the problem of computing
F−1(x) into the problem of finding the values of four classes
of binomial coefficients. Section V gives the explicit values
of these binomial coefficients by using Lucas’ theorem and
several congruences of binomial coefficients modulo 5.

II. PPS AND THEIR INVERSES

We now give a brief summary of the results concerning the
inverses of PPs of finite fields, some of which will be used in
the next section.

Linear PPs. For a �= 0, b ∈ Fq , ax + b is a PP of Fq and
its inverse is a−1(x − b).

Monomials. For positive integer n, xn is a PP of Fq if and
only if gcd(n, q−1) = 1. In this case, the inverse is xm , where
mn ≡ 1 (mod q − 1). In particular, the inverses of xn on F2t

for some APN exponents n were given explicitly in [21].
Dickson PPs. The Dickson polynomial Dn(x, a) of the first

kind of degree n with parameter a ∈ Fq is given as

Dn(x, a) =
�n/2��
i=0

n

n − i

�
n − i

i

�
(−a)i xn−2i ,

where �n/2� denotes the largest integer ≤ n/2. It is known
that Dn(x, a) is a PP of Fq if and only if gcd(n, q2 − 1) = 1.
Its inverse was determined in [25] by the following lemma.

Lemma 1. [25, Lemma 4.8] Let m, n be positive integers
such that mn ≡ 1 (mod q2 −1). Then the inverse of Dn(x, a)
on Fq is Dm(x, an).

PPs of the form xrh(xs). The first systematic study of
PPs of Fq of the form f (x) = xr h(xs) was made in [41],
where q − 1 = ds, 1 ≤ r < s and h ∈ Fq[x]. A criterion
for f to be a PP of Fq was given in [41]. Later on,
several equivalent criteria were found in other papers; see
for instance [35], [43], [61]. Essentially, it says that f is a
PP of Fq if and only if gcd(r, s) = 1 and xr h(x)s permutes
Ud := {1, ω, · · · , ωd−1}, where ω is a primitive d-th root of
unity of Fq . [33, Theorem 1] characterized all the coefficients
of the inverse of xr g(xs)d on Fq , where gcd(r, q − 1) = 1.
This result was generalized in [44], and the inverse of f on
Fq was given by

f −1(x) = 1

d

d−1�
i=0

d−1�
j=0

ωi(t− j r)�x/h(ωi )
��r+ j s

,

where 1 ≤ �r < s and r�r + st = 1. This inverse was obtained
later in [58] by a piecewise method. When gcd(r, q − 1) = 1,
the inverses of f on Fq was given in [25] by

f −1(x) = �
xq−sh(�(xs))s−1�r 	

�(xs),
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where rr 	 ≡ 1 (mod q −1) and �(x) is the inverse of xr h(x)s

on Ud . The method employed in [25] is a multiplicative
analogue of [39] and [51].

Linearized PPs. Suppose L(x) = �n−1
i=0 ai xqi ∈ Fqn [x].

It is known that L is a PP of Fqn if and only if the associate
Dickson matrix

DL :=

⎛
⎜⎜⎜⎝

a0 a1 · · · an−1

aq
n−1 aq

0 · · · aq
n−2

...
...

...
...

aqn−1

1 aqn−1

2 · · · aqn−1

0

⎞
⎟⎟⎟⎠

is nonsingular [28, Page 362]. In this case, the inverse was
given in [52, Theorem 4.8] by

L−1(x) = (det(DL))
−1 �n−1

i=0 āi xqi
,

where āi is the (i, 0)-th cofactor of DL , i.e., the determinant
of DL is det(DL) = a0ā0 + �n−1

i=1 aqi

n−i āi . The inverses of
some special linearized PPs were also obtained; see [48]
for the inverse of arbitrary linearized permutation binomial,
see [49], [50] for the inverse of x + x2 + Tr(x/a) on F2n .
Very recently, linearized PPs of the form L(x)+ K (x) of Fqn

and their inverses are presented in [36, Theorem 3.1], where
L is a linearized PP of Fqn and K is a nilpotent linearized
polynomial such that L ◦ K = K ◦ L.

Bilinear PPs. The product of two linear functions is a
bilinear function. Let q be even and n be odd. The inverse of
bilinear PPs x(Trqn/q(x) + ax) of Fqn was obtained in [10],
where a ∈ Fq \ F2. The inverse of more general bilinear PPs

f (x) = x(L(Trqn/q(x))+ aTrqn/q(x)+ ax)

of Fqn was given in [51] in terms of the inverse of bilinear PP
x L(x) when restricted to Fq , where a ∈ F

∗
q and L ∈ Fq [x] is

a 2-polynomial.
PPs of the form xs + γh(f(x)). Let γ ∈ F

∗
qn be a b-linear

translator with respect to Fq for the mapping f : Fqn → Fq ,
i.e., f (x + uγ )− f (x) = ub holds for all x ∈ Fqn , all u ∈ Fq

and a fixed b ∈ Fq . [20, Theorem 8] stated that F1(x) =
x + γ f (x) is a PP of Fqn if b �= −1 (it is actually also a
necessary condition). Its inverse was given in [20, Theorem 3]
by F−1

1 (x) = x− γ
b+1 f (x). Let h be an arbitrary mapping from

Fq to itself. [20, Theorem 6] stated that F2(x) = x +γ h( f (x))
permutes Fqn if and only if u + bh(u) permutes Fq . When
b = 0, the inverse was given in [3, Proposition 4] by F−1

2 (x) =
x + (p − 1)γ h( f (x)), where p is the characteristic of Fqn .
PPs of the form F3(x) = xs + αTr(xt ) of F2n were studied
in [4]–[6], where 1 ≤ s, t ≤ 2n − 2, α ∈ F

∗
2n , and Tr is the

absolute trace function. A criterion for F3 to be a PP of F2n

was given in [5], [6]. If F3 is a PP of F2n and t = s(2i + 1)
for some 0 ≤ i ≤ n − 1 and i �= n/2, then the inverse is given
in [6, Theorem 4] by F−1

3 (x) = (x + αTr(x2i+1))r , where r
is the inverse of s modulo 2n − 1.

Involutions. An involution is a permutation such that its
inverse is itself. A systematic study of involutions over F2n was
made in [8]. The authors characterized the involution property
of monomials, Dickson polynomials [7] and linearized polyno-
mials over F2n , and proposed several methods of constructing
new involutions from known ones. In particular, involutions
of the form G(x) + γ f (x) were studied in [8], where G is

an involution, γ ∈ F
∗
2n and f ∈ F2n [x]. Involutions of the

form xr h(xs) were studied in [55]. Moreover, the number of
fixed points of involutions over F2n was also discussed in [8].
A class of involutions over F2n with no fixed points was
given in [36]. Involutions satisfying special properties were
presented in [11], [29], [30] to construct Bent functions.

PPs from the AGW criterion. The Akbary–Ghioca–
Wang (AGW) criterion [1] is an important method for
constructing PPs. A necessary and sufficient condition for
f (x) = h(ψ(x))ϕ(x)+ g(ψ(x)) to be a PP of Fqn was given
in [1] by using the additive analogue of AGW criterion,
where h, ψ, ϕ, g ∈ Fqn [x] satisfy some conditions. In [39],
the inverse of f was written in terms of the inverses of
two other polynomials bijecting two subspaces of Fqn .
In some cases, these inverses can be explicitly obtained.
Further extensions of [39] can be found in [40]. The general
results in [39], [40] contain some concrete classes mentioned
earlier such as bilinear PPs [51], linearized PPs of the form
L(x) + K (x) [36], and PPs of the form x + γ f (x) with
b-linear translator γ [20].

Generalized cyclotomic mapping PPs. Cyclotomic map-
ping PPs of finite fields were introduced in [34], [43], and were
generalized in [45]. A simple class of generalized cyclotomic
mapping PPs of Fq was defined in [45] as

f (x) = 1

d

d−1�
i=0

d−1�
j=0

aiω
−i j xri+ j s, (1)

where q − 1 = ds, ai ∈ F
∗
q , 1 ≤ ri < s and ω is a

primitive d-th root of unity of Fq . Several equivalent criteria
for f permuting Fq were given in [45], which stated that
f is a PP of Fq if and only if gcd(

�d−1
i=0 ri , s) = 1 and

{as
i ω

iri : i = 0, 1, . . . , d − 1} = Ud . The inverses of f on
Fq was given in [46], [58] by

f −1(x) = 1

d

d−1�
i=0

d−1�
j=0

ωi(ti − j ri )(x/ai)
�ri + j s,

where 1 ≤ �ri < s and ri �ri + sti = 1. In [46], all involutions
of the form (1) were characterized, and a fast algorithm was
provided to generate many classes of these PPs, their inverses,
and involutions. The class of PPs of the form xr h(xs) is in
fact a special case of generalized cyclotomic mapping PPs.

More general piecewise PPs. The idea of more gen-
eral piecewise constructions of permutations was summarized
in [2], [15]. Piecewise constructions of inverses of piecewise
PPs were studied in [58], [59]. As applications, the inverse of
PP f (x) = ax + x (q+1)/2 of Fq was given in [59] by

f −1(x) = (a2 − 1)−1(ax − bx (q+1)/2),

where (a2 − 1)(q−1)/2 = 1, b = (a + 1)(q−1)/2 ∈ {−1, 1}, and
q is odd. The inverse of PP of Fpn of the form

(ax pk − bx + c)
pn+1

2 ± (ax pk + bx)

was obtained in [59], where p is odd and a, b, c ∈ Fpn .
Three classes of involutions of finite fields were also given
in [58], [59]. In addition, the PP f in (1) can be written as
piecewise form, and its inverse was deduced by the piecewise
method in [58].
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III. THE INVERSES OF PPS OF SMALL DEGREE

Assume g ∈ Fq [x] and b, c, d ∈ Fq with b �= 0. Then
g is a PP of Fq if and only if f (x) = bg(x + c) + d is.
By choosing b, c, d suitably, we can obtain f in normalized
form, that is, f is monic, f (0) = 0, and when the degree m
of f is not divisible by the characteristic of Fq , the coefficient
of xm−1 is 0. It suffices, therefore, to study normalized PPs.
In 1897, Dickson [12] listed all normalized PPs of degree ≤ 5
of Fq for all q , and classified all PPs of degree 6 of Fq for
odd q . In 2010, the complete classification of PPs of degree
6 and 7 of F2n was settled in [22]. For a verification of the
classification of normalized PPs of degree 6 of Fq for all q ,
see [38].

According to the complete classifications of PPs
in [12], [22], [38], all PPs of degree 6 of Fq for all q
are over small fields Fq with q ≤ 32, except for x6 over F2n .
All PPs of degree 7 of F2n are over F2n with n ≤ 4, except
for x7 and x7 + x5 + x . The inverses of PPs of Fq with q ≤ 32
can be calculated by the Lagrange interpolation formula or
Theorem 9 in the next section. The inverses of PPs x6 and
x7 of F2n can be obtained by the following Theorem 2. The
polynomial x7 + x5 + x is actually the degree 7 Dickson
polynomial D7(x, 1) over F2n , and its inverse is Dm(x, 1)
(by Lemma 1), where m is the inverse of 7 modulo 22n − 1.
In other words, we obtain the inverses of all PPs of degree 6
of Fq for all q and the inverses of all PPs of degree 7 of F2n .

In the rest of this section, we will give the inverses of all
normalized PPs of degree ≤ 5 in [12], which are actually the
same as that in [28, Table 7.1] or in the previous Table I. Since
the inverses of normalized PPs of small fields Fq with q ≤ 13
can be obtained by the Lagrange interpolation formula, we
need only consider the normalized PPs of degree ≤ 5 of Fq

for infinite many q .

A. Inverses of Monomials

The inverse of x is clearly itself, and the inverse of x2 on
F2n is x2n−1

. The following theorem gives the explicit inverse
of xm on Fq for m ≥ 3.

Theorem 2. For m ≥ 3, if xm is a PP of Fq , then its inverse
on Fq is x (aq−a+1)/m, where a ≡ −(q − 1)φ(m)−1 (mod m)
and φ is Euler’s phi function.

Proof: If xm is a PP of Fq , then gcd(m, q − 1) = 1 and
so aq −a +1 = 1+a(q −1) ≡ 1− (q −1)φ(m) ≡ 0 (mod m).
Also note that m(aq − a + 1)/m − a(q − 1) = 1. Hence the
inverse of m modulo q − 1 is (aq − a + 1)/m.

The proof above converts the problem of determining the
inverse of m modulo q − 1 to that of computing the inverse
of q − 1 modulo m, and the latter is easy for small m. For
instance, if m = 3 and gcd(3, q − 1) = 1, then the inverse
of q −1 modulo 3 is (q −1)φ(3)−1 = q −1, and so the inverse
of 3 modulo q−1 is (aq−a+1)/3, where a ≡ 1−q (mod 3).

B. Inverses of Linearized Binomials and Trinomials

Assume Lst (x) := bxqs + cxqt
is an arbitrary linearized

binomial of Fqn , where b, c ∈ F
∗
qn and 0 ≤ t < s ≤ n − 1.

Then Lst (x) = b(xqs−t + b−1cx) ◦ xqt
, and so Lst permutes

Fqn if and only if Lr (x) := xqr − ax permutes Fqn , where
r = s − t and a = −b−1c. The inverse of Lr on Fqn was
given in [9], [48] as follows.

Theorem 3 ( [9], [48]). Let Lr (x) = xqr −ax, where a ∈ F
∗
qn

and 1 ≤ r ≤ n − 1. Then Lr is a PP of Fqn if and only if the
norm Nqn/qd (a) �= 1, where d = gcd(n, r). In this case, its
inverse on Fqn is

L−1
r (x) = Nqn/qd (a)

1 − Nqn/qd (a)

n/d−1�
i=0

a− q(i+1)r −1
qr −1 xqir

.

The norm Nqn/qd (a) �= 1 if and only if a is not a (qd −1)th
power. Hence, Theorem 3 gives the inverse of xqr − ax for
qr = 3, 4, 5 in Table I.

The normalized PP of the form x4 + bx2 + ax of F2n is
the only linearized trinomial in Table I. Its inverse has a close
relation with the sequence

S−1 = 0, S0 = 1, Si = b2i−1
Si−1 + a2i−1

Si−2, (2)

where 1 ≤ i ≤ n and a, b ∈ F
∗
2n . An argument similar to that

in [17, Lemma 2] leads to an equivalent definition of Si :

Si = bS2
i−1 + a2S4

i−2, 1 ≤ i ≤ n. (3)

Denote Zn = Sn + aS2
n−2. Then

Z2
n = S2

n + a2S4
n−2

(2)= bS2
n−1 + aS2

n−2 + a2S4
n−2

(3)= Sn + aS2
n−2 = Zn,

and so Zn = 0 or 1. A criterion for f (x) = xq2 + bxq + ax
to be a PP of Fqn and the inverse of f on Fqn were presented
in [49, Theorem 3.2.29]. Taking q = 2 in this theorem and
using the fact Zn = 0 or 1, we obtain the following result.

Corollary 4. Let L(x) = x4 +bx2+ax, where a, b ∈ F
∗
2n and

n ≥ 1. Then L is a PP of F2n if and only if Sn + aS2
n−2 = 1.

In this case, the inverse of L on F2n is

L−1(x) =
n−1�
i=0

�
S2i+1

n−2−i + a1−2i+1
Si

�
x2i
.

Note that Corollary 4 holds for n = 1, 2. Indeed, if n = 1
then L(x) ≡ L−1(x) ≡ x (mod x2 + x). If n = 2 and L is a
PP of F4, then L(x) ≡ L−1(x) ≡ bx2 (mod x4 + x).

The necessary and sufficient condition for L permuting F2n

can also be obtained by [17, Proposition 2]. This proposition
also shown that M0 = (2n−(−1)n)/3, where M0 is the number
of c ∈ F

∗
2n such that Pc(x) = x3 + x + c has no root in F2n .

Since L(b1/2x) = b2x(x3 + x + ab−3/2), L is a PP of F2n if
and only if Pc has no root in F2n , where c = ab−3/2. Hence
the number of a, b ∈ F

∗
2n such that L permutes F2n is equal

to (2n − 1)(2n − (−1)n)/3, which implies the probability of
L permuting F2n is almost 1/3.

In Corollay 4, let a = b = 1. Then Si = Si−1 + Si−2 by (2),
and so (S−1, S0, S1, S2, S3, S4, . . .) = (0, 1, 1, 0, 1, 1, . . .).
Thus we obtain the following result.

Corollary 5. Let L(x) = x4 + x2 + x. Then L is a PP of F2n

if and only if n ≡ 1, 2 (mod 3). In this case, the inverse of L
on F2n is L−1(x) = �n−1

i=0 x2i
with i �≡ 2 − n (mod 3).
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C. Inverses of Non-Linearized Trinomials

In Table I, there are only two infinite classes of non-
linearized permutation trinomials. One is the polynomial x5 +
ax3 + 5−1a2x , where a ∈ Fq and q ≡ ±2 (mod 5). It is
actually the Dickson PP D5(x,−5−1a), and by Lemma 1 its
inverse on Fq is Dm(x,−(5−1a)5), where m = (3q2 − 2)/5
(by the proof of Theorem 2). The other is as follows.

Lemma 6. [28, Table 7.1] Let f (x) = x5 − 2ax3 + a2x,
where a ∈ F

∗
5n and n ≥ 1. Then f is a PP of F5n if and only

if a(q−1)/2 = −1.

The inverse of f was given in [25] by solving equations
over finite fields.

Theorem 7. [25, Lemma 4.9] The inverse of f in Lemma 6
on F5n is

f −1(x) = x

�
(a/x2)

5n−1
4

1 − (a/x2)
5n−1

4

n−1�
i=0

(a/x2)−
5i+1−1

4 (1/x2)5
i
�2

,

where x ∈ F
∗
5n and f −1(0) = 0.

By employing the method in the next section, we obtain the
explicit polynomial form of f −1 as follows.

Theorem 8. The inverse of f in Lemma 6 on F5n is

f −1(x) =
�

0≤i≤ j≤n−1
a− 5n+5i+1+5 j+1−3

4 bi j x
5n+5i +5 j −1

2 ,

where bi j = 1 if i < j and bi j = 3 if i = j .

Remark 1. Theorem 8 can be obtained from Theorem 7 and� �
1≤i≤n

xi

�2 =
�

1≤i≤n

x2
i +

�
1≤i< j≤n

2 xi x j ,

where xi = a− 5i −1
4 x

5i−1−1
2 . However, we will demonstrate our

method of deducing Theorem 8 in the next sections. The main
reason is that our method can also be used to find the inverses
of other PPs of small degree; see for example [57].

In summary, all inverses of normalized PPs of degree
≤ 5 are obtained. We list these PPs and their inverses
in Table I.

IV. THE COEFFICIENTS OF INVERSE OF A PP

In this section, we will write the coefficients of inverse of
the PP f in Lemma 6 in terms of binomial coefficients, by
employing the following formula (4) presented first in [33].

Theorem 9 (See [33]). Let f ∈ Fq [x] be a PP of Fq such
that f (0) = 0, and let

f (x)q−1−i ≡
�

0≤k≤q−1

bik xk (mod xq − x),

where i = 1, 2, . . . , q − 2. Then the inverse of f on Fq is

f −1(x) =
�

1≤i≤q−2

bi,q−2xi . (4)

Proof: Assume f −1(x) = �q−2
i=1 ci x i . From the Lagrange

interpolation formula, we have

f −1(x) =
�
a∈Fq

a
�
1 − (x − f (a))q−1�

=
�
a∈F∗

q

a
�

−
�

1≤i≤q−1

(−1)i (− f (a))q−1−i x i
�

=
�

1≤i≤q−1

�
−

�
a∈F∗

q

a f (a)q−1−i
�

xi .

Hence for 1 ≤ i ≤ q − 2, we have

ci = −
�
a∈F∗

q

a f (a)q−1−i = −
�
a∈F∗

q

a
�

0≤k≤q−1

bikak

= −
�

0≤k≤q−1

bik

�
a∈F∗

q

ak+1 = bi,q−2,

where the last identity follows from�
a∈Fq

at =
�

−1 if t = q − 1,

0 if t = 0, 1, . . ., q − 2.

The proof is completed.

Remark 2. Theorem 9 is the same as the one in [33], [44].
All these results are essentially part of Theorem 2 in [31]. For
the reason of completeness, we include a proof by using the
Lagrange interpolation formula.

Next we use Theorem 9 to calculate the coefficients of the
inverse of f in Lemma 6. Recall that f (x) = x5 − 2ax3 +
a2x , where a ∈ F5n and a(q−1)/2 = −1. Let q = 5n and
ri = q − 1 − i , where 1 ≤ i ≤ q − 2. Then

f (x)ri = xri (x2 − a)2ri

=
�

0≤ j≤2ri

�
2ri

j

�
(−a)2ri− j xri+2 j . (5)

The degree of f (x)ri is 5ri , and 5 ≤ 5ri < 4(q − 1)+ q − 2.
By (4), the coefficient bi,q−2 of f −1 equals the sum of the
coefficients of xk(q−1)+(q−2) (k = 0, 1, 2, 3) in (5). If i is
even, then ri + 2 j is even, and so the coefficients of odd
powers of x in (5) are all 0. Also note k(q − 1)+ (q − 2) is
odd. We have bi,q−2 = 0 for even i . If i is odd, then

bi,q−2 =
�

0≤k≤3

�
2ri

(k(q − 1)+ i − 1)/2

�
(−a)2ri− k(q−1)+i−1

2 .

Let i = 2m + 1. Then 0 ≤ m ≤ (q − 3)/2 and

bi,q−2 =
�

0≤k≤3

�
2q − 4m − 4

k q−1
2 + m

�
(−a)−k q−1

2 −5m−2

=
�

0≤k≤3

�
2q − 4m − 4

k q−1
2 + m

�
(−1)k+ma−5m−2, (6)

where the last identity follows from the fact a(q−1)/2 = −1
and q = 5n . If 2q − 4m − 4 < k(q − 1)/2 + m, i.e.,

m > ((4 − k)q + k − 8)/10,
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then
�2q−4m−4

k q−1
2 +m

� = 0. Thus a direct computation reduces (6) to

bi,q−2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if 4T + 1 < m ≤ (q − 3)/2,

em0 if 3T < m ≤ 4T + 1,

em0 + em1 if 2T < m ≤ 3T ,

em0 + em1 + em2 if T < m ≤ 2T ,

em0 + em1 + em2 + em3 if 0 ≤ m ≤ T ,

(7)

where T = (q − 5)/10 = (5n−1 − 1)/2 and

emk =
�

2q − 4m − 4

k q−1
2 + m

�
(−1)k+ma−5m−2, k = 0, 1, 2, 3. (8)

Now the key of deducing Theorem 8 is to find the values of
binomial coefficients above.

V. EXPLICIT VALUES OF BINOMIAL COEFFICIENTS

In this section, we first give the explicit values of binomial
coefficients in (8), and then prove Theorem 8. In order to
remove the multiples of q in these binomial coefficients,
we need two lemmas.

Lemma 10 (Lucas’ theorem). For non-negative integers n,
k and a prime p, let n = n0 + n1 p + · · · + ns ps and k =
k0+k1 p+· · ·+ks ps be their p-adic expansions, where 0 ≤ ni ,
ki ≤ p − 1 for i = 0, 1, . . . , s. Then�

n

k

�
≡

s�
i=0

�
ni

ki

�
(mod p)

(with the convention
�0

0

� = 1 and
�n

k

� = 0 if n < k).
In particular,

�n
k

� �≡ 0 (mod p) if and only if ni ≥ ki for all i .

Lemma 11. Let q be a power of a prime p, and let r , k be
integers with 0 ≤ k ≤ q − 1. Then�

q + r

k

�
≡

�
r

k

�
(mod p).

where
�n

k

� = n(n − 1) · · · (n − k + 1)/k!.
Proof: By the Chu-Vandermonde identity, we have�

q + r

k

�
=

k�
i=0

�
q

i

��
r

k − i

�
≡

�
r

k

�
(mod p),

where we use the fact
�q

i

� ≡ 0 (mod p) for 1 ≤ i ≤ q − 1.
In (7) we defined T = (q − 5)/10 with q = 5n . Then for

0 ≤ m ≤ 4T + 1, applying Lemma 11 twice yields that�
2q − 4m − 4

m

�
≡

�−4m − 4

m

�

≡ (−1)m
�

5m + 3

m

�
(mod 5), (9)

where we use the fact
�−n

m

� = (−1)m
�m+n−1

m

�
for m, n > 0.

Similarly, for 0 ≤ m ≤ 3T ,�
2q − 4m − 4

q−1
2 + m

�
≡ (−1)m

�
5m + 3 + q−1

2

m + q−1
2

�
(mod 5), (10)

For 0 ≤ m ≤ 2T , we have q − 4m − 4 > 0 and, by Lucas’
theorem and Lemma 11,�

2q − 4m − 4

q + m − 1

�
≡

�
q − 4m − 4

m − 1

�
≡

�−4m − 4

m − 1

�

≡ (−1)m−1
�

5m + 2

m − 1

�
(mod 5). (11)

Similarly, for 0 ≤ m ≤ T ,�
2q − 4m − 4

3 q−1
2 + m

�
≡ (−1)m−1

�
5m + 2 + q−1

2

m − 1 + q−1
2

�
(mod 5).

(12)
Next we use Lucas’ theorem to find the explicit value of

the last binomial coefficients in (9)-(12).

Theorem 12. Let 0 ≤ m ≤ 5n − 1 with n ≥ 1. Write

m = m0 + m15 + · · · + mn−15n−1, 0 ≤ mi ≤ 4.

Then the following three statements are equivalent:
(i)

�5m+3
m

� �≡ 0 (mod 5);
(i i) 3 ≥ m0 ≥ m1 ≥ · · · ≥ mn−1 ≥ 0;
(i i i) m = 5k1 −1

4 + 5k2 −1
4 + 5k3 −1

4 , where 0 ≤ k1 ≤ k2 ≤
k3 ≤ n.

Proof: It is easy to obtain the 5-adic expansions:
5m + 3 = 3 + m05 + · · · + mn−25n−1 + mn−15n,

m = m0 + m15 + · · · + mn−15n−1. (13)

By Lucas’ theorem, (i) is equivalent to (ii). To show (ii) is
equivalent to (iii), it suffices to prove M1 = M2, where

M1 = {m : 3 ≥ m0 ≥ m1 ≥ · · · ≥ mn−1 ≥ 0},
M2 = { 5k1−1

4 + 5k2 −1
4 + 5k3 −1

4 : 0 ≤ k1 ≤ k2 ≤ k3 ≤ n}.
Since (5k −1)/4 = 1+1 ·5+· · ·+1 ·5k−1 and 0 ≤ k1 ≤ k2 ≤
k3 ≤ n, we have M2 ⊆ M1. It remains to show that M1 ⊆ M2,
i.e., m ∈ M2 for any m ∈ M1. The remainder of our proof is
divided into two cases.

Case 1: assume m ∈ M1 such that m0 = · · · = mn−1 = a,
where 0 ≤ a ≤ 3. If a = 2, then m = 5k1 −1

4 + 5k2 −1
4 + 5k3−1

4 ,
where k1 = 0 and k2 = k3 = n. Hence m ∈ M2. Similarly,
m ∈ M2 for a = 0, 1 or 3.

Case 2: assume m ∈ M1 such that m0, m1, . . ., mn−1 are not
all equal. Then the number N of the sign > in the inequality
3 ≥ m0 ≥ m1 ≥ · · · ≥ mn−1 ≥ 0 is 1, 2 or 3. If N = 3, then
there exist a, b, c such that

0 ≤ a < b < c ≤ n − 2,

m0 = m1 = · · · = ma = 3,

ma+1 = ma+2 = · · · = mb = 2,

mb+1 = mb+2 = · · · = mc = 1,

mc+1 = mc+2 = · · · = mn−1 = 0.

Then m = 5k1 −1
4 + 5k2 −1

4 + 5k3 −1
4 , where k1 = a+1, k2 = b+1

and k3 = c + 1. Hence m ∈ M2. Similarly, m ∈ M2 for
N = 1 or 2.

Two criteria that
�5m+3

m

� �≡ 0 (mod 5) are given in the
theorem above. The following theorem finds the explicit values
of this class of binomial coefficients.
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Theorem 13. Let m = 5k1 −1
4 + 5k2 −1

4 + 5k3 −1
4 with 0 ≤ k1 ≤

k2 ≤ k3 ≤ n. Then in F5,�
5m + 3

m

�
=

�
1 if k1 = k2 = k3 or k1 < k2 < k3,

3 if k1 = k2 < k3 or k1 < k2 = k3.

Proof: For ease of notations, we denote A = �5m+3
m

�
.

Case 1: k1 = k2 = k3 = k with 0 ≤ k ≤ n. If k = 0 then
m = 0 and A = �3

0

� = 1. If 1 ≤ k ≤ n, then m = 3(5k −1)/4,
i.e., m0 = · · · = mk−1 = 3 and mk = · · · = mn−1 = 0.
By Lucas’ theorem and (13), A ≡ �3

3

��3
0

� = 1 (mod 5).
Case 2: k1 = k2 < k3. If k1 = k2 = 0, then

m0 = · · · = mk3−1 = 1, mk3 = · · · = mn−1 = 0.

Thus A ≡ �3
1

��1
0

� = 3 (mod 5). If k1 = k2 = k ≥ 1, then
m0 = · · · = mk−1 = 3, mk = · · · = mk3−1 = 1, mk3 = · · · =
mn−1 = 0. Hence A ≡ �3

3

��3
1

��1
0

� = 3 (mod 5).
Case 3: k1 < k2 = k3. The proof is similar to that of

Case 2 and so is omitted.
Case 4: k1 < k2 < k3. If k1 = 0 then m0 = · · · = mk2−1 =

2, mk2 = · · · = mk3−1 = 1, mk3 = · · · = mn−1 = 0. Hence
A ≡ �3

2

��2
1

��1
0

� ≡ 1 (mod 5). If 0 < k1 < k2 < k3, then

m0 = · · · = mk1−1 = 3, mk1 = · · · = mk2−1 = 2,

mk2 = · · · = mk3−1 = 1, mk3 = · · · = mn−1 = 0.

Hence A ≡ �3
3

��3
2

��2
1

��1
0

� ≡ 1 (mod 5).

Corollary 14. Let T = (5n−1 − 1)/2, n ≥ 1 and 2T < m ≤
4T + 1. Then in F5,�

5m + 3

m

�
=

⎧⎨⎩3(
k1
k2
) if m = (5n + 5k1 + 5k2 − 3)/4,

0 otherwise,

where 0 ≤ k1 ≤ k2 ≤ n − 1.

Proof: Let A = �5m+3
m

�
. According to Theorem 12, if 0 ≤

m ≤ 5n − 1 then A �≡ 0 (mod 5) if and only if

m = 5k1−1
4 + 5k2 −1

4 + 5k3 −1
4 ,

where 0 ≤ k1 ≤ k2 ≤ k3 ≤ n. Since 2T + 1 = 5n−1 and

4T + 1 = 4 + 4 · 5 + · · · + 4 · 5n−2 + 1 · 5n−1,

we have, for 2T < m ≤ 4T + 1, A �≡ 0 (mod 5) if and only
if m = (5k1 + 5k2 + 5n − 3)/4, where 0 ≤ k1 ≤ k2 < n. In this

case, A ≡ 3(
k1
k2
)
(mod 5) by Theorem 13.

The following corollary presents a congruence relation for
the binomial coefficients in (9) and (11).

Corollary 15. Let T = (5n−1−1)/2, n ≥ 2 and T < m ≤ 2T .
Then �

5m + 3

m

�
≡

�
5m + 2

m − 1

�
(mod 5).

Proof: Denote by A and B the above binomial coeffi-
cients, respectively. Then m A = (5m +3)B , and so 2m A ≡ B
(mod 5). If A ≡ 0 (mod 5), then B ≡ 0 (mod 5), and thus
A ≡ B (mod 5). We next show A ≡ B (mod 5) for A �≡ 0
(mod 5). By Theorem 12, for 0 ≤ m ≤ 5n − 1, A �≡ 0

(mod 5) if and only if m = 5k1 −1
4 + 5k2 −1

4 + 5k3 −1
4 , where

0 ≤ k1 ≤ k2 ≤ k3 ≤ n. Since

T = 2 + 2 · 5 + · · · + 2 · 5n−2,

2T = 4 + 4 · 5 + · · · + 4 · 5n−2,

we obtain, for T < m ≤ 2T , A �≡ 0 (mod 5) if and only
if m = 5k1 −1

4 + T , where 1 ≤ k1 ≤ n − 1. Hence m ≡ 3
(mod 5), and so A ≡ 2m A ≡ B (mod 5).

Next we study the last binomial coefficient in (10).

Theorem 16. Let 0 ≤ m ≤ 5n − 1 with n ≥ 1. Write

m = m0 + m15 + · · · + mn−15n−1, 0 ≤ mi ≤ 4.

Then the following three statements are equivalent:

(i)
�5m+3+5n−1

2
m+5n−1

2

�
�≡ 0 (mod 5);

(i i) 3 = m0 ≥ m1 ≥ · · · ≥ mn−1 ≥ 2;
(i i i) m = 5n−1

2 + 5k−1
4 , where 1 ≤ k ≤ n.

Proof: Denote α = 5m + 3 + 5n−1
2 and β = m + 5n−1

2 .
Then their 5-adic expansions are as follows:

α = 0 + (m0 + 3)5 + (m1 + 2)52 + (m2 + 2)53 + · · ·
+ (mn−2 + 2)5n−1 + mn−15n, (14)

β = (m0 + 2)+ (m1 + 2)5 + (m2 + 2)52 + · · ·
+ (mn−1 + 2)5n−1 + 0 · 5n. (15)

If
�α
β

� �≡ 0 (mod 5), then by Lucas’ theorem, 0 � m0 + 2,
i.e., m0 = 3, where ai � bi denotes ai ≥ bi in F5. The
condition m0 = 3 leads to a carry 1 in (14) and (15),
respectively. Then

α = 0 + 1 · 5 + (m1 + 3)52 + (m2 + 2)53 + · · · ,
β = 0 + (m1 + 3)5 + (m2 + 2)52 + (m3 + 2)53 + · · · .

If
�α
β

� �≡ 0 (mod 5), then 1 � m1 + 3, i.e., m1 = 2, 3, which
also yields a carry 1 in the expansions above. Now

α = 0 + 1 · 5 + (m1 − 2)52 + (m2 + 3)53 + · · · ,
β = 0 + (m1 − 2)5 + (m2 + 3)52 + (m3 + 2)53 + · · · .

If
�α
β

� �≡ 0 (mod 5), then 1 � m1 − 2 � m2 + 3, and so
1 � m2 + 3, i.e., m2 = 2, 3, which also yields a carry 1. And
so on, we obtain

�α
β

� �≡ 0 (mod 5) if and only if

m0 = 3, 1 � m1 −2 � · · · � mn−1 −2, mn−1 +1 � 1. (16)

So mk = 2, 3 for 1 ≤ k ≤ n − 1. There are exactly two cases:
• m1 = · · · = mn−1 = 3, i.e., m = 5n−1

2 + 5n−1
4 ;

• m1 = · · · = mk−1 = 3 and mk = · · · = mn−1 = 2 for
some 1 ≤ k ≤ n − 1. That is, m = 5n−1

2 + 5k−1
4 , where

1 ≤ k ≤ n − 1.

Therefore, (16) is equivalent to (i i) or (i i i).

Corollary 17. Let 0 ≤ m ≤ (5n − 1)/2 with n ≥ 1. Then�
5m + 3 + 5n−1

2

m + 5n−1
2

�
≡ 0 (mod 5).

Now we consider the last binomial coefficient in (12).
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Theorem 18. Let T = (5n−1 − 1)/2, n ≥ 1 and 0 ≤ m ≤ 2T .
Write m = m0 + m15 + · · · + mn−25n−2, where 0 ≤ mi ≤ 4.
Then the following three statements are equivalent:

(i)
�5m+2+5n−1

2

m−1+5n−1
2

�
�≡ 0 (mod 5);

(i i) 2 ≥ m0 ≥ m1 ≥ · · · ≥ mn−2 ≥ 0;
(i i i) m = 5k1 −1

4 + 5k2 −1
4 , where 0 ≤ k1 ≤ k2 ≤ n − 1.

Proof: Denote α = 5m +2+ 5n−1
2 and β = m −1+ 5n−1

2 .
Then their 5-adic expansions are as follows:

α = 4 + (m0 + 2)5 + · · · + (mn−2 + 2)5n−1,

β = (m0 + 1)+ (m1 + 2)5 + · · · + 2 · 5n−1.

The proof that (i) is equivalent to (i i) is divided in two cases.
Case 1: 0 ≤ mi ≤ 2 for all i . Then by Lucas’ Theorem,�α

β

� �≡ 0 (mod 5) if and only if

4 ≥ m0 + 1, m0 + 2 ≥ · · · ≥ mn−2 + 2 ≥ 2, i.e.,

2 ≥ m0 ≥ · · · ≥ mn−2 ≥ 0.

Case 2: mi = 3 or 4 for some i (0 ≤ i ≤ n − 2). We first
show

�α
β

� ≡ 0 (mod 5) if m0 = 3. An argument similar to the
one used in Theorem 16 shows that

�α
β

� �≡ 0 (mod 5) if and
only if m1 = 3 and 1 ≥ m2 −2 ≥ · · · ≥ mn−2 −2 ≥ 3. This is
contrary to 3 > 1. Similarly, we have

�α
β

� ≡ 0 (mod 5) when
m0 = 4, mi = 3 or 4 for 1 ≤ i ≤ n − 2.

An argument similar to the one used in Theorem 12 can
show that (i i) is equivalent to (i i i).

The following corollaries give the linear congruence rela-
tions between the binomial coefficients in (9), (11) and (12).

Corollary 19. Let T = (5n−1 −1)/2, n ≥ 1 and 0 ≤ m ≤ 2T .
Then �

5m + 2 + 5n−1
2

m − 1 + 5n−1
2

�
≡ −

�
5m + 2

m

�
(mod 5).

Proof: Denote by C and D the above binomial coeffi-
cients, respectively. Then by Lucas’ theorem, D �≡ 0 (mod 5)
if and only if 2 ≥ m0 ≥ m1 ≥ · · · ≥ mn−2 ≥ 0. That
is, D �≡ 0 (mod 5) if and only if C �≡ 0 (mod 5). Hence
C ≡ −D (mod 5) when C ≡ 0 (mod 5). On the other hand,
if C �≡ 0 (mod 5), then, by Theorem 18, m = 5k1 −1

4 + 5k2 −1
4 ,

where 0 ≤ k1 ≤ k2 ≤ n − 1. An argument similar to that
in Theorem 13 shows C ≡ 3 + �k1

k2

� ≡ −D (mod 5). Hence
C ≡ −D (mod 5) for C �≡ 0 (mod 5).

Corollary 20. Let T = (5n−1 − 1)/2, n ≥ 2 and 0 ≤ m ≤ T .
Then�

5m + 3

m

�
+

�
5m + 2 + 5n−1

2

m − 1 + 5n−1
2

�
≡

�
5m + 2

m − 1

�
(mod 5).

Proof: Denote by A, C , B the above binomial coefficients,
respectively. By m A = (5m+3)B , we get 2m A ≡ B (mod 5).
Let D = �5m+2

m

�
. Then (4m + 3)A = (5m + 3)D, and so D ≡

(3m +1)A (mod 5). By Corollary 19, C ≡ −D ≡ (2m −1)A
(mod 5). Hence A + C ≡ B (mod 5).

With the help of the preceding results, we now prove
Theorem 8. According to (7), the coefficients bi,q−2 of f −1

are linear combinations of em0, em1, em2, em3 defined by (8).
Corollary 17 and the congruence (10) imply that

em1 ≡ 0 (mod 5) 0 ≤ m ≤ 3T ,

where T = (5n−1 − 1)/2. By (9), (11) and Corollary 15,

em0 + em2 ≡ 0 (mod 5) for T < m ≤ 2T .

From (9), (11), (12) and Corollary 20, we obtain

em0 + em2 + em3 ≡ 0 (mod 5) for 0 ≤ m ≤ T .

By (9) and Corollary 14, for 2T < m ≤ 4T +1 we get, in F5,

em0 =
⎧⎨⎩3(

k1
k2
)a−5m−2 if m = (5n + 5k1 + 5k2 − 3)/4,

0 otherwise,

where 0 ≤ k1 ≤ k2 ≤ n−1. Then Theorem 8 follows from (7)
and Theorem 9 when n ≥ 2 (since n ≥ 2 is a necessary
condition of Corollaries 15 and 20). In addition, it is easy to
verify that Theorem 8 also holds for n = 1.
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