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Efficient Multi-Point Local Decoding
of Reed-Muller Codes via

Interleaved Codex
Ronald Cramer, Chaoping Xing , and Chen Yuan

Abstract— Reed-Muller codes are among the most important
classes of locally correctable codes. Currently local decoding of
Reed-Muller codes is based on decoding on lines or quadratic
curves to recover one single coordinate. To recover multiple
coordinates simultaneously, the naive way is to repeat the local
decoding for recovery of a single coordinate. This decoding
algorithm might be more expensive, i.e., require higher query
complexity. In this paper, we focus on Reed-Muller codes with
usual parameter regime, namely, the total degree of evaluation
polynomials is d = �(q), where q is the code alphabet size
(in fact, d can be as big as q/4 in our setting). By introducing
a novel variation of codex, i.e., interleaved codex (the concept
of codex has been used for arithmetic secret sharing), we are
able to locally recover arbitrarily large number k of coordinates
of a Reed-Muller code simultaneously with error probability
exp(−�(k)) at the cost of querying merely O(q2k) coordinates.
It turns out that our local decoding of Reed-Muller codes shows
(perhaps surprisingly) that accessing k locations is in fact cheaper
than repeating the procedure for accessing a single location for k
times. Precisely speaking, to get the same success probability by
repeating the local decoding algorithm of a single coordinate, one
has to query �(qk2) coordinates. Thus, the query complexity of
our local decoding is smaller for k = �(q). If we impose the same
query complexity constraint on both algorithm, our local decod-
ing algorithm yields smaller error probability when k = �(qq ).
In addition, our local decoding is efficient, i.e., the decoding
complexity is Poly(k, q). Construction of an interleaved codex is
based on concatenation of a codex with a multiplication friendly
pair, while the main tool to realize codex is based on algebraic
function fields (or more precisely, algebraic geometry codes).

Index Terms— Block codes, Reed-Muller codes, Local
decoding.

I. INTRODUCTION

IN TRANSMISSION of information over noisy chan-
nels or data storage, people are often interested in a

portion of data. Thus, one needs to decode only this portion
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of data instead of the whole data set. However, classical
error-correcting codes are generally designed to recover the
whole information. Thus, this new application give rise to a
special class of error-correcting codes, i.e., locally decodable
(correctable) codes.

Although locally decodable (correctable) codes have been
studied for about two decades, Reed-Muller codes and their
variants are still among the most important classes of locally
correctable codes. Therefore, the local decoding of Reed-
Muller codes plays significant role in this topic. There
are various decodings of Reed-Muller codes such as local
decoding, list decoding or local list decoding in the litera-
ture [1], [4], [12], [17], [23], [24]. Among these decodings,
there are basically two local decoding methods, i.e., decoding
on lines and quadratic curves. Though decoding on quadratic
curves can be generalized to decoding on high-degree curves,
it does not appear in the literature. Almost all locally cor-
rectable codes including Reed-Muller codes focus on the
recovery of one single coordinate [1], [3], [12], [17], [19], [20],
[22], [27]. To recover multiple coordinates simultaneously,
the naive way is to repeat these local decodings of single
coordinate. However, this idea loses its attraction when one
attempts to recover a large number of coordinates (see Sub-
section 1.5 below).

The current local decoding of Reed-Muller codes is based
on decoding on lines or curves, i.e., randomly choose a
line or a curve passing through a given point, then reduce
it to the Reed-Solomon code decoding. Actually, in the PCP
literature, one considers the projection of a codeword to a
low-degree curve instead of line [21]. However, the decoding
algorithm is eventually reduced to the decoding of Reed-
Solomon codes again. Therefore, for a fixed alphabet size, one
cannot read and decode as many coordinates as one wishes.
Instead, one has to run a decoding algorithm multiple times
which results in the increase of the error probability.

The main reason why the above local decoding of multiple
points requires higher query complexity is due to the decoding
of Reed-Solomon codes. A natural and promising alternative is
to replace Reed-Solomon codes with algebraic geometry codes
in the local decoding of multiple coordinates. Similar to the
decoding of Reed-Solomon codes, we also want that our alge-
braic geometry codes have as much randomness as possible.
The randomness of local decoding based on algebraic geom-
etry code turns out to be closely related to the dual distance
of this code. In this sense, one can locally recover multiple

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1257-1033
https://orcid.org/0000-0002-3730-8397


264 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 1, JANUARY 2020

coordinates of a Reed-Muller codeword simultaneously as long
as there exists a good algebraic geometry code or a codex.
Here, we use the concept codex [7] to capture the property
we need in the local decoding. The construction of codex is
through algebraic curves over finite fields (or more precisely
algebraic geometry codes). As algebraic function fields with
many rational places are usually defined over Fq2 , the codex
built from these function fields are also defined over Fq2 .
To overcome this obstacle, we present the concept interleaved
codex. The interleaved codex is a concatenation of codex over
Fq2 with a multiplication friendly pair that was first introduced
in [10] to study multiplication of elements in extension fields
of Fq . Here, we refer to the term concatenation because one
can treat the multiplication friendly pair as an inner code with
multiplicative property and codex as an outer code. To our
surprise, even for the Reed-Muller code defined over base
field Fq with a square q , this concatenation technique leads to
a local decoding algorithm with significantly larger decoding
radius than applying the codex directly. We will see this in
Section 4. Essentially our local decoding of multiple coordi-
nates is based on the decoding of algebraic geometry codes
which generalizes local decoding based on Reed-Solomon
codes. However, this generalization is by no means trivial.
In fact, several sophisticated algebraic tools are used to achieve
our local decoding goal.

In this paper, we consider local decoding of Reed-Muller
codes with the usual parameter regime, i.e., d = �(q), where
q is the code alphabet size (in fact, d can be as big as q/4 in
our setting). As a main consequence of our local decoding,
we are able to locally recover arbitrarily large number k
coordinates of a Reed-Muller code simultaneously with error
probability exp(−�(k)) at the cost of querying merely O(q2k)
coordinates. This is not achievable by all other existing local
decodings of Reed-Muller codes. For instance, to get the
same success probability from repetition of local decoding
for recovery of a single coordinate, one has to query �(qk2)
coordinates. Thus, the query complexity of our local decoding
is smaller for k = �(q). Furthermore, our local decoding
is efficient, i.e., the decoding complexity is Poly(k, q). Our
local decoding also works for the recovery of one single
coordinate as well. In this case, there is a trade-off between
code dimension and success probability.

In the literature, there is a construction of locally decodable
(correctable) codes via algebraic function fields (or algebraic
curves) with large automorphism groups [3], [14]. However,
usage of algebraic curves in this paper is not for purpose of
constructing locally correctable codes, but for local decoding
of Reed-Muller codes.

A. Locally Correctable Codes

To better state our result, let us introduce locally correctable
codes first.

Definition 1.1: A subset C of F
N
q is called a q-ary (r, δ, ε)-

locally correctable code of length N if there exists a random-
ized algorithm A such that (i) for any i ∈ [N] and c ∈ C ,
y ∈ F

N
q with wtH (c, y) ≤ δN , one has Pr[Ay(i) = ci ] ≥ 1−ε,

where the probability is taken over random coin tosses of the
algorithm A (note that ci stands for the i -th coordinate of c

and Ay(i) stands for the output of A from y for the position
at i ); (ii) A makes at most r queries to y.

The above definition is only for recovery of one single coor-
dinate (or point). We can generalize it to a locally correctable
code with recovery of multiple coordinates (or points).

Definition 1.2: A subset C of F
N
q is called a q-ary

(k; r, δ, ε)-locally correctable code of length N if there exists
a randomized algorithm A such that (i) for any S ⊆ [N] with
|S| ≤ k, and c ∈ C , y ∈ F

N
q with wtH (c, y) ≤ δN , one has

Pr[Ay(S) = cS] ≥ 1 − ε, where the probability is taken over
random coin tosses of the algorithm A (note that cS stands
for the projection of c to S and Ay(S) stands for the output
of A from y for the positions at S); (ii) A makes at most r
queries to y.
Thus, a (1; r, δ, ε)-locally correctable code is an (r, δ, ε)-
locally correctable code.

B. Reed-Muller Codes

We denote by x the variable vector (x1, . . . , xm). The mul-
tivariate polynomial ring Fq [x1, . . . , xm ] is denoted by Fq [x].
For a vector I = (e1, . . . , em) ∈ Z

m≥0, we denote by xI the
monomial

∏m
i=1 xei

i . Thus, we can write a polynomial of total
degree at most d by f (x) = ∑

wtL (I )≤d aI xI , where aI ∈ Fq

and wtL(I ) = ∑m
i=1 ei is the Lee weight. A polynomial in

Fq [x] is called a degree-d polynomial if its total degree is at
most d . In the setting throughout the paper, we assume that
d < q .

Definition 1.3: The Reed-Muller code RM(q, d,m) is
defined by {( f (u))u∈Fm

q
: f (x) ∈ Fq [x]; deg( f (x)) ≤ d},

where deg( f (x)) denotes the total degree of f (x).
The dimension of the Reed-Muller code RM(q, d,m) is(m+d

d

)
. Currently, the two most popular parameter regimes

for locally decoding Reed-Muller codes are either constant
d or d ≤ σq for some constant 0 < σ < 1. In this paper,
we focus on the latter case.

C. Known Results

The simplest local decodings of Reed-Muller codes is called
decoding on lines [27, Proposition 2.5]. The decoding on
line can be generalized to decoding on quadratic curves [27,
Proposition 2.6]. Both decodings are very special cases of our
codex decoding where a Reed-Solomon code with pairwise
independent variables is used (see Example 4.1(i) and (ii)).

Proposition 1.4: Let 0 < σ, δ < 1 be positive real. Let m
and d be positive integers. Let q be a prime power.

(i) If d ≤ σ(q − 1) − 1, then the Reed-Muller code
RM(q, d,m) is (q − 1, δ, 2δ/(1 − σ))-locally correctable
for all positive real with δ < 1−σ

2 .
(ii) If d ≤ σ(q − 1) − 1, then the Reed-Muller code

RM(q, d,m) is
(

q − 1, δ, ε = O
(
γσ,δ

q

))
-locally cor-

rectable for all positive real with δ < 1−2σ
2 , where

γσ,δ = δ−δ2

1−2σ−2δ .

The purpose of (ii) in Proposition 1.4 is to increase the success
probability of local decoding. As σ, δ are constant and q is
usually large, Proposition 1.4(ii) gives much better success
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probability at the cost of a slightly smaller local decoding
radius.

Although it does not appear in the literature, generalization
of local decoding on quadratic curves is quite straightforward
in the following way. Assume that f (u)u∈Fm

q
is transmitted

and we want to recover f (w) at position w. Choose t
independently random vectors v1, . . . , vt and consider the
degree t curve w +∑t

i=1 xi vi . By using the error probability
bound for t-wise independence (see Lemma 2.12), we obtain
the result on local decoding using higher degree curves (see
Example 4.1(iii)).

D. Our Results

This paper mainly focuses on multiple point local decoding
although single point local decoding is considered as well.

For local decoding to recover multiple coordinates, we only
state the result based on the Garcia-Stichtenoth tower though
all three classes of codes, namely Reed-Solomon codes,
Hermitian codes and algebraic geometry codes from the
Garcia-Stichtenoth tower are discussed in this paper. We refer
to Theorem 4.7(i)-(iv) for local decoding of recovering multi-
ple coordinates based on Reed-Solomon and Hermitian codes.

Theorem 1.5: Let q be a prime power. Let d > 1,m, k be
positive integers. Let δ, σ be two reals in (0, 1) with δ < 1−4σ

2
and d < σq . Then the Reed-Muller code RM(q, d,m) is(

k; q2k, δ, O

((
μδ,σ√

q

)k
))

-locally correctable, where μδ,σ =
√

8
1−4σ−2δ (note that k can be arbitrarily large). Furthermore,
the decoding algorithm is efficient, i.e., the decoding time
complexity is Poly(k, q).

E. Comparison

Let us compare our results given in Subsection I-D with the
known results (or those derived from the known results).
(i) To obtain a k-multiple point local decoding from the

single point decoding given in Proposition 1.4(ii), one
can repeat local decoding k times to get a (k; qk, δ, ε)-
locally correctable code with ε = Oσ,δ

(
k
q

)
. Therefore,

this method does not work when k > q .
(ii) The other way is to first repeat local decoding to correct

f (u) at the same point u to increase probability, and then
repeat the above procedure to correct multiple points with
meaningful probability. Let us analyze this decoding idea
in detail. To increase decoding success probability of the
local decoding in Proposition 1.4(ii), we can repeat local
correction of f (u) at u for s times. Denote by Yi a binary
random variable such that Yi = 1 if the local decoding
algorithm outputs a wrong answer in the i -th round and
Yi = 0 otherwise. It follows from Proposition 1.4(ii) that
Pr[Yi = 1] = b = O

(
γσ,δ

q

)
. Thus, we have

Pr

[
s∑

i=1

Yi ≥ s

2

]
=
∑

i≥s/2

(
s

i

)
bi (1 − b)s−i

= O

((
4γσ,δ

q

)s/2
)
. (I.1)

Therefore, we conclude that the Reed-Muller code
RM(q, d,m) is

(
qs, δ, ε′)-locally correctable, where ε′

is given in (I.1). By repeating the above decoding pro-
cedure to correct k points, we can also conclude that the
Reed-Muller code RM(q, d,m) is

(
k; kqs, δ, kε′)-locally

correctable.
(iii) The k-multiple point local decodings in Theorem 1.5 does

not impose any constraint on the size of k. This means
that we can recover k coordinates simultaneously with a
high probability no matter how large k is. Meanwhile,
the number of queries is O(q2k). To the best of our
knowledge, this is by no means possible for any other
known local decoding.
(a) By repeating the local decoding described in (ii),

to correct k points with the same success probability

1 − O

((
μσ,δ√

q

)k
)

as in Theorem 1.5, s in (I.1)

has to be �(k). The decoding algorithm discussed
in the above (ii) then requires the query complex-
ity �(qk2). Therefore, for k = �(q), our local
decoding of Reed-Muller codes in Theorem 1.5 with
query complexity O(q2k) is cheaper than repeating
the procedure for accessing a single location for k
times.

(b) Even for an unfair comparison, namely, in order
to get a meaningful success probability > 2

3 by
repeating local decoding of a single location for s
times, s in (I.1) has to be �(log k/ log q). Thus,
the decoding algorithm discussed in the above (ii)
requires the query complexity �(qk log k/ log q).
In this case, our local decoding of Reed-Muller codes
in Theorem 1.5 is still cheaper than repeating the
procedure for accessing a single location for k times
if k = �(qq). This parameter regime is meaningful
when the Reed-Muller code is defined over a fixed
finite field and its message polynomial has ≥ q
variables.

F. Our Techniques

Let f (x) be a degree d m-variate polynomial. The codeword
of Reed-Muller code associated with f (x) is ( f (u))u∈Fm

q
,

i.e., the evaluation of f (x) at each point in F
m
q . We want

to recover f (w) at the point w = (w1, . . . , wm). In the
curve decoding, one replaces (x1, . . . , xm) by w + λu1 +
λ2u2 for some random vectors u1 = (u11, . . . , u1m),u2 =
(u21, . . . , u2m) ∈ F

m
q (i.e., replace xi by wi + u1iλ + u2iλ

2

for i = 1, 2, . . . ,m). Then the function f (w + λu1 + λ2u2)
becomes a univariate polynomial of degree at most 2d . Thus,
one can decode it via Reed-Solomon codes. In the curve
decoding, we can let g(λ) = w + λu1 + λ2u2 pass through
two given coordinates. Meanwhile, g(λ) is still a random curve
since we need three coordinates to fix it. That means we can
make use of high-degree curve to achieve both multiple-point
decoding and low error probability as long as the decoding
radius is still beyond the error rate. The degree of this curve
can also be interpreted as the dual distance of the Reed-
Solomon code. This observation leads to the local decoding
algorithm based on algebraic geometry code.
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Let us replace xi with zi for some function zi in some
Riemann-Roch space L(G) with an effective divisor G of an
algebraic curve with many rational points. Then f (z1, . . . , zm)
becomes a function in the Riemann-Roch space L(dG)
and thus one can recover the function f (z1, . . . , zm) by
using decoding of algebraic geometry codes. If we want
to recover f (wi ) for i = 1, 2, . . . , k, we can simply take
some rational points Q1, . . . , Qk on this curve such that
(z1(Qi ), . . . , zm(Qi )) are equal to wi for all 1 ≤ i ≤ k.
Assume that the dual distance of this algebraic geometry
codes is t . Then, we can recover k < t given coordinates
wi for 1 ≤ i ≤ k and use the rest of t − k coordinates to
reduce the error probability. A direct generalization requires
us to go deeply into the details of algebraic geometry codes.
Thus, we introduce the concept codex in [6], [7]. The function
of codex serves all the purposes of local decoding without
knowing what happens inside, i.e., (i) a codex has high
randomness and uniformity; (ii) a codex provides independent
variables that are needed in local decoding of Reed-Muller
codes; (iii) a codex also allows correction of errors.

On the other hand, as far as we know, the only way to
construct codex is through algebraic curves with many rational
points (or more precisely algebraic geometry codes). We intro-
duce three classes of curves, i.e., projective line, Hermitian
curve and the Garcia-Stichtenoth tower, to construction of
codex and realize our local decoding. Since a good asymptotic
tower is usually defined over Fq2 , the codex built from such
a tower is also defined over Fq2 . Thus, we have to reduce the
field size from q2 to q . Our technique to achieve this reduction
is concatenation of codex via multiplication friendly pairs. The
multiplication friendly pairs that we employ are simply from
Reed-Solomon codes. As for error probability, we make use
of the error probability bound for t-wise linearly independent
variables given in [2].

G. Organization

The paper is organized as follows. In Section 2, we intro-
duce some preliminaries including definitions of codex and
interleaved codex, a construction of codex through alge-
braic geometry codes, construction of interleaved codex, error
probability bounds and introduction to Hermitian curves the
Garcia-Stichenoth tower. Our local decoding algorithms of
Reed-Muller codes through codex and interleaved codex are
presented in Section 3. Finally we apply various codices to
decoding algorithms in Section 3 to obtain our main results in
Section 4.

II. PRELIMINARIES

A. Codex

The concept of codex was first introduced in [6], [7], [9]
for the purpose of arithmetic secret sharing. A special case of
codex in this paper was implicitly introduced in [5], [8].

Let Fq be a finite field of q elements. F
∗
q denotes the

multiplicative group of Fq . Let n, t, d, r be positive integers
with d ≥ 2 and 1 ≤ t < r ≤ n. Vectors in the Fq -vector space
F

n
q are denoted in boldface. If u ∈ F

n
q , its coordinates are

denoted as (ui )
n
i=1. Define 1 = (1, . . . , 1) ∈ F

n
q . The standard

inner-product on F
n
q is denoted 〈·, ·〉. If A ⊂ {1, . . . , n} is

non-empty, πA denotes projection of F
n
q onto the A-indexed

coordinates, i.e., πA(u) = (ui )i∈A for all u ∈ F
n
q .

Definition 2.1: For u, v ∈ F
n
q , u ∗ v denotes the vector

(u1v1, . . . , unvn) ∈ F
n
q . For an Fq -linear code C ⊂ F

n
q , the

Fq -linear code C∗d ⊂ F
n
q , the d-th power of C , is defined

as the Fq -linear subspace generated by all terms of the form
c1 ∗ · · · ∗ cd with c1, . . . , cd ∈ C .

Note that if 1 ∈ C , then C = C∗1 ⊂ C∗2 ⊂ . . . ⊂ C∗d .
Consider the following special case of an arithmetic secret

sharing scheme (SSS for short) which, in turn, is a special
case of an arithmetic codex [7].

Definition 2.2: An (n, t, d, r; F
k
q/Fq)-codex is a pair

(C, ψ) such that the following conditions are satisfied:

(i) C ⊂ F
n
q is an Fq -linear code and ψ : C −→ F

k
q is a

surjective Fq -linear map.
(ii) It is unital, i.e., 1 ∈ C and ψ(1) = 1.

(iii) (t-privacy with uniformity) For each A ⊂ {1, . . . , n} with
|A| = t , the projection map

projψ,A : C −→ F
k
q × F

t
q , c 
→ (ψ(c), projA(c))

is surjective, where projA(c) is the projection of c at A.
(iv) ((d, r)-product reconstruction) The map ψ extends

uniquely to an Fq -linear map ψ : C∗d −→ F
k
q such that

the following holds.

(a) ψ satisfies the multiplicative relation

ψ(c1 ∗ · · · ∗ cd) = ψ(c1) ∗ · · · ∗ ψ(cd ) ∈ F
k
q ,

for all c1, . . . , cd ∈ C .
(b) C∗d has minimum distance at least n−r+1. Thus, ψ

is r -wise determined, i.e., ψ(z) = 0, for all z ∈ C∗d

with projB(z) = 0 for some B ⊂ {1, . . . , n} with
|B| = r .

Remark 2.3: (i) Uniqueness of ψ in (iv) is not required
separately, as it is implied by existence. Also note that,
in fact, ψ(c1 ∗ · · · ∗ cd ′) = ψ(c1) ∗ · · · ∗ ψ(cd ′) for all
c1, . . . , cd ′ ∈ C and all integers d ′ with 1 ≤ d ′ ≤ d .

(ii) Given the above codex, we can define an arithmetic SSS,
where each coordinate of c is a share and ψ(c) is the
secret (please refer to [7] for the details).

For the purpose of our local decoding, we have to introduce
a variant of the above codex, i.e., interleaved codex.

Definition 2.4: An (n, �, t, d, r; F
k
q/Fq)-interleaved codex

is a pair (C, ϕ) such that the following conditions are satisfied:

(i) C ⊂ F
n�
q is an Fq -linear code and ϕ : C −→ F

k
q is a

surjective Fq -vector space morphism.
(ii) It is unital, i.e., 1 ∈ C and ϕ(1) = 1.

(iii) (weak t-privacy with uniformity) Let the coordinate of C
be indexed by pairs (i, j) ∈ [n]×[�], i.e., every codeword
is written as (ci j )1≤i≤n;1≤ j≤�. Then for each 1 ≤ j ≤
� and each A ⊂ {(1, j), . . . , (n, j)} with |A| = t , the
projection map

projϕ,A : C −→ F
k
q × F

t
q , c 
→ (ϕ(c), projA(c))

is surjective.
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(iv) ((d, r)-product reconstruction) The map ϕ extends
uniquely to an Fq -linear map ϕ : C∗d −→ F

k
q such that

the following holds.

(a) ϕ satisfies the multiplicative relation

ϕ(c1 ∗ · · · ∗ cd) = ϕ(c1) ∗ · · · ∗ ϕ(cd) ∈ F
k
q ,

for all c1, . . . , cd ∈ C .
(b) C∗d has minimum distance at least n−r+1. Thus, ϕ

is r -wise determined, i.e., ϕ(z) = 0, for all z ∈ C∗d

with projB(z) = 0 for some B ⊂ [n] × [�] with
|B| = r .

B. A Construction of Codex

As far as we know, the only way to construct codex
with t = �(n) is through algebraic geometry codes. In this
subsection, we briefly introduce algebraic geometry codes and
show how to construct codex.

For the convenience of reader, we start with some definitions
and notations. The reader may refer to [25], [26].

An algebraic function field over Fq in one variable is a field
extension F ⊃ Fq such that F is a finite algebraic extension
of Fq(x) for some x ∈ F that is transcendental over Fq . It is
assumed that Fq is its full field of constants, i.e., F̄q ∩ F = Fq .

Let PF denote the set of places of F . A divisor is a formal
sum G = ∑

P∈PF
aP P , where aP are integers and are equal

to zero except for finitely many P . For a divisor G of F ,
we define the Riemann-Roch space by L(G) := { f ∈ F∗ :
div( f ) + G ≥ 0} ∪ {0}. Then L(G) is a finite dimensional
space over Fq and its dimension dimFq (L(G)) is determined
by the Riemann-Roch theorem which gives

dimFq L(G) = deg(G)+ 1 − g(F)+ �(K − G),

where K is a canonical divisor of degree 2g(F) − 2, and
g(F) is the genus of F . Therefore, we always have that
dimFq (L(G)) ≥ deg(G) + 1 − g(F) and the quality holds
if deg(G) ≥ 2g(F)− 1.

Let k, t, n be positive integers. Suppose
Q1, . . . , Qk , P1 . . . , Pn are distinct rational places of a
function field F and denote by Q and P the set {Q1, . . . , Qk}
and {P1, . . . , Pn}, respectively. Let G be a divisor of F
such that Supp(G) ∩ (P ∪ Q) = ∅. We define an algebraic
geometry code of length k + n as follows

C(G;Q + P) = {( f (Q1), . . . , f (Qk),

f (P1), . . . , f (Pn) : f ∈ L(G))} ⊆ F
k
q × F

n
q .

We also denote by C(G;P) the code obtained from
C(G;Q + P) by puncturing the first k positions.

Proposition 2.5: Let F be a function field of genus g(F)
with two disjoint sets Q = {Q1, . . . , Qk} and P =
{P1, . . . , Pn} of rational places. Let t ≥ 1, d ≥ 2, r ≥ 1 satisfy
n ≥ r > d(2g(F)+ k + t − 1). For a positive divisor G with
deg(G) = 2g(F)+k + t −1 and Supp(G)∩(P∪Q) = ∅, let C
be the code C(G;P) and define the map ψ from C to F

k
q given

by ( f (P1), . . . , f (Pn)) 
→ ( f (Q1), . . . , f (Qk)) (note that the
function f is uniquely determined by ( f (P1), . . . , f (Pn))).
Then (C, ψ) is an (n, t, d, r; F

k
q/Fq)-codex.

PROOF. It is clear that ψ is Fq -linear and unital. To prove
that ψ is a surjective, we consider the kernel of ψ . The kernel
clearly has dimension dimFq (L(G−∑k

i=1 Qi )) which is equal
to deg(L(G))− k − g(F)+ 1 by the Riemann-Roch Theorem.
Thus, the image of ψ has dimension dimFq (G)−(deg(G)−k−
g(F)+1) = k. This implies that ψ is surjective. As deg(G)−
(t + k) = 2g(F)− 1, one can show t-privacy with uniformity
in the same way.

Finally, we verify that it is (d, r)-product reconstruction.
For a function f ∈ L(G) ⊆ F , we denote by b f and
c f the words ( f (Q1), . . . , f (Qk)) and ( f (P1), . . . , f (Pn)),
respectively. Thus, one has ψ(c f ) = b f for any f ∈ L(G).
Furthermore, for d codewords c f1 ∗ · · · ∗ c fd in C(G,P) we
have ψ(c f1 ∗ · · · ∗ c fd ) = ψ(c f1 ··· fd ) = b f1··· fd = b f1 ∗ · · · ∗
b fd = ψ(c f1) ∗ · · · ∗ ψ(c fd ). Now for z ∈ C∗d , we have
z ∈ C(dG,P). Thus, there exists a function h ∈ L(dG) such
that z = ch . If πB(z) = 0, i.e., h ∈ L(dG−∑i∈B Pi ), then we
must have h = 0 since d deg(G) < r = |B|. Hence, ψ(z) = 0.

This completes the proof. �
Example 2.6: Consider the rational function field F =

Fq(x), then g(F) = 0. Let Q and P be the set {0} and Fq \{0}.
In this case, k = 1 and n = q − 1.
(i) Choose t = 1, then for any 1 < d < r ≤ q − 1, there

exists is a (q − 1, 1, d, r; Fq/Fq)-codex.
(ii) Choose t = 2, then for any 1 < 2d < r ≤ q − 1, there

exists is a (q − 1, 2, d, r; Fq/Fq)-codex.

C. Concatenation of Codex

As algebraic function fields with many rational places
are usually defined over Fq2 , the codex constructed from
function fields in the previous subsection is defined over Fq2

as well. Thus, we have to reduce the field size form q2

to q through concatenation. In order to concatenate codex
over Fq2 , we need to introduce the following multiplication
friendly pair. Multiplication friendly pairs were first introduced
by D.V. Chudnovsky and G.V. Chudnovsky [10] as bilinear
multiplication algorithms to study multiplication complexity
in extension fields. In fact, a multiplication friendly pair is a
special codex. The reader may refer to [9] for details.

Definition 2.7: A pair (π, φ) is called a (d, k,m)q -
multiplication friendly pair if π is an Fq -linear map from Fqk

to F
m
q and φ is an Fq -linear map from F

m
q to Fqk such that

π(1) = (1, . . . , 1) and φ(π(α1) ∗ · · · ∗ π(αd)) = α1 · · ·αd for
all αi ∈ Fq . A (2, k,m)q -multiplication friendly pair is also
called a bilinear multiplication friendly pair.

It is well known that, for a multiplication friendly pair
(π, φ), the map π is injective (see [15, Lemma 3.1] for
instance). Furthermore, by using Reed-Solomon codes, one
can construct the following multiplication friendly pair (see
[15, Lemma 3,2 and Example 3.3]).

Lemma 2.8: If k ≥ 2 and q > d(k − 1), then there
exists a (d, k, q)q-multiplication friendly pair (π, φ) such that
(π(Fqk ))∗d is a q-ary linear code of length m and relative
minimum distance at least 1 − d(k − 1)/q .

In fact, this multiplication friendly pair (π, φ) is obtained
from a [q, d, q − d + 1] Reed-Solomon code. Now, we pro-
ceed to concatenate a codex over Fq2 with a multiplication
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friendly pair given in Lemma 2.8. Note that the concatenated
codex, if we disregard the multiplicative property, is merely a
concatenation of two codes.

Proposition 2.9: Given an (n, t, d, r; F
k
q2/Fq2)-codex, one

can construct an (n, q, t, d, dn + qr; F
k
q2/Fq2)-interleaved

codex in time Poly(n, q).
PROOF. Let (C, ψ) be an (n, t, d, r; F

k
q2/Fq2)-codex.

By Lemma 2.8, we have a (d, 2, q)q -multiplication friendly
pair (π, φ). This multiplication friendly pair is obtained via
a [q, 2, q − 1] Reed-Solomon code. We extend π to an
Fq -linear map from F

s
q2 to F

qs
q by defining π(v1, . . . , vs ) =

(π(v1), . . . , π(vs)) for every s ≥ 1. Then it is clear that π is
injective on F

s
q2 .

Put C1 = π(ψ−1(Fk
q)) ⊆ F

qn
q . Then π−1(C1) = ψ−1(Fk

q)
since π is injective. For a codeword c = (c1, . . . , cn) ∈ C ,
we denote π(ci ) by (ci,1, . . . , ci,q ). Thus, a codeword π(c) of
C1 has coordinates indexed by pairs (i, j) ∈ [n] × [q].

Consider the maps

C1 = π(ψ−1(Fk
q))

π−1−−→ ψ−1(Fk
q)

ψ−→ F
k
q .

Let ϕ be the composition map ψ ◦ π−1. Then it is clear that
ϕ is an Fq -linear map from C1 to F

k
q . We claim that the pair

(C1, ϕ) is the interleaved codex with desired parameters.
It is clear that ϕ is surjective.
As π maps 1 to the all-one vector of length q and the all-one

vector of length n belongs to C , we conclude that the all-one
vector 1 of length qn belongs to C1. From the definition of ϕ,
we clearly have ϕ(1) = 1.

To show t-weak privacy, let (u, v) be a vector of F
k
q × F

t
q .

Then there is a vector v′ ∈ F
t
q2 such that proj j ◦ π(v′) = v,

where proj j is the projection map of F
q
q at position j . Let

b ∈ C such that (ψ(b), projB(b)) = (u, v′) with B = {1 ≤
i ≤ n : (i, j) ∈ A}. Then b belongs to ψ−1(Fk

q). Now it is
easy to verify that (ϕ(c), projA(c)) = (u, v), where c = π(b).

Now, we move to proof of the multiplication property. Note
that φ is equal to π−1 when restricted to π(Fq2). Thus, we can
extend π−1 to a map from F

qn
q to F

n
q2 via replacement of π−1

by φ. Thus, ϕ is equal to ψ ◦ φ on C1. Hence, ϕ can be
extended to a map from C∗d

1 to F
k
q .

For d vectors π(c1), . . . , π(cd) ∈ C1 with ci ∈ ψ−1(Fk
q) ⊂

C , we have

ϕ(π(c1) ∗ · · · ∗ π(cd))

= (ψ ◦ φ)(π(c1) ∗ · · · ∗ π(cd))

= ψ(c1 ∗ · · · ∗ cd ) = ψ(c1) ∗ · · · ∗ ψ(cd )

= (ψ ◦ φ(π(c1))) ∗ · · · ∗ (ψ ◦ φ(π(cd )))

= ϕ(π(c1)) ∗ · · · ∗ ϕ(π(cd)).

Finally, note that C1 is the concatenated code of C with
a [q, 2, q − 1]-Reed-Solomon code. Since C∗d has minimum
distance at least n−r +1 and π(Fq2)∗d has minimum distance
at least q − d , we conclude that the minimum distance of C∗d

1
is at least (n − r + 1)(q − d) ≥ qn − (dn + qr)+ 1. The proof
is completed. �

D. A Property of Codex

Let (C, ψ) be an (n, t, d, r,Fk
q2/Fq2)-codex. Let (C1, ϕ)

be the interleaved codex constructed from (C, ψ) in
Proposition 2.9. Let m be a positive integer. For each inte-
ger e ≥ 1 and each polynomial f (x) ∈ Fq [x1, . . . , xm]
with deg( f (x)) ≤ d . Define the map f (e) : F

e×m
q −→

F
e
q; (u1, . . . ,um) 
→ ( f (u1 j , . . . , umj ))

e
i=1, where ui j

denotes the j -th coordinate of ui (i = 1, . . . ,m, j = 1, . . . , r ).
Note that f (u1, . . . , um) = f (1)(u1, . . . , um).

For codewords c1, . . . , cm ∈ C ⊆ F
n
q , we have

f (n)(c1, . . . , cm)

= ( f (c11, . . . , cm1), . . . , f (c1n, . . . , cmn))

= (· · · ,
∑

wtL (I )≤d

aI cI
( j ), · · · )

=
∑

wtL (I )≤d

aI (· · · , cI
( j ), · · · ),

where cI
( j ) := ∏m

i=1 ci j
ei for I = (e1, e2, . . . , em). This

implies that f (n)(c1, . . . , cm) ∈ C∗d . Furthermore, we have

ψ( f (n)(c1, . . . , cm))

=
∑

wtL (I )≤d

aIψ(· · · , cI
( j ), · · · )

= f (k)(ψ(c1), . . . , ψ(cm )) (II.1)

and

ϕ( f (n)(c1, . . . , cm))

=
∑

wtL (I )≤d

aIϕ(· · · , cI
( j ), · · · )

= f (k)(ϕ(c1), . . . , ϕ(cm)). (II.2)

E. Bounds on Error Probability

In this subsection, we investigate the sum of t-wise inde-
pendent variables that will be used in local decoding of Reed-
Muller codes. For our purpose, let us consider binary random
variables that take values either 0 or 1.

Definition 2.10: Binary random variables X1, X2, . . . , Xn

are said to be t-wise independent if for any a1, a2, . . . , at ∈
{0, 1} and any t indices 1 ≤ i1 < i2 < · · · < it ≤ n, one has
Pr[Xi1 = a1, . . . , Xit = at ] =∏t

i=1 Pr[Xii = ai ].
We are going to bound the deviation from the mean of the

sum X = X1 + · · · + Xn . Let us first consider the case t = 2
where Chebyshev’s inequality is employed.

Lemma 2.11: Let X1, . . . , Xn be pairwise independent
binary random variables taking values in {0, 1} and satisfy
Pr(Xi = 1) = δ for all 1 ≤ i ≤ n. Then, for any A > 0,
Pr[|X − δn| ≥ A] ≤ (δ−δ2)n

A2 .
PROOF. Define X = ∑n

i=1 Xi . By linearity of expectation,
E[X] = ∑n

i=1 E[Xi ] = δn. Since the Xi ’s are pairwise
independent, linearity of variance holds here as well. This
implies

Var(X) =
M∑

i=1

Var[Xi ] =
n∑

i=1

(E[X2
i ] − E[Xi ]2) = (δ − δ2)n.
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Then by Chebyshev’s Inequality, we have

Prob[|X − E[X]| ≥ A] ≤ Var(X)

A2 = (δ − δ2)n

A2 .

This completes the proof. �
For t ≥ 4, we have the following Second t-wise Indepen-

dence Tail Inequality.
Lemma 2.12: (see [2]) Let t ≥ 4 be an even integer.

Suppose X1, . . . , Xn are t-wise independent random variables
over {0, 1}. Let X := ∑n

i=1 Xi and define μ := E[X] as the
expectation of the sum. Then, for any A > 0, Pr [|X − μ| ≥
A] ≤ 8

(
tμ+t2

A2

)t/2
.

F. Two Classes of Function Fields

In this subsection, we introduce two classes of algebraic
curves (or equivalently function fields) that will be used to
construct our codex in Section III, namely Hermitian curves
and the Garcia-Stichtenoth tower. The reader may refer to [11]
and [25, Sections 6.4 and 7.2] for the detail.

For a function F of genus g(F) over Fq2 , the number N(F)
of rational places of F is upper bounded by the Hasse-Weil
bound q +1+2g(F)q . F is called maximal if N(F) achieves
the Hasse-Weil bound, i.e., N(F) = q + 1 + 2g(F)q . One of
maximal function fields is called the Hermitian function field.
It is defined over Fq2 and its equation is given by

yq + y = xq+1.

The function field of this curve is F = Fq2(x, y). There are
totally q3 + 1 rational places for this function field. One of
them is the point “at infinity”, denoted by ∞. The other places
are given by (α, β) ∈ F

2
q2 satisfying βq + β = αq+1. These

are called “finite” rational places. The genus of this function
field is g(F) = q(q − 1)/2.

The other class of function fields is also defined over Fq2 .
It is asymptotically optimal and recursively defined by the
following equations

xq
i+1 + xi+1 = xq

i

1 + xq−1
i

, i = 1, 2 . . .

with x1 being a transcendental element over Fq . The function
field Fq(x1, x2, . . . , xe) is denoted by Fe. The genus ge :=
g(Fe) is at most qe. There is one place over the pole of x1
called “point at infinity”. Furthermore, for each element α ∈
Fq2 \ {α ∈ Fq2 : αq + α = 0}, there are exactly qe−1 places
over it. This implies the number N(Fe) of rational places of Fe

is at least qe(q−1)+1. Thus, one has lime→∞ N(Fe)/g(Fe) ≥
q −1. On the other hand, the Vlăduţ-Drinfeld bound [26] says
lime→∞ N(Fe)/g(Fe) ≤ q − 1. Therefore, this function field
matches the upper bound.

III. LOCAL DECODING OF REED-MULLER CODES

In this section, we focus on the local decoding of Reed-
Muller code aiming to recover multiple coordinates simul-
taneously. Let RM(q, d,m) be the q-ary Reed-Muller code.
We denote by a f the codeword of RM(q, d,m) generated by

the polynomial f (x). Let N = qm and δ ∈ (0, 1). Suppose
a f is transmitted and there are at most δN error positions,
i.e., there exists a vector b ∈ F

N
q with wtH(b) ≤ δN such that

the received word is ã := a f + b ∈ F
N
q .

In other words, ã is a corruption of the codeword a f by an
error vector b of relative Hamming weight at most δ. Assume
that we are going to recover a f at positions w1,w2, . . . ,wk ∈
F

m
q . Write ã = (ãu)u∈Fm

q
and wi = (wi,1, wi,2, . . . , wi,m ) for

i = 1, 2, . . . , k.

A. Direct Decoding With Codex

We first introduce a local decoding with codex.

Algorithm 1 Local Decoding Algorithm With Codex

1. Choose an (n, t, d, σn,Fk
q/Fq)-codex C = (C, ψ) with a

real 0 < σ < 1;
2. For i = 1, . . . ,m, select ci ∈ C ⊂ F

n
q uniformly at

random (and independently of everything else) such that
ψ(ci ) = (w1,i , . . . , wk,i );

3. Query ã = (ãu)u∈Fm
q

at positions v1, v2, . . . , vn ∈ F
m
q ,

where v j denotes collection of the j -th coordinate of the
codewords c1, . . . , cm ;

4. Find a codeword (z1, z2, . . . , zn) ∈ C∗d such that the
Hamming distance between (z1, z2, . . . , zn) ∈ C∗d and
(ãv1, . . . , ãvn ) is at most (n − σn)/2.

5. If no such a codeword (z1, z2, . . . , zn) in
Step 4 is found, output “fail”. Otherwise, output
( f (w1), f (w2), . . . , f (wk)) = ψ(z1, z2, . . . , zn).

Now, we analyze the above algorithm.
First, v1, . . . , vn are t-wise independent and uniformly

random distributed in F
m
q by Definition 2.2(iii).

Suppose that a codeword (z1, z2, . . . , zn) ∈ C∗d is found
such that the Hamming distance between (z1, z2, . . . , zn) ∈
C∗d and (ãv1, . . . , ãvn ) is at most (n−σn)/2. Then by Defini-
tion 2.2(iv)(b), we have ( f (v1), . . . , f (vn)) = (z1, z2, . . . , zn)
as long as the Hamming distance between ( f (v1), . . . , f (vn))
and (ãv1, . . . , ãvn ) is at most (n − σn)/2.

By Subsection II-D, it holds that f (n)(c1, . . . , cm) =
( f (v1), . . . , f (vn)) ∈ C∗d and f (k)(ψ(c1), . . . , ψ(cm )) =
( f (w1), . . . , f (wk)). Thus, we can recover ( f (w1), . . . ,
f (wk)) as follows.

( f (w1), . . . , f (wk)) = f (k)(ψ(c1), . . . , ψ(cm ))

= ψ( f (n)(c1, . . . , cm)) = ψ( f (v1), . . . , f (vn))

= ψ(z1, z2, . . . , zn).

The second equality is due to (II.1). Now the probability of
successfully recovering ( f (w1), . . . , f (wk)) is equal to the
probability of successfully finding a codeword (z1, z2, . . . , zn)
such that the Hamming distance between (ãv1, . . . , ãvn ) and
(z1, z2, . . . , zn) is at most (n − σn)/2. This probability is at
least the probability that there are at most (n−σn)/2 corrupted
positions for a f among v1, v2, . . . , vn .

Denote by E the set of coordinates u such that bu �= 0. For
j = 1, . . . , n, define the binary random variable X j such that
X j = 1 if v j ∈ E and X j = 0 otherwise. Then X1, . . . , Xn are
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t-wise independent and Prob(X j = 1) = δ for j = 1, . . . , n.
Put X =∑n

i=1 Xi .
Since the minimum distance of C∗d is at least (n −

σn) + 1, one can correctly recover ψ(z1, z2, . . . , zn) from
(ãv1, . . . , ãvn) if |E ∩ {v1, . . . , vn}| ≤ (n − σn)/2.

Thus, by the above identity it implies that one can correctly
recover ( f (w1), . . . , f (wk)) with probability at least 1 −
Pr(X ≤ (n−σn)/2) by querying ã = (ãu)u∈Fm

q
, at coordinates

v1, . . . , vn .
Summarizing the above analysis, we get the following local

decoding of Reed-Muller codes.
Theorem 3.1: If there exists an (n, t, d, σn,Fk

q/Fq)-codex
(C, ψ) with a real 0 < σ < 1, then the Reed-Muller code
RM(q, d,m) is an (k; n, δ, ε)-locally decodable code with ε =
Pr(X > (n −σn)/2), where X is defined above. Furthermore,
the local decoding complexity is Poly(n, k, q) if the codex can
be constructed in time Poly(n, k, q) and decoding time of the
code C∗d is Poly(n, q).

B. Decoding With Interleaved Codex

Now we introduce a local decoding with interleaved codex.
We start with a codex over Fq2 and assume that d ≤ σq with
σ < 1.

Algorithm 2 Local Decoding Algorithm With Interleaved
Codex

1. Choose an (n, t, d, ρn,Fk
q2/Fq2)-codex C = (C, ψ) with

a real 0 < ρ < 1 − σ and let (C1, ϕ = ψ ◦ φ) be
the interleaved codex obtained by concatenating codex
(C, ψ) in Proposition 2.9 with multiplication friendly pair
(π, φ);

2. For i = 1, . . . ,m, select ci ∈ C ⊂ F
n
q2 uniformly at

random (and independently of everything else) such that
ϕ(π(ci )) = (w1,i , . . . , wk,i );

3. Query ã = (ãu)u∈Fm
q

at positions v1, v2, . . . , vqn ∈ F
m
q ,

where v j denotes collection of the j -th coordinate of the
codewords π(c1), . . . , π(cm);

4. Find a codeword z ∈ C∗d
1 such that the Hamming distance

between z and (ãv1, . . . , ãvqn ) is at most (1−σ−ρ)qn/2.
5. If no such a codeword z in Step 4 is found, output “fail”.

Otherwise, output ( f (w1), f (w2), . . . , f (wk)) = ϕ(z).

Analysis of the above algorithm is similar to that of
Algorithm 1. Let us discuss probability only.

Note that C1 is a concatenated code. The outer code
is C which is defined over Fq2 and the inner code is a
Reed-Solomon code. Thus, (ãv1, . . . , ãvqn ) can be partitioned
into n blocks (ã1, . . . , ãn), each with length q . Write ãi =
(ãi,1, . . . , ãi,q ) be the i -th block. Denote by Xi, j for (i, j) ∈
[n] × [q] be the random variable such that Xi, j = 1 if
ãi, j is corrupted, and Xi, j = 0 otherwise. Then Pr[Xi, j =
1] = δ follows from the fact that there is δ fraction of
corrupted positions. By t-weak privacy of the pair (C1, ϕ),
it is clear that the random variables X1, j , X2, j , . . . , Xn, j are
t-wise independent. Let Xi = ∑n

j=1 X j,i . In Lemma 2.12,

put A = (1 − σ − ρ)n/2 − δn, we obtain

Pr[Xi >
(1 − σ − ρ)n

2
] ≤ 8(

4tδn + 4t2

(1 − σ − ρ − 2δ)2n2 )
t/2.

By the union bound, we have

Pr[∃i : Xi >
(1 − σ − ρ)n

2
] ≤ 8q(

4tδn + 4t2

(1 − σ − ρ − 2δ)2n2 )
t/2.

Thus, we have

Pr[
q∑

i=1

Xi >
(1 − σ − ρ)qn

2
]

≤ Pr[∃i : Xi >
(1 − σ − ρ)n

2
]

≤ 8q(
4tδn + 4t2

(1 − σ − ρ − 2δ)2n2 )
t/2. (III.1)

C∗d
1 is a concatenated code and it has minimum distance at

least qn − dn − σqn + 1 = qn(1 − σ − ρ) + 1. By [18],
we know that a concatenated code can be efficiently decoded
up to half of minimum distance. This completes analysis of
Algorithm 2.

Summarizing the above analysis, we obtain the following
local decoding of Reed-Muller codes.

Theorem 3.2: Let d ≤ σq . If there exists an
(n, t, d, ρn,Fk

q2/Fq2)-codex (C, ψ) with a real 0 < ρ < 1−σ ,
then the Reed-Muller code RM(q, d,m) is a (k; n, δ, ε)-
locally decodable code with ε upper bounded by (III.1).
Furthermore, the local decoding complexity is Poly(n, k, q)
if the codex can be constructed in time Poly(n, k, q) and
decoding time of the code C∗d

1 is Poly(n, q), where C1 is the
concatenated code defined in Subsection II-C.

IV. THE MAIN RESULTS

In this section, we apply various codex constructed from the
rational function fields, Hermitian function fields and function
fields in the Garcia-Stichtenoth tower to obtain our main
results by using Theorems 3.1 or 3.2.

A. Single Point Decoding

In this subsection, we consider local decoding to recover
only a single coordinate via codex from Reed-Muller codes.

Example 4.1: For the rational function field F = Fq(x),
we have g(F) = 0. Let Q and P be the set {0} and Fq \ {0}.
In this case, k = 1 and n = q − 1.

(i) Choose t = 1, then for any real 0 < σ < 1 and
1 < d ≤ σ(q −1)+1, there exists is a (q −1, 1, d, σ (q −
1); Fq/Fq)-codex. By Markov’s inequality the probabil-
ity that (1 − σ)(q − 1)/2 or more of the queries go to
corrupted locations is at most 2δ/(1−σ). Thus, the Reed-
Muller code RM(q, d,m) is a (q − 1, δ, 2δ/(1 − σ))-
locally correctable code by Theorem 3.1. This is exactly
the same decoding given in [27, Proposition 2.5].

(ii) Choose t = 2, then for any real 0 < σ < 1
and 1 < d ≤ σ(q − 1) − 1, there exists is a
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(q − 1, 2, d, 2σ(q − 1); Fq/Fq)-codex. In Lemma 2.11,
let A be (1 − 2σ)(q − 1)/2 − δ(q − 1), we obtain

ε = Pr[X > (1 − 2σ)(q − 1)/2]
≤ (δ − δ2)(q − 1)

((1 − 2σ)(q − 1)/2 − δ(q − 1))2

= 4(δ − δ2)

(1 − 2σ − 2δ)2
× 1

q − 1
. (IV.1)

Thus, by Theorem 3.1, the Reed-Muller code
RM(q, d,m) is a (q − 1, δ, ε)-locally correctable
code with ε given in (IV.1). This is exactly the same
decoding on curves given in [27, Proposition 2.6].

(iii) Let t ≥ 4. For any real 0 < σ ≤ 1 and 1 < d ≤ σ(q −
1)/t −1/t , there exists is a (q −1, t, d, σ (q −1); Fq/Fq)-
codex. It is clear that the expectation of X is μ = δ(q−1).
In Lemma 2.12, put A = (1 − σ)(q − 1)/2 − δ(q − 1),
by Lemma 2.12 we obtain

ε = Pr[X > (1 − σ)(q − 1)/2]
≤ 8

(
4tδ(q − 1)+ 4t2

(1 − σ − 2δ)2(q − 1)2

)t/2

. (IV.2)

Thus, by Theorem 3.1, the Reed-Muller code
RM(q, d,m) is an (q − 1, δ, ε)-locally decodable
code with ε given in (IV.2). It is easy to see from (IV.2)

that ε ≤ 8
(
λσ,δ t√

q

)t
, where λσ,δ =

√
8

1−σ−2δ .

Remark 4.2: For sufficiently large q , by choice of a suit-
able t , local decoding in Example 4.1(iii) gives much better
probability than those in Example 4.1(i) and (ii).

In the rest of this subsection we are going to apply
Algorithm 2 and concatenated codex from algebraic geometry
codes over Fq2 to get local decoding of Reed-Muller codes.
We first consider decoding using codex from the Hermitian
function field.

Theorem 4.3: For any real 0 < σ, δ ≤ 1 and integers
4 ≤ t ≤ q , d > 1 satisfying σ < (1 − 2δ)/2 and d ≤ σq ,
the Reed-Muller code RM(q, d,m) is a

(
q(q3 − 1), δ, ε

)
-

locally correctable code with ε ≤ 8q

(
νσ,δ t√
q3−1

)t

, where

νσ,δ =
√

8
1−2σ−2δ .

PROOF. Consider the Hermitian function field over Fq2

defined in Subsection II-F. Let Q = {(0, 0)} and let P be the
set consisting of all “finite” points except for (0, 0). Then for
any real 0 < σ ≤ 1 and integers 4 ≤ t ≤ q , d > 1 satisfying
d ≤ σq , there exists a (q3 − 1, t, d, σ (q3 − 1),Fq2/Fq2)-
codex. Applying Algorithm 2 and (III.1), we conclude that the
Reed-Muller code RM(q, d,m) is a (q(q3 − 1), δ, ε)-locally
correctable code with

ε ≤ 8q

(
4tδ(q3 − 1)+ 4t2

(1 − 2σ − 2δ)2(q3 − 1)2

)t/2

≤ 8q

(
νσ,δt√
q3 − 1

)t

.

The desired result follows. �
Finally, we apply Algorithm 2 and concatenated codex from

the Garcia-Stichtenoth tower.

Theorem 4.4: Let q be a square prime power and let e ≥ 2.
Fix reals 0 < σ, δ ≤ 1. If integers 4 ≤ t ≤ qe, d > 1 satisfy
σ < (1 − 2δ)/4 and d ≤ σq , then the Reed-Muller code
RM(q, d,m) is an (qn, δ, ε)-locally detectable code with ε ≤
8q
(

4tδn+4t2

(1−4σ−2δ)2n2

)t/2
, where n = qe(q − 1)− 1. Furthermore,

the local decoding complexity is Poly(n, q)
PROOF. Consider the function field Fe in the Garcia-

Stichtenoth tower over Fq2 defined in Subsection II-F. Then
N(Fe) ≥ qe(q − 1) and g(Fe) ≤ qe. Let Q be a single
“finite” rational place set and let P be the set consisting
of other n = qe(q − 1) − 1 “finite” rational place. Then
d(2g(F)+1+ t −1) < ρn < n and hence by Proposition 2.5,
there exists an (n, t, d, ρn,Fq2/Fq2)-codex, where ρ = 3σ .
Applying the local decoding Algorithm 2 in Subsection III-B
gives the desired result.

Since the codex is constructed from the Garcia-Stichtenoth
tower and the code C∗d

1 is an algebraic geometry code based
on this tower, the result on decoding complexity follows. �

By taking t = n/q = qe−1(q − 1) in Theorem 4.4,
we obtain the results on local decoding of single coordinate.

Corollary 4.5: Let q be a prime power. Let d > 1, t,m
be positive integers. Let δ, σ be two reals in (0, 1) with δ <
1−4σ

2 . Then the Reed-Muller code RM(q, d,m) with d ≤ σq

is

(
q2t, δ, O

((
μδ,σ√

q

)t
))

-locally correctable, where μδ,σ =
√

8
1−4σ−2δ (note that t can be arbitrarily large).

Remark 4.6: One might question that our performance of
single-point decoding does not even match the local decod-
ing algorithm based on Reed-Solomon codes, i.e., repeating
decoding in Proposition 1.4 multiple times. However, as we
know in our next subsection, this algorithm can also be used
to recover multiple points at the cost of almost the same query
complexity as in the single-point decoding. The key point
behind this phenomenon is that our algebraic geometry code
has very large dual distance, which can both pass through
many given coordinates and generate t-wise independent vari-
ables for very large t at the same time.

B. Multiple-Point Local Decoding of Reed-Muller Codes

In this subsection, we analyze local decoding of Reed-
Muller codes to recover multiple coordinates simultaneously.
Again we apply Reed-Solomon codes, Hermtian codes and
algebraic geometry codes based on the Garcia-Stichtenoth
tower, respectively. The proofs are almost identical with those
in the previous subsection except for replacing Q of a single
point set by a k-point set. We state the results without proof
below.

Theorem 4.7: Let q be a prime power. Let d > 1, t,m, k be
positive integers. Let δ, σ be two reals in (0, 1) with δ < 1−σ

2 .

(i) (Reed-Solomon code with t = 1) If k + n ≤ q and
d < σn

k , then the Reed-Muller code RM(q, d,m) is an
(k; n, δ, ε)-locally decodable code with ε = 2δ

1−σ .
(ii) (Reed-Solomon code with t = 2) If k + n ≤

q and d < σn
k+2 , then the Reed-Muller code

RM(q, d,m) is an (k; n, δ, ε)-locally decodable code
with ε = δ−δ2

(1−σ−2δ)2 × 1
n .



272 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 1, JANUARY 2020

(iii) (Reed-Solomon code with t ≥ 4) If k + n ≤ q
and d < σn

k+t , then the Reed-Muller code RM(q, d,m)
is an (k; n, δ, ε)-locally decodable code with ε =
8
(

4tδn+4t2

(1−σ−2δ)2

)t/2 × ( 1
n

)t
.

(iv) (Hermitian code with t ≥ 4) If k + n ≤ q3 and
d < σq , then the Reed-Muller code RM(q, d,m)
is an (k; qn, δ, ε)-locally decodable code with ε =
8
(

4tδn+4t2

(1−σ−ρ−2δ)2

)t/2 ×( 1
n

)t
, where ρ = (k + t +q2 −q)/

q2.
(v) (GS tower code with t ≥ 4) Let e ≥ 2. If t ≤ n

and k ≤ n, k + n ≤ qe(q − 1) and d < σn, then the
Reed-Muller code RM(q, d,m) is an (k; qn, δ, ε)-locally

decodable code with ε = 8q
(

4tδ+4t2

(1−σ−ρ−2δ)2

)t/2 × ( 1
n

)t
,

where ρ = (2qe+1 + qk + qt)/n. Furthermore, the local
decoding complexity is Poly(n, k, q)

Note that we applied Algorithm 1 for the first three local
decodings in Theorem 4.7, while Algorithm 2 is employed for
the last two local decodings in Theorem 4.7.

Proof of Theorem 1.5: Taking n ≈ 2q
2q+1 × qe(q − 1)

and k = t = �n/(2q)�, we obtain Theorem 1.5 from
Theorem 4.7(v).

Remark 4.8: The interleaved codex is obtained via concate-
nation of codex with multiplication friendly pair, i.e., we treat
multiplication friendly pair as an inner code with multiplicative
property and codex as an outer code. To improve the per-
formance of our interleaved codex, we must find codex with
better parameters. The current known construction of codex
is via algebraic geometry codes. As we know, the asymp-
totic behaviour of algebraic geometry codes must obey the
celebrated Vlăduţ-Drinfeld bound [26]. The codex we employ
already reaches this bound.
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