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Motif and Hypergraph Correlation Clustering
Pan Li , Gregory J. Puleo , and Olgica Milenkovic, Fellow, IEEE

Abstract— Motivated by applications in social and biological
network analysis we introduce a new form of agnostic clustering
termed motif correlation clustering, which aims to minimize
the cost of clustering errors associated with both edges and
higher-order network structures. The problem may be succinctly
described as follows: Given a complete graph G, partition the
vertices of the graph so that certain predetermined “important”
subgraphs mostly lie within the same cluster, while “less relevant”
subgraphs are allowed to lie across clusters. Our contributions
are as follows: We first introduce several variants of motif corre-
lation clustering and then show that these clustering problems are
NP-hard. We then proceed to describe polynomial-time clustering
algorithms that provide constant approximation guarantees for
the problems at hand. Despite following the frequently used
LP relaxation and rounding procedure, the algorithms involve
a sophisticated and carefully designed neighborhood growing
step that combines information about both edges and motifs.
We conclude with several examples illustrating the performance
of the developed algorithms on synthetic and real networks.

Index Terms— Correlation clustering, network motif, hyper-
graph, graph clustering.

I. INTRODUCTION

CORRELATION clustering is an agnostic clustering
method introduced by Chawla et al. [2]. The clustering

objective has a simple description: For a collection of objects
and, for some pairs of objects in this collection, one is
given a quantitative assessment of whether the objects are
similar or dissimilar. This information is represented using a
labeled graph with edges marked by + or − symbols according
to whether the endpoints are similar or dissimilar. The task is
to partition the vertices of the graphs so that edges labeled by
+ aggregate within clusters and edges labeled by − go across
clusters. Unlike many other well-known clustering methods,
correlation clustering does not require the number of clusters
to be specified in advance.

The correlation clustering optimization problem comes in
two basic forms: MinDisagree and MaxAgree. The MinDis-
agree version, as its name suggests, aims to minimize the
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number of erroneously placed edges, while the MaxAgree
version aims to maximize the number of correctly placed
edges. Finding an optimal solution to either version gives
the solution to the other version. Even when the graphs are
complete, both problems are known to be NP-hard. Hence,
the focus of all prior work in the field has been on approxi-
mating the optimal solutions [2]. The approximation hardness
is fundamentally different for the two versions of the problem.
For the MinDisagree problem over complete graphs, several
randomized [3] and deterministic [4] algorithms with constant
approximation guarantees are known and the problem is
APX-hard [4]. In contrast, for the MaxAgree problem over
complete graphs, a trivial method that outputs either single-
tons or a giant cluster yields a 2-approximate solution and the
problem has been shown to have a PTAS [2].

Beyond binary labeled edged, several variants of correlation
clustering also allow for edges to be endowed with pairs
of continuously valued similarity and dissimilarity weights.
Specifically, if an edge is placed between two clusters, the sim-
ilarity weight is charged, and if an edge is placed within
one cluster, the dissimilarity weight is charged instead. The
goal of the MinDisagree formulation in this setting is to
minimize the charge over all possible vertex set partitions.
Clearly, an arbitrary choice of edge weights may lead to poor
approximability results. To avoid this issue, one usually resorts
to so-called probability weights [2].

We depart from classical correlation clustering problems by
considering a new setting in which one is allowed to assign
probability weights to both edges and arbitrary small induced
subgraphs in the graph (e.g., triangles) and then perform the
clustering so as to minimize the overall cost of both edge
and motif placements or motif placements alone. This enables
one to extend traditional correlation clustering by considering
higher-order structures in the network such as paths, triangles
and cycles. Given that subgraphs/motifs may be modeled as
hyperedges in a hypergraph, our line of work complements
recent works on spectral hypergraph clustering [5]–[9] and
heuristic tensor spectral clustering methods [10], as well
as other generalizations of correlation clustering [11]–[13].
Furthermore, the proposed method allows for handling motifs
in directed graphs by converting the directed graphs into
undirected graphs while retaining information about the
“relevance” of directed subgraphs within the graph. This
relevance information may be incorporated into similarity
and dissimilarity weights (For example, if only feedforward
triangle motifs are relevant, only those directed motifs will
be assigned large weight in the undirected graph and hence
encouraged to fall within one cluster).

Motif clustering may be useful for a large number of
practical applications. As an example, the authors of [14] used
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the fact that triangular motifs carry relevant information in
biological networks and clustering (directed) triangles allowed
them to identify several communities in the Florida Bay
food-web network. Following this line of work, the authors
of [6] proposed to leverage the information in big-fan motifs,
involving two predatory and two prey species, and to cluster
the motifs in a non-uniform manner so as to obtain a hierar-
chical community structure including levels from producers to
high-level consumers. Motif clustering also may be used for
discovery of layered flows in a information networks, anomaly
detection in communication networks and many other research
areas [10]. More broadly, motif correlation clustering enables
community recovery for graphs and networks in which higher
order structures carry significantly more relevant information
about the functionality, direction and strength of connections
in the network than edges alone.

Our contributions are as follows. We rigorously formulate
the first known MinDisagree motif correlation clustering prob-
lem, and show that it is NP-hard even when only some special
motifs such as triangles are considered. Next, we introduce
an extended correlation clustering framework which allows to
both fine tune the cost of clustering edges and higher order net-
work structures. We then describe a new two-stage clustering
algorithm comprising an LP and rounding step, and show that
the algorithm offers constant approximation guarantees that
depend on the size of the motifs under consideration. We also
provide examples illustrating that standard randomized pivot-
ing algorithms fail on this instance of correlation clustering.
Our exposition concludes with several examples pertaining
to synthetic and real network analysis, such as social, flow,
and anomaly detection networks, illustrating the advantages of
motif correlation clustering over edge-based methods, which
also allows us to understand richer structures in graphs.

We remarks that the topic of motif correlation clustering
was introduced by the authors in [1]. There, the focus was
exclusively on edges and a single type of motif, triangles.
Furthermore, the work also introduced “overlapping” cor-
relation clustering for triangle motifs. This work general-
izes and extends the results in [1] by addressing clustering
with motifs and mixed motif structures of arbitrary size
(e.g., Theorem III.2). In the context of mixed motif clustering,
this work provides new results that allow for controlling
and balancing out the influence of higher-order and low-
order motifs. Since the publication of [1], follow up work
on motif correlation clustering was also reported in [15].
There, several versions of our single motif clustering methods
have been adapted to yield improved approximation constants.
Nevertheless, results reported in this work introduce both new
sophisticated proof techniques for mixed motif models and
improve the approximation guarantees reported in [1] and [15].
As an illustration, for the case when motifs are of size k,
we improve the approximation constant in [15] from 4(k − 1)
to 2k (Theorem III.1).

II. NOTATION AND PROBLEM FORMULATION

Let G(V , E) be a complete, undirected graph with vertex
set V of cardinality n and edge set E of cardinality

�n
2

�
.

For simplicity, we assume that the vertices are endowed with
distinct integer labels in [n] and this labeling introduces a nat-
ural ordering of the vertices. Also, we let C = (C1, . . . , Cs),
1 ≤ s ≤ n, stand for a partition of the vertex set [n] and Cn

for the set of all partitions of [n].
Let S be a subset of vertices and let K(S) denote the set of

all k-subsets of vertices in S, where 2 ≤ k < n is a constant
independent of n. Clearly, |K(S)| = �|S|

k

�
and |K(V )| = �n

k

�
.

Denote a subgraph of G induced by a k-subset of vertices
by K (k) ∈ K(V ) (whenever clear from the context, we omit
the superscript k). Each K is associated with a pair of non-
negative values (w+

K , w−
K ). The weights w+

K and w−
K indicate

the respective costs of placing the k-tuple K across and within
the same cluster, respectively, and they satisfy the probabilistic
constraint w+

K + w−
K = 1. Note that in practical settings,

the most relevant motifs in a graph are edges and triangles.
Typically, in practice, the k-tuple K corresponds to a graph
motif and its corresponding weights are determined by the
functionality of that motif.

For simplicity, we denote variables x associated with
K -subsets by xK ; for edges uv, u, v ∈ V we use xuv = xvu .

Our goal is to solve two MinDisagree versions of the
problem: In the first version of the problem, termed motif
correlation clustering (MCC), we fix one motif graph on k
vertices and then seek a vertex partition C ∈ Cn that minimizes
the following objective function:

MCC: min
C∈Cn

�

K (k)⊆Ci , for some i

w−
K (k)

+
�

K (k) �⊆Ci , for all i

w+
K (k) . (1)

In the second version of the problem, termed mixed motif
correlation clustering (MMCC), we are allowed to fix multiple
motif graphs of possibly different sizes 2 ≤ k1 < k2 < . . . <
kp, and we seek a vertex partition C = (C1, . . . , Cs), s ≥ 1,
that minimizes the following objective function:

MMCC:

min
C∈Cn

p�
t=1

λt

⎛
⎝ �

K (kt )⊆Ci , for some i

w−
K (kt )

+
�

K (kt ) �⊆Ci , for all i

w+
K (kt )

⎞
⎠ . (2)

Here, λt ≥ 0 are relevance factors of the motifs of size kt .
Note that by choosing λ = 1 for edges and setting all other
relevance factors to zero, we arrive at the classical correla-
tion clustering formulation. Furthermore, in both problems,
we impose the probability constraint on the weights, requiring
that w+

K + w−
K = 1 for all K .

Clearly, both the MCC and MMCC problems are
NP-complete, as the correlation clustering problem is NP-
complete. Furthermore, even for restricted choices of motifs
(e.g., for k = 3), the problems remain hard as it reduces to
Partition into Triangles [18]. We formalize this statement in the
following theorem and provide a detailed proof in Appendix.
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Fig. 1. Pivoting on edges and vertices of graphs. Note that Kn−3 stands for
a complete graph on n − 3 vertices.

Subsequently, we focus on developing (constant) approxima-
tion algorithms for this class of problems.

Theorem II.1. For k = 3, the MCC problem is NP-complete.

We point out that one may also consider the MaxAgree
version of the motif clustering problem where the objective
functions in (MCC) and (MMCC) that summarize disagree-
ment are replaced by objective functions that summarize
agreement, and where correspondingly the min function is
replaced by the max function. As for the case of correla-
tion clustering, it is straightforward to show that taking the
better of two clusterings, the all-singleton clustering and the
single-component clustering provide a 2-approximation for
the problem.

The MinDisagree version of correlation clustering is usu-
ally approximately solved using two approaches: Pivoting
methods [3] and relaxed Integer Programming (IP) methods
that reduce to solving a Linear Program (LP) followed by
rounding [4]. The pivoting algorithm is a straightforward
randomized approach that provides constant approximation
guarantees for the expected value of the objective, and has
straightforward, yet efficient, parallel implementations [16].
For the unweighted clustering problem, pivoting may be
succinctly described as follows: One selects a pivot vertex
uniformly at random, incorporates all its “similar” neighbors
(i.e., those with edge label ‘+’) into one cluster, removes all
vertices in the newly formed cluster from the graph and then
proceeds to iteratively repeat the same steps. Unfortunately,
pivoting applied to motif clustering cannot lead to constant
approximation results, as illustrated by the example to follow.

Consider the MCC problem for complete graphs and triple-
motifs, i.e., motifs with k = 3. Suppose that each edge is
labeled, with labels in the set {+,−}, and that each triple K is
associated with a pair of weights (w+

K , w−
K ) ∈ {(1, 0), (0, 1)}.

Triples that correspond to triangles with positively labeled
edges have weights (w+

K , w−
K ) = (1, 0), and are termed “posi-

tive” triples. All other triples have weights (w+
K , w−

K ) = (0, 1),
and are termed “negative” triples. For this setting, neither
pivoting on a pair of vertices (e.g., an edge) nor pivoting on a
single vertex may provide constant approximation guarantees,
as demonstrated by the examples in Figure 1. Both graphs are
complete graphs but for ease of interpretation, only positively
labeled edges are depicted. In the first case, one chooses
a (positive) edge uniformly at random and includes in the
cluster all positive edges connected to the pivoting edge. For
Figure 1 a), the optimal clustering comprises two clusters,

C1 = {v1, v2, v3} and C2 = {v4, v5, v6} and it has an MCC
objective function value equal to zero. If one pivots on the
edge (v1, v4), the resulting clustering contains one cluster
only, C1 = {v1, v2, . . . , v6}, and this leads to a positive value
of the objective function, and hence an unbounded ratio of
the optimal and approximate objective. Pivoting on vertices
may fail as well, which may be seen from Example b): The
graph in b) has a unique optimal clustering with two clusters
C1 = {v1, v2, v3} and C2 = {v4, v5, ..., vn}. Choosing the
vertex v3 as pivot and including all vertices connected to
v3 through positive edges leads to v1, v2, v4 being clustered
together with v3, thereby resulting in �(n2) more errors than
those incurred by the optimal clustering. As there are n vertices
in the graph, the expected value of the objective may have a
�(n) error.

III. MAIN RESULTS

We describe next polynomial-time, constant approximation
algorithms for the MCC and MMCC problems. For the
former case, we propose two methods that offer different
trade-offs between optimization performance and complexity,
as measured in terms of the number of constraints used in the
underlying LP program. The approach followed is to relax
the IPs of (1) and (2) to LPs and then perform rounding
of the fractional solutions. The main analytical difficulties
encountered are that the LPs involve both edge and higher-
order motif variables, and that trying to round all these
variables simultaneously may cause inconsistencies and large
rounding errors. More precisely, in the LP formulation one
has to incorporate variables associated with k-tuples, while
rounding only works with variables associated with pairs of
vertices. To overcome this issue for the MCC problem, our first
solution introduces motif variables in the LP and then performs
rounding on edges by assigning to them a cost that reflects
the value of the best-scoring motif that includes the edge.
The second solution is based on an LP which involves both
motif and edge variables and allows downstream rounding
to be performed directly on the edge variables. The second
method has fewer constraints in the underlying LP than the
first method, and is hence more computationally efficient. The
drawback is that it provides worse approximation guarantees
than the first method. For the MMCC problem, one may
use the second method developed for the MCC problem
with the inclusion of additional constraints for k-tuple and
edge variables. The approximation factor is determined by
the size of largest motifs. An in-depth study of the trade-off
between the achievable approximation ratio and the number
of constraints is out of the scope of this work.

As in the formulation of the MCC problem, let K corre-
spond to a k-tuple and let xK denote the indicator variable
for the event that the vertices in K are split among clusters
(i.e., xK = 0 if the vertices of K lie in the same cluster, and
xK = 1 otherwise). Relaxing the above integral constraint to
xK ∈ [0, 1] and rewriting the probability weight constraints
leads to the following relaxed MCC optimization problem:

LP1: min{xK }
�

K∈K(V )

w+
K xK + w−

K (1 − xK )
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s.t. xK ∈ [0, 1] (for all K ∈ K(V ))

xK3 ≤ xK1 + xK2 (for all (K1, K2, K3) ∈ ϒ)

where

ϒ ={(K1, K2, K3) ∈ [K(V )]3 : K1, K2, K3 are distinct

unordered k-tuples, K1 ∩ K2 �= ∅, K3 ⊆ K1 ∪ K2}.
Note that the constraints imposed on triples in ϒ ensure that

if two motifs share vertices and belong to the same cluster,
the additional motifs formed by the vertices also belong to the
same cluster. We refer to these as “triangle constraints”, since
they generalize the triangle inequality, which is obtained as a
special case when k = 2 (by thinking of xuv as a “distance”
between u and v).

The LP solutions are rounded according to Algorithm 1,
described below. The intuition behind the rounding algorithm
is to use the fractional solutions of the LP k-tuple variables to
perform rounding on pairs of variables. The reason for using
different variables in the LP and in the rounding procedure
is that the LP constraints are harder to state and analyze
via pairwise variables, while rounding is harder to perform
via k-tuple variables as they incur complex codependencies.
The key is to transition from k-tuples to pairs of variables
by recording the “best motif” to which an edge belongs
to, and then using the corresponding fractional value of the
motif variable to perform neighborhood growing via edge
incorporation.

Algorithm 1 Rounding Procedure With α ≤ 1
k

Set S = V
while |S| ≥ k do

Choose an arbitrary pivot vertex v in S
For all u ∈ S \ {v}, compute yvu = minK⊆S:v,u∈K xK

Let Nα(v) = {u ∈ S \ {v} : yvu ≤ α}
if
�

j∈Nα(v) yvu > α
2 |Nα(v)| then

Output the singleton cluster {v}
Let S = S \ {v}

else
Output the cluster C = Nα(v) ∪ {v}
Let S = S \ C

end if
end while
Output all clusters C

Theorem III.1. Let k be a constant motif size. For any α ≤ 1
k

and the probability constraint w+
K +w−

K = 1 satisfied by every
motif K of size k, the LP coupled with the rounding procedure
of Algorithm 1 provides a 2

α -approximate solution to the MCC
problem.

Proof. The proof is given in Appendix.

Simple algebraic manipulations (see Appendix) lead to

|ϒ| =
2k−1�

i=k+1

�|V |
i

���
i

k

��
k

2k − i

�
/2

	 ��
i

k

�
− 2

	
. (3)

For constants k 
 n, |ϒ| = �(n2k−1) since the dominating
term in the sum is indexed by i = k. This indicates that the
number of constraints in the LP grows exponentially with the
size of the motif, which may lead to computational issues
when the motifs are large. The next LP has a significantly
smaller number of triangle constraints, reduced from �(n2k−1)
to �(n3). In particular, this LP excludes a number of triangle
inequalities as constrains. One cannot reduce the number of
constraints below �(nk), as �(nk) variables are needed to
represent all possible k-tuples.

To describe the LP, we introduce some auxiliary variables.
Let zvu, v, u ∈ V , denote the indicator of the event that a pair
of vertices v, u belong to different clusters (i.e., zvu = 0 if
v and u belong to the same cluster, and zvu = 1 otherwise).
By replacing the indicator variables by zvu ∈ [0, 1] and letting
xK ∈ [0, 1] as before, we arrive at the following LP problem
formulation.

LP2: min{xK },{zvu }
�

K∈K(V )

w+
K xK + w−

K (1 − xK ) (4)

s.t. xK ≥ zvu (for all K ∈ K(V ) and v, u ∈ K ), (5)

xK ≤ 1

k − 1

�
v,u∈K ,v<u

zvu, xK ≤ 1,

(for all K ∈ K(V )), (6)

zvu ≥ 0 (for all u, v ∈ V ),

zv2v3 ≤ zv1v2 + zv1v3

(for all distinct vertices v1, v2, v3 ∈ V ).

A simple counting argument reveals that the number of
constraints in the LP equals �(

�n
k

��k
2

� + �n
3

�
). Note that the

inequalities (5) and (6) handle constraints on the k-tuples:
Placing any pair of vertices in K across clusters places K
across clusters, and placing K across clusters causes placing
at least k − 1 many pairs of vertices across clusters. For the
practically most relevant case k = 3, the number of constraints
in the above described optimization problem is roughly twice
that of classical LP-based correlation clustering solvers [4].

Algorithm 2 describes the rounding procedure for the solu-
tion of LP2. In this case, the procedure reduces to the classical
region growing method of [2], [4].

Algorithm 2 Rounding Procedure With Parameters α, β ≤ 1
k

Let S = V (G)
while |S| ≥ k do

Choose an arbitrary pivot vertex v in S
Let Nα(v) = {u ∈ S \ {v} : zvu ≤ α}
if
�

u∈Nα(v) zvu > βα|Nα(v)| then
Output the singleton cluster {v}
Let S = S \ {v}

else
Output the cluster C = Nα(v) ∪ {v}
Let S = S \ C

end if
end while
Output S
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Theorem III.2. Let k be a constant size of a motif. For any
α, β ≤ 1

k and the probability constraint w+
K +w−

K = 1 satisfied
by every motif K of size k, the LP coupled with the rounding
procedure of Algorithm 2 provides a 1

αβ -approximate solution
to the MCC problem.

Proof. The proof of the theorem is presented in Appendix.

Observe that the approximation guarantees of Theorem 2
are worse than those of Theorem 1, which is the price paid
for reducing the number of constraints.1 Furthermore, since the
rounding procedure operates on pairs of vertices only and does
not involve variables for k-tuples, it may be used for solving
the MMCC problem as well. We outline the corresponding
result in what follows.

Let S = {k1, k2, ..., k p} be the set of motif sizes of interest,
and let Kt (V ) be the set of all kt -tuples of V . Using the same
notation as in the MCC version of the problem, we state the
following LP relaxation for the MMCC problem:

LP3: min{xK },{zuv }

p�
t=1

λt

⎡
⎣ �

K∈Kt (V )

w+
K xK + w−

K (1 − xK )

⎤
⎦

s.t. xK ≥ zvu (for all K ∈ Kt (V ), t ∈ [p] and u, v ∈ E(K )),

xK ≤ 1

k − 1

�
v,u∈K ,v<u

zvu, xK ≤ 1,

(for all K ∈ Kt (V ), t ∈ [p]),
zvu ≥ 0 (for all u, v ∈ V ),

zv2v3 ≤ zv1v2 + zv1v3

(for all distinct vertices v1, v2, v3 ∈ V ).

The rounding method accompanying this LP is also
described in Algorithm 2, with the parameters α, β bounded
from above by 1

k∗ , where k∗ = max S = max{k1, k2, ..., k p}.
Corollary III.3. For α, β ≤ 1

k∗ , and all motif weights satisfy-
ing the probability constraint w+

K + w−
K = 1, the rounded LP

algorithm provides an 1
αβ -approximate solution to the MMCC

problem.

Proof. Note that the simplest way to prove this result is
to focus on the largest motif only, and use the previously
described MCC result. In particular, the stated result does not
depend on the particular choices of the parameter λ.

Still, one can derive more precise and stronger approx-
imation guarantees by focusing on all motifs simultane-
ously, in which case the analysis becomes rather tedious
and involved. For the special case of two motifs (p = 2)
with sizes k1 = 2 and k2 = k respectively, we provide
tighter approximation results in Theorem III.4. Here, both the
parameters α, β depend on λ. The underlying derivations are
relegated to Appendix.

Theorem III.4. Consider the MMCC problem with two types
of motifs of sizes k1 = 2 and k2 = k. The objective function

1Note that Theorem 2 is a natural generalization of the results first described
in the preliminary version of this work [1]. The analysis of Algorithm 2
described in [1] was tightened in [15], establishing an approximation constant
of 4(k − 1), which is worse than the result of Theorem 1.

LP3 may be rewritten as�
u,v∈V

�
w+

uv zuv + w−
uv (1 − zuv )

�
+ λ

�
K∈K

�
w+

K xK + w−
K (1 − xK )

�
,

where zuv and xK are variables associated with pairs of
vertices and k-tuples of vertices, and λ is a parameter that
can be tuned to balance the penalties induced by edges and
motifs of size k.

Let r0 be a constant equal to

r0 = k − 2

1 + λnk−1 .

Then, for any α ≤ 1/k, β ≤ 1/(k − r0), and provided that
the weights satisfy the probability constraint w+

K + w−
K = 1

for both k-tuples and edges (i.e., w+
uv + w−

uv = 1), the LP and
rounding procedure of Algorithm 2 produce a 1

αβ -approximate
solution to the edge-motif MMCC problem.

Note that Theorem III.4 is particularly useful when λ ∼
O(n−(k−1)). As the number of k-tuples over the number of
edges is �(nk−1), the condition λ ∼ O(n−(k−1)) essentially
captures the case when the averaged contribution of k-tuples
is at best comparable to the averaged contribution of edges.

IV. NUMERICAL RESULTS FOR

SMALL SOCIAL NETWORKS

We evaluated our (M)MCC methods on the well known
Zachary karate club network [17], and two benchmark net-
works from [10], which were originally tested using the
method described in [10] (henceforth termed TSC). In all the
experiments, we considered motifs of size k = 2 and k = 3
only. Hence, one of the motifs are edges and for the case
k = 3, the motif may be selected based on the particular appli-
cation, as subsequently described. When solving the MCC
problem, we use the LP2 formulation as it contains fewer
constraints than LP1 and thus can be solved more efficiently.
We then leverage Algorithm 2 for downstream rounding. When
solving the MMCC problem, we use a combination of LP3
and Algorithm 2. The (M)MCC problems rely on solving LPs
with a large number of constraints. As a consequence, current
(M)MCC solvers do not have desired scalability properties but
may be improved in terms of using two approaches, one of
which involves exploiting the fact that sparsity of motifs leads
to sparse effective constraints; and alternatively, subsampling
the set of constraints and then sub-optimally solving the LP
problem. In the latter context, deriving performance guarantees
may be challenging and dependent on the selected constraints.
Note that the TMC methods proposed in [10] do random walks
according to heuristically reduced higher-order Markov chains,
which may be more efficient, but they do not hold provable
performance guarantees like the methods in this work. Thus,
an important open problem is to bridge this gap between theory
and practice.

A. A Benchmark Social Network:
Zachary’s Karate Club [17]

We first test the performance of the CC, MCC and MMCC
methods on the Zachary’s karate club network. In the CC
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TABLE I

WEIGHT ASSIGNMENTS FOR THE KARATE CLUB NETWORK; K3 STANDS
FOR A TRIANGLE (COMPLETE GRAPH ON 3 VERTICES), WHILE

P3 DENOTES A PATH WITH THREE VERTICES

Fig. 2. Clustering results for the CC, MCC and MMCC method performed on
the Zachary’s karate club network. Vertex 10 is erroneously clustered by the
CC method, but correctly clustered by both the MCC and MMCC methods.

model, we assign weights to each pair of vertices depending
on whether they are connected by an edge or not. For the
MCC method, we focus on 3-tuples and assign weights to
the 3-tuple weights according to whether their corresponding
vertices form a triangle or a path. We use both triangles (K3)
and 3-paths (P3) as motifs to ensure that nodes with very
small degree can be clustered more accurately by examining
their inclusion into important motifs involving vertices of large
degree. The MMCC method uses both 2-tuples and 3-tuples.
The weight assignments used in all the described methods
are listed Table I. The result is shown in Figure 2. Although
we tested CC for a number of choices for the weights,
we inevitably ended up with one clustering error, vertex 10.
This vertex is connected to vertex 34 in Cluster 1 and vertex 3
in Cluster 2. On the other hand, the MCC and MMCC methods
recovered the ground truth clustering by taking into account
the K3 and P3 motifs. The reason for this finding is that in
social networks, vertices within a cluster typically connect
to some central vertices in the same cluster (like vertex 34
and vertex 1). Hence, they form many triangles and 3-paths
containing the central vertices.

B. Partitioning Layered Flow Networks

The next example is what we refer to as a layered flow
network (see Figure 3). The information flow between two lay-
ers typically follows the same direction while feedback loops
are primarily contained within a layer. The task is to detect
the layers in the network. To perform the layer clustering,
we assign the value 1 to each weight wK corresponding to a
directed 3-cycle (i.e., a triple { j1, j2, j3} with edges directed

Fig. 3. Example of a flow network, with layers detection performance of
MCC and TSC. Left: The layered flow network; Right: The clustering results.

Fig. 4. Anomaly detection in networks and clustering.

according to j1 → j2, j2 → j3, j3 → j1, or the reverse
order), encouraging the corresponding triples to lie within a
layer, while we assign a arbitrary weight in [0.41, 0.48] to all
other type of triples. The choice of the weights of the negative
edges is governed by the fact that there are significantly more
triples other than directed 3-cycles, constraining the weights
to be close to, but slightly smaller than 0.5. The clustering
results are shown in Figure 3. Both MCC and the method
of [10] produce similar clustering results, which identify the
layers of the network. The only difference is observed for the
node with label 3. The MCC method emphasizes the feedback
loops inside a layer, and hence node 3 is placed in the same
cluster as nodes 4, 5, 6, 7. The other method emphasizes the
importance of the direction of information flow and thus the
flow from node 3 to node 1 does not permit clustering nodes
3, 4, 5, 6, 7 together.

C. Anomaly Detection

Practical networks usually contain bidirectional edges,
i.e., edges that allow both directions of traversal. A large
number of these edges lie within directed 3-cycles [10]. Hence,
if a part of a network contains many directed 3-cycles but very
few bidirectional edges, it may be viewed as an anomaly.

An illustrative example is shown in Figure 4, in which
the nodes labeled 0-5 form an anomalous component which
we wish to detect as it contains 8 directed 3-cycles without
any bidirectional edges. The edges between nodes 6-21 are
generated according to a standard Erdős-Rényi model with
probability 0.25 and to keep the figure simple, those edges
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were not plotted. Note that each of the nodes labeled 0 − 5
has 4 outgoing and 2 incoming edges within the group of
vertices containing 6 − 21. There are 20 directed triangles
without bidirectional edges.

To use our MCC method, we set the weights for the triangles
without bidirectional edges to 1, and those for other types of
triangles to a value smaller than 0.42. As the results shown
in the Figure 4 demonstrate, our method outperforms the TSC
method in terms of detecting the anomaly.

APPENDIX

To prove that the problem is in NP, we focus our attention
on the case (w+

K , w−
K ) ∈ {(1, 0), (0, 1)}. Since w+

K ∈ {0, 1},
as before, we refer to a triple K with w+

K = 1 (respectively,
w+

K = 0) as “positive” (respectively, “negative”). We also use
the term “positive error” to indicate that a positive triple is
placed across clusters and “negative error” to indicate that a
negative triple is placed within one cluster.

Following the approach used to prove NP-hardness of
CC [2], we use a reduction from the NP-complete Partition into
Triangles [18] problem. Given a (not necessarily complete)
graph G� = (V , E), containing n vertices where n is a
multiple of 3, the goal is to decide whether it can be partitioned
into triangles.

As the first step in our proof, we construct a graph Gw

that has the same vertex set as G� and view triangles of Gw

as motifs. We set the weights of triples Gw that correspond
to triangles in G� to (1, 0), and the weights of all other
triples in Gw to (0, 1). We solve the MCC problem over Gw

under the additional constraint that the size of each cluster
is at most 3. The existence of an efficient algorithm for
solving this MCC would imply the existence of an efficient
algorithm for partitioning G� into triangles, a contradiction.
As the original MCC algorithm does not necessarily generate
clusters with bounded size 3, in what follows we describe how
to construct another graph, H w, such that the triples-MCC
algorithm applied on H w results in a bounded cluster-size run
of MCC on Gw.

The basic idea behind our approach is to impose the
constraint on the size of clusters in Gw by adding vertices in
H w for each triple in Gw , and then making the triples formed
by the the newly added vertices positive and other triples
negative. In this way, a cluster in the new graph H w with
more than 3 vertices in Gw causes a large number of negative
errors and hence cannot be part of an optimal clustering.

We now describe how to construct the graph H w based
on Gw . In addition to the vertices of Gw , for every triple
{u1, u2, u3} in Gw, H w contains additional n5 vertices,
denoted by Cu1u2u3 . For simplicity of notation, we write
Cu1u2u3 ∪ {u1, u2, u3} = C �

u1,u2,u3
. Clearly, H w contains

n + n5
�n

3

�
vertices. We classify the triples in H w into three

types:
1) T-I triples: {u1, u2, u3}, for all u1, u2, u3 ∈ V (Gw).
2) T-II triples: triples in C �

u1,u2,u3
that are not T-I triples.

3) T-III triples: triples that are neither T-I triples nor T-II
triples.

The number of T-I triples is
�n

3

�
. As they are inherited from

Gw, we keep their weights equal to those in Gw. The number

of T-II triples equals
�n

3

�[�n5+3
3

�−1], and we assign to them the

weights (1, 0). The number of T-III triples equals
�n+n5(n

3)
3

�−�n
3

��n5+3
3

�
, and we assign to them the weights (0, 1).

Consider now a clustering C∗ of H w of the following form:
1) There are

�n
3

�
nonoverlapping clusters;

2) Each cluster corresponds to one of the sets
Cu1u2u3 or one of the sets C �

u1u2u3
;

3) Each vertex u inherited from V (Gw) lies in exactly one
cluster.

In the above clustering, there are no errors arising due to
T-III triples, because all T-III triples are negative and C∗ has
property 2). The only errors arise from T-I triples and T-II
triples. The number of errors induced by T-I triples is at most�n

3

�
, while T-II triples errors in C∗ may be grouped into two

categories. First, a triple may have two vertices in Cu1u2u3

and one vertex in {u1, u2, u3} that lies in another cluster. The
number of this type of clustering errors is bounded from above
by n(

�n−1
2

�− 1)
�n5

2

�
. Second, a triple may have one vertex in

Cu1u2u3 and two vertices in {u1, u2, u3} that lie in another
cluster. The number of this type of errors is upper bounded
by

�n
2

�
(n − 3)

�n5

1

�
. Therefore, the total number of errors in C∗

is bounded from above by

n

��
n − 1

2

�
− 1

��
n5

2

�
+
�

n

2

�
(n − 3)

�
n5

1

�
+
�

n

3

�
∼ O(n13).

We may convert the clustering C∗ into a partition Gw based
on the clustering of T-I triples. The clustering C∗ essentially
partitions the vertices of Gw into clusters containing exactly
three vertices. Our subsequent arguments aim to establish that
the number of errors in a clustering that contains at least one
cluster with at least four vertices from V (G) must be larger
than the number of errors induced by C∗.

For that purpose, consider another clustering of H w,
denoted by C �. First, we show that in order for C � to have
fewer errors than C∗, the size of any cluster in C � must lie in the
interval [n5 − n4, n5 + n4]. Suppose that on the contrary there
exists a cluster containing more that n5 + n4 vertices. Then,
there are at least

�n5

2

�
n4 ∼ �(n14) negative errors caused by

placing T-III triples into this cluster. Furthermore, each cluster
must contain at least n5 − n4 vertices of a clique, otherwise
there are at least

�n5

2

�
n4 ∼ �(n14) positive errors generated

by splitting the T-II triples. Second, note the each vertex in
V (Gw) belongs to

�n−1
2

�
different triples of Gw. Since the size

of each cluster of C � is smaller than n5 + n4, for each vertex
in V (G), the number of negative errors caused by splitting
the T-II triples that contains this vertex and two vertices from
some Cu1u2u3 is lower bounded by

�n5

2

��n−1
2

�− �n5

2

�− �n4

2

�
.

Assume now that there exists a cluster of C � that contains
four vertices inherited from V (Gw), say {u1, u2, u3, u4}. Then,
as the size of the cluster is lower bounded by n5 − n4, from
the pigeonhole principle it follows that there exists at least
one vertex in {u1, u2, u3, u4}, say j1, and at least 1

4 (n5 − n4)
other vertices that do not lie in one of the sets Cu1 u�u�� for
some u�, u�� ∈ v(Gw). Hence, the number of negative errors

caused by T-III triples within this cluster is at least
� 1

4 (n5−n4)
2

�
.
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TABLE II

OVERVIEW OF THE DIFFERENT CASES STUDIED IN THE PROOF OF THEOREM III.1. OUTPUT REFERS TO THE OUTPUT OF THE ALGORITHM; THE “COST
OF SPLITTING” AND “JOINT CLUSTERING” REFER TO THE COST OF SPLITTING THE k-TUPLE IN K OR PLACING ALL OF K INTO INTO THE OUTPUT

CLUSTER, RESPECTIVELY. ADDITIONAL CONDITIONS ARE SPECIFIC FOR THE CASE UNDER INVESTIGATION

The total number of errors induced by such a clustering is
therefore at least

n

�
n5

2

���
n − 1

2

�
− 1

�
− n

�
n4

2

�
+
� 1

4 (n5 − n4)

2

�
,

which is larger than the number of errors in the cluster-
ing C∗, for n sufficiently large. Therefore, the optimal triangle-
clustering has to be of the form of C∗, imposing a constraint
on the size of clusters in Gw .

Since we assume that the weights satisfy the probability
constraint w+

K + w−
K = 1, we will use wK to refer to w+

K and
1 − wK to refer to w−

K .
Let Nα(v) be the set defined in the rounding procedure.

If Nα(v) �= ∅, Nα(v) contains at least k −1 elements, because
if xK ≤ α for some k-tuple K , then all its elements (except
possibly v) lie in Nα(v). Let N �

α(v) = Nα(v) ∪ {v}. For
convenience, we also define, given a pivot vertex v and a
k-tuple K that contains v, yK = �

u∈K\{v} yvu . Furthermore,
we let

K (uv)
min = arg min

K : u,v∈K
xK .

Thus, by using the LP constraint and the definition of yuv ,
we have

1

k − 1
yK ≤ xK ≤

�
u∈K\{v}

x
K (uv)

min
= yK . (7)

Let Kv be the set of all the k-tuples K such that K ⊆
N �

α(v), K � v. When v is a pivot vertex and K ∈ Kv ,
we know that

yK ≤ (k − 1)α ≤ k − 1

k
. (8)

The following proof often uses another form of the con-
straint in the underlying LP, i.e., xK1 ≥ xK3 − xK2 for any
(K1, K2, K3) ∈ ϒ .

Next, we compare the rounding cost and the LP cost for
different types of outputs of the algorithm. As the LP cost natu-
rally gives a lower bound of the optimal cost, the ratio between
the rounding cost and the LP cost characterizes the approxi-
mation ratio. Since the rounding procedure produces clusters,
we also refer to the rounding cost as cluster-cost or clustering
cost. All possible cases and their corresponding approximation
constants are listed in Table II.

Case 1: The output is the singleton cluster {v}. The cluster-
ing cost when outputting a singleton {v} is

�
K⊆K(S):v∈K wK

while the LP cost is
�

K⊆K(S):v∈K(1−wK )(1− xK )+wK xK .
If K ∩ �

S \ N �
α(v)

� �= ∅, we have xK > α, so charging
each such k-tuple 1

α wK xK times its LP-cost compensates for
the cluster-cost. Therefore, it suffices to consider the k-tuples
K ∈ Kv . For K ∈ Kv , the LP cost is bounded by�

K∈Kv

(1 − wK )(1 − xK ) + wK xK

≥
�

K∈Kv

(1 − wK )(1 − yK ) + wK
1

k − 1
yK

=
�

K∈Ki

wK

�
k

k − 1
yK − 1

	
+ (1 − yK )

≥
�

K∈Kv

1

k − 1
yK ≥ α

2

�|Nα(v)|
k − 1

�
,

where the first inequality is due to (7), the second inequality
is due to (8) and wK ≤ 1, while the third inequality is due to
the condition that the algorithm outputs a singleton cluster {v}.
Therefore, charging 2

α for the k-tuple is enough to compensate
for the cluster-cost.

Case 2: The output is the cluster N �
α(v).

Case 2.1: First, consider the cost of the k-tuples inside the
cluster. If v ∈ K , then we have K ∈ Kv and thus xK ≤
yK ≤ (k − 1)α. As the LP cost is ≥ (1 − wK )(1 − xK ) and
the cluster-cost is 1 − wK , charging 1

1−(k−1)α for this tuple
suffices to compensate for the cluster-cost.

If v /∈ K , order the vertices in Nα(v) in such a way that
for any u1, u2 ∈ Nα(v), u1 ≺ u2 iff yvu1 < yvu2 and assign
an arbitrary order (u1 ≺ u2) when the equality (yvu1 = yvu2)
holds.

For each vertex u ∈ Nα(v), let Ru = {u� ∈ Nα(v) : u� � u},
and let K(u)

v be the set of k-tuples K ∈ Nα(v) such that u is
the largest vertex of K according to ≺. Thus, if K ∈ K(u)

v ,
then u ∈ K and K ⊆ Ru .

Note that because of the order, we have
�

u�∈Ru
yvu� ≤

α
2 |Ru |. Now for all u ∈ Nα(v), let us consider the total
cost of the k-tuples in Ru . The corresponding cluster-cost
is
�

K∈K(u)
v

1 − wK while the LP cost is
�

K∈K(u)
v

(1 − xK )

(1 − wK ) + xK wK .
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Next, let K�
v be the set of k-tuples K � ⊆ N �

α(v) with v,
u ∈ K �.

Case 2.1.1: There is a clique K � ∈ K�
v with xK � ≤ α

2 .
Let K ∗ = (K \ {u}) ∪ {v}. Observe that v ∈ K �

v ∩ K ∗ and
that K ⊆ K �

v ∪ K ∗. Hence, the LP constraints imply that for
all K ∈ K(u)

v , we have

xK ≤ xK � + xK ∗ ≤ α

2
+ (k − 1)α = (2k − 1)α

2
.

So, charging 2
2−(2k−1)α for each k-tuple in K(u)

v is enough to
compensate for the cluster-cost.

Case 2.1.2: For all K � ∈ K�
v , we have xK � > α

2 . Let K ∈
K(u)

v , and let {u1, . . . , uk−1} be the vertices in K \ {u}. Let
yK = �

u j ∈K\{g} yvu j . For each j ∈ {1, . . . , k − 1}, let K j =
(K \ {u j }) ∪ {v}. As each K j ∈ K�

v , the LP constraints imply:

1 − xK ≥ 1 − min
j∈{1,...,k−1}{x

K
(vu j )

min

+ xK j }
= 1 − min

j∈{1,...,k−1}{yvu j + xK j }

≥ 1 −
⎡
⎣ 1

k − 1
yK + 1

k − 1

k−1�
j=1

xK j

⎤
⎦

and

xK ≥ max
j∈{1,...,k−1}{xK j − x

K
(vu j )

min

}

= max
j∈{1,...,k−1}{xK j − yvu j } ≥ 1

k − 1

k−1�
j=1

xK j − 1

k − 1
yK .

Let σ = �k−1
j=1 xK j . Manipulating these inequalities yields, for

each K ∈ K(u)
v ,

(1 − wK )(1 − xK ) + wK xK

≥ (1 − wK )

�
1 − 2

k − 1
σ

�
− 1

k − 1
yK + 1

k − 1
σ. (9)

The LP constraints yield xK j ≤ (k − 1)α for each j ∈
{1, . . . , k − 1}, since i ∈ K j for each j , by the same
argument used to establish inequality (7). Since each K j ∈
K�

v , we have α/2 ≤ xK j ≤ (k − 1)α for each j , so that
σ ∈ [(k − 1)α

2 , (k − 1)2α]. The inequality (9) is linear in σ ,
so we study its behavior when σ is an endpoint of this interval.
When σ = (k − 1)α

2 , we obtain

(1 − wK )(1 − xK ) + wK xK

≥ (1 − wK )(1 − α) + α

2
− 1

k − 1
yK ,

and when σ = (k − 1)2α, we obtain

(1 − wK )(1 − xK ) + wK xK

≥ (1 − wK )(1 − 2(k − 1)α) + (k − 1)α − 1

k − 1
yK

= (1 − wK )(1 − 2(k − 1)α) + (k − 3

2
)α + α

2
− 1

k − 1
yK

≥ (1 − wK )(1 − 2(k − 1)α)

+ (1 − wK )(k − 3

2
)α + α

2
− 1

k − 1
yK

= (1 − wK )(1 − (k − 1

2
)α) + α

2
− 1

k − 1
yK .

Since k ≥ 2 we clearly have (1 − wK )(1 − (k − 1
2 )α) + α

2 ≤
(1 − wK )(1 − α) + α

2 , so by linearity, we also have

(1 − wK )(1 − xK ) + wk xK

≥ (1 − wK )(1 − (k − 1

2
)α) + α

2
− 1

k − 1
yK (10)

for all K ∈ K(u)
v . Now, recall that

�
u�∈Ru

yvu� ≤ α
2 |Ru |; as

every vertex in Ru appears in exactly
�|Ru |−1

k−2

�
k-tuples of K(u)

v ,
this implies that

1

k − 1

�
K∈K(u)

v

yK = 1

k − 1

�|Ru | − 1

k − 2

� �
u�∈Ru

yvu�

≤ α

2

�|Ru | − 1

k − 2

� |Ru |
k − 1

= α

2

� |Ru |
k − 1

�
= α

2

���K(u)
v

��� .
Thus, summing inequality (10) over all tuples in K(u)

v yields
the following lower bound on the total LP-cost of these tuples:�

K∈K(u)
v

[(1 − wK )(1 − xK ) + wk xK ]

≥
�

K∈K(u)
v

�
(1 − wK )(1 − (k − 1

2
)α) + α

2
− 1

k − 1
yK

	

≥
�

K∈K(u)
v

�
(1 − wK )(1 − (k − 1

2
)α)

	

= (1 − (k − 1

2
))α

�
K∈K(u)

v

(1 − wK ).

Therefore, charging 2
2−(2k−1)α for each k-tuple in K(u)

v suffices
to compensate for the cluster-cost.

Case 2.2: Compensating the cost of splitting a k-tuple. Each
tuple K split during clustering incurs a cluster-cost of wK and
an LP-cost of xK wK + (1 − xK )(1 − wK ). First, suppose that
K is a split k-tuple. Since K was split, xK > α, and charging
1
α times the LP cost pays for such a K .

Let S� ⊆ S \N �
α(v) be such that |S�| ≤ k − 1. Furthermore,

let K(S �)
v be the set of split tuples K such that v /∈ K and

K \ N �
α(v) = S�. According to the definition of S�, for any

split tuple K , there is a corresponding S�. We show that the
total cluster-cost of the tuples in K(S �)

v is at most a constant
times their total LP-cost. To establish the claim, let SN be the
collection of all subsets SN ⊆ Nα(v) with |SN | = k−1−��S���.

Case 2.2.1: There is some SN ∈ SN such that x{v}∪SN∪S � ≥
1 − α

2 . For each K ∈ K(S �)
v , let S̃ = K ∩ Nα(v), and take an

arbitrary set S̄ ⊆ Nα(v) \ S̃ with
��S̄�� = k − 1 − |s̃|. We have

x{v}∪S̃∪S̄ ≤ (k − 1)α and thus

xK ≥ x{v}∪S �∪SN − x{v}∪S̃∪S̄

≥ 1 − α

2
− (k − 1)α = 2 − (2k − 1)α

2
,

and in particular xK ≥ 2−(2k−1)α
2 for all K ∈ K(S �)

v . Thus,
charging 2

2−(2k−1)α times the LP-cost to each K ∈ K(S �)
v pays

for the cluster-cost of all such edges.
Case 2.2.2: For all SN ∈ SN , x{i}∪SN ∪S � < 1 − α

2 .
Take any K ∈ K(S �)

v and let S̃ = K ∩ Nα(v). Suppose that
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S̃ = {u1, u2, ..., u|S̃|}. For each u j ∈ S̃, let K j = (K \ {u j }) ∪
{v}. Note that each tuple K j is a split tuple. We have:

1 − xK ≥ 1 − min
u j ∈S̃

[x
K

(vu j )

min

+ xK j ]

= 1 − min
u j ∈S̃

[yvu j + xK j ]

≥ 1 − 1���S̃���
�
u j ∈S̃

(yvu j + xK j );

xK ≥ max
u j ∈S̃

[xK j − x
K

(vu j )

min

] = max
u j ∈S̃

[xK j − yvu j ]

≥ 1���S̃���
�
u j ∈S̃

(xK j − yvu j ).

Let σx = �
u j ∈S̃ xK j and let σy = �

u j ∈S̃ yK j . The inequal-
ities above yield the following lower bound on the LP-cost
of K :

(1 − wK )(1 − xK ) + wK xK

≥ wK

⎡
⎣ 2���S̃���σx − 1

⎤
⎦+ 1 − 1���S̃��� (σx + σy). (11)

We have xK j ≥ α by definition and xK j ≤ 1 − 2
α due to

the assumptions made for this case. Thus, we have σx ∈
[α
���S̃��� , (1 − α

2 )
���S̃���]. As the lower bound in inequality (11)

is linear in σx , we study the behavior of the bound at the
endpoints. When σx = α

���S̃���, we have

(1 − wK )(1 − xK ) + wK xK ≥ (2α − 1)wK + 1 − α − σy���S̃���
≥ (2α − 1)wK + (1 − 3α

2
)wK + α

2
− σy���S̃���

= α

2
wK + α

2
− σy���S̃��� .

Here, we used the fact that α < 2/3. When σx = (1 − α
2 )
���S̃���,

we obtain

(1 − wK )(1 − xK ) + wK xK ≥ (1 − α)wK + α

2
− σy���S̃��� .

Since α ≤ 2/3, we have 1 − α ≥ α
2 , so that the inequality

(1 − wK )(1 − xK ) + wK xK ≥ α

2
wK + α

2
− σy���S̃��� (12)

holds for σx at both endpoints of the interval, and thus holds
for all K ∈ K(S �)

v . With S̃ = K ∩ Nα(v) as before, we have���S̃��� = k − ��S��� for all K ∈ K(S �)
v , and indeed the map

K �→ (K ∩Nα(v)) is a bijection from K(S �)
v to

�Nα(v)
k−|S �|

�
. Since

each vertex of Nα(v) lies in exactly
�|Nα(v)|−1

k−|S �|−1

�
of the sets in�Nα(v)

k−|S �|
�
, we have�

K∈K(S�)
v

1���S̃���
�
u j ∈S̃

yvu j =
�

S̃∈(|Nα(i)|
k−|S�| )

1

k − |S�|
�
u j ∈S̃

yvu j

= 1

k − |S�|
�|Nα(i)| − 1

k − |S�| − 1

� �
u∈Nα(v)

yvu

≤ 1

k − |S�|
�|Nα(v)| − 1

k − |S�| − 1

�
α |Nα(v)|

2

= α

2

�|Nα(v)|
k − |S�|

�
= α

2

���K(S �)
v

��� .
Thus, summing inequality (12) over all tuples in K(S �)

v yields
the following lower bound on the total LP-cost of the under-
lying tuples: �

K∈K(S�)
v

[(1 − wK )(1 − xK ) + wK xK ]

≥
�

K∈K(S�)
v

⎡
⎣α

2
wK + α

2
− σy���S̃���

⎤
⎦

≥ α

2

�
K∈K(S�)

v

wK .

Thus, charging each tuple in K(S �)
v a factor of 2

α times its
LP-cost is enough to pay for the cluster-cost.

In summary, if α = 1/k and we define c =
max{ 1

1−α , 1
1−(k−1)α , 2

2−(2k−1)α , 2
α } = 2

α = 2k, then
Algorithm 1 charges each k-tuple at most a factor of 2k times
its LP.

We continue to use the notation introduced in Appendix.
In particular, we let N �

α(v) = Nα(v) ∪ {v} and let Kv be
the set of all k-tuples K such that K ⊆ N �

α(v), K � v. The
following proof often uses some immediate consequences of
the LP constraints; here we adopt the convention that zuu = 0
for all u ∈ V :

1) zu1u2 ≥ zu1u3 − zu2u3 for any u1, u2, u3 ∈ V ;
2) xK ≥ maxuu�∈K zuu� ≥ maxu,u�∈K [zvu − zvu� ], for any

v ∈ V ;
3)

xK ≤ 1

k − 1

�
u,u�∈K ,u<u�

zuu�

≤ 1

k − 1

�
u,u�∈K ,u<u�

(zvu + zvu�) ≤
�
u∈K

zvu,

for any v ∈ V .

As before, we prove the approximation guarantees by com-
paring the rounding cost and the LP cost. An overview of the
different cases encountered and the corresponding approxima-
tion constants is provided in Table III.

Case 1: The output is the singleton cluster {v}. The cluster-
ing cost when outputting a singleton {v} is

�
K⊆K(S):v∈K wK

while the LP cost is
�

K⊆K(S):i∈K (1−wK )(1− xK )+wK xK .
If K ∩ [S \N �

α(v)] �= ∅, we have xK > α, so charging each
such k-tuple 1

α times its LP-cost compensates for the cluster-
cost. Therefore, it suffices to consider the k-tuples K ∈ Kv .

For any K ∈ Kv , we have 1
k−1

�
u∈K\{v} zvu ≤ xK ≤�

u∈K\{v} zvu , where the inequalities are based on the LP
constraints. By observing that zvu ≤ α, we have the following
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TABLE III

OVERVIEW OF THE DIFFERENT CASES STUDIED IN THE PROOF OF THEOREM III.2. OUTPUT REFERS TO THE OUTPUT OF THE ALGORITHM; THE “COST
OF SPLITTING” AND “JOINT CLUSTERING” REFER TO THE COST OF SPLITTING THE k-TUPLE IN K OR PLACING ALL OF K INTO INTO THE OUTPUT

CLUSTER, RESPECTIVELY. ADDITIONAL CONDITIONS ARE SPECIFIC TO THE CASE UNDER INVESTIGATION

bound on the LP cost of K :

(1 − wK )(1 − xK ) + wK xK

≥ (1 − wK )(1 −
�

u∈K\{v}
zvu) + wK

1

k − 1

�
u∈K\{v}

zvu

= wK

⎡
⎣
⎛
⎝ k

k − 1

�
u∈K\{v}

zvu

⎞
⎠− 1

⎤
⎦+ (1 −

�
u∈K\{v}

zvu).

Since each zvu for u ∈ K satisfies zvu ≤ α ≤ 1/k, the quantity
in square brackets is negative, so that wK ≤ 1 implies

(1 − wK )(1 − xK ) + wK xK ≥ 1

k − 1

�
u∈K\{v}

zvu .

Summing over all K ∈ Kv , we see that�
K∈Kv

[(1 − wK )(1 − xK ) + wK xK ]

≥
�

K∈Kv

�
u∈K\{v}

1

k − 1
zvu ≥ αβ

�|Nα(v)|
k − 1

�
,

where the last inequality follows from the condition�
u∈Nα(v) zvu > βα |Nα(v)| that causes the algorithm to

output {v} as a singleton cluster.

Therefore, charging 1
αβ times the LP-cost to each k-tuple

in Kv is enough to compensate for the total clustering cost of
the tuples in Kv .

Case 2: The output is the cluster N �
α(v).

Case 2.1: First, consider the cost of the k-tuples inside the
cluster. If v ∈ K , then we have xK ≤ �

u∈K\{v} zvu ≤ (k−1)α.
As the LP cost is ≥ (1 − wK )(1 − xK ) and the cluster-cost is
1−wK , charging 1

1−(k−1)α for this tuple suffices to compensate
for the cluster-cost.

If v /∈ K , order the vertices in Nα(v) in such a way that
for any u, u� ∈ Nα(v), u ≺ u� iff zvu < zvu� and assign an
arbitrary order (u ≺ u�) when the equality (zvu = zvu�) holds.

For each vertex u ∈ Nα(v), let Ru = {u� ∈ Nα(v) : u� � u},
and let K(u)

v be the set of cliques K ∈ K(u)
v such that l is the

largest vertex of K according to ≺. Thus, if K ∈ K(u)
v , then

u ∈ K(u)
v and K ⊆ Ru .

Note that because of the order, we have
�

u�∈Ru
zvu� ≤

αβ|Ru |. Fix some u ∈ Nα(v), and consider the total cost
of the k-tuples in K(u)

v . The corresponding cluster-cost is�
K∈K(u)

v
1 − wK while the LP cost is

�
K∈K(u)

v
(1 − xK )

(1 − wK ) + xK wK .
Let K�

v be the set of k-tuples K ⊆ N �
α(v) with v, u ∈ K .

Case 2.1.1: zvu ≤ βα. In this case, for each K ∈ K(u)
v ,

we have
xK ≤

�
u�∈K

zvu� ≤ kzvu ≤ kβα,

so that charging 1
1−kβα times the LP-cost to each k-tuple in

K(u)
v suffices to pay for the cluster cost of all such tuples.
Case 2.1.2: zvu > βα. In this case, by using xK ≤�
u∈K zvu , we have 1 − xK ≥ 1 −�

u∈K zvu . Furthermore,

xK ≥ zvu − min
u�∈K\{u} zvu� ≥ zvu − 1

k − 1

�
u�∈K\{u}

zvu� .

Letting σ = �
u�∈K\{u} zvu� so that 1 − xK ≥ 1 − zvu − σ ,

we have the following lower bound on the LP-cost of K :

(1 − wK )(1 − xK ) + wK xK

≥ (1 − wK )(1 − zuv − σ) + wK (zuv − 1

k − 1
σ)

= (1 − wK )(1 − 2zuv − k − 2

k − 1
σ) + zuv − 1

k − 1
σ.

Now, summing over all K ∈ K(u)
v and using the inequality�

K∈K(u)
v

1
k−1

�
u�∈K\{u} zvu� ≤ ��K(u)

v

�� βα yields the following

lower bound on the total LP-cost of the k-tuples in K(u)
v :�

K∈K(u)
v

[(1 − wk)(1 − xK ) + wK xK ]

≥
�

K∈K(u)
v

[(1 − wK )(1 − 2zuv − k − 2

k − 1
σ) + zuv − βα]

≥
�

K∈K(u)
v

[(1 − wK )(1 − zuv − k − 2

k − 1
σ − βα)]

≥
�

K∈K(u)
v

[(1 − wK )[1 − (k − 1)α − βα]] .

Thus, charging each k-tuple in K(u)
v a factor of 1

1−(k−1)α−βα
times its LP-cost pays for the cluster-cost of all k-tuples
in K(u)

v .
Case 2.2: The cost of splitting k-tuples across clusters.

Again, we refer to such tuples as split tuples. Each split
tuple K incurs a cluster-cost of wK and an LP-cost of
xK wK + (1 − xK )(1 − wK ). First, suppose that K is a split
k-tuple with v ∈ K . Since K is split, there is u� ∈ K \N �

α(v)
and thus we have xK ≥ zvu� > α, so charging 1

α times the LP
cost pays for such K . We still must pay for the split tuples K
with v /∈ K .
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Let S� ⊆ S \N �
α(v) be such that |S�| ≤ k − 1. Furthermore,

let K(S �)
v denote the set of split tuples K such that v /∈ K and

K \ N �
α(v) = S�. According to the definition of S�, for any

split tuple K , there is a corresponding S�. We show that the
total cluster-cost of the tuples in K(S �)

v is at most a constant
time their total LP-cost.

Case 2.2.1: There exists a vertex u ∈ S� such that zvu ≥
(1 +β)α. In this case, for every K ∈ K(S �)

v , we can take some
arbitrary u� ∈ K ∩ Nα(v) and obtain

xK ≥ zvu − zvu� ≥ βα,

since u� ∈ Nα(v) implies zvu ≤ α. Thus, in this case, charging
1
αβ times the LP-cost of each tuple in K(S �)

v pays for the cluster-

cost of all tuples in K(S �)
v .

Case 2.2.2: For all u ∈ S�, zvu ≤ (1 + β)α. Consider
any K ∈ K(S �)

v . Let S̃ = K ∩ Nα(v), and σ
�
S � = �

u∈S � zvu,

σ
��
S̃

= �
u∈S̃ zvu . We have the following bounds:

1 − xK ≥ 1 −
�
u∈K

zvu = 1 − (
�
u∈S �

zvu +
�
u∈S̃

zvu)

= 1 − (σ
�
S � + σ

��
S̃
),

xK ≥ max
u,u�∈K

[zvu − zvu� ] ≥ max
u∈S �, u�∈S̃

[zvu − zvu� ]

≥ 1

|S�|σ
�
S � − 1���S̃���σ

��
S̃
.

Combining these bounds yields the following lower bound on
the LP-cost of K .

(1 − wK )(1 − xK ) + wK xK

≥ (1 − wK )(1 − σ
�
S � − σ

��
S̃
) + wK

⎛
⎝ σ

�
S �

|S�| − σ
��
S̃���S̃���
⎞
⎠ (13)

= wK

⎡
⎣��S���+ 1

|S�| σ
�
S � +

���S̃���− 1���S̃��� σ
��
S̃

− 1

⎤
⎦+ 1 − σ

�
S � − σ

��
S̃
.

The map K �→ (K ∩ Nα(v)) induces a bijection between
K(S �)

v and
�Nα(i)

k−|S �|
�
. By using zvu� ≤ αβ for u� ∈ K ∩ Nα(v),

we have �
K∈K(S�)

v

σ
��
S̃

=
�

K∈K(S�)
v

�
u�∈K∩Nα(v)

zvu� (14)

= k − |S�|
|Nα(v)|

� |Nα(v)|
(k − |S�|)

� �
u�∈Nα(v)

zvu�

≤
�

K∈K(S�)
v

αβ |K ∩ Nα(v)| .

Since α, β ≤ 1/k, we also have

1 − σ
�
K − αβ

���S̃��� ≥ 1 − ��S��� (1 + β)α −
���S̃��� βα

≥ 1 − (k − 1)(1 + β)α − βα ≥ 0. (15)

Therefore, summing inequality (13) over all K ∈ K(S �)
v gives

the following lower bound on the total LP-cost of all tuples

in K(S �)
v . Denote Q � |S �|+1

|S �| σ
�
S � +

���S̃
���−1���S̃
���

σ
��
S̃

− 1, and then

�
K∈K(S�)

v

[(1 − wK )(1 − xK ) + wK xK ]

≥
�

K∈K(S�)
v

�
wK Q + 1 − σ

�
S � − σ

��
S̃

�

≥
�

K∈K(S�)
v

�
wK Q + 1 − σ

�
S � − αβ|S̃|

�

≥
�

K∈K(S�)
v

wK

�
Q + 1 − σ

�
S � − αβ|S̃|

�

≥
�

K∈K(S�)
v

wK

⎡
⎣ 1

|S�|σ
�
S � +

���S̃��� − 1���S̃��� σ
��
S̃

− αβ|S̃|
⎤
⎦

≥
�

K∈K(S�)
v

wK [α + 0 − (k − 1)αβ],

where the second inequality is due to (14) and the third
inequality follows from (15) and wK ≤ 1.

Therefore, charging a factor of 1
α(1−(k−1)β) times the

LP-cost for each tuple in K(S �)
v pays for the cluster-cost of

all tuples in K(S �)
v .

In summary, if α, β ≤ 1/k, then charging each tuple a factor
of c times its LP cost, where

c = max

�
1

βα
,

1

1 − (k − 1)α
,

1

1 − (k − 1)α − βα
,

1

α[1 − (k − 1)β]
�

= 1

αβ
,

suffices to compensate for the cluster-cost of all tuples.
For the MMCC problem, the proof of Theorem III.2

(Appendix) may be generalized by independently handling
tuples of fixed sizes. However, to obtain a tighter approximate
constant then the one presented in Theorem III.4, we show
next how to modify the corresponding analysis for Case 2.2.2.

The analysis of Case 2.2.2 for mixed motifs proceeds as
follows. Define S∗ = {u ∈ S \ N �

α(v), zvu ≤ (1 + β)α} and
σ̄ = 1

|S∗|
�

u∈S∗ zvu ≤ (1 + β)α. For S� ⊆ S∗ of size |S�| ≤
k − 1, and for all u ∈ S�, it holds that zvu < (1 + β)α.

Let K(S �)
v be the set of all k-tuples K such that K \N �

α(v) =
S� and v /∈ K . We need to find a constant c such that�

u�∈Nα(v)

�
u∈S∗

wu�u + λ
�

S �⊆S∗

�
K∈K(S�)

v

wK

≤ c

⎧⎨
⎩

�
u�∈Nα(v)

�
u∈S∗

[wu�uzu�u + (1 − wu�u)(1 − zu�u)]

+λ
�

S �⊆S∗

�
K∈K(S�)

v

[wK xK + (1 − wK )(1 − xK )]

⎫⎪⎬
⎪⎭ .

Recall that S̃ = K \ S, and that σ
�
S � = �

u∈S � zvu and σ
��
S̃

=�
u�∈S̃ zvu� . Using the same method as the one outlined in
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the derivations of (13) and (14), and observing that σ
��
S̃

≥ 0,
we obtain�

S �⊆S∗

�
K∈K(S�)

v

[wK xK + (1 − wK )(1 − xK )] (16)

≥
�

S �⊆S∗

�
K∈K(S�)

v

 
wK

!��S���+ 1

|S�| σ
�
S � − 1

"

+1 − σ
�
S � − αβ|S̃|

#
(17)

≥
k−1�
t=1

�
S �⊆S∗,|S �|=t

$
(1 − σ

�
S � − αβ|S̃|)|K(S �)

v |

+
�

t + 1

t
σ

�
S � − 1

� �
K∈K(S�)

v

wK

⎤
⎥⎦ , (18)

where the sum of the coefficients in front of the term αβ equals
−�k−1

t=1 (k − t)
�|Nα(v)|

k−t

��|S∗|
t

�
.

Using the same approach as for the derivations when k = 2,
we have�

u∈S∗

�
u�∈Nα(v)

[wu�uzu�u + (1 − wu�u)(1 − zu�u)] (19)

≥
�
u∈S∗

[(1 − zvu − αβ)|Nα(v)|

+ (2zvu − 1)
�

u�∈Nα(v)

wuu�

⎤
⎦ , (20)

where the sum of the coefficients in front of the term αβ equals
− |Nα(v)| |S∗|.

Next, define two constants r and r � based on

r = (k − 2) |Nα(v)| |S∗|
|Nα(v)| |S∗| + λ

�k−1
t=1 (k − t)

�|Nα(v)|
k−t

��|S∗|
t

� ,

r � = (k − 2) − r,

so that they satisfy

|Nα(v)||S∗|r � = λ

k−1�
t=1

(k − t)

�|Nα(v)|
k − t

��|S∗|
t

�
r.

By choosing α ≤ 1
k and β ≤ 1

k−r , we can verify that, for
1 ≤ t ≤ k − 1, any S� ⊆ S∗, |S�| = t , and u ∈ S∗,

1 − σ
�
S � − (k − t − r)αβ

≥ 1 − tα(1 + β) − (k − t − r)αβ (21)

≥ 1 − (k − 1)α(1 + β) − (1 − r)αβ ≥ 0, (22)

1 − zvu − (1 + r �)αβ (23)

≥ 1 − α(1 + β) − (k − 1 − r)αβ ≥ 0. (24)

Combining inequalities (16) and (19) and inserting r and r �
into the expressions, we obtain�

u∈S∗

�
u�∈Nα(v)

[wu�uzu�u + (1 − wu�u)(1 − zu�u)]

+ λ
�

S �⊆S∗

�
K∈K(S�)

v

[wK xK + (1 − wK )(1 − xK )]

≥
�
u∈S∗

�
(1 − zvu − (1 + r �)αβ)|Nα(v)|

+ (2zvu − 1)
�

u�∈Nα(v)

wuu�

⎤
⎦

+ λ

k−1�
t=1

�
S �⊆S∗,|S �|=t

$
(1 − σ

�
S � − (k − t − r)αβ)|K(S �)

v |

+
�

t + 1

t
σ

�
S � − 1

� �
K∈K(S�)

v

wK

⎤
⎥⎦

≥
�
u∈S∗

⎧⎨
⎩�

zvu − (1 + r �)αβ
� �

u�∈Nα(v)

wuu�

⎫⎬
⎭

+ λ

k−1�
t=1

�
S �⊆S∗,|S �|=t

⎧⎪⎨
⎪⎩
�

1

t
σ

�
S � − (k − t − r)αβ

	 �
K∈K(S�)

v

wK

⎫⎪⎬
⎪⎭

≥ α� �
u�∈Nα(v)

�
u∈S∗

wu�u + λ
�

S �⊆S∗

�
K∈K(S�)

v

wK ,

where the second inequality is due to inequalities (22) and
(24), and wuu�, wK ≤ 1 and α� � min{α − (1 + r �)αβ,
α − (k − 1 − r)αβ}

Therefore, charging a factor of min{α−(1+r �)αβ, α−(k −
1 − r)αβ} = α − (k − 1 − r)αβ times the LP-cost for all pairs
(u, u�) such that u� ∈ Nα(v) and u ∈ S∗, and for all k-tuples
K such that K \ Nα(v) ⊆ S∗ compensates for splitting all
such pairs and k-tuples during clustering.

Combining all cases described in Table (III) shows that if
α ≤ 1/k, β ≤ 1/(k − r), then charging each pair and k-tuple
a factor of c times its LP cost, where

c = max{ 1

βα
,

1

1 − (k − 1)α
,

1

1 − (k − 1)α − βα
,

1

α[1 − (k − 1 − r)β] } = 1

αβ
≥ k(k − r),

suffices to compensate for the cluster-cost of all pairs and
tuples.

Note that, however, r depends on |S∗| and Nα(v) and these
values are not known a priori and they may change over
different iterations. Hence, we need to find a universal lower
bound for r . Since |S∗| + |Nα(v)| ≤ n, a simple bound of the
form may be obtained according to

r ≥ (k − 2) |Nα(v)|
|Nα(v)| + λ

�k−1
t=1 |Nα(v)| �|Nα(v)|−1

k−t−1

��|S∗|
t

�
≥ k − 2

1 + λnk−1 = r0.

Therefore, if α ≤ 1/k, β ≤ 1/(k − r0), one can achieve the
constant approximation factor c = 1/αβ.

First, there are
�n

i

�
ways to choose K1 ∪ K2 with size i

for k + 1 ≤ i ≤ 2k − 1. Then, for the set K1 ∪ K2, there
are

�i
k

�
ways to choose K1. Given K1 ∪ K2 and K1, there are� k

2k−i

�
ways to choose K2. Since K1 and K2 are symmetric,

the obtained count should be divided by 2. Then, there are�i
k

� − 2 ways to choose K3 from K1 ∪ K2 while we keep
K3 �= K1 and K3 �= K2. Therefore, we obtain the value of
|ϒ| given in Equation (3).
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