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Abstract

The problem of exact-repair regenerating codes against eavesdropping attack is studied. The eavesdropping

model we consider is that the eavesdropper has the capability to observe the data involved in the repair of a subset

of ` nodes. An (n, k, d, `) secure exact-repair regenerating code is an (n, k, d) exact-repair regenerating code that

is secure under this eavesdropping model. It has been shown that for some parameters (n, k, d, `), the associated

optimal storage-bandwidth tradeoff curve, which has one corner point, can be determined. The focus of this paper

is on characterizing such parameters. We establish a lower bound ˆ̀ on the number of wiretap nodes, and show that

this bound is tight for the case k = d = n− 1.

Keywords: Secure exact-repair regenerating codes, distributed storage systems, information-theoretic

security.

I. INTRODUCTION

Distributed storage systems (DSSs) have been widely researched because of the rapid growth in

applications such as data center and cloud network. For data reliability, some redundancy must be added to

the system. In the pioneering study [1], Dimakis et al. introduced a new class of codes called regenerating

codes, which substantially reduce the amount of data that need to be downloaded during the repair process.

In [1], a fundamental tradeoff between the amount of data stored in each node and the repair bandwidth

was shown under the notion of functional repair, where the new replacement nodes only maintain the

reconstruction property, that is, any k out of n nodes can reconstruct the file but do not maintain an

exact copy of the failed node. On the other hand, under the notion of exact repair introduced in [2],

the replacement node is required to recover exactly the same content that was stored in the failed node.

However, a full characterization of the storage-bandwidth tradeoff curve of exact-repair regenerating codes
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appears to be more difficult and still remains open, and many attempts have been made along this line

[3], [4], [5], [6], [7], [8], [9], [10].

In this paper, we consider the problem of exact-repair regenerating codes with an additional security

requirement. Information-theoretically secure regenerating codes were first introduced by Pawar et al.

[11], in which they provided an upper bound on the maximum amount of information that can be securely

stored in a system. Secure exact-repair regenerating codes at two extreme points, namely, the minimum

bandwidth regenerating (MBR) and minimum storage regenerating (MSR) points, have been intensively

studied in [11], [12], [13], [14]. On the other hand, the optimal storage-bandwidth tradeoff curve under

secure repair constraint has been studied in [15], [16], [17], [18], [19]. In particular, the results in [17],

[18] showed that the MBR point is the only corner point of the optimal storage-bandwidth tradeoff curve

(or simply tradeoff curve) for some (n, k, d, `), which contrasts sharply with the problem without the

security constraint. Owing to a structural property of the tradeoff curve, if it has a single corner point,

then it is completely characterized by that single point. Thus for the aforementioned cases investigated in

[17], [18], the tradeoff curve is completely characterized by the MBR point. Subsequently, Shao et al. [19]

found the first case where the optimal storage-bandwidth tradeoff curve has multiple corner points, and

obtained a sufficient condition on the number of wiretap nodes where the rate region can be determined

by a single corner point. In this paper, we establish a lower bound ˆ̀ on the number of wiretap nodes,

such that the optimal storage-bandwidth tradeoff curve has a single corner point if ` ≥ ˆ̀. In particular,

the lower bound for the case k = d = n − 1 is tight, which means that the optimal storage-bandwidth

tradeoff curve has a single corner point if and only if ` ≥ ˆ̀.

The remaining of this paper is organized as follows. In Section II, we describe the formulation of the

problem. We give a threshold ˆ̀ for the number of wiretap nodes for the case k = d in Section III, and

results for k < d are stated in Section IV. We conclude the paper in Section V.

II. PROBLEM STATEMENT AND NOTATIONS

Following the setting in [1], we assume that there is a secure distributed storage system consisting of n

active storage nodes N := {1, 2, . . . , n} for storing a file F of Bs message symbols, and each node can

store α symbols. When a node fails, a new replacement node with the same storage capacity α connects

to any d (≥ k) nodes chosen from the remaining n− 1 nodes arbitrarily and downloads β symbols from

each of them to regenerate the failed node. Moreover, any legitimate data collector can reconstruct the

original file by connecting to any k of the n active nodes. We assume that there exists an eavesdropper

Eve who is able to observe the repair data for a subset of nodes with cardinality ` (< k). It not only can

observe the information stored in node i but also all the data transmitted from the other d helper nodes

to repair the node i when it fails.
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Let M be the uniformly distributed random variable representing the file to be stored in the system.

The support set of M is denoted byM, and Bs is used to denote the entropy of the message variable, i.e.,

Bs = H(M). Let Z be a random variable independent on the message variable M , called the key, that

takes value in an alphabet Z according to the uniform distribution. As illustrated in Fig. 1, we assume
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Fig. 1. System Model

that the message and key are generated at an auxiliary source node and are directly available to all storage

nodes in the system. For i ∈ N , let Wi denote the data stored in the i-th node. Sji (D) denotes the variable

transmitted from node i for repairing the node j for a given set of helper nodes D ⊂ N , where |D| = d

and i ∈ D. Sii(D) is defined as a constant for any possible D. Denote W := {Wi : i ∈ N} and S :=

{Sji (D) : j ∈ N ,D ⊆ N\{j}, |D| = d, i ∈ D}. Each node has identical storage capacity α and limited

transmission β in repairing any single failure. Thus, assume without loss of generality that each Wi takes

value in a common alphabet W and each Sji (D) takes value in a common alphabet S, where α = log |W|
and β = log |S|. For any set of wiretap nodes L ⊂ N such that |L| = `, the information wiretapped by

Eve is denoted by YL, where YL is defined as YL := {Sji (D) : j ∈ L,D ⊆ N\{j}, |D| = d, i ∈ D}. For

any integer i ≤ j ≤ n, denote [i] := {1, . . . , i}, and [i : j] := {i, . . . , j}.
Next, we formally define a secure distributed storage system based on an exact-repair regenerating code

formally. In the rest of the paper, when we refer to a secure distributed storage system, we always assume

that it is based on an exact-repair regenerating code.

Definition 1. An (n, k, d, `) secure distributed storage system (SDSS) based on an exact-repair regenerating

code consists of a set of encoding functions and decoding functions (F,G,Φ,Ψ), which can be described

as follows.

• Message encoding functions: F = {fi : i ∈ N} is a collection of message encoding functions, where
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fi maps the message and key to the information stored in the i-th node,

fi :M×Z →W .

• Message decoding functions: G = {gK : K ⊂ N , |K| = k} consists of
(
n
k

)
message decoding

functions, where

gK :WK →M.

It maps the coded information stored in node i, i ∈ K.

• Repair encoding functions: Φ = {φi,j,D : j ∈ N , i ∈ D,D ⊆ N\{j}, |D| = d} consists of nd
(
n−1
d

)
repair encoding functions, where

φi,j,D :W → S

maps the coded information in node i to the information transmitted for repairing node j for a given

choice of helper nodes set D.

• Repair decoding functions: Ψ = {ψj,D : j ∈ N ,D ⊆ N\{j}, |D| = d} consists of n
(
n−1
d

)
repair

decoding functions, where

ψj,D : SD →W

maps the information from a set D of help nodes to the information stored in the failed node.

An (n, k, d, `) secure distributed storage system is required to satisfy the following criteria:

• (Reconstruction property) the file can be retrieved from the contents stored in any k out of n storage

nodes:

H(M |WK) = 0,∀K ⊆ N , |K| = k, (1)

where WK is defined as WK := {Wi : i ∈ K}.
• (Regeneration property) any d out of n− 1 nodes can repair the failed j-th node:

H
(
Wj|Sj(D)

)
= 0,∀D ⊆ N\{j}, j ∈ N , (2)

where Sj(D) := {Sji (D) : i ∈ D}.
• (Security condition)

H(M |YL) = H(M),∀L ⊆ N . (3)

Any collection of encoding and decoding functions (F,G,Φ,Ψ) satisfying all these three criteria will

naturally induce a secure exact-repair regenerating code associated with the triple (Bs, α, β). We can

always assume that Bs > 0 because otherwise the code can not be used for storing any information.

Under this assumption, we can define the normalized pair (ᾱ, β̄) by

ᾱ :=
α

Bs

and β̄ :=
β

Bs

.



5

A normalized pair (ᾱ, β̄) is also called an operating point. We may use “the pair” or “the point”

interchangeably in the following sections. With the normalized pair (ᾱ, β̄), we introduce the following

definition.

Definition 2. A normalized pair (ᾱ, β̄) is achievable if there exists a secure exact-repair regenerating

code that achieves (ᾱ, β̄). The collection of all achievable pairs (ᾱ, β̄) is referred to as the zero-error

achievable region Rn,k,d,`.

It follows directly from the definition that if the pair (ᾱ, β̄) is achievable, then any pair (ᾱ+ δ1, β̄+ δ2)

is also achievable, where δ1, δ2 ≥ 0. Thus, the achievable region can be fully characterized if and only

if the boundary is known. To be consistent with the terminology in the literature, we call the collection

of points on the boundary the storage-bandwidth tradeoff curve. For a given (n, k, d, `) secure distributed

storage system, its secrecy capacity is defined as the maximum file size Cs(α, β) that can be stored in

the system such that (α/Bs, β/Bs) is achievable, i.e.,

Cs(α, β) := sup {Bs : (α/Bs, β/Bs) ∈ Rn,k,d,`} . (4)

Clearly, determining the secrecy capacity for any given α and β is equivalent to characterizing the storage-

bandwidth tradeoff curve.

In [12], the following point is proved to be achievable for any (n, k, d, `)-SDSS:(
d

Γk,d,`
,

1

Γk,d,`

)
∈ Rn,k,d,`, (5)

where Γk,d,` :=
∑k−1

i=` (d− i). For notational simplicity, denote

(α̂, β̂) :=

(
d

Γk,d,`
,

1

Γk,d,`

)
. (6)

An interesting finding in [17] and [18] is that for some cases, the storage-bandwidth tradeoff curve

under the security condition is completely characterized by the single corner point specified in (6), i.e.,

the achievable rate region is given exactly by

Rn,k,d,` =
{

(ᾱ, β̄) : ᾱ ≥ α̂, β̄ ≥ β̂
}
. (7)

Remark. We will prove in Appendix A that the point as defined in (6) must be on the optimal tradeoff

curve. Therefore, if the optimal tradeoff curve has only one corner point, then it must be (α̂, β̂).

Subsequently in [19], the first case that the storage-bandwidth tradeoff curve has multiple corner points

was found, and a sufficient condition for the number of wiretap nodes was given for the storage-bandwidth

tradeoff curve of an SDSS to have a single corner point. In this paper, we will focus on finding parameters

(n, k, d, `) such that the tradeoff curve has this behavior.
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In the remaining of this paper, we only consider the case that d = n− 1. Since any (n′ > d+ 1, k, d, `)

system has an (n = d + 1, k, d, `) sub-system. If the sub-system satisfies that ᾱ ≥ α̂, β̄ ≥ β̂, then the

(n′ > d + 1, k, d, `)-SDSS must satisfy the same constraints. Moreover, (α̂, β̂) is also achievable for

(n′ > d+ 1, k, d, `), and hence if the tradeoff curve for (n = d+ 1, k, d, `) has a single corner point, then

the tradeoff curve for (n′ > d + 1, k, d, `) must also have this behavior. Therefore, all results obtained

under the setting d = n − 1 in this paper also hold for n′ > d + 1. Under this setting, we can largely

simplify our aforementioned notations. When repairing the failed node, all the remaining nodes are helper

nodes. Therefore we can drop D in the notations Sji (D) and Sj(D). Specifically, we will write Sji (D) as

Sji and write Sj(D) as Sj because D = N\{j} is implicit. Denote SL := {Sj : j ∈ L}, and obviously

SL is identical to YL. Then, the regeneration property can be written as

H
(
Wj|Sj

)
= 0,∀j ∈ N . (8)

Similarly, we can rewrite the security condition as

H(M |SL) = H(M),∀L ⊆ N . (9)

We follow the discussion for symmetrical regenerating codes in [3]. A code is said to be a entropy-

symmetrical regenerating code (or simply symmetrical regenerating code) if for any XA ⊆ W ∪S and

any permutation π on N , we have H(XA) = H (π(XA)), where

π(XA) := {π(Xi) : i ∈ A},

and

π(Xi) :=

Wπ(i), if Xi = Wi,

S
π(j)
π(i) , if Xi = Sji .

It has been shown in [18] that assuming that the secure exact-repair regenerating code is symmetrical does

not incur any loss of generality when we consider Rn,k,d,`. Therefore, we may invoke this symmetrical

assumption in our argument without explicitly mentioning it. Under this setting, we can let H(Wi) = α

and H(Sji ) = β. For notational simplicity, let us define

P :=
{

(k, d, `) : Rn=d+1,k,d,` =
{

(ᾱ, β̄) : ᾱ ≥ α̂, β̄ ≥ β̂
}}

. (10)

Remark. Since (k, d, ` = 0) /∈ P for k ≥ 2 and (k = 1, d, ` = 0) ∈ P (which can be seen by considering

the repetition code), we assume that ` ≥ 1 in this paper.
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Now, consider any subset T of W ∪S such that H(WK|T ) = 0. Then by the reconstruction property

(1) and security constraint (9), we can obtain an upper bound on Bs as follows:

Bs = H(M)

= H(M |SL)−H(M |T , SL)

= I(M ; T |SL)

≤ H(T |SL). (11)

By letting T =
{
Sji : j < i ≤ n, 1 ≤ j ≤ k

}
and L = {1, . . . , `}, we can obtain the upper bound in [11]:

Bs ≤
k−1∑
i=`

(d− i)β, (12)

which can also be written as β̄ ≥ β̂.

Since β̄ ≥ β̂ and (α̂, β̂) ∈ Rn,k,d,` for any (n, k, d, `)-SDSS, the triple (k, d, `) ∈ P if and only if

ᾱ ≥ α̂, or equivalently

Bs ≤
Γk,d,`
d

α. (13)

Therefore, we only need to prove that Bs ≤ Γk,d,`

d
α to conclude that (k, d, `) ∈ P .

III. THRESHOLD FOR k = d

We will establish in the next theorem a threshold ˆ̀ for the number of wiretap nodes for those systems

whose optimal tradeoff curve has a single corner.

Theorem 1. For any fixed d, the triple (k = d, d, `) ∈ P if and only if ` ≥ ˆ̀ := d1
4
(d− 1)e.

Remark. It was shown in [19] that if ` ≥ `? := d(
√
d − 1)2e, then (k = d, d, `) ∈ P . When d is large,

ˆ̀≈ `?/4. Thus our bound not only is a significant improvement over the previous bound but also tight.

In the remaining of this section, we will prove Theorem 1. We will invoke the setting k = d = n− 1

from time to time without explicitly mentioning it. Before presenting the details, we outline the proof

here.

In Subsection III-A, we will show that if ` < ˆ̀, then there exists one achievable point (ᾱ, β̄) such that

ᾱ < α̂, which implies that (k, d, `) /∈ P . The proof of the achievability of this point is largely borrowed

from a code construction in [9].

To prove that (k, d, `) ∈ P for ` ≥ ˆ̀, we only need to show (13) for ` ≥ ˆ̀. By letting T = W[k] and

L = {1, . . . , `} in (11), we see that the secrecy capacity Bs is upper bounded by

Bs ≤ H
(
W[k]|S[`]

)
= H

(
W[`+1:k]|S[`]

)
. (14)
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Thus, it is sufficient for us to prove that

H
(
W[`+1:k]|S[`]

)
≤ Γk,d,`

d
α,

for ` ≥ ˆ̀. This will be proved by induction on ` in Subsection III-B.

A. ` < ˆ̀ implies that (k, d, `) /∈ P

We first roughly review the code construction for (n, k, d, ` = 0) exact-repair regenerating codes with

k = d = n − 1 in [9], where the code construction is based on duplicated combination block design.

Considering a block design over the domain (node index) N = {1, . . . , n}, the design there can be viewed

as an exhaustive list of all r-combinations (n ≥ r) of N . Each block forms a (r, r− 1) erasure code, and

symbols in different blocks are independent.

In particular, we consider block size r = 3 in this subsection. We have a design C(r, n) = {B1, . . . , Bm},
where each block Bi is a unique 3-subset of N and m =

(
n
3

)
. For each 3-subset Bi = {bi1 , bi2 , bi3}, let

Xi and Yi be independent random variables uniformly on a sufficient large field F, and we consider a

corresponding vector for each Bi such that bi = (bi1 , bi2 , bi3) where 1 ≤ bi1 < bi2 < bi3 ≤ n. Then, the

encoding is as the following:

• Xi is stored in node bi1;

• Yi is stored in node bi2 ;

• Xi + Yi is stored in node bi3 .

Let Xi and Xj (Yi and Yj) be independent random variables for i 6= j. We can see that in this

construction,

α =

(
n− 1

2

)
, β = n− 2, Bs = 2

(
n

3

)
,

and hence (
ᾱ, β̄

)
=

((
n−1

2

)
2
(
n
3

) , n− 2

2
(
n
3

) ) ∈ Rd+1,d,d,0.

See more details in [9].

Therefore, following the same argument in [20], we know that there exists an (n, k = n−1, d = n−1, `)

secure exact-repair regenerating code with α =
(
n−1

2

)
, β = n − 2 and Bs = 2

(
n−`

3

)
if the field size is

large enough, and so (
ᾱ, β̄

)
=

( (
n−1

2

)
2
(
n−`

3

) , n− 2

2
(
n−`

3

)) ∈ Rd+1,d,d,`.

If an integer ` satisfying that ` < ˆ̀=
⌈

1
4
(d− 1)

⌉
, we have ` < 1

4
(d− 1) = 1

4
(n− 2). As such, we have

ᾱ− α̂ =

(
n−1

2

)
2
(
n−`

3

) − n− 1(
n−`

2

) =
(4`+ 2− n)(n− 1)

2(n− `)(n− `− 1)(n− `− 2)
< 0.
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Therefore, we know that if ` < ˆ̀, there exists one achievable point
(
ᾱ, β̄

)
such that ᾱ − α̂ < 0, which

substantiates that if ` < ˆ̀ then (k, d, `) /∈ P .

B. ` ≥ ˆ̀ implies that (k, d, `) ∈ P

In this subsection, we will show that

H
(
W[`+1:k]|S[`]

)
≤ Γk,d,`

d
α,

for ` ≥ ˆ̀ by induction. For any subset A ⊆ N , denote SAi := {Sji : j ∈ A}, SiA := {Sij : j ∈ A} and

SA := {Sji : i, j ∈ A, i > j}.

Proposition 1. For k = d, if T ⊆ W ∪S satisfies H
(
W[k]|T

)
= 0, then

H (T ) = H
(
W[k]

)
. (15)

Proof. Since k = d, W[k] can determine any subsets of W ∪ S , and so H
(
W[k]

)
≥ H (T ). From

H
(
W[k]|T

)
= 0, we have H

(
W[k]

)
≤ H (T ), and hence H (T ) = H

(
W[k]

)
.

The following lemma gives a class of upper bounds on H
(
W[`+1:k]|S[`]

)
.

Lemma 1. For any (n = d+ 1, k = d, d, `) secure exact-repair regenerating codes, we have

H
(
W[`+1:k]|S[`]

)
≤ d+ 1− t

3
α− d+ 1− t

3
H
(
S[t]
n

)
+
d+ 1− t

6
H
(
St+1|S[t]

)
−
∑̀
i=t+1

H
(
Si|S[i−1]

)
, (16)

for any t = 0, . . . , `− 1.

Proof. See Appendix B.

Since ` ≥ 1, there always exists an upper bound on H
(
W[`+1:k]|S[`]

)
for t = 0. When t = 0, S[t]

n is

regarded as a constant. For notational simplicity, denote the right-hand side of (16) by f(d, `, t), where

t = 0, . . . , `− 1. Then the following proposition is immediate.

Proposition 2. For any (n = d+ 1, k = d, d, `) secure exact-repair regenerating codes,

H
(
W[`+1:k]|S[`]

)
≤

`−1∑
t=0

µt f(d, `, t), (17)

for any µ = (µ0, . . . , µ`−1) such that
`−1∑
t=0

µt = 1,

and

µt ≥ 0, t = 0, . . . , `− 1.
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With these preparations, we start to prove that

H
(
W[`+1:k]|S[`]

)
≤ Γk,d,`

d
α (18)

for ` ≥ ˆ̀ by induction on `.

First, for the base case ` = ˆ̀, (18) becomes

H
(
W[ˆ̀+1:k]|S[ˆ̀]

)
≤

Γk,d,ˆ̀

d
α. (19)

From Proposition 2, we know that

H
(
W[ˆ̀+1:k]|S[ˆ̀]

)
≤

ˆ̀−1∑
t=0

µt f(d, ˆ̀, t),

for any µ satisfying
ˆ̀−1∑
t=0

µt = 1, (20)

and

µt ≥ 0, t = 0, . . . , ˆ̀− 1. (21)

In particular, we can let

µt =


1
2

(
n−ˆ̀

2

)
n−2ˆ̀−1+t

(n−t
4 )

, 1 ≤ t ≤ ˆ̀− 3,

6(n−ˆ̀−3)

(n−ˆ̀+1)(n−ˆ̀+2)
, t = ˆ̀− 2, ˆ̀≥ 3,

6

n−ˆ̀+1
, t = ˆ̀− 1, ˆ̀≥ 2,

(22)

and

µ0 = 1−
ˆ̀−1∑
j=1

µj. (23)

For this choice of µ, (20) is obvious satisfied, and we only need to verify that (21) is also satisfied.

Proposition 3. µ = (µ0, . . . , µˆ̀−1) as defined in (22) and (23) satisfies

µt ≥ 0, t = 0, . . . , ˆ̀− 1.

Proof. See Appendix C-A.

It remains to show that
ˆ̀−1∑
t=0

µtf(d, ˆ̀, t) ≤
Γk,d,ˆ̀

d
α.
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Towards this end, consider
ˆ̀−1∑
t=0

µtf(d, ˆ̀, t) =

ˆ̀−1∑
t=0

µt

d+ 1− t
3

α− d+ 1− t
3

H
(
S[t]
n

)
+
d+ 1− t

6
H
(
St+1|S[t]

)
−

ˆ̀∑
i=t+1

H
(
Si|S[i−1]

)
=

 ˆ̀−1∑
t=0

d+ 1− t
3

µt

α−
ˆ̀−1∑
t=0

d+ 1− t
3

µtH
(
S[t]
n

)
+

ˆ̀−1∑
t=0

d+ 1− t
6

µtH
(
St+1|S[t]

)
−

ˆ̀−1∑
t=0

ˆ̀∑
i=t+1

µtH
(
Si|S[i−1]

)
=

 ˆ̀−1∑
t=0

d+ 1− t
3

µt

α−
ˆ̀−1∑
t=0

d+ 1− t
3

µtH
(
S[t]
n

)
+

ˆ̀−1∑
t=0

d+ 1− t
6

µtH
(
St+1|S[t]

)
−

ˆ̀∑
i=1

(
i−1∑
t=0

µt

)
H
(
Si|S[i−1]

)
=

 ˆ̀−1∑
t=0

d+ 1− t
3

µt

α−
ˆ̀−1∑
t=0

d+ 1− t
3

µtH
(
S[t]
n

)
+

ˆ̀−1∑
t=0

d+ 1− t
6

µtH
(
St+1|S[t]

)
−

ˆ̀−1∑
t=0

(
t∑

j=0

µj

)
H
(
St+1|S[t]

)
,

where in the last step we replace i by t+ 1 and t by j.

By letting

bt =
n− t

3
µt,

and

ct =
n− t

6
µt −

t∑
j=0

µj,

we obtain
ˆ̀−1∑
t=0

µtf(d, ˆ̀, t) ≤

 ˆ̀−1∑
t=0

bt

α−
ˆ̀−1∑
t=0

btH
(
S[t]
n

)
+

ˆ̀−1∑
t=0

ctH
(
St+1|S[t]

)
. (24)

We separately discuss the case ˆ̀= 1 here. When ˆ̀= 1, clearly we have µ0 = 1, and then (24) becomes

f(d, ˆ̀, t = 0) ≤ b0α + c0H
(
S1
)

=
n

3
α +

(
n− 6

6

)
H
(
S1
)
.

Since ˆ̀=
⌈

1
4
(d− 1)

⌉
=
⌈

1
4
(n− 2)

⌉
= 1, we know that n ≤ 6, and then we have

f(d, ˆ̀, t = 0)
(a)
≤ n

3
α +

(
n− 6

6

)
α =

1

2
(n− 2)α =

Γd,d,1
d

α,

where (a) follows because H(S1) ≥ H(W1) = α. We have completed the proof for ˆ̀= 1.
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For ˆ̀≥ 2, (24) can be written as
ˆ̀−1∑
t=0

µtf(d, ˆ̀, t) ≤

 ˆ̀−1∑
t=0

bt

α−
ˆ̀−1∑
t=0

btH
(
S[t]
n

)
+

ˆ̀−1∑
t=0

ctH
(
St+1|S[t]

)

=

 ˆ̀−1∑
t=0

bt

α− b1β −
ˆ̀−1∑
t=2

btH
(
S[t]
n

)
+ c0H

(
S1
)

+

ˆ̀−1∑
t=1

ctH
(
St+1|S[t]

)
. (25)

Proposition 4. For ˆ̀≥ 2, ct ≥ 0 for t = 0, . . . , ˆ̀− 1, and cˆ̀−1 = 0.

Proof. See Appendix C-B.

Since

H
(
St+1|S[t]

)
= H

(
St+1

[t]∪[t+2:n]|S[t]
)

= H
(
St+1

[t+2:n]|S[t]
)

=
n∑

j=t+2

H
(
St+1
j |S[t], St+1

[t+2:j−1]

)
≤

n∑
j=t+2

H
(
St+1
j |S[t]

j

)
(a)
=(d− t)H

(
St+1
n |S[t]

n

)
, (26)

where (a) follows from the symmetry, we can further bound (25) as follows:
ˆ̀−1∑
t=0

µtf(d, ˆ̀, t) ≤

 ˆ̀−1∑
t=0

bt

α− b1β −
ˆ̀−1∑
t=2

btH
(
S[t]
n

)
+ c0H

(
S1
)

+

ˆ̀−1∑
t=1

ctH
(
St+1|S[t]

)

≤

 ˆ̀−1∑
t=0

bt

α− b1β −
ˆ̀−1∑
t=2

btH
(
S[t]
n

)
+ c0H

(
S1
)

+

ˆ̀−1∑
t=1

ct(d− t)H
(
St+1
n |S[t]

n

)

=

α ˆ̀−1∑
t=0

bt − b1β + c0H
(
S1
)− ˆ̀−1∑

t=2

btH
(
S[t]
n

)
+

ˆ̀−1∑
t=1

ct(d− t)
(
H
(
S[t+1]
n

)
−H

(
S[t]
n

))

=

α ˆ̀−1∑
t=0

bt − b1β + c0H
(
S1
)− ˆ̀−1∑

t=2

btH
(
S[t]
n

)
+

ˆ̀∑
t=2

ct−1(d− t+ 1)H
(
S[t]
n

)
−

ˆ̀−1∑
t=1

ct(d− t)H
(
S[t]
n

)
(a)
=

α ˆ̀−1∑
t=0

bt − b1β + c0H
(
S1
)
− c1(d− 1)β

+

ˆ̀−1∑
t=2

(ct−1(d− t+ 1)− ct(d− t)− bt)H
(
S[t]
n

)
(b)
≤

α ˆ̀−1∑
t=0

bt − b1β + c0dβ − c1(d− 1)β

+

ˆ̀−1∑
t=2

(ct−1(d− t+ 1)− ct(d− t)− bt)H
(
S[t]
n

)
,
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where (a) follows from cˆ̀−1 = 0, and (b) follows because c0 ≥ 0 and H (S1) ≤ dβ. By letting

T1 =

ˆ̀−1∑
t=0

bt,

T2 = b1 − c0d+ c1(d− 1),

and

λt = ct−1(d+ 1− t)− ct(d− t)− bt, t = 2, . . . , ˆ̀− 1,

we have
ˆ̀−1∑
t=0

µtf(d, ˆ̀, t) ≤ T1α− T2β −
ˆ̀−1∑
t=2

λtH(S[t]
n ).

Proposition 5. For ˆ̀≥ 3, λt = 0 for t = 2, . . . , ˆ̀− 1.

Proof. See Appendix C-C.

From Proposition 5, we obtain
ˆ̀−1∑
t=0

µtf(d, ˆ̀, t) ≤ T1α− T2β.

Proposition 6. T2 ≥ 0, T1 − T2
d

=
Γk,d,ˆ̀

d
.

Proof. See Appendix C-D.

Finally, we can substantiate that
ˆ̀−1∑
t=0

µtf(d, ˆ̀, t) ≤ T1α− T2β
(a)
≤T1α−

T2

d
α ≤

Γk,d,ˆ̀

d
α,

where (a) follows from dβ ≥ α. Therefore, the base case holds, that is,

H
(
W[ˆ̀+1:k]|S[ˆ̀]

)
≤

Γk,d,ˆ̀

d
α.

Now, we start the inductive step to show that for any ` ≥ ˆ̀+ 1, if H
(
W[`:k]|S[`−1]

)
≤ Γk,d,`−1

d
α, then

H
(
W[`+1:k]|S[`]

)
≤ Γk,d,`

d
α.

First, assume that

H
(
W[`:k]|S[`−1]

)
≤ Γk,d,`−1

d
α, (27)

for some ` ≥ ˆ̀+ 1.
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Then, consider

H
(
W[`+1:k]|S[`]

)
= H

(
W[`+1:k], S

[`]
)
−H

(
S[`]
)

(a)
=H

(
W[`:k], S

[`−1]
)
−H

(
S[`−1]

)
−H

(
S`|S[`−1]

)
= H

(
W[`:k]|S[`−1]

)
−H

(
S`|S[`−1]

)
(b)
≤ Γk,d,`−1

d
α−H

(
S`|S[`−1]

)
, (28)

where (a) follows from Proposition 1, and (b) follows from (27). Also, we have

H
(
W[`+1:k]|S[`]

)
≤ H

(
S[`+1:k]|S[`]

)
=

k∑
i=`+1

H(Si|S[i−1])

(a)
≤

k∑
i=`+1

(n− i)H(Sin|S[i−1]
n )

= (n− k)H(S[k]
n ) +

(
k−1∑
i=`+1

H(S[i]
n )

)
− (n− `− 1)H(S[`]

n )

=

(
k∑

i=`+1

H(S[i]
n )

)
− (n− `− 1)H(S[`]

n ), (29)

where (a) follows from (26). Moreover, the following lemma gives another upper bound on H
(
W[`+1:k]|S[`]

)
.

Lemma 2. For any (n = d+ 1, k = d, d, `) secure exact-repair regenerating codes, we have

H(W[`+1:k]|S[`]) ≤ 1

2
(k − `+ 1)α− 1

2

k−1∑
i=`−1

H(S[i]
n ) +

1

4
(k − `− 2)H(S`|S[`−1]). (30)

Proof. The lemma can be proved by modifying the proof of Lemma 1. See details in Appendix D.

We now have three upper bounds on H(W[`+1:k]|S[`]). Similar to what we did in the previous subsection,

we will take a particular convex combination of (28), (29) and (30) to obtain the desired upper bound on

H
(
W[`+1:k]|S[`]

)
. Denote the coefficients associated with (28), (29) and (30) by v1, v2 and v3.

If ` = k − 1, from (29), we obtain

H
(
Wk|S[k−1]

)
≤ H(Skn|S[k−1]

n ) ≤ 1

k
H(S[k]

n ) ≤ 1

k
α =

Γd,d,d−1

d
α.

Hence, by letting v2 = 1 and v1 = v3 = 0, we obtain that

H
(
W[`+1:k]|S[`]

)
≤ Γk,d,`

d
α,

for ` = k − 1.

For ` ≤ k − 2, let

v1 =
(k − `− 2)(n− `− 1)

4(n− 1) + (n− `+ 1)(k − `− 2)
,
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v2 =
2(k + `− 2)

4(n− 1) + (n− `+ 1)(k − `− 2)
,

and

v3 =
4(n− `− 1)

4(n− 1) + (n− `+ 1)(k − `− 2)
.

Clearly, v1, v2, v3 ≥ 0 for ` ≤ k − 2. Also, we have

v1 + v2 + v3 =
(k − `− 2)(n− `− 1) + 2(k + `− 2) + 4(n− `− 1)

4(n− 1) + (n− `+ 1)(k − `− 2)
= 1.

Therefore, H
(
W[`+1:k]|S[`]

)
is upper-bounded by v1(28) + v2(29) + v3(30) as follows:

H
(
W[`+1:k]|S[`]

)
≤ v1

(
Γk,d,`−1

d
α−H

(
S`|S[`−1]

))
+ v2

((
k∑

i=`+1

H(S[i]
n )

)
− (n− `− 1)H(S[`]

n )

)

+ v3

(
1

2
(k − `+ 1)α− 1

2

k−1∑
i=`−1

H(S[i]
n ) +

1

4
(k − `− 2)H(S`|S[`−1])

)

=

(
v1

Γk,d,`−1

d
+
v3

2
(k − `+ 1)

)
α +

(v3

4
(k − 2− `)− v1

)
H
(
S`|S[`−1]

)
+ v2

((
k∑

i=`+1

H(S[i]
n )

)
− (n− `− 1)H(S[`]

n )

)
− v3

2

k∑
i=`

H(S[i−1]
n )

(a)
=

(
v1

Γk,d,`−1

d
+
v3

2
(k − `+ 1)

)
α

+ v2

((
k∑

i=`+1

H(S[i]
n )

)
− (n− `− 1)H(S[`]

n )

)
− v3

2

k∑
i=`

H(S[i−1]
n )

(b)
=

Γk,d,`
d

α + v2

((
k∑

i=`+1

H(S[i]
n )

)
− (n− `− 1)H(S[`]

n )

)
− v3

2

k∑
i=`

H(S[i−1]
n ),

where (a) follows because v1 = 1
4
(k − `− 2)v3, and (b) can be justified as follows:

v1
Γk,d,`−1

d
+
v3

2
(k − `+ 1) =

(
k − `− 2

4

Γk,d,`−1

d
+
k − `+ 1

2

)
v3

=
(n− `+ 1)(n− `)(k − `− 2) + 4d(k − `+ 1)

8d
v3

=
(n− `)(n− `− 1)

2(n− 1)

=
Γk,d,`
d

.

Finally, we claim that

v2

((
k∑

i=`+1

H(S[i]
n )

)
− (n− `− 1)H(S[`]

n )

)
− v3

2

k∑
i=`

H(S[i−1]
n ) ≤ 0. (31)
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Towards this end, by re-arranging the left-hand side of (31), we have

v2

((
k∑

i=`+1

H(S[i]
n )

)
− (n− `− 1)H(S[`]

n )

)
− v3

2

k∑
i=`

H(S[i−1]
n )

= v2

(
k∑

i=`+1

H(S[i]
n )

)
− v2(n− `− 1)H(S[`]

n )− v3

2

k−1∑
i=`−1

H(S[i]
n )

= v2H(S[k]
n ) +

(
v2 −

v3

2

)( k−1∑
i=`+1

H(S[i]
n )

)
−
(
v2(n− `− 1) +

v3

2

)
H(S[`]

n )− v3

2
H(S[`−1]

n ).

Since v2 − v3
2
≥ 0 for ` ≥ 1, we have

v2

((
k∑

i=`+1

H(S[i]
n )

)
− (n− `− 1)H(S[`]

n )

)
− v3

2

k∑
i=`

H(S[i−1]
n )

= v2H(S[k]
n ) +

(
v2 −

v3

2

)( k−1∑
i=`+1

H(S[i]
n )

)
−
(
v2(n− `− 1) +

v3

2

)
H(S[`]

n )− v3

2
H(S[`−1]

n )

(a)
≤
(
k

`
v2 +

(
v2 −

v3

2

) k−1∑
i=`+1

i

`
−
(
v2(n− `− 1) +

v3

2

)
− v3

2

`− 1

`

)
H(S[`]

n )

=
1

2`

(
2kv2 + (2v2 − v3)

(
k−1∑
i=`+1

i

)
− (2v2(n− `− 1)− v3) `− v3(`− 1)

)
H(S[`]

n )

(b)
= 0,

where (a) follows because 1
i
H(S

[i]
n ) ≤ 1

j
H(S

[j]
n ) for n > i ≥ j, which is the consequence of Han’s

inequality and the symmetry of the problem, and (b) can be justified by substituting v2 and v3.

IV. SUFFICIENT CONDITION OF WIRETAP NODES FOR k < d

In this section, we consider the general setting that k < d. We will provide a lower bound ˆ̀ on the

number of wiretap nodes such that if ` ≥ ˆ̀, then (k, d, `) ∈ P . Shao et al. [19] showed that (k, d, `) ∈ P
for ` ≥ `?. It will be shown that ˆ̀≤ `?.

A. Our approach

By letting K = [k] and L = [`] in (11), we obtain that for any given d, k and `, the secrecy capacity

Bs is upper bounded by

Bs ≤ H
(
T |S[`]

)
,

for any T such that H
(
W[k]|T

)
= 0.

Similar to what we did in the last section, we will select T in different ways to obtain a number of

upper bounds on Bs, and then take a convex combination of them to derive an upper bound that depends
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only on α. Consider any set of variables T = {S[`]} ∪ {Xy : y = ` + 1, . . . , k}, where Xy can either be

Wy or Sy. Then

Bs ≤
k∑

y=`+1

H
(
Xy|S[`], X[`+1:y−1]

)
. (32)

We can use a (k−`)-length binary vector q := (q`+1, . . . , qk) to represent the choices of Xy, `+1 ≤ y ≤ k,

where

qy =

0, if Xy = Wy,

1, if Xy = Sy.
(33)

Clearly, each possible q induces an upper bound on Bs.

By symmetry we know that H
(
Xy|S[`], X[`+1:y−1]

)
depends on {q`+1, . . . , qy} only through qy and∑y−1

i=`+1 qi. Hence, we have

H
(
Xy|S[`], X[`+1:y−1]

)
= H

(
Xy|S[ty ],W[ty+1:y−1]

)
, (34)

where

ty = `+

y−1∑
i=`+1

qi. (35)

The following lemma gives upper bounds on H
(
Wy|S[ty ],W[ty+1:y−1]

)
and H

(
Sy|S[ty ],W[ty+1:y−1]

)
.

Lemma 3. For any y = `+ 1, . . . , k,

H
(
Sy|S[ty ],W[ty+1:y−1]

)
≤ d+ 1− y

d− ty
H
(
Sty+1|S[ty ]

)
, ty = `, . . . , y − 1, (36)

and

H
(
Wy|S[ty ],W[ty+1:y−1]

)
≤

α−H
(
S

[y−2]
n

)
+ d+1−y

d+1−tyH
(
Sty |S[ty−1]

)
−H

(
Sy−1|S[y−2]

)
, ` ≤ ty ≤ y − 2,

α−H
(
S

[y−1]
n

)
, ty = y − 1.

(37)

Proof. See Appendix E.

By combining (32), (34), (36) and (37), we can obtain an upper bound on Bs for any given q. By

examining (36) and (37), we see that the right-hand sides of them may contain the terms α, H
(
Sj|S[j−1]

)
for j = `, . . . , k, and H

(
S

[j]
n

)
for j = `, . . . , k − 1. Hence, let us specify the mapping f from any

(k − `)-length binary vector to the corresponding upper bound, which can be written as

f (q) =

(
k−1∑
j=`

νj

)
α−

k−1∑
j=`

νjH
(
S[j]
n

)
+

k∑
j=`

µjH
(
Sj|S[j−1]

)
, (38)

where νj and µj can be determined by the given q. Note that from (37) we know that the coefficient of

α can be determined by the sum of the coefficients of H
(
S

[j]
n

)
for j = `, . . . , k − 1.
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Furthermore, we consider an m× (k − `) binary matrix

Q =


q1

q2

...

qm

 =


q1,`+1 q1,`+2 · · · q1,k

q2,`+1 q2,`+2 · · · q2,k

...
... . . . ...

qm,`+1 q2,`+2 · · · qm,k

 , (39)

where each qx, 1 ≤ x ≤ m is some binary row vector defined in (33), and the first column of Q is labeled

by the index `+ 1 for consistency. The parameter ty (cf. (35)) in Lemma 3 corresponding to the row qx,

where 1 ≤ x ≤ m, is given by

tx,y = `+

y−1∑
i=`+1

qx,i.

For each qx, we can obtain from (38) the upper bound

f (qx) = α
k−1∑
j=`

νx,j −
k−1∑
j=`

νx,jH
(
S[j]
n

)
+

k∑
j=`

µx,jH
(
Sj|S[j−1]

)
. (40)

With a slight abuse of notations, we write

f(Q) =
m∑
x=1

f (qx)

=
m∑
x=1

(
α
k−1∑
j=`

νx,j −
k−1∑
j=`

νx,jH
(
S[j]
n

)
+

k∑
j=`

µx,jH
(
Sj|S[j−1]

))

= α
k−1∑
j=`

m∑
x=1

νx,j −
k−1∑
j=`

m∑
x=1

νx,jH
(
S[j]
n

)
+

k∑
j=`

m∑
x=1

µx,jH
(
Sj|S[j−1]

)
.

By denoting ν̄j = 1
m

∑m
x=1 νx,j and µ̄j = 1

m

∑m
x=1 µ̄x,j , we have

f(Q) = m

(
α
k−1∑
j=`

ν̄j −
k−1∑
j=`

ν̄jH
(
S[j]
n

)
+

k∑
j=`

µ̄jH
(
Sj|S[j−1]

))
. (41)

It is clear that f(Q) is an upper bound on mBs. By dividing m on both sides of (41), we have

Bs ≤
1

m
f(Q) =

(
k−1∑
j=`

ν̄j

)
α−

k−1∑
j=`

ν̄jH
(
S[j]
n

)
+

k∑
j=`

µ̄jH
(
Sj|S[j−1]

)
. (42)

Clearly, for any (k, d, `), if there exists a m × (k − `) matrix Q satisfying 1
m
f(Q) ≤ Γk,d,`

d
α, then

(k, d, `) ∈ P .

Now, we claim that if the conditions
k−1∑
j=`

ν̄j =
Γk,d,`
d

, (43)

µ̄j ≥ 0, j = `, . . . , k, (44)

δ̄j ≥ 0, j = `+ 1, . . . , k (45)
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are satisfied, where

δ̄j = (d+ 1− j)µ̄j −
k−1∑
i=j

ν̄i, j = `+ 1, . . . , k,

then right hand side of (42) is upper bounded by Γk,d,`

d
α.

To see this, focus on the right hand side of (42). By recalling from (26) that

H
(
Sj|S[j−1]

)
≤ (d+ 1− j)H

(
Sjn|S[j−1]

n

)
,

we have

1

m
f(Q) =

(
k−1∑
j=`

ν̄j

)
α−

k−1∑
j=`

ν̄jH
(
S[j]
n

)
+

k∑
j=`

µ̄jH
(
Sj|S[j−1]

)
(a)
=

Γk,d,`
d

α−
k−1∑
j=`

ν̄jH
(
S[j]
n

)
+

k∑
j=`

µ̄jH
(
Sj|S[j−1]

)
(b)
≤ Γk,d,`

d
α−

k−1∑
j=`

ν̄jH
(
S[j]
n

)
+

k∑
j=`

(d+ 1− j)µ̄jH
(
Sjn|S[j−1]

n

)
, (46)

where (a) follows from (43) and (b) follows from (44).

Since
k−1∑
j=`

ν̄jH(S[j]
n ) =

k−1∑
j=`

ν̄j

(
H(S[`]

n ) +

j∑
i=`+1

H(Sin|S[i−1]
n )

)

=

(
k−1∑
j=`

ν̄j

)
H(S[`]

n ) +
k−1∑
j=`

j∑
i=`+1

ν̄jH(Sin|S[i−1]
n )

=

(
k−1∑
j=`

ν̄j

)
H(S[`]

n ) +
k−1∑
i=`+1

k−1∑
j=i

ν̄jH(Sin|S[i−1]
n )

(c)
=

(
k−1∑
j=`

ν̄j

)
H(S[`]

n ) +
k−1∑
j=`+1

(
k−1∑
i=j

ν̄i

)
H(Sjn|S[j−1]

n ),

where in (c), the indices i and j in the double summation are renamed as j and i, respectively, we obtain

1

m
f(Q) ≤ Γk,d,`

d
α−

k−1∑
j=`

ν̄jH(S[j]
n ) +

k∑
j=`

(d+ 1− j)µ̄jH
(
Sjn|S[j−1]

n

)
=

Γk,d,`
d

α−
(
k−1∑
j=`

ν̄j

)
H(S[`]

n )−
k−1∑
j=`+1

(
k−1∑
i=j

ν̄i

)
H(Sjn|S[j−1]

n ) +
k∑
j=`

(d+ 1− j)µ̄jH
(
Sjn|S[j−1]

n

)
=

Γk,d,`
d

α− Γk,d,`
d

H(S[`]
n )−

k∑
j=`+1

(
k−1∑
i=j

ν̄i

)
H(Sjn|S[j−1]

n ) +
k∑
j=`

(d+ 1− j)µ̄jH
(
Sjn|S[j−1]

n

)
(d)
≤ Γk,d,`

d
α− Γk,d,`

d
H(S[`]

n )−
k−1∑
j=`+1

(
k−1∑
i=j

ν̄i

)
H(Sjn|S[j−1]

n ) +
k∑

j=`+1

(d+ 1− j)µ̄jH
(
Sjn|S[j−1]

n

)
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+
d+ 1− `

`
µ̄`H

(
S[`]
n

)
=

Γk,d,`
d

α−
(

Γk,d,`
d
− d+ 1− `

`
µ̄`

)
H(S[`]

n ) +
k∑

j=`+1

(
(d+ 1− j)µ̄j −

(
k−1∑
i=j

ν̄i

))
H
(
Sjn|S[j−1]

n

)
=

Γk,d,`
d

α−
(

Γk,d,`
d
− d+ 1− `

`
µ̄`

)
H(S[`]

n ) +
k∑

j=`+1

δ̄jH
(
Sjn|S[j−1]

n

)
,

where (d) follows from Han’s inequality.

Since H
(
Sin|S[i−1]

n

)
≤ H

(
Sjn|S[j−1]

n

)
for i ≥ j, we have

1

m
f(Q)

(e)
≤ Γk,d,`

d
α−

(
Γk,d,`
d
− d+ 1− `

`
µ̄`

)
H(S[`]

n ) +
k∑

j=`+1

δ̄jH
(
S`+1
n |S[`]

n

)
(f)
≤ Γk,d,`

d
α−

(
Γk,d,`
d
− d+ 1− `

`
µ̄`

)
H(S[`]

n ) +
1

`

(
k∑

j=`+1

δ̄j

)
H
(
S[`]
n

)
=

Γk,d,`
d

α−
(

Γk,d,`
d
− d+ 1− `

`
µ̄` −

1

`

(
k∑

j=`+1

δ̄j

))
H(S[`]

n ), (47)

where (e) follows from (45) and (f) follows from Han’s inequality.

Proposition 7. Γk,d,`

d
− d+1−`

`
µ̄` − 1

`

(∑k
j=`+1 δ̄j

)
= 0.

Proof. See Appendix F.

We can see easily that 1
m
f(Q) is upper bounded by Γk,d,`

d
α from (47) and Proposition 7. Therefore, we

have shown that for any (k, d, `), if there exists a matrix Q such that f(Q) satisfies (43), (44) and (45),

then (k, d, `) ∈ P .

B. Main results

The following theorem gives the main result of this section.

Theorem 2. The triple (k, d, `) ∈ P if ` = k − 1 or
d(d− `− 1)− 1

2
(2d− k − `+ 1)(2d+ k − 3`− 5) ≥ 0, ` ≤ k − 4,

k ≥ 1
3
(d+ 8), ` = k − 3,

k ≥ 1
4
(d+ 7), ` = k − 2.

(48)

Before proving Theorem 2, we first discuss some consequences of the theorem.

1) Let

Ps := {(k, d, `) : ` = k − 1 or (48) is satisfied} ,
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and for fixed k and d define

ˆ̀ := min {` ≥ 1 : (k, d, `) ∈ Ps} . (49)

Note that ˆ̀ is well defined since (k, d, ` = k − 1) ∈ Ps for any given k and d. Then, we claim

that for fixed k and d, (k, d, `) ∈ Ps for ` ≥ ˆ̀. Clearly, to prove the claim, it is sufficient to show

that if (k, d, `) ∈ Ps, then (k, d, ` + 1) ∈ Ps for ` ≤ k − 2. Since the case ` = k − 2 is trivial,

we consider ` ≤ k − 3. By inspecting (48), we can easily see that if (k, d, ` = k − 3) ∈ Ps, then

(k, d, ` = k − 2) ∈ Ps. Also, if (k, d, ` = k − 4) ∈ Ps, then the condition in the first line of (48) is

satisfied, which can be rewritten as

(2k − d− 6)(d− k + 3) +
1

2
≥ 0.

Since k and d are integers, we have (2k−d−6)(d−k+3) ≥ 0, and hence k ≥ 1
2
(d+6) ≥ 1

3
(d+8),

which implies that (k, d, ` = k−3) ∈ Ps. Thus, it remains to show that if (k, d, `) ∈ Ps for ` < k−4,

then (k, d, `+ 1) ∈ Ps.
Towards this end, let

g(`) = d(d− `− 1)− 1

2
(2d− k − `+ 1)(2d+ k − 3`− 5), 1 ≤ ` ≤ k − 4. (50)

Clearly (k, d, `) ∈ Ps for ` ≤ k− 4 if and only if g(`) ≥ 0. Then we need to show that if g(`) ≥ 0

for some ` < k − 4, then g(` + 1) ≥ 0. For the quadratic equation g(`) = 0, the discriminant is

3(d − k)2 + 12(d − 4) + (k − 8)2, which is nonnegative provided that d ≥ 4. This condition is

guaranteed because we have

d ≥ k ≥ `+ 4 ≥ 5,

where the second inequality follows from the range of ` in (50). Thus the two roots of g(`) = 0

are real and they are given by

`1 =
1

3

(
3d− k − 1−

√
3(d− k)2 + 12(d− 4) + (k − 8)2

)
,

and

`2 =
1

3

(
3d− k − 1 +

√
3(d− k)2 + 12(d− 4) + (k − 8)2

)
.

Since the leading coefficient of g(`) is negative, we see that g(`) ≥ 0 if and only if `1 ≤ ` ≤ `2.

Consider

`2 ≥
1

3
(3d− k − 1 + |k − 8|) ≥ 1

3
(3d− k − 1 + k − 8) = d− 3 ≥ k − 3.

Then, if g(`) ≥ 0 for some ` < k − 4, we have

`+ 1 < k − 3 ≤ `2,
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which implies that g(` + 1) ≥ 0, as is to be proved. Thus we have shown that for fixed k and

d, (k, d, `) ∈ Ps for ` ≥ ˆ̀. Since it is clear that Ps ⊆ P , we conclude that for fixed k and d,

(k, d, `) ∈ P for ` ≥ ˆ̀.

2) We claim that Theorem 2 improves the existing result in Shao et al. [19], where they showed that

(k, d, `) ∈ P if

` ≥ `? := min
{
`′ ≥ 1 : Γk,d,`′ ≤ d+

√
d`′
}
. (51)

Let

Pr := {(k, d, `) : ` ≥ `?} .

Recall that

Γk,d,` =
k−1∑
i=`

(d− i) =
1

2
(k − `)(2d− k − `+ 1).

Evidently, Γk,d,` is decreasing with ` while d+
√
d` is increasing with `, and so we have

Pr = {(k, d, `) : ` ≥ `?} =
{

(k, d, `) : Γk,d,` ≤ d+
√
d`
}
. (52)

We will justify our claim by first showing that Pr ⊆ Ps, or equivalently ˆ̀≤ `?. For fixed k and d,

assume that (k, d, `) ∈ Pr, and we will prove that (k, d, `) ∈ Ps. It is trivial for the case ` = k − 1

because (k, d, `) ∈ Ps always holds by definition. If (k, d, ` = k − 2) ∈ Pr, we can obtain from

(52) that

k ≥ 1

8

(
5d−

√
d(9d− 8) + 12

)
>

1

8
(5d− 3d+ 12) =

1

4
(d+ 6).

Since k and d are integers, we must have k ≥ 1
4
(d+ 7), and hence (k, d, ` = k− 2) ∈ Ps. Similarly,

if (k, d, ` = k − 3) ∈ Pr, we can obtain that

k ≥ 1

18

(
13d−

√
d(25d− 36) + 36

)
>

1

18
(13d− 5d+ 36) =

1

9
(4d+ 18).

Since 1 ≤ ` = k − 3 ≤ d − 3, we know that d ≥ 4. If d = 4, we have k > 34
9

. Since k must

be an integer, we have k ≥ 4 = 1
3
(d + 8). If d ≥ 5, since k and d are integers, we must have

k ≥ 1
9
(4d+ 19) = 1

3
(d+ 8) + 1

9
(d− 5) ≥ 1

3
(d+ 8). Then we know that (k, d, ` = k − 3) ∈ Ps.

It remains to show that if (k, d, `) ∈ Pr for ` ≤ k − 4, then (k, d, `) ∈ Ps. Let

h(`) = d+
√
d`− Γk,d,`, 1 ≤ ` ≤ k − 4.
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Then (k, d, `) ∈ Pr for some ` ≤ k − 4 if and only if h(`) ≥ 0 for some ` ≤ k − 4. We claim that

if h(`) ≥ 0 for some ` ≤ k − 4, then ` ≥ `0, where `0 =
⌈

1
2
(d− 1)

⌉
. This can be substantiated by

contradiction. Assume the contrary that ` ≤ `0 − 1. Then we have

h (`) = d+
√
d`− Γk,d,`

= d+
√
d`− 1

2
(k − `)(2d− k − `+ 1)

(a)
≤ d+

√
d`− 2(2d− 2`− 3)

(b)
≤ d+

√
d(`0 − 1)− 2(2d− 2(`0 − 1)− 3)

= d+

√
d

(⌈
1

2
(d− 1)

⌉
− 1

)
− 2

(
2d− 2

⌈
1

2
(d− 1)

⌉
− 1

)
(c)
≤ d+

√
d

(
1

2
d− 1

)
− 2 (2d− d− 1)

= d+

√
1

2
d(d− 2)− 2 (d− 1)

< d+

√
1

2
(d− 1)2 − 2 (d− 1)

=

√
2− 2

2
(d− 1) + 1

(d)
< 0, (53)

where (a) follows from k ≥ `+ 4 and 1
2
(k− `)(2d−k− `+ 1) is increasing with k when k ≤ d; (b)

follows from the assumption ` ≤ `0 − 1; (c) follows from
⌈

1
2
(d− 1)

⌉
≤ 1

2
d, and (d) follows from

1 ≤ ` ≤ k − 4 ≤ d − 4. Clearly, (53) contradicts with the assumption that h (`) ≥ 0, and hence

we know that if h(`) ≥ 0 for some ` ≤ k − 4, then ` ≥ `0. Next, we will show that g(`) ≥ 0 for

`0 ≤ ` ≤ k − 4. Consider

g(`) = d(d− `− 1)− 1

2
(2d− k − `+ 1)(2d+ k − 3`− 5)

(e)
≥ d(d− `− 1)− 1

2
(2d− 2`− 3)(2d− 2`− 1)

= d(d− `− 1)− 2(d− `− 1)2 +
1

2

= (d− `− 1)(2`− d+ 2) +
1

2
(f)
≥(d− `− 1)(2`0 − d+ 2) +

1

2
(g)
≥(d− `− 1) +

1

2

≥ 0,
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where (e) follows because 1
2
(2d− k− `+ 1)(2d+ k− 3`− 5) is decreasing with k when k ≥ `+ 4,

(f) follows from ` ≥ `0, and (g) follows from 2`0− d+ 2 ≥ 1. Hence, we have shown that g(`) ≥ 0

if h(`) ≥ 0 for some ` ≤ k − 4. Therefore we can conclude that Pr ⊆ Ps, or ˆ̀≤ `?.

Finally, to see that there is a gap between `? and ˆ̀, let us consider the example d = 32 and

k = 31. For this case, we can easily check that the first case in (48) is satisfied for ` = 12, but is

not satisfied for ` = 11. Thus we obtain ˆ̀ = 12. Also, by substituting k = 31 and d = 32 in (51),

we have

`? = min

{
` ≥ 1 :

1

2
(31− `)(34− `) ≤ 32 +

√
32`

}
.

Since the condition 1
2
(31 − `)(34 − `) ≤ 32 +

√
32` is satisfied for ` = 22 but not for ` = 21, we

obtain `? = 22. Therefore, there is a gap between ˆ̀ and `?, and this gap can be large.

C. Proof of Theorem 2

From the previous discussion, we know that for any (k, d, `), if there exists a matrix Q such that f(Q)

satisfies (43), (44) and (45), then (k, d, `) ∈ P . In this subsection, we will show the existence of a qualified

matrix Q for each (k, d, `) ∈ Ps. In particular, we consider Q satisfying the following conditions:

1) If qx,y = 0, then qx′,y = 0 for all x′ ≤ x;

2) If qx,y = 0, then qx,y′ = 0 for all y′ ≤ y.

These conditions say that the zeros and ones in the matrix Q exhibit an echelon form, as depicted in

Fig. 2.

0

1

Fig. 2. An illustration of Q in the proof of Theorem. 2.
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Any matrix illustrated in Fig. 2 can be uniquely represented by a set of rational numbers {zj : j = `+ 1, . . . , k}
such that 0 ≤ zj ≤ 1 and zi ≤ zj if i ≥ j, where mzj corresponds to the number of zeros in the j-th

column.

Now, for any (k, d, `), let

zj =


min

{
Γk,d,`

d
, 2d−k−`+1

d
, 1
}
, j = `+ 1,

2d−k−`+1
2d

, j = `+ 2, . . . , k − 1,

max
{

0, d−k−`+1
d

}
, j = k and `+ 1 < k.

(54)

Note that when ` = k − 1, we have

z`+1 = zk = min

{
Γk,d,`
d

,
2d− k − `+ 1

d
, 1

}
=

Γk,d,`
d

. (55)

It is easy to see that 0 ≤ zj ≤ 1 for all j, so we only need to verify that zi ≤ zj if i ≥ j. Obviously, we

only need to consider ` ≤ k − 2. Then we have

Γk,d,` =
1

2
(k − `)(2d− k − `+ 1) ≥ 2d− k − `+ 1.

Next, let us discuss the two cases 2d− k − `+ 1 ≤ d and 2d− k − `+ 1 > d as follows.

1) If 2d− k − `+ 1 ≤ d, (54) can be written as

zj =


2d−k−`+1

d
, j = `+ 1,

2d−k−`+1
2d

, j = `+ 2, . . . , k − 1,

0, j = k.

(56)

Since
2d− k − `+ 1

d
≥ 2d− k − `+ 1

2d
≥ 0,

we see that zi ≤ zj if i ≥ j.

2) If 2d− k − `+ 1 > d, (54) can be written as

zj =


1, j = `+ 1,

2d−k−`+1
2d

, j = `+ 2, . . . , k − 1,

d−k−`+1
d

, j = k.

(57)

Since

1 ≥ 2d− k − `+ 1

2d
≥ d− k − `+ 1

d
,

we see that zi ≤ zj if i ≥ j.

Therefore, the matrix specified by zj defined in (54) corresponds to the form depicted in Fig. 2.
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i i+ 1 j

A

B

C

Fig. 3. Illustration of three regions A, B and C of the matrix Q.

In the remaining of this subsection, we will verify that for any (k, d, `) ∈ Ps, f(Q) satisfies the

conditions (43), (44) and (45), where Q is determined by (54). First, we need to write f(Q) explicitly.

To do this, we divide the matrix Q into three regions, namely A, B and C as illustrated in Fig. 3.

1) For the shaded gray region A = {qx,y : x ≤ mzy, `+ 1 ≤ y ≤ k}, we can easily see that qx,y = 0

and tx,y = `. Then by checking the conditions in (37), we see that only the elements in the first

column, i.e. y = `+ 1, belong to the second case, while all others belong to the first case. Hence,

the total contribution of the region A to f(Q) is given by

mz`+1

(
α−H(S[`]

n )
)

+
k∑

j=`+2

mzj

(
α−H(S[j−2]

n )−H(Sj−1|S[j−2]) +
d+ 1− j
d+ 1− `H(S`|S[`−1])

)
.

(58)

2) For the dotted area B = {qx,y : x > mz`+1, `+ 1 ≤ y ≤ k}, we can easily see that qx,y = 1 and

tx,y = y− 1. Hence, we can obtain from (36) that the total contribution of the region B to f(Q) is

given by

m(1− z`+1)
k∑

j=`+1

H
(
Sj|S[j−1]

)
. (59)

3) For the remaining region C = {qx,y : mzy < x ≤ mz`+1, `+ 1 ≤ y ≤ k}, we consider its contribu-

tion to f(Q) column by column. For the column j, let Cj := {qx,j : mzj < x ≤ mz`+1}, which

is illustrated as the vertical stripe in Fig. 3. We further divide Cj into j − ` − 1 segments. Let

Ci
j := {qx,j : mzi+1 < x ≤ mzi} for i = `+ 1, . . . , j − 1, where⋃

i=`+1,...,j−1

Ci
j = Cj.
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Note that for a fixed j, Ci
j may be empty for some i. Focus on a non-empty Ci

j , which is illustrated

as the crosshatched segment in Fig. 3. Then we have qx,y = 1 and tx,y = `+ j− i− 1. By invoking

(36), we obtain that the contribution of Ci
j to f(Q) is

m(zi − zi+1)
d+ 1− j

d+ 1− (`+ j − i)H(S`+j−i|S[`+j−i−1]).

It follows that the contribution of Cj to f(Q) is given by
j−1∑
i=`+1

m(zi − zi+1)
d+ 1− j

d+ 1− (`+ j − i)H(S`+j−i|S[`+j−i−1]).

Finally, the total contribution of the region C to f(Q) is given by
k∑

j=`+1

j−1∑
i=`+1

m(zi − zi+1)
d+ 1− j

d+ 1− (`+ j − i)H(S`+j−i|S[`+j−i−1]). (60)

For the ease of notation in the remaining parts, let us first simplify (60). Consider
k∑

j=`+1

j−1∑
i=`+1

(zi − zi+1)
d+ 1− j

d+ 1− (`+ j − i)H(S`+j−i|S[`+j−i−1])

=
k∑

j=`+1

j−1∑
p=`+1

(z`+j−p − z`+j−p+1)
d+ 1− j
d+ 1− pH(Sp|S[p−1]) (p = `+ j − i)

=
k−1∑
p=`+1

k∑
j=p+1

(z`+j−p − z`+j−p+1)
d+ 1− j
d+ 1− pH(Sp|S[p−1])

(a)
=

k−1∑
j=`+1

(
k∑

i=j+1

(z`+i−j − z`+i−j+1)(d+ 1− i)
)

1

d+ 1− jH(Sj|S[j−1]),

where (a) follows from replacing the indices p and j by j and i, respectively.

Let

cj =
k∑

i=j+1

(z`+i−j − z`+i−j+1)(d+ 1− i), j = `+ 1, . . . , k.

Then we have
k−1∑
j=`+1

(
k∑

i=j+1

(z`+i−j − z`+i−j+1)(d+ 1− i)
)

1

d+ 1− jH(Sj|S[j−1])

=
k−1∑
j=`+1

cj
d+ 1− jH(Sj|S[j−1])

(b)
=

k∑
j=`+1

cj
d+ 1− jH(Sj|S[j−1]),

where (b) follows from ck = 0 by definition. Hence, (60) can be written as

m

k∑
j=`+1

cj
d+ 1− jH(Sj|S[j−1]). (61)
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Now, focus on f(Q), which can be obtained by adding (58), (59), and (61) as follows:

f(Q) = mz`+1

(
α−H(S[`]

n )
)

+
k∑

j=`+2

mzj

(
α−H(S[j−2]

n )−H(Sj−1|S[j−2]) +
d+ 1− j
d+ 1− `H(S`|S[`−1])

)

+m(1− z`+1)
k∑

j=`+1

H
(
Sj|S[j−1]

)
+m

k∑
j=`+1

cj
d+ 1− jH

(
Sj|S[j−1]

)
.

By dividing m on both sides, we have

1

m
f(Q) = z`+1

(
α−H(S[`]

n )
)

+
k∑

j=`+2

zj

(
α−H(S[j−2]

n )−H(Sj−1|S[j−2]) +
d+ 1− j
d+ 1− `H(S`|S[`−1])

)

+ (1− z`+1)
k∑

j=`+1

H
(
Sj|S[j−1]

)
+

k∑
j=`+1

cj
d+ 1− jH

(
Sj|S[j−1]

)
=

(
k∑

j=`+1

zj

)
α− z`+1H(S[`]

n )−
k∑

j=`+2

zjH
(
S[j−2]
n

)
−

k∑
j=`+2

zjH
(
Sj−1|S[j−2]

)
+

1

d+ 1− `

(
k∑

j=`+2

zj(d+ 1− j)
)
H
(
S`|S[`−1]

)
+

k∑
j=`+1

(
1− z`+1 +

cj
d+ 1− j

)
H
(
Sj|S[j−1]

)
=

(
k∑

j=`+1

zj

)
α− z`+1H(S[`]

n )−
k−2∑
j=`

zj+2H
(
S[j]
n

)
−

k−1∑
j=`+1

zj+1H
(
Sj|S[j−1]

)
+

1

d+ 1− `

(
k∑

j=`+2

zj(d+ 1− j)
)
H
(
S`|S[`−1]

)
+

k∑
j=`+1

(
1− z`+1 +

cj
d+ 1− j

)
H
(
Sj|S[j−1]

)
.

(62)

For notational simplicity, let us separately discuss the case ` = k−1. For ` = k−1, (62) can be written

as

1

m
f(Q) = z`+1α− z`+1H(S[`]

n ) + (1− z`+1)H
(
S`+1|S[`]

)
(c)
=

Γk,d,k−1

d
α− Γk,d,k−1

d
H(S[`]

n ) +

(
1− Γk,d,k−1

d

)
H
(
S`+1|S[`]

)
,

where (c) follows from (55). By comparing the coefficients of α, H
(
S

[j]
n

)
and H

(
Sj|S[j−1]

)
with those

in (42), we have ν̄` =
Γk,d,k−1

d
, µ̄` = 0 and µ̄`+1 = 1 − Γk,d,k−1

d
, and we can easily check that these

coefficients satisfy (43), (44) and (45), which implies that if ` = k− 1, then (k, d, `) ∈ P . This result has

already been obtained in [18] and [19], but the proof here is much shorter (if we confine our discussion

to the case ` = k − 1).

For ` ≤ k − 2, by collecting the terms in (62), we obtain

1

m
f(Q) =

(
k−1∑
j=`

ν̄j

)
α−

k−1∑
j=`

ν̄jH
(
S[j]
n

)
+

k∑
j=`

µ̄jH
(
Sj|S[j−1]

)
, (63)
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where

µ̄j =


1

d+1−`

(∑k
j=`+2 zj(d+ 1− j)

)
, j = `,

1− z`+1 − zj+1 +
cj

d+1−j , j = `+ 1, . . . , k − 1,

1− z`+1, j = k,

(64)

and

ν̄j =


z`+1 + z`+2, j = `,

zj+2, j = `+ 1, . . . , k − 2,

0, j = k − 1.

(65)

Recall that we need to check the three conditions (43), (44) and (45). First, let us check that (43) is

satisfied as follows. From (56) and (57), we can see that in both cases, we have

z`+1 + zk =
2d− k − `+ 1

d
. (66)

Hence we obtain
k−1∑
j=`

ν̄j =
k∑

j=`+1

zj =
2d− k − `+ 1

d
+

k−1∑
j=`+2

zj
(d)
=

2d− k − `+ 1

d
+ (k − `− 2)

2d− k − `+ 1

2d
=

Γk,d,`
d

,

where (d) follows from (54).

Now, let us verify the conditions (44) and (45). From (64), we see that µ̄` ≥ 0 and µ̄k ≥ 0. Since δ̄k =

(d+1−k)µ̄k, we have δ̄k ≥ 0. Hence, it remains to show that µ̄j ≥ 0 and δ̄j ≥ 0 for j = `+1, . . . , k−1.

We know from (65) that ν̄j ≥ 0 for all j, so we have

δ̄j = (d+ 1− j)µ̄j −
k−1∑
i=j

ν̄i ≤ (d+ 1− j)µ̄j,

which implies that if δ̄j ≥ 0, then µ̄j ≥ 0. Therefore, it suffices to prove the following proposition.

Proposition 8. For any (k, d, `) ∈ Ps, where ` ≤ k − 2, δ̄j ≥ 0 for j = `+ 1, . . . , k − 1.

Proof. See Appendix G.

V. CONCLUSION AND DISCUSSION

In this paper, we study the problem of secure distributed storage systems where the eavesdropper has

the capability to observe the data involved in the repair process. Our goal is to characterize parameters

(n, k, d, `) whose optimal storage-bandwidth tradeoff curve has one corner point and can be determined.

Toward this end, we obtained a lower bound ˆ̀ on the number of wiretap nodes which is tight for k =

d = n − 1. Whether this bound is tight for other values of n, k and d is a problem for future research.

Our results subsume all the previous related results [16], [17], [18], [19].
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APPENDIX A

PROOF OF THE OPTIMALITY OF (α̂, β̂)

We will prove that (α̂, β̂) is on the optimal tradeoff curve by establishing the following outer boundᾱ + (Γk,d,` − d) β̄ ≥ 1, Γk,d,` > d,

ᾱ ≥ α̂, Γk,d,` ≤ d.
(67)

It has been shown that β̄ ≥ β̂ (cf.(12)). As illustrated in Fig. 4, we can see that the intersection of β̄ ≥ β̂

and (67) is given by (α̂, β̂), no matter whether Γk,d,` > d or Γk,d,` ≤ d. As (α̂, β̂) is achievable, we can

conclude that (α̂, β̂) must be on the tradeoff curve if (67) holds.

ᾱ

β̄

β̂

α̂

Γk,d,` > d

Γk,d,` ≤ d

Fig. 4. Two outer bounds in (67).

We now proceed to (67). By letting T = {Si : i = 1, . . . , k} and L = [`] in (11), we have

Bs ≤ H
(
S[`+1:k]|S[`]

)
=

k∑
i=`+1

H
(
Si|S[i−1]

)
(a)
≤

k∑
i=`+1

(d+ 1− i)H
(
Sin|S[i−1]

n

)
(b)
≤

k∑
i=`+1

d+ 1− i
`

H
(
S[`]
n

)
=

Γk,d,`
`

H
(
S[`]
n

)
, (68)

where (a) follows from (26) , and (b) follows from Han’s inequality.
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Similarly, by letting T = {Si : i = 1, . . . , k − 1} ∪ {Wk} and L = [`] in (11), we have

Bs ≤ H
(
S[`+1:k−1],Wk|S[`]

)
=

k−1∑
i=`+1

H
(
Si|S[i−1]

)
+H

(
Wk|S[k−1]

)
(c)
≤

k−1∑
i=`+1

(d+ 1− i)H
(
Sin|S[i−1]

n

)
+H

(
Wk|S[k−1]

)
≤

k−1∑
i=`+1

(d+ 1− i)H
(
Sin|S[i−1]

n

)
+H

(
Wn|S[k−1]

n

)
=

k−1∑
i=`+1

(d+ 1− i)H
(
Sin|S[i−1]

n

)
+ α−H

(
S[k−1]
n

)
= α +

k−1∑
i=`+1

(d+ 1− i)H
(
Sin|S[i−1]

n

)
−
(
H
(
S[`]
n

)
+

k−1∑
i=`+1

H
(
Sin|S[i−1]

n

))

= α−H
(
S[`]
n

)
+

k−1∑
i=`+1

(d− i)H
(
Sin|S[i−1]

n

)
(d)
≤α−H

(
S[`]
n

)
+

k−1∑
i=`+1

d− i
`

H
(
S[`]
n

)
= α +

1

`

(
−`+

k−1∑
i=`+1

(d− i)
)
H
(
S[`]
n

)
= α +

Γk,d,` − d
`

H
(
S[`]
n

)
, (69)

where (c) follows from (26) and (d) follows from Han’s inequality.

When Γk,d,` > d, we know from (69) that

Bs ≤ α +
Γk,d,` − d

`
H
(
S[`]
n

)
≤ α + (Γk,d,` − d)β,

which is equivalent to

ᾱ + (Γk,d,` − d)β̄ ≥ 1,

i.e. the first case of (67).

When Γk,d,` ≤ d, by multiplying (68) and (69) by d− Γk,d,` and Γk,d,` respectively, we have

dBs ≤ (d− Γk,d,`)
Γk,d,`
`

H
(
S[`]
n

)
+ Γk,d,`

(
α +

Γk,d,` − d
`

H
(
S[`]
n

))
= Γk,d,`α,

which is equivalent to ᾱ ≥ α̂, i.e. the second case of (67). Therefore, we have proved (67).

Remark. Shao et al. [19] have proved that ᾱ ≥ α̂ if Γk,d,` ≤ d, i.e. the second case of (67). The proof

therein is very lengthy. The proof of (67) here is much simple, and the first case is a new result.
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APPENDIX B

PROOF OF LEMMA 1

First, for t = 0, . . . , k − 2, we consider

H(W[t+1:k]|S[t]) =
k∑

i=t+1

H
(
Wi|W[t+1:i−1], S

[t]
)

=
k∑

i=t+1

H
(
Wi|S[t]

)
−

k∑
i=t+2

I
(
Wi;W[t+1:i−1]|S[t]

)
≤

k∑
i=t+1

H
(
Wi|S[t]

)
−

k∑
i=t+2

I
(
S

[t+1:i−1]
i ;Si[t+1:i−1]|S[t]

)
, (70)

where (70) is justified because S[t+1:i−1]
i and Si[t+1:i−1] are functions of Wi and W[t+1:i−1] respectively.

The second term on the right-hand side of (70) can be further bounded as follows:
k∑

i=t+2

I
(
S

[t+1:i−1]
i ;Si[t+1:i−1]|S[t]

)
=

k∑
i=t+2

H
(
Si[t+1:i−1]|S[t]

)
+

k∑
i=t+2

H
(
S

[t+1:i−1]
i |S[t]

)
−

k∑
i=t+2

H
(
S

[t+1:i−1]
i , Si[t+1:i−1]|S[t]

)
(a)
≥

k∑
i=t+2

i− 1− t
d− t H

(
SiN\{i}\[t]|S[t]

)
+

k∑
i=t+2

H
(
S

[t+1:i−1]
i |S[t]

)
−

k∑
i=t+2

H
(
S

[t+1:i−1]
i , Si[t+1:i−1]|S[t]

)
(b)
≥

k∑
i=t+2

i− 1− t
d− t H

(
SiN\{i}\[t]|S[t]

)
+

k∑
i=t+2

H
(
S

[t+1:i−1]
i |S[t]

)
−

k∑
i=t+2

I
(
S[t+1:i−1];Si|S[t]

)
=

k∑
i=t+2

i− 1− t
d− t H

(
SiN\{i}\[t]|S[t]

)
+

k∑
i=t+2

H
(
S

[t+1:i−1]
i |S[t]

)
−
(

k∑
i=t+2

H
(
Si|S[t]

)
−

k∑
i=t+2

H
(
Si|S[i−1]

))

=
k∑

i=t+2

i− 1− t
d− t H

(
SiN\{i}\[t]|S[t]

)
+

k∑
i=t+2

H
(
S

[t+1:i−1]
i |S[t]

)
−
(

k∑
i=t+1

H
(
Si|S[t]

)
−

k∑
i=t+1

H
(
Si|S[i−1]

))

=
k∑

i=t+2

i− 1− t
d− t H

(
SiN\{i}\[t]|S[t]

)
+

k∑
i=t+2

H
(
S

[t+1:i−1]
i |S[t]

)
−
(

k∑
i=t+1

H
(
Si|S[t]

)
−H

(
S[t+1:k]|S[t]

))
,

(71)

where (a) follows from the well-known Han’s inequality, and (b) is justified because {S[t+1:i−1]
i , Si[t+1:i−1]}

is a function of S[t+1:i−1] and also a function of Si .

By symmetry, we know that
k∑

i=t+2

i− 1− t
d− t H

(
SiN\{i}\[t]|S[t]

)
=

(
k∑

i=t+2

i− 1− t
d− t

)
H
(
St+1|S[t]

)
,

and
k∑

i=t+1

H
(
Si|S[t]

)
= (k − t)H

(
St+1|S[t]

)
.
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Hence, (71) can be written as
k∑

i=t+2

I
(
S

[t+1:i−1]
i ;Si[t+1:i−1]|S[t]

)
≥
(

k∑
i=t+2

i− 1− t
d− t

)
H
(
St+1|S[t]

)
+

k∑
i=t+2

H
(
S

[t+1:i−1]
i |S[t]

)
− (k − t)H

(
St+1|S[t]

)
+H

(
S[t+1:k]|S[t]

)
.

(72)

By substituting (72) in (70), we have

H
(
W[t+1:k]|S[t]

)
≤

k∑
i=t+1

H
(
Wi|S[t]

)
−
(

k∑
i=t+2

i− 1− t
d− t

)
H
(
St+1|S[t]

)
−

k∑
i=t+2

H
(
S

[t+1:i−1]
i |S[t]

)
+ (k − t)H

(
St+1|S[t]

)
−H

(
S[t+1:k]|S[t]

)
=

k∑
i=t+1

H
(
Wi|S[t]

)
+

(
(k − t)−

k∑
i=t+2

i− 1− t
d− t

)
H
(
St+1|S[t]

)
−

k∑
i=t+2

H
(
S

[t+1:i−1]
i |S[t]

)
−H

(
S[t+1:k]|S[t]

)
(c)
=

k∑
i=t+1

H
(
Wi|S[t]

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
−

k∑
i=t+2

H
(
S

[t+1:i−1]
i |S[t]

)
−H

(
S[t+1:k]|S[t]

)
,

(73)

where (c) follows from k = d.

From the union bound, we know that
k∑

i=t+2

H
(
S

[t+1:i−1]
i |S[t]

)
≥ H

(
S[t+1:k]|S[t]

)
,

and then we can further bound (73) as follows:

H(W[t+1:k]|S[t]) ≤
k∑

i=t+1

H
(
Wi|S[t]

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
−H

(
S[t+1:k]|S[t]

)
−H

(
S[t+1:k]|S[t]

)
=

k∑
i=t+1

H
(
Wi|S[t]

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
−H

(
S[t+1:k]|S[t]

)
−H

(
S[t+1:n]|S[t]

)
+H

(
S[t+1:n]|S[t], S[t+1:k]

)
. (74)

By re-arranging (74), we have

H(W[t+1:k]|S[t]) +H
(
S[t+1:k]|S[t]

)
+H

(
S[t+1:n]|S[t]

)
≤

k∑
i=t+1

H
(
Wi|S[t]

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
+H

(
S[t+1:n]|S[t], S[t+1:k]

)
(d)
=

k∑
i=t+1

H
(
Wi|S[t]

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
+H

(
S[t+1:k]
n |S[t], S[t+1:k]

)
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≤
k∑

i=t+1

H
(
Wi|S[t]

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
+H

(
Wn|S[t]

n

)
≤

k∑
i=t+1

H
(
Wi|S[t]

i

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
+H

(
Wn|S[t]

n

)
(e)
=(k − t+ 1)H

(
Wn|S[t]

n

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
(f)
=(d− t+ 1)α− (d− t+ 1)H

(
S[t]
n

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
,

where (d) and (f) follow from k = d = n− 1, and (e) follows from the symmetry.

From Proposition 1, we know that

H(W[t+1:k], S
[t]) = H

(
S[t+1:k], S[t]

)
= H

(
S[t+1:n], S

[t]
)

= H(W[k]),

so

H(W[t+1:k]|S[t]) = H
(
S[t+1:k]|S[t]

)
= H

(
S[t+1:n]|S[t]

)
.

Hence we have

3H(W[t+1:k]|S[t]) ≤ (d− t+ 1)α− (d− t+ 1)H
(
S[t]
n

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
,

or

H(W[t+1:k]|S[t]) ≤ d− t+ 1

3
α− d− t+ 1

3
H
(
S[t]
n

)
+
d− t+ 1

6
H
(
St+1|S[t]

)
, (75)

for t = 0, . . . , k − 2.

Now, consider H
(
W[`+1:k]|S[`]

)
. For any t < `, we have

H
(
W[`+1:k]|S[`]

)
= H

(
W[`+1:k], S

[`]
)
−H

(
S[t]
)
−H

(
S[`]|S[t]

)
(g)
=H

(
W[t+1:k], S

[t]
)
−H

(
S[t]
)
−H

(
S[`]|S[t]

)
= H

(
W[t+1:k]|S[t]

)
−H

(
S[`]|S[t]

)
= H

(
W[t+1:k]|S[t]

)
−
∑̀
i=t+1

H
(
Si|S[i−1]

)
, (76)

where (g) follows from Proposition 1.

Since t < ` and ` ≤ k− 1, we have t ≤ k− 2. Then by invoking the upper bound on H
(
W[t+1:k]|S[t]

)
in (75), we have

H
(
W[`+1:k]|S[`]

)
≤ d+ 1− t

3
α− d+ 1− t

3
H
(
S[t]
n

)
+
d+ 1− t

6
H
(
St+1|S[t]

)
−
∑̀
i=t+1

H
(
Si|S[i−1]

)
,

which completes the proof.
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APPENDIX C

PROOF OF PROPOSITIONS IN SUBSECTION III-B

A. Proof of Proposition 3

Recall that

µt =


1
2

(
n−ˆ̀

2

)
n−2ˆ̀−1+t

(n−t
4 )

, 1 ≤ t ≤ ˆ̀− 3,

6(n−ˆ̀−3)

(n−ˆ̀+1)(n−ˆ̀+2)
, t = ˆ̀− 2, ˆ̀≥ 3,

6

n−ˆ̀+1
, t = ˆ̀− 1, ˆ̀≥ 2,

and

µ0 = 1−
ˆ̀−1∑
j=1

µj.

Since ˆ̀=
⌈

1
4
(n− 2)

⌉
, if ˆ̀≥ 3, we have n ≥ 11, and hence

n− ˆ̀− 3 = n−
⌈

1

4
(n− 2)

⌉
− 3 > n− 1

4
(n− 2)− 4 =

3

4

(
n− 14

3

)
> 0.

Also, when 1 ≤ t ≤ ˆ̀− 3, we have

n− 2ˆ̀− 1 + t ≥ n− 2ˆ̀= n− 2

⌈
1

4
(n− 2)

⌉
>

1

2
n− 1 > 0.

Hence, µt ≥ 0 for t = 1, . . . , ˆ̀− 1 and so it remains to show that µ0 ≥ 0.

For ˆ̀= 1, this is trivial as µ0 = 1. For ˆ̀≥ 2, we claim that

µ0 =

(
n− ˆ̀

)(
n− ˆ̀− 1

)(
n+ 1− 4ˆ̀

)
(n− 1)(n− 2)(n− 3)

. (77)

To see this, we first separately discuss the cases ˆ̀= 2 and ˆ̀= 3, where µt, t = 0, . . . , ˆ̀− 1 are as given

as follows:

• ˆ̀= 2

µt =


n−7
n−1

, t = 0,

6
n−1

, t = 1.
(78)

• ˆ̀= 3

µt =


(n−11)(n−4)
(n−2)(n−1)

, t = 0,

6(n−6)
(n−2)(n−1)

, t = 1,

6
n−2

, t = 2.

(79)

Then we can easily verify that (77) holds.



36

For ˆ̀≥ 4 and any j = 1, . . . , ˆ̀− 3, we have
j∑
i=1

µi =

j∑
i=1

1

2

(
n− ˆ̀

2

)
n− 2ˆ̀− 1 + i(

n−i
4

)
(∗)
=

(n− ˆ̀)(n− ˆ̀− 1)(n− 4ˆ̀+ 1 + 3j)

(n− j − 1)(n− j − 2)(n− j − 3)
+

(n− ˆ̀)(n− ˆ̀− 1)(4ˆ̀− n− 1)

(n− 1)(n− 2)(n− 3)
, (80)

where the above inequality and some other algebraic equalities in the sequel which are marked by an

asterisk can be verified by symbolic computation application such as SageMath [21]. The steps are very

lengthy and they are omitted here.

By substituting j = ˆ̀− 3, we have
ˆ̀−3∑
i=1

µi =
(n− ˆ̀)(n− ˆ̀− 1)(n− ˆ̀− 8)

(n− ˆ̀)(n− ˆ̀+ 1)(n− ˆ̀+ 2)
+

(n− ˆ̀)(n− ˆ̀− 1)(4ˆ̀− n− 1)

(n− 1)(n− 2)(n− 3)
.

Since

µˆ̀−2 =
6(n− ˆ̀− 3)

(n− ˆ̀+ 1)(n− ˆ̀+ 2)
,

and

µˆ̀−1 =
6

n− ˆ̀+ 1
,

we have
ˆ̀−1∑
i=1

µi = 1 +
(n− ˆ̀)(n− ˆ̀− 1)(4ˆ̀− n− 1)

(n− 1)(n− 2)(n− 3)

= 1−
(n− ˆ̀)(n− ˆ̀− 1)

(
n+ 1− 4ˆ̀

)
(n− 1)(n− 2)(n− 3)

,

and so

µ0 =
(n− ˆ̀)(n− ˆ̀− 1)

(
n+ 1− 4ˆ̀

)
(n− 1)(n− 2)(n− 3)

.

Therefore, we obtain

µ0 =


(n−ˆ̀)(n−ˆ̀−1)(n+1−4ˆ̀)

(n−1)(n−2)(n−3)
ˆ̀≥ 2,

1 ˆ̀= 1.
(81)

Since

n+ 1− 4ˆ̀= n+ 1− 4

⌈
1

4
(n− 2)

⌉
> n+ 1− (n− 2)− 4 = −1,

and n+ 1− 4ˆ̀ is an integer, we have

n+ 1− 4ˆ̀≥ 0,

and thus µ0 ≥ 0 for ˆ̀≥ 2.
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B. Proof of Proposition 4

We need to prove that ct ≥ 0 for t = 0, . . . , ˆ̀− 1 and cˆ̀−1 = 0 when ˆ̀≥ 2. Recall that

ct =
n− t

6
µt −

t∑
j=0

µj, t = 0, . . . , ˆ̀− 1.

First, we show that cˆ̀−1 = 0 for ˆ̀≥ 2 as follows:

cˆ̀−1 =
n− ˆ̀+ 1

6
µˆ̀−1 −

ˆ̀−1∑
j=0

µj = 1− 1 = 0.

For t = 0, it is easy to see that

c0 =
n

6
µ0 − µ0 =

n− 6

6
µ0 ≥ 0,

as ˆ̀≥ 2 implies that n ≥ 7, and we know from Proposition 3 that µ0 ≥ 0. Clearly, the proposition is

proved for ˆ̀= 2, and it remains to verify that ct ≥ 0 for t = 1, . . . , ˆ̀− 2 for ˆ̀≥ 3.

If ˆ̀= 3, we obtain from (79) that

c1 =
n− 1

6
µ1 −

1∑
j=0

µj =
n− 6

n− 2
−
(

1− 6

n− 2

)
=

2

n− 2
≥ 0, (82)

which completes the proof for ˆ̀= 3.

For ˆ̀≥ 4 and any t = 1, . . . , ˆ̀− 3, we have

ct =
n− t

6
µt −

t∑
j=0

µj

(∗)
=

2(n− ˆ̀)(n− ˆ̀− 1)(ˆ̀− 1− t)
(n− t− 1)(n− t− 2)(n− t− 3)

. (83)

It is easy to see that ct ≥ 0 for any t = 1, . . . , ˆ̀− 3 from (83).

If t = ˆ̀− 2, we have

cˆ̀−2 =
n− ˆ̀+ 2

6
µˆ̀−2 −

ˆ̀−2∑
j=0

µj =
n− ˆ̀+ 2

6
µˆ̀−2 − (1− µˆ̀−1) =

2

n− ˆ̀+ 1
> 0.

Hence, we obtain that ct ≥ 0, t = 1, . . . , ˆ̀− 2 for ˆ̀≥ 4.

In summary, for ˆ̀≥ 2, we have

ct =



n−6
6
µ0, t = 0,

2(n−ˆ̀)(n−ˆ̀−1)(ˆ̀−1−t)
(n−t−1)(n−t−2)(n−t−3)

, 1 ≤ t ≤ ˆ̀− 3,

2

n−ˆ̀+1
, t = ˆ̀− 2, ˆ̀≥ 3,

0, t = ˆ̀− 1,

(84)

which substantiates that cˆ̀−1 = 0 and ct ≥ 0 for all possible t and ˆ̀≥ 2.
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C. Proof of Proposition 5

We need to verify that λt = ct−1(d+ 1− t)− ct(d− t)− bt = 0 for t = 2, . . . , ˆ̀− 1 and ˆ̀≥ 3. Recall

that (84) and

bt =
n− t

3
µt.

If t = ˆ̀− 1, we have

λt = cˆ̀−2(d+ 2− ˆ̀)− cˆ̀−1(d− ˆ̀+ 1)− bˆ̀−1 = 2− (n− ˆ̀+ 1)

3
µˆ̀−1 = 0.

If t = ˆ̀− 2 (implies that ˆ̀≥ 4), we have

λt = cˆ̀−3(d+ 3− ˆ̀)− cˆ̀−2(d+ 2− ˆ̀)− bˆ̀−2 =
4(n− ˆ̀− 1)

n− ˆ̀+ 1
− 2− n− ˆ̀+ 2

3
µˆ̀−2 = 0.

If 2 ≤ t ≤ ˆ̀− 3 (implies that ˆ̀≥ 5), we have

λt = ct−1(d+ 1− t)− ct(d− t)− bt

=
2(n− ˆ̀)(n− ˆ̀− 1)(ˆ̀− t)

(n− t− 1)(n− t− 2)
− 2(n− ˆ̀)(n− ˆ̀− 1)(ˆ̀− 1− t)

(n− t− 2)(n− t− 3)
− n− t

6

(
n− ˆ̀

2

)
n− 2ˆ̀− 1 + t(

n−t
4

)
(∗)
= 0.

Therefore, we conclude that λt = ct−1(d+ 1− t)− ct(d− t)− bt = 0 for t = 2, . . . , ˆ̀− 1.

D. Proof of Proposition 6

We first prove that T2 ≥ 0 as follows:

T2 = b1 − c0d+ c1(d− 1)

=
n− 1

3
µ1 −

(n− 6)(n− 1)

6
µ0 +

(
n− 1

6
µ1 − µ0 − µ1

)
(n− 2)

=

(
1

6
(n− 7)(n− 2) +

1

3
(n− 1)

)
µ1 −

(
1

6
(n− 1)(n− 6) + (n− 2)

)
µ0

(∗)
=

(4ˆ̀+ 2− n)(n− ˆ̀)(n− ˆ̀− 1)

6(n− 2)
(a)
≥ 0,

where (a) is justified because ˆ̀=
⌈

1
4
(n− 2)

⌉
≥ 1

4
(n− 2).

Now, we focus on T1. For ˆ̀= 2, we have

T1 =

ˆ̀−1∑
t=0

n− t
3

µt =
n

3
µ0 +

n− 1

3
µ1

(a)
=
n(n− 7)

3(n− 1)
+2 =

(n− ˆ̀)(n− ˆ̀− 1)

(n− 3)(n− 2)

(
n(n+ 1− 4ˆ̀)

3(n− 1)
+ 2(ˆ̀− 1)

)
,
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where (a) follows from (78). For ˆ̀= 3, we have

T1 =

ˆ̀−1∑
t=0

n− t
3

µt

=
n

3
µ0 +

n− 1

3
µ1 +

n− 2

3
µ2

(a)
=
n(n− 4)(n− 11)

3(n− 1)(n− 2)
+

2(n− 6)

n− 2
+ 2

=
(n− ˆ̀)(n− ˆ̀− 1)

(n− 3)(n− 2)

(
n(n+ 1− 4ˆ̀)

3(n− 1)
+ 2(ˆ̀− 1)

)
,

where (a) follows from (79). For ˆ̀≥ 4, we have

T1 =

ˆ̀−1∑
t=0

n− t
3

µt

=
n

3
µ0 +

n− ˆ̀+ 2

3
µˆ̀−2 +

n− ˆ̀+ 1

3
µˆ̀−1 +

ˆ̀−3∑
t=1

n− t
3

µt

=
n(n− ˆ̀)(n− ˆ̀− 1)(n+ 1− 4ˆ̀)

3(n− 1)(n− 2)(n− 3)
+

4(n− ˆ̀− 1)

n− ˆ̀+ 1
+

ˆ̀−3∑
t=1

2(n− 2ˆ̀− 1 + t)(n− ˆ̀)(n− ˆ̀+ 1)

(n− t− 1)(n− t− 2)(n− t− 3)

(∗)
=

(n− ˆ̀)(n− ˆ̀− 1)

(n− 3)(n− 2)

(
n(n+ 1− 4ˆ̀)

3(n− 1)
+ 2(ˆ̀− 1)

)
.

Therefore, for ˆ̀≥ 2, we obtain

T1 =
(n− ˆ̀)(n− ˆ̀− 1)

(n− 3)(n− 2)

(
n(n+ 1− 4ˆ̀)

3(n− 1)
+ 2(ˆ̀− 1)

)
,

and we can verify that

T1 −
T2

d
=

(n− ˆ̀)(n− ˆ̀− 1)

(n− 3)(n− 2)

(
n(n+ 1− 4ˆ̀)

3(n− 1)
+ 2(ˆ̀− 1)

)
− (4ˆ̀+ 2− n)(n− ˆ̀)(n− ˆ̀− 1)

6(n− 2)(n− 1)

(∗)
=

(n− ˆ̀)(n− ˆ̀− 1)

2(n− 1)

=
Γk,d,ˆ̀

d
.

APPENDIX D

PROOF OF LEMMA 2

From (73), we know that for t = 0, . . . , k − 2,

H
(
W[t+1:k]|S[t]

)
≤

k∑
i=t+1

H
(
Wi|S[t]

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
−

k∑
i=t+2

H
(
S

[t+1:i−1]
i |S[t]

)
−H

(
S[t+1:k]|S[t]

)
.
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Then we have

H
(
W[t+1:k]|S[t]

)
≤

k∑
i=t+1

H
(
Wi|S[t]

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
−

k∑
i=t+2

H
(
S

[t+1:i−1]
i |S[t]

)
−H

(
S[t+1:k]|S[t]

)
=

k∑
i=t+1

(
H
(
Wi|S[t]

)
−H

(
S

[t+1:i−1]
i |S[t]

))
+
d− t+ 1

2
H
(
St+1|S[t]

)
−H

(
S[t+1:k]|S[t]

)
=

k∑
i=t+1

H
(
Wi|S[t], S

[t+1:i−1]
i

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
−H

(
S[t+1:k]|S[t]

)
≤

k∑
i=t+1

H
(
Wi|S[i−1]

i

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
−H

(
S[t+1:k]|S[t]

)
= (k − t)α−

k∑
i=t+1

H
(
S

[i−1]
i

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
−H

(
S[t+1:k]|S[t]

)
(a)
=(k − t)α−

k−1∑
i=t

H
(
S[i]
n

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
−H

(
S[t+1:k]|S[t]

)
,

where (a) follows from the symmetry. Therefore, we have

2H(W[t+1:k]|S[t])
(b)
=H(W[t+1:k]|S[t]) +H

(
S[t+1:k]|S[t]

)
≤ (k − t)α−

k−1∑
i=t

H
(
S[i]
n

)
+
d− t+ 1

2
H
(
St+1|S[t]

)
,

where (b) follows from Proposition 1.

Upon dividing by 2, we obtain

H(W[t+1:k]|S[t]) ≤ 1

2
(k − t)α− 1

2

k−1∑
i=t

H(S[i]
n ) +

1

4
(d− t+ 1)H(St+1|S[t]), (85)

for t = 0, . . . , k − 2.

Since ` ≤ k − 1, we know that `− 1 ≤ k − 2. By letting t = `− 1 in (85), we have

H(W[`:k]|S[`−1]) ≤ 1

2
(k − `+ 1)α− 1

2

k−1∑
i=`−1

H(S[i]
n ) +

1

4
(d− `+ 2)H(S`|S[`−1]). (86)

Finally, consider

H(W[`+1:k]|S[`]) = H(W[`+1:k], S
[`])−H(S[`])

(c)
=H(W[`:k], S

[`−1])−H(S[`])

= H(W[`:k]|S[`−1])−H(S[`]|S[`−1]), (87)

where (c) follows from Proposition 1. By substituting (86) into (87), we obtain that

H(W[`+1:k]|S[`]) ≤ 1

2
(k − `+ 1)α− 1

2

k−1∑
i=`−1

H(S[i]
n ) +

1

4
(d− `+ 2)H(S`|S[`−1])−H(S`|S[`−1])

=
1

2
(k − `+ 1)α− 1

2

k−1∑
i=`−1

H(S[i]
n ) +

1

4
(k − `− 2)H(S`|S[`−1]),
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which completes the proof.

APPENDIX E

PROOF OF LEMMA 3

We first prove (36). For any y = `+ 1, . . . , k and ` ≤ ty ≤ y − 1, consider

H
(
Sy|S[ty ],W[ty+1:y−1]

)
= H

(
Sy[y−1]∪[y+1:d+1]|S[ty ],W[ty+1:y−1]

)
= H

(
Sy[y+1:d+1]|S[ty ],W[ty+1:y−1]

)
(a)
≤H

(
Sy[y+1:d+1]|S[ty ], Sy[ty+1:y−1]

)
(b)
≤ d+ 1− y

d− ty
H
(
Sy[y+1:d+1], S

y
[ty+1:y−1]|S[ty ]

)
=
d+ 1− y
d− ty

H
(
Sy|S[ty ]

)
(c)
=
d+ 1− y
d− ty

H
(
Sty+1|S[ty ]

)
, (88)

where (a) follows because Sy[ty+1:y−1] is a function of W[ty+1:y−1], (b) follows from Han’s inequality, and

(c) is justified by invoking the symmetry.

Now, we focus on (37). If ty = y − 1, we have

H
(
Wy|S[ty ],W[ty+1:y−1]

)
= H

(
Wy|S[y−1]

)
≤ H

(
Wy|S[y−1]

y

)
= α−H

(
S[y−1]
y

)
= α−H

(
S[y−1]
n

)
,

where the last step follows from the symmetry. For ` ≤ ty ≤ y − 2, consider

H
(
Wy|S[ty ],W[ty+1:y−1]

) (a)
=H

(
Wy|Sty , S[ty−1],W[ty+1:y−1]

)
(b)
=H

(
Wy|Sty , S[ty−1],Wty ,W[ty+1:y−1]

)
= H

(
Wy|S[ty−1],Wty ,W[ty+1:y−1]

)
− I

(
Wy;S

ty |S[ty−1],Wty ,W[ty+1:y−1]

)
(c)
=H

(
Sy|S[ty−1],Wty ,W[ty+1:y−1]

)
−H

(
Sy|Wy, S

[ty−1],Wty ,W[ty+1:y−1]

)
− I

(
Wy;S

ty |S[ty−1],Wty ,W[ty+1:y−1]

)
(d)
=H

(
Sy|S[ty−1],Wty ,W[ty+1:y−1]

)
−H

(
Sty |Wty , S

[ty−1],Wy,W[ty+1:y−1]

)
− I

(
Wy;S

ty |S[ty−1],Wty ,W[ty+1:y−1]

)
= H

(
Sy|S[ty−1],Wty ,W[ty+1:y−1]

)
−H

(
Sty |S[ty−1],Wty ,W[ty+1:y−1]

)
(e)
=H

(
Sy|S[ty−1],Wty ,W[ty+1:y−1]

)
−H

(
Sy−1|S[ty−1],Wy−1,W[ty :y−2]

)
= H

(
Sy|S[ty−1],W[ty :y−1]

)
−H

(
Sy−1|S[ty−1],W[ty :y−1]

)
, (89)

where (a) follows because ty ≥ ` ≥ 1, so that Sty is well defined, (b) follows because Wty is a function

of Sty , (c) follows because Wy is a function of Sy, (d) is obtained from the symmetry by interchanging
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the indices y and ty in the second term (while keeping the indices [ty − 1] and [ty + 1 : y− 1] fixed), and

(e) is obtained from the symmetry by replacing the index ty by y − 1 and the indices [ty + 1 : y − 1] by

[ty : y − 2] (while keeping the indices [ty − 1] fixed).

On the right-hand side of (89), we can upper bound the first term as

H
(
Sy|S[ty−1],W[ty :y−1]

)
≤ d+ 1− y
d+ 1− ty

H
(
Sty |S[ty−1]

)
; (90)

this can be obtained by following the proof of (88) step-by-step with ty replaced by ty−1. For the second

term on the right-hand side of (89), we have

H
(
Sy−1|S[ty−1],W[ty :y−2],Wy−1

)
(a)
=H

(
Sy−1|S[ty−1],W[ty :y−2],Wy−1, S

[ty :y−2]
y−1

)
= H

(
Sy−1|S[ty−1],W[ty :y−2], S

[ty :y−2]
y−1

)
− I

(
Sy−1;Wy−1|S[ty−1],W[ty :y−2], S

[ty :y−2]
y−1

)
(b)
≥H

(
Sy−1|S[y−2]

)
− I

(
Sy−1;Wy−1|S[ty−1],W[ty :y−2], S

[ty :y−2]
y−1

)
(c)
=H

(
Sy−1|S[y−2]

)
−H

(
Wy−1|S[ty−1],W[ty :y−2], S

[ty :y−2]
y−1

)
(d)
≥H

(
Sy−1|S[y−2]

)
−H

(
Wy−1|S[y−2]

y−1

)
= H

(
Sy−1|S[y−2]

)
− α +H

(
S

[y−2]
y−1

)
(e)
=H

(
Sy−1|S[y−2]

)
− α +H

(
S[y−2]
n

)
, (91)

where (a) follows because S[ty :y−2]
y−1 is a function of Wy−1, (b) follows because

{
S[ty−1],W[ty :y−2], S

[ty :y−2]
y−1

}
is a function of S[y−2], (c) follows because Wy−1 is a function of Sy−1, (d) follows because S[y−2]

y−1 is a

subset of
{
S[ty−1],W[ty :y−2], S

[ty :y−2]
y−1

}
, and (e) follows from the symmetry.

By substituting (90) and (91) in (89), we finally obtain that

H
(
Wy|S[ty ],W[ty+1:y−1]

)
= H

(
Sy|S[ty−1],W[ty :y−1]

)
−H

(
Sy−1|S[ty−1],W[ty :y−1]

)
≤ d+ 1− y
d+ 1− ty

H
(
Sty |S[ty−1]

)
−
(
H
(
Sy−1|S[y−2]

)
− α +H

(
S[y−2]
n

))
= α−H

(
S[y−2]
n

)
+
d+ 1− y
d+ 1− ty

H
(
Sty |S[ty−1]

)
−H

(
Sy−1|S[y−2]

)
.

APPENDIX F

PROOF OF PROPOSITION 7

First, let us write µ̄j and ν̄j explicitly. For j = `, . . . , k, let

Λ1(j) = {(x, y) : qx,y = 1, tx,y = j − 1} ,

Λ2(j) = {(x, y) : qx,y = 0, tx,y = j, y 6= j + 1} ,
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and

Λ3(j) = {(x, y) : qx,y = 0, tx,y 6= j, y = j + 1} .

Here, Λ1(j) is the set of all (x, y) that contributes to the coefficient of H
(
Sj|S[j−1]

)
via the upper bound

in (36), Λ2(j) is the set of all (x, y) that contributes to the coefficient of H
(
Sj|S[j−1]

)
via the third

term in the upper bound in the first line of (37), and Λ3(j) is the set of all (x, y) that contributes to the

coefficient of H
(
Sj|S[j−1]

)
via the fourth term in the upper bound in the first line of (37). Since Λ1(j),

Λ2(j) and Λ3(j) are disjoint, for the row x, µx,j is defined by

µx,j =
∑
y

(
1Λ1(j)((x, y))

d+ 1− y
d+ 1− j + 1Λ2(j)((x, y))

d+ 1− y
d+ 1− j − 1Λ3(j)((x, y))

)
,

where

1A(a) =

1, if a ∈ A,

0, if a /∈ A.

Then we have

µ̄j =
1

m

∑
x

µx,j =
1

m

∑
x,y

(
1Λ1(j)((x, y))

d+ 1− y
d+ 1− j + 1Λ2(j)((x, y))

d+ 1− y
d+ 1− j − 1Λ3(j)((x, y))

)
. (92)

Similarly, for j = `, . . . , k − 1, let

∆1(j) = {(x, y) : qx,y = 0, tx,y = j, y = j + 1} ,

and

∆2(j) = {(x, y) : qx,y = 0, tx,y 6= j + 1, y = j + 2} .

Here, ∆1(j) is the set of all (x, y) that contributes to the coefficient of H(S
[j]
n ) via the second term in the

upper bound in the second line of (37), and Λ2(j) is the set of all (x, y) that contributes to the coefficient

of H(S
[j]
n ) via the second term in the upper bound in the first line of (37). Since ∆1(j) and ∆2(j) are

disjoint, for the row x, νx,j is defined by

νx,j =
∑
y

(
1∆1(j)((x, y)) + 1∆2(j)((x, y))

)
,

and so we have

ν̄j =
1

m

∑
x

νx,j =
1

m

∑
x,y

(
1∆1(j)((x, y)) + 1∆2(j)((x, y))

)
. (93)
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Now, consider

Γk,d,`
d
− d+ 1− `

`
µ̄` −

1

`

(
k∑

j=`+1

δj

)

=
Γk,d,`
d
− d+ 1− `

`
µ̄` −

1

`

k∑
j=`+1

(
(d+ 1− j)µ̄j −

k−1∑
i=j

ν̄i

)

=
Γk,d,`
d
− 1

`

(
k−1∑
j=`

ν̄j

)
− 1

`

k∑
j=`

(
(d+ 1− j)µ̄j −

k−1∑
i=j

ν̄i

)

=
Γk,d,`
d
− 1

`

(
k−1∑
j=`

ν̄j

)
− 1

`

k∑
j=`

(d+ 1− j)µ̄j +
1

`

k∑
j=`

k−1∑
i=j

ν̄i. (94)

First, focus on
∑k

j=`(d+ 1− j)µ̄j . Then we have

k∑
j=`

(d+ 1− j)µ̄j

=
k∑
j=`

(d+ 1− j) 1

m

∑
x,y

(
1Λ1(j)((x, y))

d+ 1− y
d+ 1− j + 1Λ2(j)((x, y))

d+ 1− y
d+ 1− j − 1Λ3(j)((x, y))

)

=
1

m

k∑
j=`

∑
x,y

(
1Λ1(j)((x, y))(d+ 1− y) + 1Λ2(j)((x, y))(d+ 1− y)− 1Λ3(j)((x, y))(d+ 1− j)

)
(a)
=

1

m

k∑
j=`

∑
x,y

(
1Λ1(j)((x, y))(d+ 1− y) + 1Λ2(j)((x, y))(d+ 1− y)− 1Λ3(j)((x, y))(d+ 2− y)

)
=

1

m

∑
x,y

(
(d+ 1− y)

k∑
j=`

1Λ1(j)((x, y)) + (d+ 1− y)
k∑
j=`

1Λ2(j)((x, y))− (d+ 2− y)
k∑
j=`

1Λ3(j)((x, y))

)
,

(95)

where (a) follows because for fixed x and y, 1Λ3(j)((x, y)) = 1 only if j = y − 1.

Since Λ1(j) ∩ Λ1(j′) = ∅, Λ2(j) ∩ Λ2(j′) = ∅ and Λ3(j) ∩ Λ3(j′) = ∅ for j 6= j′, we have
k∑
j=`

1Λ1(j)((x, y)) = 1∪jΛ1(j)((x, y)),

k∑
j=`

1Λ2(j)((x, y)) = 1∪jΛ2(j)((x, y)),

and
k∑
j=`

1Λ3(j)((x, y)) = 1∪jΛ3(j)((x, y)).

By examining the set ∪jΛ1(j), we have⋃
j

Λ1(j) = {(x, y) : qx,y = 1, `− 1 ≤ tx,y ≤ k − 1} .
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Since `− 1 ≤ tx,y ≤ k − 1 always holds, we have⋃
j

Λ1(j) = {(x, y) : qx,y = 1} ,

and hence

1∪jΛ1(j)((x, y)) =

1, if qx,y = 1,

0, if qx,y = 0,

which is equivalent to

1∪jΛ1(j)((x, y)) = qx,y. (96)

Similarly, for the sets ∪jΛ2(j) and ∪jΛ3(j), we have⋃
j

Λ2(j) = {(x, y) : qx,y = 0, y 6= tx,y + 1} ,

and ⋃
j

Λ3(j) = {(x, y) : qx,y = 0, tx,y 6= y − 1} .

Note that ∪jΛ2(j) = ∪jΛ3(j). By letting

∆ =
⋃
j

Λ2(j) =
⋃
j

Λ3(j) (97)

we have

1∪jΛ2(j)((x, y)) = 1∪jΛ3(j)((x, y)) = 1∆((x, y)). (98)

Hence, (95) can be written as
k∑
j=`

(d+ 1− j)µ̄j

=
1

m

∑
x,y

(
(d+ 1− y)1∪jΛ1(j)((x, y)) + (d+ 1− y)1∪jΛ2(j)((x, y))− (d+ 2− y)1∪jΛ3(j)((x, y))

)
=

1

m

∑
x,y

((d+ 1− y)qx,y − 1∆((x, y))) . (99)
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Now, focus on
∑k

j=`

∑k−1
i=j ν̄i in (94), and we have

k∑
j=`

k−1∑
i=j

ν̄i =
k−1∑
j=`

(j − `+ 1)ν̄j

=
k−1∑
j=`

(j − `+ 1)
1

m

∑
x,y

(
1∆1(j)((x, y)) + 1∆2(j)((x, y))

)
=

1

m

∑
x,y

(
k−1∑
j=`

(j − `+ 1)1∆1(j)((x, y)) +
k−1∑
j=`

(j − `+ 1)1∆2(j)((x, y))

)
(b)
=

1

m

∑
x,y

(
k−1∑
j=`

(y − `)1∆1(j)((x, y)) +
k−1∑
j=`

(y − `− 1)1∆2(j)((x, y))

)

=
1

m

∑
x,y

(
(y − `)

k−1∑
j=`

1∆1(j)((x, y)) + (y − `− 1)
k−1∑
j=`

1∆2(j)((x, y))

)
,

where (b) follows because for fixed x and y, 1∆1(j)((x, y)) = 1 only if y = j + 1 and 1∆2(j)((x, y)) = 1

only if y = j + 2.

Since ∆1(j) ∩∆1(j′) = ∅ and ∆2(j) ∩∆2(j′) = ∅ for j 6= j′, we have
k−1∑
j=`

1∆1(j)((x, y)) = 1∪j∆1(j)((x, y)),

and
k−1∑
j=`

1∆2(j)((x, y)) = 1∪j∆2(j)((x, y)).

By examining the sets ∪j∆1(j) and ∪j∆2(j), we have⋃
j

∆1(j) = {(x, y) : qx,y = 0, tx,y = y − 1} ,

and ⋃
j

∆2(j) = {(x, y) : qx,y = 0, tx,y 6= y − 1, `+ 2 ≤ y ≤ k + 1} .

Since ` + 1 ≤ y ≤ k, ∪j∆2(j) can be written as {(x, y) : qx,y = 0, tx,y 6= y − 1, y 6= `+ 1}. Note that if

y = ` + 1, then tx,y = ` = y − 1, so we know that tx,y 6= y − 1 implies that y 6= ` + 1. Hence, ∪j∆2(j)

can be written as ⋃
j

∆2(j) = {(x, y) : qx,y = 0, tx,y 6= y − 1} .

We can easily see that ∪j∆2(j) = ∆, where ∆ is defined in (97).

By letting

∆′ =
⋃
j

∆1(j),
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we have
k−1∑
j=`

1∆1(j)((x, y)) = 1∪j∆1(j)((x, y)) = 1∆′((x, y)).

Also,
k−1∑
j=`

1∆2(j)((x, y)) = 1∪j∆2(j)((x, y)) = 1∆((x, y)).

Hence, we obtain that
k∑
j=`

k−1∑
i=j

ν̄i =
1

m

∑
x,y

(
(y − `)

k−1∑
j=`

1∆1(j)((x, y)) + (y − `− 1)
k−1∑
j=`

1∆2(j)((x, y))

)

=
1

m

∑
x,y

((y − `)1∆′((x, y)) + (y − `− 1)1∆((x, y))) . (100)

By substituting (99) and (100) in (94), we obtain

Γk,d,`
d
− d+ 1− `

`
µ̄` −

1

`

(
k∑

j=`+1

δj

)

=
Γk,d,`
d
− 1

`

(
k−1∑
j=`

ν̄j

)
− 1

`

k∑
j=`

(d+ 1− j)µ̄j +
1

`

k∑
j=`

k−1∑
i=j

ν̄i

=
(c)
=

Γk,d,`
d
− 1

`

(
k−1∑
j=`

ν̄j

)
− 1

m`

∑
x,y

((d+ 1− y)qx,y − 1∆((x, y)))

+
1

m`

∑
x,y

((y − `)1∆′((x, y)) + (y − `− 1)1∆((x, y)))

=
Γk,d,`
d
− 1

`

(
k−1∑
j=`

ν̄j

)
− 1

m`

∑
x,y

((d+ 1− y)qx,y − (y − `) (1∆((x, y)) + 1∆′((x, y))))

(d)
=

Γk,d,`
d
− 1

`

(
k−1∑
j=`

ν̄j

)
− 1

m`

∑
x,y

((d+ 1− y)qx,y − (y − `)(1− qx,y))

=
Γk,d,`
d
− 1

`

(
k−1∑
j=`

ν̄j

)
− d+ 1− `

m`

∑
x,y

qx,y +
1

`

k∑
y=`+1

(y − `) .

where (c) follows from (99) and (100), and (d) is justified because ∆ and ∆′ are disjoint and ∆ ∪∆′ =

{(x, y) : qx,y = 0}.
Since we know from (37) and (41) that m

∑k−1
j=` ν̄j corresponds to the total number of zeros in the

matrix Q, we have

m
k−1∑
j=`

ν̄j =
∑
x,y

(1− qx,y),

and so ∑
x,y

qx,y = m(k − `)−m
k−1∑
j=`

ν̄j
(e)
=m(k − `)−mΓk,d,`

d
,
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where (e) follows from (43). Finally, we obtain that

Γk,d,`
d
− d+ 1− `

`
µ̄` −

1

`

(
k∑

j=`+1

δj

)

=
Γk,d,`
d
− 1

`

(
k−1∑
j=`

ν̄j

)
− d+ 1− `

m`

∑
x,y

qx,y +
1

`

k∑
y=`+1

(y − `)

=
Γk,d,`
d
− 1

`

Γk,d,`
d
− d+ 1− `

m`

(
m(k − `)−mΓk,d,`

d

)
+

1

`

k∑
y=`+1

(y − `)

=
Γk,d,`
`
− (d+ 1− `)(k − `)

`
+

1

`

k∑
y=`+1

(y − `)

=
1

`

(
k∑

i=`+1

(d+ 1− i)−
k∑

i=`+1

(d+ 1− `) +
k∑

i=`+1

(i− `)
)

= 0,

which completes the proof.

APPENDIX G

PROOF OF PROPOSITION 8

For j = `+ 1, . . . , k − 1, δ̄j can be written as

δ̄j = (d+ 1− j)µ̄j −
k−1∑
i=j

ν̄i

= (d+ 1− j)
(

1− z`+1 − zj+1 +
cj

d+ 1− j

)
−

k−2∑
i=j

zi+2

= (d+ 1− j) (1− z`+1 − zj+1) +
k∑

i=j+1

(d+ 1− i) (z`+i−j − z`+i−j+1)−
k−2∑
i=j

zi+2

= (d+ 1− j) (1− z`+1 − zj+1)−
k−2∑
i=j

zi+2 + (d− j)z`+1 −
k∑

i=j+2

z`+i−j − (d+ 1− k)z`+k−j+1

= (d+ 1− j) (1− zj+1)− (d+ 1− k)z`+k−j+1 −
k∑

i=j+2

zi −
k∑

i=j+1

z`+i−j

= (d+ 1− j) (1− zj+1)− (d+ 1− k)z`+k−j+1 −
k∑

i=j+2

zi −
`+k−j∑
i=`+1

zi. (101)
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Recall that we need to prove that for any (k, d, `) ∈ Ps, δ̄j ≥ 0 for j = ` + 1, . . . , k − 1. Since we

consider ` ≤ k − 2, (k, d, `) ∈ Ps implies that
d(d− `− 1)− 1

2
(2d− k − `+ 1)(2d+ k − 3`− 5) ≥ 0, ` ≤ k − 4,

k ≥ 1
3
(d+ 8), ` = k − 3,

k ≥ 1
4
(d+ 7), ` = k − 2.

First, we discuss the cases ` = k−2 and ` = k−3. When ` = k−2, we only need to verify that δ̄`+1 ≥ 0

provided that k ≥ 1
4
(d+ 7). From (101), we have

δ̄`+1 = (d− `) (1− zk)− (d+ 1− k)zk − z`+1

= (d− `)− (2d− k − `+ 1)zk − z`+1

= (d− `)− (2d− k − `)zk − (z`+1 + zk)

(a)
=(d− `)− (2d− k − `)zk −

2d− k − `+ 1

d
,

where (a) follows from (66).

Since we know from (54) that

zk =


d−k−`+1

d
, ` < d− k + 1,

0, ` ≥ d− k + 1,
(102)

we have

δ̄`+1 =

(d− `)− 2(d−k+1)(d−k−`+1)
d

− 2d−k−`+1
d

, ` < d− k + 1,

(d− `)− 2d−k−`+1
d

, ` ≥ d− k + 1.
(103)

By re-arranging (103) and substituting ` = k − 2, we obtain that

δ̄`+1 =


d(d−k+2)−2(d−k+1)(d−2k+3)−(2d−2k+3)

d
, k < 1

2
(d+ 3),

d(d−k+2)−(2d−2k+3)
d

, k ≥ 1
2
(d+ 3).

(104)

We can see that
d(d− k + 2)− (2d− 2k + 3)

d
=

(d− 2)(d− k + 2) + 1

d
≥ 0

because d ≥ k = ` + 2 ≥ 3. Then we only need to consider k < 1
2
(d + 3), and it remains to show that

g1(k) ≥ 0 provided that k ≥ 1
4
(d+ 7) and k < 1

2
(d+ 3), where

g1(k) = d(d− k + 2)− 2(d− k + 1)(d− 2k + 3)− (2d− 2k + 3).

For the quadratic equation g1(k) = 0, the discriminant is 9d2 − 8d ≥ 0, so the two roots are given by

k1 = 1
8

(
5d−

√
9d2 − 8d+ 12

)
and k2 = 1

8

(
5d+

√
9d2 − 8d+ 12

)
. Since the leading coefficient of g1(k)
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is negative, we see that g1(k) ≥ 0 if and only if k1 ≤ k ≤ k2. Hence, to prove that g1(k) ≥ 0 provided

that k ≥ 1
4
(d + 7) and k < 1

2
(d + 3), it suffices to have k1 ≤ 1

4
(d + 7) and k2 ≥ 1

2
(d + 3), which can be

shown by considering

k2 =
1

8

(
5d+

√
9d2 − 8d+ 12

)
≥ 1

8
(5d+ 12) ≥ 1

2
(d+ 3),

and

k1 =
1

4
(d+ 7) +

1

8

(
3d− 2−

√
9d2 − 8d

)
=

1

4
(d+ 7) +

1

8

(√
(3d− 2)2 −

√
9d2 − 8d

)
=

1

4
(d+ 7) +

1

8

(√
9d2 − 8d− 4(d− 1)−

√
9d2 − 8d

)
≤ 1

4
(d+ 7).

This completes the proof.

When ` = k− 3, we need to verify that δ̄`+1 ≥ 0 and δ̄`+2 ≥ 0 provided that k ≥ 1
3
(d+ 8). First, focus

on δ̄`+1. From (101), we have

δ̄`+1 = (d− `) (1− z`+2)− (d+ 1− k)zk − zk − z`+1 − z`+2

= (d− `)− (d− `+ 1)z`+2 − (d+ 1− k)zk − (z`+1 + zk)

(b)
=(d− `)− (d− `+ 1)z`+2 − (d+ 1− k)zk −

2d− k − `+ 1

d
(c)
=(d− `)− (d− `+ 1)(2d− k − `+ 1)

2d
− (d+ 1− k)zk −

2d− k − `+ 1

d
,

where (b) follows from (66) and (c) follows from (54). Then from (102), we have

δ̄`+1 =

(d− `)− (d−`+1)(2d−k−`+1)
2d

− (d+1−k)(d−k−`+1)
d

− 2d−k−`+1
d

, ` < d− k + 1,

(d− `)− (d−`+1)(2d−k−`+1)
2d

− 2d−k−`+1
d

, ` ≥ d− k + 1.
(105)

If ` < d− k + 1, we have

δ̄`+1 = (d− `)− (d− `+ 1)(2d− k − `+ 1)

2d
− (d+ 1− k)(d− k − `+ 1)

d
− 2d− k − `+ 1

d
(d)
=(d− k + 3)− (d− k + 4)(d− k + 2)

d
− (d+ 1− k)(d− 2k + 4)

d
− 2(d− k + 2)

d

=
(3k − d− 8)(d− k + 2)

d
(e)
≥ 0,
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where (d) follows from substituting ` = k − 3 and (e) follows from our assumption that k ≥ 1
3
(d+ 8). If

` ≥ d− k + 1, we have

δ̄`+1 = (d− `)− (d− `+ 1)(2d− k − `+ 1)

2d
− 2d− k − `+ 1

d
(f)
≥ (d− `)(2d− k − `+ 1)

d
− (d− `+ 1)(2d− k − `+ 1)

2d
− 2d− k − `+ 1

d

=
(d− `− 3)(2d− k − `+ 1)

2d

=
(d− k)(2d− k − `+ 1)

2d

≥ 0,

where (f) follows because ` ≥ d − k + 1 implies 2d−k−`+1
d

≤ 1. Thus, we obtain that δ̄`+1 ≥ 0 provided

that k ≥ 1
3
(d+ 8).

For δ̄`+2, we obtain from (101) that

δ̄`+2 = (d− `− 1) (1− zk)− (d+ 1− k)z`+2 − z`+1

= (d− `− 1)− (d− `− 2)zk − (d+ 1− k)z`+2 − (z`+1 + zk)

(g)
=(d− `− 1)− (d− `− 2)zk − (d+ 1− k)z`+2 −

2d− k − `+ 1

d
(h)
=(d− `− 1)− (d− `− 2)zk −

(d+ 1− k)(2d− k − `+ 1)

2d
− 2d− k − `+ 1

d
,

where (g) follows from (66) and (h) follows from (54). Then from (102), we have

δ̄`+2 =

(d− `− 1)− (d−`−2)(d−k−`+1)
d

− (d+1−k)(2d−k−`+1)
2d

− 2d−k−`+1
d

, ` < d− k + 1,

(d− `− 1)− (d+1−k)(2d−k−`+1)
2d

− 2d−k−`+1
d

, ` ≥ d− k + 1.
(106)

If ` ≥ d− k + 1, we have

δ̄`+2 = (d− `− 1)− (d+ 1− k)(2d− k − `+ 1)

2d
− 2d− k − `+ 1

d
(i)
≥ (d− `− 1)(2d− k − `+ 1)

d
− (d+ 1− k)(2d− k − `+ 1)

2d
− 2d− k − `+ 1

d

=
(d+ k − 2`− 5)(2d− k − `+ 1)

2d

=
(d− k + 1)(2d− k − `+ 1)

2d

≥ 0,

where (i) follows because ` ≥ d − k + 1 implies 2d−k−`+1
d

≤ 1. Hence it remains to show that δ̄`+2 ≥ 0

provided that ` < d − k + 1 and k ≥ 1
3
(d + 8). To see this, by substituting ` = k − 3, the first case of

(106) can be written as

δ̄`+2 = (d− k+ 2)− (d− k + 1)(d− 2k + 4)

d
− (d+ 1− k)(d− k + 2)

d
− 2(d− k + 2)

d
, k <

1

2
(d+ 4).
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Let

g2(k) = (d− k + 2)− (d− k + 1)(d− 2k + 4)

d
− (d+ 1− k)(d− k + 2)

d
− 2(d− k + 2)

d
.

Then we need to prove that g2(k) ≥ 0 provided that k ≥ 1
3
(d+ 8) and k < 1

2
(d+ 4). By rearranging the

terms in g2(k), we have

g2(k) =
(d− k + 2)(3k − d− 8) + (2d− 3k + 6)

d
.

For the quadratic equation g2(k) = 0, the discriminant is 4d2− 8d+ 1 ≥ 0, so the two roots of g2(k) = 0

are given by

k1 =
1

6

(
4d+ 11−

√
4d2 − 8d+ 1

)
,

and

k2 =
1

6

(
4d+ 11 +

√
4d2 − 8d+ 1

)
.

Since the leading coefficient of g2(k) is negative, we see that g2(k) ≥ 0 if and only if k1 ≤ k ≤ k2.

Hence, to prove that g2(k) ≥ 0 provided that k ≥ 1
3
(d+ 8) and k < 1

2
(d+ 4), we only need to show that

k1 ≤ 1
3
(d+ 8) and k2 ≥ 1

2
(d+ 4). Consider

k2 ≥
1

6
(4d+ 11) =

1

2
(d+ 4) +

1

6
(d− 4)

(j)
≥ 1

2
(d+ 4),

and

k1 =
1

6

(
4d+ 11−

√
4d2 − 8d+ 1

)
=

1

3
(d+ 8) +

1

6

(
2d− 11−

√
4d2 − 8d+ 1

)
≤ 1

3
(d+ 8) +

1

6

(√
(2d− 11)2 −

√
4d2 − 8d+ 1

)
=

1

3
(d+ 8) +

1

6

(√
4d2 − 8d+ 1− 12(3d− 10)−

√
4d2 − 8d+ 1

)
(k)
≤ 1

3
(d+ 8),

where (j) and (k) are justified because we have d ≥ k ≥ `+ 3 ≥ 4. The proof is completed.

Now, we consider the case ` ≤ k − 4. We need to show that for any given (k, d, `), where ` ≤ k − 4,

if g(`) ≥ 0 (c.f.(50)), then δ̄j ≥ 0 for j = `+ 1, . . . , k − 1.

First, we claim that if g(`) ≥ 0, then ` ≥ d−k+1. To see this, recall that we know from the discussion

in Section IV-B that g(`) ≥ 0 if and only if `1 ≤ ` ≤ `2, where

`1 =
1

3

(
3d− k − 1−

√
3(d− k)2 + 12(d− 4) + (k − 8)2

)
,

and

`2 =
1

3

(
3d− k − 1 +

√
3(d− k)2 + 12(d− 4) + (k − 8)2

)
.
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Clearly, to justify the claim, we only need to show that `1 ≥ d− k + 1. Consider

`1 =
1

3

(
3d− k − 1−

√
3(d− k)2 + 12(d− 4) + (k − 8)2

)
= (d− k + 1) +

1

3

(
2k − 4−

√
3(d− k)2 + 12(d− 4) + (k − 8)2

)
= (d− k + 1) +

1

3

(√
(2k − 4)2 −

√
3(d− k)2 + 12(d− 4) + (k − 8)2

)
= (d− k + 1) +

1

3

(√
(2k − 4)2 −

√
(2k − 4)2 + 3d(d− 2k + 4)

)
.

We see that `1 ≥ d − k + 1 if and only if d − 2k + 4 ≤ 0. Hence, it remains to show that if g(`) ≥ 0

for some ` ≤ k − 4, then d − 2k + 4 ≤ 0. Since we know from Section IV-B that if g(`) ≥ 0 for some

` ≤ k− 4, then g(`′) ≥ 0 for any `′ such that ` ≤ `′ ≤ k− 4. In particular, we have g(k− 4) ≥ 0. Hence,

we have

g(k − 4) = d(d− k + 3)− 1

2
(2d− 2k + 5)(2d− 2k + 7) = (2k − d− 6)(d− k + 3) +

1

2
≥ 0.

Since k and d are integers and d ≥ k, we must have 2k − d− 6 ≥ 0, which implies that d− 2k + 4 ≤ 0.

Thus, we have proved the claim that if g(`) ≥ 0, then ` ≥ d− k + 1.

Under the condition ` ≥ d− k + 1, (54) can be written as

zj =


2d−k−`+1

d
, j = `+ 1,

2d−k−`+1
2d

, j = `+ 2, . . . , k − 1,

0, j = k.

(107)

Now, we write δ̄j explicitly for all values of j. Recall from (101) that

δ̄j = (d+ 1− j) (1− zj+1)− (d+ 1− k)z`+k−j+1 −
k∑

i=j+2

zi −
`+k−j∑
i=`+1

zi.

If j = `+ 1, we have

δ̄`+1 = (d− `) (1− z`+2)− (d+ 1− k)zk −
k∑

i=`+3

zi −
k−1∑
i=`+1

zi

= (d− `) (1− z`+2)− (d+ 1− k)zk −
k−1∑
i=`+3

zi − z`+1 −
k−1∑
i=`+2

zi

(l)
=(d− `)

(
1− 2d− k − `+ 1

2d

)
− 0− (k − `− 3)(2d− k − `+ 1)

2d

− 2d− k − `+ 1

d
− (k − `− 2)(2d− k − `+ 1)

2d

= (d− `)− (d+ 2k − 3`− 3)(2d− k − `+ 1)

2d

= (d− `− 1)− (2d+ k − 3`− 5)(2d− k − `+ 1)

2d
+

(d− k − 2)(2d− k − `+ 1)

2d
+ 1
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=
g(`)

d
+

(d− k − 2)(2d− k − `+ 1)

2d
+ 1

(m)
≥ g(`)

d
+

(d− k − 2)(2d− k − `+ 1)

2d
+

2d− k − `+ 1

d

=
g(`)

d
+

(d− k)(2d− k − `+ 1)

2d

≥ g(`)

d
(n)
≥ 0,

where (l) follows from (107), (m) follows because ` ≥ d− k + 1 implies 2d−k−`+1
d

≤ 1, and (n) follows

from the assumption that g(`) ≥ 0.

If j = k − 1, we have

δ̄k−1 = (d− k + 2) (1− zk)− (d+ 1− k)z`+2 − z`+1

(o)
=(d− k + 2)− (d+ 1− k)(2d− k − `+ 1)

2d
− 2d− k − `+ 1

d
(p)
≥ (2d− k − `+ 1)(d− k + 2)

d
− (d+ 1− k)(2d− k − `+ 1)

2d
− 2d− k − `+ 1

d

=
(2d− k − `+ 1)(d− k + 1)

2d

≥ 0,

where (o) follows from (107), and (p) follows because ` ≥ d− k + 1 implies 2d−k−`+1
d

≤ 1.

For j = `+ 2, . . . , k − 2, we have

δ̄j = (d+ 1− j) (1− zj+1)− (d+ 1− k)z`+k−j+1 −
k∑

i=j+2

zi −
`+k−j∑
i=`+1

zi

= (d+ 1− j) (1− zj+1)− (d+ 1− k)z`+k−j+1 −
k−1∑
i=j+2

zi − z`+1 −
`+k−j∑
i=`+2

zi

= (d+ 1− j)
(

1− 2d− k − `+ 1

2d

)
− (d+ 1− k)(2d− k − `+ 1)

2d

− (k − j − 2)(2d− k − `+ 1)

2d
− 2d− k − `+ 1

d
− (k − j − 1)(2d− k − `+ 1)

2d

= (d+ 1− j)− (2d+ k − 3j + 1)(2d− k − `+ 1)

2d
.

Then we consider the following two cases.

• If d ≥ 3
2
(2d− k − `+ 1), we have

δ̄j = (d+ 1− j)− (2d+ k − 3j + 1)(2d− k − `+ 1)

2d

=
3(2d− k − `+ 1)− 2d

2d
j + (d+ 1)− (2d+ k + 1)(2d− k − `+ 1)

2d

≥ 3(2d− k − `+ 1)− 2d

2d
(k − 2) + (d+ 1)− (2d+ k + 1)(2d− k − `+ 1)

2d
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= (d− k + 3)− 1

2d
(2d− k − `+ 1)(2d− 2k + 7)

(q)
≥ 3

2d
(2d− k − `+ 1)(d− k + 3)− 1

2d
(2d− k − `+ 1)(2d− 2k + 7)

=
1

2d
(2d− k − `+ 1)(d− k + 2)

≥ 0,

where (q) follows because d ≥ 3
2
(2d− k − `+ 1) implies that 3

2d
(2d− k − `+ 1) ≤ 1.

• If d < 3
2
(2d− k − `+ 1), we have

δ̄j = (d+ 1− j)− (2d+ k − 3j + 1)(2d− k − `+ 1)

2d

=
3(2d− k − `+ 1)− 2d

2d
j + (d+ 1)− (2d+ k + 1)(2d− k − `+ 1)

2d

≥ 3(2d− k − `+ 1)− 2d

2d
(`+ 2) + (d+ 1)− (2d+ k + 1)(2d− k − `+ 1)

2d

= (d− `− 1)− (2d+ k − 3`− 5)(2d− k − `+ 1)

2d

=
g(`)

d

≥ 0.

Combining two two cases, we have δ̄j ≥ 0 for j = `+2, . . . , k−2. Therefore, we have shown that δ̄j ≥ 0

for j = `+ 1, . . . , k − 1.
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