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Interval Algorithm for Random Number

Generation: Information Spectrum Approach

Shun Watanabe and Te Sun Han

Abstract

The problem of exactly generating a general random process (target process) by using another general random

process (coin process) is studied. The performance of the interval algorithm, introduced by Han and Hoshi, is analyzed

from the perspective of information spectrum approach. When either the coin process or the target process has one

point spectrum, the asymptotic optimality of the interval algorithm among any random number generation algorithms

is proved, which demonstrates utility of the interval algorithm beyond the ergodic process. Furthermore, the feasibility

condition of exact random number generation is also elucidated. Finally, the obtained general results are illustrated

by the case of generating a Markov process from another Markov process.

I. INTRODUCTION

We revisit the problem of exactly generating a random process, termed target process, from another random

process, termed coin process. This problem has a long history. In a seminal paper [35], von Neumann introduced an

algorithm to generate the independently identically distributed (i.i.d.) binary unbiased process from an i.i.d. binary

biased process. Subsequently, his result was extended and refined in various directions [28], [14], [7], [4], [25].

On the other hand, Knuth and Yao [15] studied the problem of generating an arbitrary target process using i.i.d.

unbiased coin process. Later, the problem of generating an arbitrary target process from an arbitrary coin process

was studied by various researchers [27], [1]. For instance, by generalizing the approach in [15], Abrahams proposed

an algorithm to generate an arbitrary target process from an i.i.d. biased (not necessarily binary) coin process [1];

however, this algorithm is only applicable to the algebraic coin, i.e., the case where the probabilities of coin random

variable is described by the root of a polynomial equation. In this paper, we focus on the interval algorithm proposed

in [10]. The interval algorithm is constructive, and it can be applied to any coin/target processes that may have

memory and may not be stationary nor ergodic. Thus, it is of interest to identify under what circumstances the

interval algorithm has the optimal performance. In fact, despite simplicity of the algorithm, performance analysis

of the interval algorithm is not straightforward.

When the coin process is i.i.d., Han and Hoshi have shown that the interval algorithm asymptotically attains the

optimal performance among any random number generation algorithm [10]; more precisely, they have shown that

the average stopping time of the coin process, i.e., the average number of coin tosses, of the interval algorithm
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converges to the fundamental limit, which is given by the ratio between the entropy rates of the coin and target

processes. Using representation of real numbers, Oohama refined Han and Hoshi’s performance analysis of the

interval algorithm [23], [24].

For i.i.d. coin processes, the performance of the interval algorithm is fairly well understood. However, in practice,

it is also desirable to use a coin process that has a memory, such as the Markov process. When the coin process is

Markov, the performance analysis of the interval algorithm become intractable. In fact, even though performance

analysis of the interval algorithm for the Markov coin process was conducted in [10], [24], the analyses there do

not guarantee asymptotic optimality. One of the motivations of this paper is to elucidate the performance of the

interval algorithm when the coin process is Markov.

On the other hand, Uyematsu and Kanaya studied the overflow probability of the stopping time of the interval

algorithm [31], [32]. In [32], they derived an exponential convergence rate of the overflow probability of the stopping

time for i.i.d. processes. In [31], using the sample path approach [29], they derived almost sure convergence results

on the stopping time for general coin/target processes; however, since their characterization is in terms of the

quantities defined for sample path [20], it is not immediately clear how to evaluate those quantities other than

ergodic processes. Moreover, they only analyzed the interval algorithm and did not discuss the optimality of the

interval algorithm among other random number generation algorithms. Even though the almost sure convergence

analysis is of theoretical importance, the authors believe that the average performance analysis is preferable in

practice since it provides more insights on the finite length performance along the way of deriving asymptotic

results. It should be also pointed out that the almost sure convergence of stopping time does not immediately

provide performance guarantee of the average stopping time (cf. Remark 14).

As a related problem to the above, the problem of random number generation with approximation error has been

extensively studied in the past few decades [11], [34], [21], [8], [12], [2], [22], [17]. In such a direction of research,

the information spectrum approach introduced in [11], [9] is successfully used to derive fairly general results.

In this paper, we apply the information spectrum approach to the problem of exactly generating a random process

by another random process. First, we derive a converse bound on the overflow probability of the stopping time for

any random number generation algorithms. Second, we derive an achievability bound on the overflow probability

of the stopping time that can be attained by the interval algorithm. Using these bounds, we examine the asymptotic

optimality of the interval algorithm for general coin/target processes. For the criterion of the overflow probability of

the stopping time, when either the coin or the target process has one point spectrum, the optimality of the interval

algorithm among any random number generation algorithms is proved. For the average stopping time criterion,

when the coin process has one point spectrum with an additional mild condition, the optimality of the interval

algorithm among any random number generation algorithms is proved. These results demonstrate the utility of the

interval algorithm for non-stationary and/or non-ergodic processes. As a side result, we also elucidate the condition

that exact random number generation is possible. Finally, we illustrate the obtained general results by the case of

Markov coin/target processes.

The rest of the paper is organized as follows. In Section II, we describe the problem formulation and derive a
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converse bound for any random number generation algorithm. In Section III, we derive an achievability bound for

the interval algorithm. In Section IV, we conduct the asymptotic analysis. In Section V, we mention the connection

between the variable-length random number generation and the fixed-length random number generation. We close

the paper with discussion in Section VI.

Notation

Throughout the paper, random variables (eg. X) and their realizations (eg. x) are denoted by capital and lower

case letters, respectively. The ranges of random variables are denoted by the respective calligraphic letters (eg. X ).

The probability distribution of random variable X is denoted by PX . Similarly, Xn = (X1, . . . , Xn) and xn =

(x1, . . . , xn) denote, respectively, a random vector and its realization in the nth Cartesian product Xn of X . We

use the standard notations for information measures [5], such as the entropy H(X), the min-entropy Hmin(X) =

minx log
1

PX (x) , and the binary entropy function h(t) = t log(1/t) + (1 − t) log(1/(1 − t)) for 0 ≤ t ≤ 1. For a

random process X = {Xn}∞n=1, the spectral sup-entropy and the spectral inf-entropy are denoted by

H(X) := inf

{

λ : lim
n→∞

Pr

(

1

n
log

1

PXn(Xn)
≥ λ

)

= 0

}

(1)

and

H(X) := sup

{

λ : lim
n→∞

Pr

(

1

n
log

1

PXn(Xn)
≤ λ

)

= 0

}

, (2)

respectively [9]. The sup-entropy rate is denoted by

H(X) := lim sup
n→∞

1

n
H(Xn), (3)

and it coincides with the entropy rate if the limit exists. The base of log and exp is 2 and the natural logarithm is

denoted by ln.

II. PROBLEM FORMULATION AND BASIC RESULTS

In this section, we describe the problem formulation of random number generation with variable length coin

tossing. Let X = {Xm = (X1, . . . , Xm)}∞m=1 be a random process taking values in a finite set X = {1, . . . ,M},

and let Y = {Y n = (Y1, . . . , Yn)}∞n=1 be a random process taking values in a finite set Y = {1, . . . , N}. Unless

otherwise stated, the distributions PXm and PY n of the processes can be arbitrary as long as they are consistent

over time; i.e.,

∑

xm+1

PXm+1(xm, xm+1) = PXm(xm)

for every m and xm ∈ Xm, and similarly for PY n . We shall consider the problem of random number generation

to simulate the sequence of random variables Y n using outputs from the sequence of random variable Xm; the

former is referred to as target process and the latter is referred to as coin process. Specifically, an algorithm of
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random number generation with variable length coin tossing is described by a full M -ary tree of possibly infinite

depth (see Example 1 below); that is, it is described by a deterministic function

φ :

∞
⋃

i=0

X i → {⊥} ∪ Yn (4)

such that φ(xi) ∈ Yn if xi corresponds to a leaf and φ(xi) = ⊥ otherwise, where ⊥ is the null sequence and

X 0 = {⊥}. Let Lφ be the set of all leaves, i.e.,

Lφ :=

{

s ∈
∞
⋃

i=0

X i : φ(s) ∈ Yn and for all proper prefix s′ of s, φ(s′) = ⊥

}

.

For a leaf s = (x1, . . . , xi) ∈ Lφ, its depth i is denoted by |s|.

For a given infinite sequence x1, x2, . . ., starting with i = 0, we output a symbol in Yn by the following algorithm:

1) If φ(xi) is in Yn, output φ(xi) and terminate;

2) Set i = i+ 1, and go back to Step 1.

For performance analysis, it is convenient to consider the output of the algorithm for an input sequence of finite

length. By an abuse of notation, we denote the output of the above algorithm for a sequence xm by φ(xm), i.e.,

φ(xm) = yn if the algorithm terminates with output φ(xi) = yn for some i ≤ m, and φ(xm) = ⊥ otherwise. The

stopping time of the algorithm, i.e., the minimum integer m ≥ 0 such that φ(Xm) ∈ Yn, is denoted by T ; note

that the stopping time T is the random variable that is induced by the algorithm and the coin process X . For any

fixed length n of the target process, we require that the probability law of the output of the algorithm coincides

with PY n exactly as m→ ∞, i.e.,

∑

s∈Lφ:

φ(s)=yn

PX|s|(s) = lim
m→∞

Pr(φ(Xm) = yn) = PY n(yn) (5)

for every yn ∈ Yn.

Note that the algorithm described as in (4) outputs sequence yn ∈ Yn of length n collectively. Practically, it is

also important to consider an algorithm that outputs symbol yj whenever it is ready; such an algorithm is termed a

sequential algorithm. We will consider a sequential version of the interval algorithm in the next section. It should

be noted that, for a given sequential algorithm, we can describe that algorithm in the form of (4) by pooling

y1, . . . , yn−1 until yn is ready to be output. Thus, the converse bound to be described later in this section is also

valid for sequential algorithms.

Let us illustrate the problem formulation by the following simple example.

Example 1 ([5]) Let us consider generation of one symbol, i.e., n = 1, of random variable with distribution

PY = (2/3, 1/3) using the i.i.d. sequence {Xm}∞m=1 of unbiased binary random variables. For this example, by

noting the binary expansions

2

3
=

∞
∑

i=1

2−(2i−1),

1

3
=

∞
∑

i=1

2−2i,
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1 2

1 2

2

2

1 2

1

1

1

2

Fig. 1. A description of algorithm tree in Example 1. The label 1 or 2 of each edge indicates the outcome of coin random variable Xi.

The circle node at depth i indicates that the algorithm does not terminate when Xi is observed; the square node at depth i indicates that the

algorithm terminates with the output labeled in that square node.

we can construct an algorithm with the tree described in Fig. 1.

When the coin process is i.i.d. with common distribution PX , there is a useful lower bound on the expected

stopping time (cf. [10, Eq. (2.4)]):

E[T ] ≥
H(Y n)

H(X)
.

Since this lower bound is not available for general coin processes, the following lower bound on the overflow

probability of the stopping time Pr(T > m) is of importance in the latter sections; note that this lower bound is

reminiscent of [9, Lemma 2.1.2].

Theorem 2 For arbitrary random number generation algorithm satisfying (5) and integer m ≥ 0, the overflow

probability of the stopping time satisfies

Pr(T > m) ≥ PY n(T c
n (τ)) − PXm(Sm(λ))− 2−τ+λ (6)

= PXm(Sc
m(λ))− PY n(Tn(τ)) − 2−τ+λ (7)

for arbitrary real numbers τ, λ ≥ 0, where

Sm(λ) :=

{

xm ∈ Xm : log
1

PXm(xm)
≥ λ

}

, (8)

Tn(τ) :=

{

yn ∈ Yn : log
1

PY n(yn)
≤ τ

}

. (9)

August 27, 2019 DRAFT



6

Proof: Without loss of generality, we can assume that there is no leaf s ∈ Lφ such that |s| < m; otherwise,

we can expand that leaf to depth m without changing the overflow probability Pr(T > m). Thus, we assume this

assumption is satisfied in the rest of the proof.

Let

B :=
{

s ∈ Lφ : |s| = m
}

.

Then, we can write

Pr(T > m) =
∑

s∈Bc

PX|s|(s),

where Bc = Lφ\B. Let

C :=
{

s ∈ Lφ : φ(s) ∈ T c
n (τ)

}

.

Then, we have

PY n(T c
n (τ)) =

∑

s∈C

PX|s|(s)

=
∑

s∈B∩C

PXm(s) +
∑

s∈Bc∩C

PX|s|(s)

≤
∑

s∈B∩C

PXm(s) +
∑

s∈Bc

PX|s|(s)

=
∑

s∈B∩C

PXm(s) + Pr(T > m), (10)

where the first identity follows from (5). Furthermore, we have

∑

s∈B∩C

PXm(s) =
∑

s∈B∩C∩Sm(λ)

PXm(s) +
∑

s∈B∩C∩Sc
m(λ)

PXm(s)

≤ PXm(Sm(λ)) +
∑

s∈B∩C∩Sc
m(λ)

PXm(s)

≤ PXm(Sm(λ)) +
∑

s∈B∩C∩Sc
m(λ)

PY n(φ(s))

≤ PXm(Sm(λ)) +
∑

s∈B∩C∩Sc
m(λ)

2−τ

≤ PXm(Sm(λ)) + 2−τ+λ, (11)

where the second inequality follows from φ(s) ∈ Yn for s ∈ C, the third inequality follows from φ(s) ∈ T c
n (τ) for

s ∈ C, and the last inequality follows from the bound |Sc
m(λ)| ≤ 2λ. By combining (10) and (11), we obtain (6);

then, (7) follows from (6).

August 27, 2019 DRAFT



7

III. PERFORMANCE OF INTERVAL ALGORITHM

First, we review a sequential version of the interval algorithm.1 In the algorithm, we sequentially update intervals

Is := [αs, αs),

Jt := [β
t
, βt)

induced by coin process and target process, respectively. For the null sequence s = t = ⊥, we initially set

αs = β
t
= 0 and αs = βt = 1. For a given sequence s ∈ X i and x ∈ X , the interval of coin process is updated by

αsx := αs + (αs − αs)P(x−1)|s,

αsx := αs + (αs − αs)Px|s,

where

Px|s :=

x
∑

k=1

PXi+1|Xi(k|s)

for x ∈ X and P0|s = 0. Similarly, for a given sequence t ∈ Yj and y ∈ Y , the interval of target process is updated

by

β
ty

:= β
t
+ (βt − β

t
)Q(y−1)|t,

βty := β
t
+ (βt − β

t
)Qy|t,

where

Qy|t :=

y
∑

k=1

PYj+1|Y j (k|t)

for y ∈ Y and Q0|t = 0. Using these intervals, the algorithm proceeds as follows:

1) Set s = t = ⊥, i = 0, and j = 1.

2) If [αs, αs) ⊆ [β
ty
, βty) for some y ∈ Y , then output yj = y and go to Step 3; otherwise, set i = i + 1,

s = sxi, and repeat Step 2 again.

3) If j = n, terminates; otherwise, set t = tyj , j = j + 1, and go to Step 2.

The following example illustrates a behavior of the interval algorithm for converting a Markov process to an

i.i.d. process.

Example 3 Let the coin process {Xm}∞m=1 be the Markov chain induced by the transition matrix in Fig. 2 with the

stationary initial distribution PX1(1) = PX1(2) = 1/2; let Y 2 = (Y1, Y2) be 2 symbols of i.i.d. random variables

with PYj
(1) = 1/3 and PYj

(2) = 2/3 for j = 1, 2. In this case, updates of the intervals are described in Fig. 3.

Also, the algorithm tree is described in Fig. 4. For instance, when X1 = 2 is observed, the algorithm outputs

Y1 = 2; then, if (X2, X3) = (1, 2) are observed after X1 = 2, the algorithm outputs Y2 = 2 and terminates. On the

1Unlike the interval algorithm in [10], we output each symbol of the target process sequentially; however, there is no difference in performance

analyses.
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1/3

1/3

2/3 2/31 2

Fig. 2. A description of transition matrix in Example 3.

I1

I2

0

1

1/2

1/3

2/3

I11

I12

I21

I22

2/9

I111

I112

I211

I212
11/18

1/3

5/9

J1

J2

J11

J12

J21

J22

Fig. 3. A description of interval partitioning in Example 3.

other hand, when (X1, X2) = (1, 2) are observed, the algorithm first outputs Y1 = 2; then, outputs Y2 = 1 without

further observing the coin process. In the latter case, the node in the algorithm tree is labeled by two symbols

(2, 1).

For notational convenience, we denote the function corresponding to the interval algorithm (cf. (4)) by φint(·).

Before verifying the validity of the algorithm (cf. (5)) carefully, we first examine the stopping time of the interval

algorithm.

Theorem 4 For the interval algorithm, the overflow probability of the stopping time satisfies

Pr(T > m) ≤ PXm(Sc
m(λ)) + PY n(T c

n (τ)) + 2−λ+τ+1,

where Sm(λ) and Tn(τ) are defined as in (8) and (9), respectively.

Proof: Let

Dm :=
{

xm ∈ Xm : ∀yn ∈ Yn, Ixm 6⊆ Jyn

}

August 27, 2019 DRAFT
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1 2

1 2

1 2

1 2

1 2

2

2

22

1 21

Fig. 4. A description of algorithm tree in Example 3. The label 1 or 2 of each edge indicates the outcome of coin random variable Xi. The

label of each node indicates that that symbol(s) are output after observing the coin process up to that node. The square node indicates that the

algorithm terminates at the node.

and

Em :=
{

xm ∈ Xm : ∃yn ∈ Tn(τ) s.t. Ixm ∩ Jyn 6= ∅
}

.

Then, since the algorithm does not terminate after observing xm if and only if xm ∈ Dm, the overflow probability

can be rewritten as

Pr(T > m) =
∑

xm∈Dm

PXm(xm)

=
∑

xm∈Dm∩Em

PXm(xm) +
∑

xm∈Dm∩Ec
m

PXm(xm)

≤
∑

xm∈Dm∩Em

PXm(xm) + PY n(T c
n (τ)), (12)

where the inequality is justified as follows. Note that xm ∈ Ec
m implies Ixm ∩ Jyn = ∅ for every yn ∈ Tn(τ),

which further implies

⋃

xm∈Ec
m

Ixm ⊆
⋃

yn∈T c
n (τ)

Jyn .

Thus, by noting that PXm(xm) = |Ixm | and PY n(yn) = |Jyn |, we have the inequality.

August 27, 2019 DRAFT
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Furthermore, the first term of (12) can be bounded as

∑

xm∈Dm∩Em

PXm(xm) =
∑

xm∈Dm∩Em∩Sm(λ)

PXm(xm) +
∑

xm∈Dm∩Em∩Sc
m(λ)

PXm(xm)

≤
∑

xm∈Dm∩Em∩Sm(λ)

PXm(xm) + PXm(Sc
m(λ))

≤
∑

xm∈Dm∩Em∩Sm(λ)

2−λ + PXm(Sc
m(λ))

≤ |Dm ∩ Em|2−λ + PXm(Sc
m(λ))

≤ 2|Tn(τ)|2
−λ + PXm(Sc

m(λ))

≤ 2−λ+τ+1 + PXm(Sc
m(λ)), (13)

where the second last inequality is justified as follows. By noting that xm ∈ Dm ∩Em implies Ixm ∩Jyn 6= ∅ and

Ixm 6⊆ Jyn for some yn ∈ Tn(τ), we have

|Dm ∩ Em| ≤
∑

yn∈Tn(τ)

∑

xm∈Xm

1
[

Ixm ∩ Jyn 6= ∅, Ixm 6⊆ Jyn

]

.

For each fixed yn ∈ Tn(τ), if there are more than two xm’s satisfying Ixm ∩ Jyn 6= ∅, then all but the top and

bottom ones must satisfy Ixm ⊆ Jyn ; in other words, there are at most two xm’s satisfying both the conditions in

the indicator function. Thus, we have

∑

yn∈Tn(τ)

∑

xm∈Xm

1
[

Ixm ∩ Jyn 6= ∅, Ixm 6⊆ Jyn

]

≤ 2|Tn(τ)|.

Finally, by combining (12) and (13), we have the claimed bound.

Now, we argue the validity of the interval algorithm. Clearly, if the coin process is deterministic, the random

number generation is not possible. By using Theorem 4, we can prove that the interval algorithm exactly generate

a target distribution as long as the coin process has “diverging randomness”.

Corollary 5 If the coin process X = {Xm}∞m=1 satisfies

lim
m→∞

PXm(Sc
m(λ)) = 0 (14)

for every λ > 0, where Sm(λ) is defined as in (8), then the interval algorithm is valid, i.e.,

lim
m→∞

Pr(φint(X
m) = yn) = PY n(yn)

for every yn ∈ Yn.

Proof: Upon observing xm ∈ Xm, the interval algorithm terminates with output yn ∈ Yn if and only if

Ixm ⊆ Jyn . Thus, we have

Pr(φint(X
m) = yn) ≤ PY n(yn). (15)

August 27, 2019 DRAFT
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Furthermore, since the lefthand side of (15) is non-decreasing in m, it has a limit. To prove that the limit coincides

with the righthand side, we apply Theorem 4 with

τ = max
yn∈supp(PY n )

log
1

PY n(yn)
,

where supp(PY n) is the support of distribution PY n . Then, we have

Pr(φint(X
m) /∈ Yn) = Pr(T > m)

≤ PXm(Sc
m(λ)) + 2−λ+τ+1

for any λ. Since (14) holds for any λ by assumption, by taking the limit m→ ∞ and λ→ ∞ with the diagonalization

argument (cf. [9]), we have

lim
m→∞

Pr(φint(X
m) ∈ Yn) = 1,

which together with (15) implies the claim of the theorem.2

In fact, using Theorem 2, we can also prove that the same condition as Corollary 5 is necessary for exact random

number generation by any algorithms.

Corollary 6 If the coin process X = {Xm}∞m=1 does not satisfy (14) for some λ > 0, then there exists a target

distribution PY n with sufficiently large n such that the validity (5) does not hold for any random number generation

algorithms.

Proof: Suppose that (14) does not hold for some λ > 0, i.e., there exists δ > 0 such that

PXm(Sc
m(λ)) ≥ δ

for every sufficiently large m. Let τ = λ− log(δ/2). Then, by (7) of Theorem 2, we have

Pr(T > m) ≥
δ

2
− PY n(Tn(τ)).

This bound implies that, for any target distribution with min-entropy Hmin(Y
n) > τ ,

Pr(T > m) ≥
δ

2

for every sufficiently large m. Thus, the validity (5) cannot be satisfied for some yn ∈ Yn.

For instance, any absorbing Markov chain does not satisfy the sufficient condition of Corollary 5; note that

absorbing Markov chains have 0 spectral inf-entropy, i.e., H(X) = 0. A further relaxed sufficient condition is that

H(X) > 0; however, this relaxed condition is not necessary in general as the following example illustrates.

Example 7 (Harmonic Bernoulli Coin) Let us consider independent but non-stationary Bernoulli trials X =

{Xm}∞m=1 such that PXi
(1) = 2−1/i. Then, since the min-entropy (see the last paragraph of Section I for the

2Note that a ≤ A, b ≤ B, A+ B = 1, and a+ b = 1 imply 1− b = a ≤ A = 1−B, i.e., B ≤ b.
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definition) of Xm is bounded from below as

Hmin(X
m) =

m
∑

i=1

Hmin(Xi)

=

m
∑

i=1

1

i

≥ ln(m+ 1),

(14) is satisfied for any λ > 0. Thus, this coin process can be used for the interval algorithm. However, we can

verify that H(X) = 0 as follows. Note that

1

m
H(Xm) =

m
∑

i=1

1

m
H(Xi)

≤ h

( m
∑

i=1

1

m
PXi

(1)

)

by concavity of the entropy. Furthermore, since t 7→ 2−t is convex, we have

m
∑

i=1

1

m
PXi

(1) =
m
∑

i=1

1

m
2−Hmin(Xi)

≥ 2−
∑m

i=1
1
m

Hmin(Xi)

≥ 2−
lnm+1

m

≥
1

2
,

which implies

1

m
H(Xm) ≤ h

(

2−
lnm+1

m

)

.

Thus, by [9, Theorem 1.7.2], we have

H(X) ≤ lim
m→∞

1

m
H(Xm) = 0.

On the other hand, if the probability distribution of each trial is PXi
(1) = 2−1/i2 , then, for any δ > 0, we have

lim
m→∞

PXm(Sc
m(π2/6 + δ)) ≥

∞
∏

i=1

PXi
(1) = 2−π2/6.

Thus, this coin process cannot be used for any random number generation algorithms.

IV. ASYMPTOTIC ANALYSIS

A. General Results

In this section, we shall examine the asymptotic optimality of the interval algorithm. Recall the notations of

information measures described in (1), (2), and (3). We start with the criterion of the overflow probability of the

stopping time.
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Definition 8 For a given random number generation algorithm converting X to Y , a rate R ≥ 0 is defined to be

achievable if the stopping time Tn satisfies

lim
n→∞

Pr(Tn > nR) = 0.

Then, let R⋆
int(X,Y ) and R⋆(X,Y ) be the infimum rates that are achievable by the interval algorithm and by

any algorithm (not necessarily the interval algorithm), respectively.

Theorem 9 For given coin process X with H(X) > 0 and target process Y , the infimum achievable rate of the

interval algorithm satisfies

R⋆
int(X,Y ) ≤

H(Y )

H(X)
. (16)

On the other hand, the infimum achievable rate of any algorithm satisfies

R⋆(X,Y ) ≥ max

[

H(Y )

H(X)
,
H(Y )

H(X)

]

. (17)

Proof: We first prove (16). Fix arbitrary δ1, δ2 > 0. By applying Theorem 4 with

mn = n

(

H(Y )

H(X)
+ δ2

)

,

R =
H(Y )

H(X)
+ δ2,

λ = mn(H(X) − δ1),

τ = n(H(Y ) + δ1),

we can bound the overflow probability of the stopping time for the interval algorithm as

Pr(Tn > nR) ≤ Pr

(

1

mn
log

1

PXmn (Xmn)
< H(X)− δ1

)

+ Pr

(

1

n
log

1

PY n(Y n)
> H(Y ) + δ1

)

+ exp

[

− n

{

δ2(H(X)− δ1)− δ1

(

H(Y )

H(X)
+ 1

)}

+ 1

]

.

Thus, if we take δ1 sufficiently small compared to δ2, we have

lim
n→∞

Pr(Tn > nR) = 0,

which implies that R = H(Y )/H(X) + δ2 is achievable. Since δ2 > 0 is arbitrary, we have (16).

Next, we prove the first bound of (17). Fix arbitrary δ1, δ2 > 0. By applying (6) of Theorem 2 with

mn = n

(

H(Y )

H(X)
− δ2

)

,

R =
H(Y )

H(X)
− δ2,

λ = mn(H(X) + δ1),

τ = n(H(Y )− δ1),
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for any random number generation algorithms, we have

Pr(Tn > nR) ≥ Pr

(

1

n
log

1

PY n(Y n)
> H(Y )− δ1

)

− Pr

(

1

mn
log

1

PXmn (Xmn)
≥ H(X) + δ1

)

− exp

[

− n

{

δ2(H(X) + δ1)− δ1

(

H(Y )

H(X)
+ 1

)}]

.

Thus, if we take δ1 sufficiently small compared to δ2, the definition of H(Y ) leads to

lim inf
n→∞

Pr(Tn > nR) > 0,

which implies that R = H(Y )/H(X)− δ2 is not achievable. Since δ2 is arbitrary, we have the first bound of (17).

We can prove the second bound of (17) in a similar manner by using (7) of Theorem 2.

When either the coin or the target process has one point spectrum, we immediately obtain the following corollary

from Theorem 9.

Corollary 10 When the spectral sup-entropyH(X) and inf-entropyH(X) of coin process coincide with its entropy

rate H(X),3 we have

R⋆
int(X,Y ) = R⋆(X,Y ) =

H(Y )

H(X)
.

On the other hand, when spectral sup-entropy H(Y ) and inf-entropy H(Y ) of the target process coincide with its

entropy rate H(Y ), we have

R⋆
int(X,Y ) = R⋆(X,Y ) =

H(Y )

H(X)
.

Next, we investigate the average stopping time E[Tn].

Definition 11 For a given random number generation algorithm converting X to Y , a rate L ≥ 0 is defined to be

average achievable if the average stopping time E[Tn] satisfies

lim sup
n→∞

E[Tn]

n
≤ L.

Then, let L⋆
int(X,Y ) and L⋆(X,Y ) be the infimum rates that are average achievable by the interval algorithm

and by any algorithm (not necessarily the interval algorithm), respectively.

In the following argument, as a technical condition, we assume that the upper and lower tails of the information

spectrum of the coin process vanish sufficiently rapidly in the following sense: for any δ > 0, there exist constants

K and m0 = m0(δ,K) such that

Pr

(

1

m
log

1

PXm(Xm)
≥ H(X) + δ

)

≤
K

m2
(18)

3When H(X) = H(X), called the one-point spectrum, the limit in (3) exists, and we have H(X) = H(X) = H(X) (cf. [9, Theorem

1.7.2]).
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and

Pr

(

1

m
log

1

PXm(Xm)
≤ H(X)− δ

)

≤
K

m2
(19)

for every m ≥ m0. In fact, i.i.d. processes, irreducible Markov processes, or mixture of those processes satisfy

much stronger requirement, i.e., the upper and lower tails vanish exponentially [6].

Now, we are ready to present the asymptotic behavior of the average stopping time.

Theorem 12 For given coin process X satisfying (19) and target process Y , the infimum average achievable rate

of the interval algorithm satisfies

L⋆
int(X,Y ) ≤

H(Y )

H(X)
. (20)

On the other hand, for given coin process X satisfying (18) and target process Y , the infimum average achievable

rate of any algorithm satisfies

L⋆(X,Y ) ≥
H(Y )

H(X)
. (21)

Proof: We first prove (20). By using the identity on the expectation (eg. see [3, Eq. (21.9)]), we can write

E[Tn] =

∫ ∞

0

Pr(Tn > z)dz. (22)

Fix arbitrary δ > 0. For each z, by applying Theorem 4 with λ = ⌊z⌋(H(X) − δ) and τ = z(H(X) − 2δ), we

have

Pr(Tn > z) ≤ Pr(Tn > ⌊z⌋)

≤ Pr

(

1

⌊z⌋
log

1

PX⌊z⌋(X⌊z⌋)
< H(X)− δ

)

+ Pr

(

1

(H(X)− 2δ)
log

1

PY n(Y n)
> z

)

+ 2−δz+1.

The integral of the first term is bounded as
∫ ∞

0

Pr

(

1

⌊z⌋
log

1

PX⌊z⌋(X⌊z⌋)
< H(X)− δ

)

dz ≤ m0 +

∫ ∞

m0

K

(z − 1)2
dz

= m0 +
K

(m0 − 1)
,

where the inequality follows from (19); the integral of the second term is
∫ ∞

0

Pr

(

1

(H(X)− 2δ)
log

1

PY n(Y n)
> z

)

dz =
H(Y n)

(H(X)− 2δ)
,

where we used the identity on the expectation again; the integral of the third term is given by 2
δ ln 2 . By substituting

these evaluations into (22), we obtain

lim sup
n→∞

E[Tn]

n
≤

H(Y )

(H(X)− 2δ)
.

Since δ > 0 is arbitrary, we have (20).
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Next, we prove (21). We start with (22). Fix arbitrary δ > 0. For each z, by applying (6) of Theorem 2 with

λ = ⌈z⌉(H(X) + δ) and τ = z(H(X) + 2δ), we have

Pr(Tn > z)

≥ Pr(Tn > ⌈z⌉)

≥ Pr

(

1

(H(X) + 2δ)
log

1

PY n(Y n)
> z

)

− Pr

(

1

⌈z⌉
log

1

PX⌈z⌉(X⌈z⌉)
≥ H(X) + δ

)

− 2−δ(z−1)+H(X).

By evaluating the integral of each term in a similar manner as above and by substituting them into (22), we obtain

lim sup
n→∞

E[Tn]

n
≥

H(Y )

(H(X) + 2δ)
.

Since δ > 0 is arbitrary, we have (21).

When the coin process has one point spectrum, we immediately obtain the following corollary from Theorem

12.

Corollary 13 When the coin process satisfies (18), (19), and H(X) and H(X) coincide with H(X), we have

L⋆
int(X,Y ) = L⋆(X,Y ) =

H(Y )

H(X)
.

It should be noted that the target process Y need not to have one point spectrum in Corollary 13.

Remark 14 When both the coin and target processes are ergodic, it was shown in [31] that the normalized stopping

time of the interval algorithm almost surely converges to the ratio of the entropy rates, i.e.,

lim
n→∞

Tn
n

=
H(Y )

H(X)
a.s. (23)

This result immediately implies

R⋆
int(X,Y ) =

H(Y )

H(X)
.

However, in order to derive

L⋆
int(X,Y ) =

H(Y )

H(X)

from (23), we need to prove uniform integrability of Tn/n (cf. [3, Theorem 16.14]), which is a cumbersome problem

thought it may be possible.

In the next subsections, we shall illustrate the general results above with concrete classes of coin/target processes.

B. Markov Coin/Target Processes

As a coin process, we consider a Markov chain X = {Xm}∞m=1 on X induced by a transition matrix W (x|x′).

Suppose that W is irreducible, i.e., for any x, x′ ∈ X , there exists an integer k ≥ 1 such that W k(x|x′) > 0. When

W is irreducible, there exists a unique stationary distribution π [19]. For the stationary distribution, let

HW (X) :=
∑

x,x′

π(x′)W (x|x′) log
1

W (x|x′)
,
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which coincides with the entropy rate of the Markov chain when the initial distribution is π [5].

We use the following bounds from the large deviation theory (cf. [6], [36]).

Lemma 15 Let X = {Xm}∞m=1 be a Markov chain induced by an irreducible transition matrix W with arbitrary

initial distribution PX1 . For δ > 0, there exist E(δ), E(δ) > 0 such that

Pr

(

1

m

m
∑

i=2

log
1

W (Xi|Xi−1)
≥ HW (X) + δ

)

≤ 2−mE(δ),

Pr

(

1

m

m
∑

i=2

log
1

W (Xi|Xi−1)
≤ HW (X)− δ

)

≤ 2−mE(δ)

for every sufficiently large m.

From Lemma 15 and [9, Theorem 1.7.2], for any initial distribution PX1 , we have

H(X) = H(X) = H(X) = HW (X). (24)

Furthermore, the conditions in (18) and (19) are also satisfied.

For the target process, we consider a Markov chain Y = {Y n}∞n=1 on Y induced by a transition matrix V . Suppose

that V is not irreducible but there is no transient class (cf. [19]), i.e., the transition matrix can be decomposed as

a direct sum form:

V =

r
⊕

ξ=1

Vξ,

where Vξ is the irreducible transition matrix on irreducible class Yξ ⊂ Y for ξ = 1, . . . , r. When the initial state is

Y1 ∈ Yξ , then Y2, Y3, . . . remain in the same irreducible class Yξ . Thus, for the weight

w(ξ) = Pr
(

Y1 ∈ Yξ

)

of each irreducible class induced from the initial distribution PY1 , the Markov chain Y n can be regarded as a

mixture of irreducible Markov chains, i.e.,

Pr
(

Y n = yn
)

=

r
∑

ξ=1

w(ξ) Pr
(

Y n = yn|Y1 ∈ Yξ

)

.

Let πξ be the stationary distribution of Vξ , and let

HVξ(Y ) :=
∑

y,y′∈Yξ

πξ(y
′)Vξ(y|y

′) log
1

Vξ(y|y′)

be the entropy rate of ξ-th irreducible class. Then, by the argument in [9, Sec. 1.4], the information spectral
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· · ·

H
Vξ(Y )

H(Y )H(Y )

w(ξ1)

w(ξ2)

w(ξr−1)

w(ξr)

Fig. 5. Information spectrum of reducible Markov chain.

quantities and the entropy rate are given as follows (see also Fig. 5):4

H(Y ) = max
{

HVξ(Y ) : 1 ≤ ξ ≤ r, w(ξ) > 0
}

,

H(Y ) = min
{

HVξ(Y ) : 1 ≤ ξ ≤ r, w(ξ) > 0
}

,

H(Y ) =

r
∑

ξ=1

w(ξ)HVξ (Y ).

From the above arguments along with Corollary 10 and Corollary 13, we have

R⋆
int(X,Y ) = R⋆(X,Y ) =

1

HW (X)
max

{

HVξ(Y ) : 1 ≤ ξ ≤ r, w(ξ) > 0
}

and

L⋆
int(X,Y ) = L⋆(X,Y ) =

1

HW (X)

r
∑

ξ=1

w(ξ)HVξ (Y ).

C. Target Process with Continuous Spectrum

As a coin process, we again consider a Markov chain X = {Xm}∞m=1 on X induced by an irreducible transition

matrix W . As we have seen in Section IV-B, the spectral sup-entropy and inf-entropy coincide with the entropy

rate, and they are given by HW (X).

Let {Vξ}ξ∈Ξ be a parametrized family of irreducible matrix on Y , and let

PY n(yn) =

∫

Pn
Yξ
(yn)dw(ξ)

be the mixture of Markov process with arbitrary weight w(ξ), where

PY n
ξ
(yn) = PYξ,1

(y1)

n
∏

i=2

Vξ(yi|yi−1).

4When transition matrix V has transient class, the information spectral quantities and the entropy rate are given by the same formulae;

however, weight w(ξ) is determined as the limiting probability such that the initial state is eventually absorbed into irreducible class Yξ (cf. [19,

Chapter 8]).
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Then, for the target process Y = {Y n}∞n=1, we have5 (cf. [9, Theorem 1.4.3])

H(Y ) = w-ess. sup HVξ(Y )

and (cf. [9, Remark 1.7.3])

H(Y ) =

∫

HVξ(Y )dw(ξ).

For the above described coin process and target process, Corollary 10 and Corollary 13 immediately provide

R⋆
int(X,Y ) = R⋆(X,Y ) =

1

HW (X)
w-ess. sup HVξ(Y )

and

L⋆
int(X,Y ) = L⋆(X,Y ) =

1

HW (X)

∫

HVξ(Y )dw(ξ).

V. CONNECTION TO FIXED-LENGTH RANDOM NUMBER GENERATION

In this section, we shall point out a connection between the problem of fixed-length random number genera-

tion (FL-RNG), and the variable-length random number generation (VL-RNG).6 As in the previous sections, let

X = {Xm}∞m=1 and Y = {Y n}∞n=1 be the coin and target processes. An FL-RNG algorithm is described by a

deterministic function ψ : Xm → Yn, and the approximation error is defined by

∆m := ‖PỸ n − PY n‖1

for Ỹ n = ψ(Xm), where ‖P −Q‖1 := 1
2

∑

x |P (x)−Q(x)| is the variational distance between two distributions

P and Q.

In the problem of source coding, it is recognized that there is an intimate connection between the error probability

of almost lossless fixed-length (FL) code and the overflow probability of the code length of variable-length (VL)

code (eg. see [18], [30], [16]). More specifically, for a given VL code, we can construct a FL code such that the

error probability is the same as the overflow probability of the original VL code; and vice versa. In a similar vein,

we can convert a given VL-RNG algorithm to an FL-RNG algorithm as follows.

Proposition 16 For a given VL-RNG algorithm φ satisfying (5), there exists an FL-RNG algorithm ψ such that

the approximation error satisfies

∆m ≤ Pr
(

T > m
)

,

where T is the stopping time of φ.

5For a measurable function Zξ of ξ, the essential supremum with respect to w(ξ) is defined as w-ess. sup Zξ := inf{α : Pr{Zξ > α} = 0.

6Here, we fix the length of target random variables, and consider RNG algorithms with fixed/variable length of coin random variables.
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Proof: For the set Lφ of all leaves, let B = {s ∈ Lφ : |s| ≤ m}. Recall that, by our convention, we denote

φ(xm) = yn if the algorithm terminates with output φ(xi) = yn for some i ≤ m, and φ(xm) = ⊥ otherwise. By

using these notations, we set

ψ(xm) =







φ(xm) if φ(xm) ∈ Yn

bn else

where bn ∈ Yn is an arbitrarily fixed sequence. Then, since

PỸ n(b
n) =

∑

s∈B:
φ(s)=bn

PX|s|(s) +
∑

s∈Lφ\B

PX|s|(s)

≥
∑

s∈Lφ:

φ(s)=bn

PX|s|(s)

= PY n(bn)

and

PỸ n(y
n) =

∑

s∈B:
φ(s)=yn

PX|s|(s)

≤
∑

s∈Lφ :

φ(s)=yn

PX|s|(s)

= PY n(yn)

for every yn 6= bn, we have

∆m = PỸ n(b
n)− PY n(bn)

=
∑

s∈Lφ\B:

φ(s)6=bn

PX|s|(s)

≤
∑

s∈Lφ\B

PX|s|(s)

= Pr
(

T > m
)

,

where the first equality follows from an alternative expression of the variational distance (eg. see [5, Eq. (11.137)]).

As we can find from the proof of Proposition 16, we can convert any VL-RNG algorithm to a FL-RNG algorithm

just by stopping the VL-RNG algorithm after a prescribed number of coin tosses. In fact, the achievability bound

for the FL-RNG [9, Lemma 2.1.1] can be also attained by the modified version of the interval algorithm via

Proposition 16 and Theorem 4 up to a negligible constant factor; in the asymptotic regime, if we set m = nR

with R > H(Y )/H(X), then Theorem 9 guarantees that the approximation error ∆m of the FL-RNG converges

to 0 (cf. Theorem [9, Theorem 2.1.1]). Conversely, even though we proved the converse bound for the VL-RNG

(Theorem 2) directly in Section II, we can provide an alternative proof by combining Proposition 16 and the
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converse bound for the FL-RNG in [9, Lemma 2.1.2]; in the asymptotic regime, the converse bound in Theorem

9, i.e., R ≥ max[H(Y )/H(X), H(Y )/H(X)] for every achievable rate R, can be obtained from Proposition 16

and [9, Theorem 2.1.2]. Unlike the source coding, the opposite claim, i.e., possibility of converting a FL-RNG to

a VL-RNG, is not clear in general.

VI. DISCUSSION

In this paper, we revisited the problem of exactly generating a random process with another random process, and

proved the optimality of the interval algorithm when either the coin or the target process has one point spectrum.

However, when both the coin and the target processes have spreading spectrum, the achievability and the converse

bounds derived in this paper do not coincide. At least, there is room for improvement on the achievability bound;

for instance, when the coin process and the target process are identical and have spreading spectrum, the interval

algorithm apparently attains the unit rate but the upper bounds in Theorem 9 and Theorem 12 are loose. In order

to derive tighter bounds, instead of the upper and lower limits of the spectrums, we need to analyze spreading

spectrums more carefully. For the random number generation with approximation error, such a direction of research

was conducted in [21], [2].

In a similar vein, the bounds derived in this paper may not be tight for finite block length regime in general.

When either the coin process or the target process is unbiased and the other process is i.i.d., by an application of

the central limit theorem to the bounds in Theorem 2 and Theorem 4, we can derive bounds that coincide up to

the so-called second-order rate [13], [26]. In other words, the interval algorithm is optimal up to the second-order

rate in that case. It is an important research direction to conduct the finite block length analysis of the interval

algorithm when both the coin and target processes are biased. It should be noted that, when the coin process is

i.i.d., the average stopping time of the interval algorithm is known to be tight up to O(1) term [10].

Another important research direction is the interval algorithm with finite precision arithmetic. In order to imple-

ment the interval algorithm, the updates of intervals must be conducted with finite precision arithmetic in practice.

Such a direction of research was conducted in [33] for i.i.d. processes.
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