
ar
X

iv
:1

80
4.

00
80

7v
1

 [
cs

.I
T

]
 3

 A
pr

 2
01

8
1

Full Characterization of Optimal Uncoded

Placement for the Structured Clique Cover

Delivery of Nonuniform Demands

Seyed Ali Saberali, Lutz Lampe and Ian Blake

Abstract

We investigate the problem of coded caching for nonuniform demands when the structured clique

cover algorithm proposed by Maddah-Ali and Niesen for decentralized caching is used for delivery.

We apply this algorithm to all user demands regardless of their request probabilities. This allows for

coding among the files that have different request probabilities but makes the allocation of memory to

different files challenging during the content placement phase. As our main contribution, we analytically

characterize the optimal placement strategy that minimizes the expected delivery rate under a storage

capacity constraint. It is shown that the optimal placement follows either a two or a three group strategy,

where a set of less popular files are not cached at all and the files within each of the other sets are

allocated identical amounts of storage as if they had the same request probabilities. We show that for

a finite set of storage capacities, that we call the base-cases of the problem, the two group strategy

is always optimal. For other storage capacities, optimal placement is achieved by memory sharing

between certain base-cases and the resulting placement either follows a two or a three group strategy

depending on the corresponding base-cases used. We derive a polynomial time algorithm that determines

the base-cases of the problem given the number of caches and popularity distribution of files. Given

the base-cases of the problem, the optimal memory allocation parameters for any storage capacity are

derived analytically.

http://arxiv.org/abs/1804.00807v1

2

I. INTRODUCTION

A. Background

The next generation wireless communication networks deploy a dense composition of short-

range and low-power small-cells and combine them with the macrocells into heterogeneous

networks. This architecture promotes localized communications and effectively increases the area

spectral efficiency of the network. The performance of such networks is however challenged by

the congestion of the backhaul links that connect the small-cells to the backbone communications

network during the peak traffic hours. Caching at the edge is a promising technique to alleviate

the backhaul congestion through the storage of popular content closer to the end users [1]–[8].

Coded caching [8]–[10] is a novel approach for content caching in a network that consists of

multiple caching nodes which communicate with a central server over a shared broadcast channel.

This technique benefits from network coding and coded multicasting to gain superlinear reduction

in the data delivery load on the shared link as the cache capacity increases. In particular, during

a placement phase, popular content is carefully distributed over the different storage nodes such

as to create coding opportunities among the caches. During a delivery phase, the content that

is requested but is missing from the caching nodes is delivered to them by the central server’s

transmissions over the shared link. The server exploits the coding opportunities created during

placement to embed the missing content requested by multiple caches in a single message that

every target cache can decode for its desired content. The load on the shared link is referred to

as the delivery rate.

The coded caching proposed by Maddah-Ali and Niesen in their seminal work [10] efficiently

utilizes the side information that each cache has about the requests of the other caches in order

to build server’s coded messages. This delivery algorithm can be viewed as a structured way

of clique-covering the vertices of the side information graph that characterizes the availability

of the content requested by each cache in the other caches. As a result, we call this delivery

algorithm Structured Clique Cover (SCC) procedure throughout this paper.

The seminal works [9] and [10] aimed at minimizing the peak delivery rate when different

files in the library are equally likely to be requested by users, i.e., when the user demands are

3

uniform. However, a more practical scenario concerns caching of files with different popularity

levels. In this scenario, it is expected to allocate more storage to the caching of the more popular

files during placement. This idea is followed in several works in the literature [11]–[16].

B. Related Work

Two major approaches are followed for coded caching with nonuniform demands. The first

approach is based on the grouping of files into different popularity groups based on their request

probabilities [11], [12], [14]. With the files in each group having relatively similar request

probabilities, the SCC algorithm is applied separately to the requests belonging to each group

for delivery. The advantage of this method is the simplicity of the analysis of the expected rate.

Its main disadvantage is that it limits the utilization of coding opportunities to the files that are

within each popularity group. The design objective in this approach is to find the grouping of

files that achieves the lowest expected rate. A higher number of groups provides higher degrees

of freedom to assign different amounts of storage to files with different request probabilities.

On the other hand, the larger the number of groups is, the more underutilized are the coding

opportunities among the different groups. In [14], the library is grouped into two categories of

popular and unpopular files. The requests for popular files are delivered by the SCC algorithm

while the requests of unpopular files are delivered through uncoded messages. This is an extreme

case of the grouping approach and its expected rate is shown to be at most a constant factor

away from the information theoretic lower bound, independent of the file popularity distribution.

The second approach is followed in [15] and [16] which applies the SCC algorithm to all

the user demands regardless of their request probabilities and the amount of storage allocated to

each file. For any fixed placement of content, this delivery scheme outperforms the previously

discussed group-based delivery. However, optimization of the amount of memory allocated to

each file is challenging because of the complicated interplay between the memory allocation

parameters and the expected delivery rate. References [15] and [16] use a convex optimization

formulation of the memory allocation problem which aims to minimize the expected delivery

rate for a given storage capacity per cache. We refer to this problem as Rate Minimization

with Storage Constraint (RMSC). Reference [16] has followed a numerical approach to solve

the RMSC problem and is mainly focused on reducing the computational complexity of the

4

numerical analysis involved. In contrast, [15] follows a theoretical approach to find structural

properties in the optimal solution of the problem.

C. Our Contributions

The results provided in [15] do not capture specific properties of the optimal solution which

can considerably facilitate solving the memory allocation problem. In this work, we find such

structures in the optimal solution and solve the RMSC problem analytically when user demands

are nonuniform and the SCC procedure is used for delivery. In particular, we will show that such

properties enable the derivation of the optimal solution based on a search over a finite set of

points. The cardinality of this set scales linearly with the product of the number of caches and

the number of files, which is considerably small compared to the continuous search space of the

optimization problem in [15]. The properties that we derive also provide a unifying interpretation

of the optimal placement strategy for both uniform and nonuniform popularity distribution of

files, as we will discuss in the remainder of this section.

As the first structural property, we show that for instances of the problem with cache capacities

that belong to a finite set M, the optimal placement for RMSC follows the simple pattern of

splitting the library of files into two groups. One group consists of less popular files and the

files in this group are not cached at all. The files in the second group are cached but are treated

as if they had the same request probabilities. We call such instances of RMSC the base-cases.

For instances of the problem that are not among the base-cases, we prove that the optimal

solution is achieved by a convex combination of the solutions to certain base-cases of the problem.

This solution is identical to the placement parameters obtained by memory sharing between

the two base-cases of the RMSC problem. Memory sharing is already shown to be optimal

when demands are uniform [15, Lemma 5], [16, Theorem 1], [17, Proposition 1]. Hence, this

result shows that memory sharing is also optimal for nonuniform demands when applied to the

appropriately chosen instances of the problem. To elaborate, let K, N and M be the number of

caches, files in the library and files that each cache can store, respectively. For optimal placement

of identically popular files when SCC delivery is used, we have the following [15]–[17]:

5

• All files are treated identically during placement, in particular, the same amount of storage

is allocated to the caching of each file.

• For a cache size M that corresponds to an integer value of t = KM
N

, the optimal placement

breaks each file into
(

K
t

)

nonoverlapping segments. Then, it exclusively stores each one of

the segments in exactly one of the
(

K
t

)

subsets of caches that have cardinality t. We refer

to these cases of the problem as the base cases and denote by M the set of corresponding

cache sizes { 1
K
N, 2

K
N, . . . , N}.

• For other cache capacities, the optimal placement can be obtained by memory sharing

between the optimal placements for two instances of the problem with cache capacities

Ml = max{m ∈M | m < M} and Mu = min{m ∈M |M < m}.1

We prove that a similar pattern exists in the optimal placement for nonuniform demands. In

particular, we propose an algorithm with worst-case complexity of O(K2N2) to derive the set

M given a nonuniform popularity distribution for the files. If M 6∈ M, the optimal placement is

obtained by memory sharing between Ml,Mu ∈ M as it was done for uniform demands using

the derived setM. In this case, optimal placement either follows a two or a three group strategy

depending on the specifics of the two corresponding base-cases used.

As a result of our analysis, we notice that the memory allocated to different files does not

show a gradual and smooth increase as the request probability increases. Instead, for base-cases

where the two-group strategy is optimal, the memory allocation exhibits a binary behavior,

i.e., as the request probability increases the amount of memory allocated to the files shows an

abrupt increase from zero to a new level at a certain request probability and remains at that

level thereafter. A similar trend exists for non base-cases, but there might be two thresholds on

request probabilities where the jumps in the memory allocated to files occur.

The remainder of this paper is organized as follows. The setup of the problem and formulation

of the expected rate and the storage used in terms of placement parameters are presented in

Section II. The RMSC problem is formulated in Section III and a duality framework is proposed

for it. Structures in the optimal solution of RMSC for the base-cases are derived in Section IV.

1The idea of memory sharing for uniform demands was presented in [9] as an achievable scheme when t is not an integer.

References [15]–[17] proved that memory sharing is optimal for SCC delivery when demands are uniform.

6

Server

Cache 1 Cache 2 Cache K−1 Cache K

· · ·

Fig. 1. A network with K caches and a central server.

In Section V, we propose an algorithm to identify the base-cases of the RMSC problem for any

given popularity distribution of files and we derive the optimal solution of RMSC. We conclude

the paper in Section VI.

II. PROBLEM SETUP AND FORMULATION OF UTILIZED STORAGE AND EXPCETED

DELIVERY RATE

A. Problem Setup

We consider the canonical network of multiple caches and a central server as modeled in

[11] for the general case where user demands can be nonuniform (see Fig. 1). In particular, we

consider a library of N files, each of length F bits and a network of K caches, each with storage

capacity of MF bits. All files are available in the central server and the server can communicate

with the caching nodes over an error-free broadcast link.

Notation 1: We use notation [n] to denote the set of the first n positive integers {1, . . . , n}.

Similarly, we use [n]i to denote the set of the first n positive integers larger than i, i.e., {i +

1, i+ 2, . . . , i+ n}.

7

The placement of files in the caches can be described as follows. Let Xn be the set of the

bits of file n. Then, for each S ⊂ [K], set Xn
S ⊂ Xn represents the bits of file n that are

exclusively cached in caches in S. By definition, subsets Xn
S are disjoint for different S and

⋃

S⊂[K]X
n
S = Xn. Also, define xn

S = |Xn
S |/F as the ratio of bits of file n that are exclusively

cached in the caches in S. Then, it follows that
∑

S⊂[K] x
n
S = 1 for every n ∈ [N]. We denote

by x the vector of all placement parameters xn
S .

The server is informed of all caches’ content. For a fixed placement of files in caches, every

cache k ∈ [K] reveals one request for a file dk ∈ [N] at each time instant. We refer to d =

[d1, . . . , dK] as the demand vector which represents the demands of all caches at the current time

instant. Similarly, for a subset of caches S, subdemand vector dS determines the files requested

by the caches in S in the same order as in d.

We assume that requests for different files are independent and the request probabilities do not

change for different caches. Let {pn}n∈[N] represent the request probabilities of the files. Here,

files are sorted in the increasing order of request probabilities, i.e., n > m implies pn ≥ pm.

We refer to the file request probabilities as popularity distribution. For a demand vector d and

every k ∈ [K], the parts of file dk that are available in cache k are locally delivered to its user.

The missing parts are provided by the server over the broadcast channel through a signal of

size R(d;P, AD) files. The quantity R(d;P, AD) is the delivery rate measured in the equivalent

number of files for the demand vector d, given a specific placement of files P and a delivery

algorithm AD. Placement P is fixed for all the demand vectors that arrive during the delivery

phase. It is required that every cache that has forwarded its request to the server be able to

decode the broadcasted signal for the content it requested. We are interested in minimizing

Ed (R(d;P, AD)), where the expectation is over the randomness in the demand vector d.

B. Delivery Algorithm

In this work, we apply the SCC procedure to all user demands for delivery regardless of

their popularity levels and the memory allocated to them. The delivery procedure is shown in

Algorithm 1. By following Algorithm 1, the server transmits messages of the form

⊕k∈SX
dk
S\k (1)

8

Algorithm 1 Delivery by SCC [10]

1: procedure DELIVERY(d; {Xn}n=1,...,N)

2: for s = 1, . . . , K do

3: for S ⊂ [K] : |S| = s do

4: server sends ⊕k∈SX
dk
S\k

5: end for

6: end for

7: end procedure

for every nonempty S ⊂ [K]. All the components XS\k embedded in the message are zero-padded

to the length of the largest component. Hence, the length of the message is maxk∈S |X
dk
S\k|.

2

As mentioned in Section I-B, Algorithm 1 contrasts the delivery schemes in [11], [14], [20]

which are also based on the SCC procedure but separately apply it to the files with close request

probabilities. Algorithm 1 has the advantage that it allows coding among all files regardless of

their request probabilities and can result in a smaller delivery rate. To elaborate, message (1)

delivers every subset of bits in {Xdk
S\k}k∈S to the corresponding requesting cache in S. Given

a grouping of files into groups l = 1, . . . , L, if instead of applying the SCC to the whole

demand vector we applied it to subdemand vectors consisting of files in the same popularity

group, the exact same subfiles delivered by (1) would have been delivered through the set of

messages
{

⊕k∈Ŝl
Xdk

S\k

}L

l=1
where Ŝl = {k ∈ S|dk ∈ l-th group}. This message has length

∑L
l=1maxk∈Ŝl

|Xdk
S\k| which is lower bounded by maxk∈S |X

dk
S\k| which is the length of (1) with

SCC applied to the whole demand vector.

C. Formulation of Expected Delivery Rate and Storage

To derive optimal placement for SCC delivery, we need to formulate the expected delivery

rate and the storage used by the placement algorithm in terms of the placement parameters xn
S .

Expected Delivery Rate: For Algorithm 1 as the delivery algorithm, the delivery load is

R(d;x) =
∑

S:S⊂[K]
S6=∅

max
k∈S

xdk
S\k

2From a graph theoretic perspective, this message corresponds to XORing the requested subfiles that form a clique in the

side information graph [18, Section II.A] and [19, Section I.A]. Since the set of messages ⊕k∈SX
dk
S\k delivers all the missing

subfiles, it covers all the vertices in the side information graph. Hence, one can see the delivery procedure of [10] as a structured

way of covering the side information graph vertices with cliques.

9

for a given demand vector d and placement parameters xn
S . To formulate the expected delivery

rate in terms of the placement parameters, let RS(d;x) be the rate required to deliver the subfiles

that are exclusively stored in each subset of caches S. Then, the expected rate with respect to

randomness in user demands is

r(x) =∆ Ed (R(d;x)) =
∑

S:S⊂K
S6=∅

Ed(RS(d;x)).

We assumed that the popularity distribution of files is the same for different caches. We

use this symmetry in the demand probabilities of the different caches to simplify the placement

formulation by setting xn
S = xn

s for all S : |S| = s. In other words, for a given file, the portion of

bits that is exclusively cached in any subset of caches S with cardinality s is the same. Because

of the symmetric structure of the placement, Ed(RS(d;x)) is the same for all S : |S| = s, and

it can be denoted by R̄s(x). Hence, the average rate can be written as

r(x) =
K
∑

s=1

(

K

s

)

R̄s(x).

Let Gs be the set of all subsets of [N] with cardinality at most s. Let πg
s denote the probability

that for a set of caches S with |S| = s, g ∈ Gs is the set of files in dS . Then,

R̄s(x) =
∑

g∈Gs

πg
s max

n∈g
xn
s−1

and therefore, the expected delivery rate is

K
∑

s=1

(

K

s

)

∑

g∈Gs

πg
s max

n∈g
xn
s−1,

which can equivalently be written as

K−1
∑

s=0

(

K

s+ 1

)

∑

g∈Gs+1

πg
s+1max

n∈g
xn
s .

10

Storage Used by Placement: Under the symmetry conditions derived for placement, the total

storage used in each cache is

N
∑

n=1

K
∑

s=1

(

K − 1

s− 1

)

xn
s .

The inner sum is the storage that is assigned to file n in each cache as for each file n, each

cache k stores the subfiles Xn
S : k ∈ S. There are

(

K−1
s−1

)

subsets of [K] of cardinality s with this

property for each file. The outer sum adds up the storage used for all the files in the library.

Change of Variable for Placement Parameters: For simpler exposition of the optimization

problems and better interpretability of the results, we find it useful to use the change of variable

yns =

(

K

s

)

xn
s . (2)

Variable yns is the total portion of bits of file n that is cached exclusively in all the
(

K
s

)

different

subsets of [K] with cardinality s. As a result, the expected rate and storage can be formulated

as functions of the new placement parameters yns as

r(y) =

K−1
∑

s=0

K − s

s+ 1

∑

g∈Gs+1

πg
s+1max

n∈g
yns , (3)

m(y) =

N
∑

n=1

K
∑

s=1

s

K
yns . (4)

Notice that the expected rate and the amount of storage used are a convex and a linear function

of the placement parameters, respectively.

III. FORMULATION OF RMSC IN TERMS OF THE PLACEMENT PARAMETERS AND

CHARACTERIZATION OF ITS DUAL PROBLEM

A. Formulation of RMSC

Using (2)-(4), the problem of finding the storage parameters that minimize the expected

delivery rate under cache capacity constraint can be formulated as

min
y

K−1
∑

s=0

K − s

s+ 1

∑

g∈Gs+1

πg
s+1max

n∈g
yns (5a)

11

s.t.

N
∑

n=1

K
∑

s=1

s

K
yns ≤ M, (5b)

K
∑

s=0

yns = 1, n ∈ [N], (5c)

yns ≥ 0, n ∈ [N], s = 0, . . . , K, (5d)

where constraint (5c) follows from
∑

S⊂[K] x
n
S = 1 under the same symmetry conditions and

change of variable that we used in the derivation of r(y) and m(y) in Section II-C.

B. Duality Framework and Derivation of Joint Rate and Storage Minimization Problem

Optimization problem (5) is convex and Slater’s condition holds for it3. Hence, with (5) as

primal, the duality gap between the primal and the corresponding dual problem is zero [21,

Section 5.2]. To derive the dual problem, we form the Lagrangian that accounts for the capacity

constraint (5b) as

L(y, γ) =

K−1
∑

s=0

K − s

s+ 1

∑

g∈Gs+1

πg
s+1max

n∈g
yns + γ

(

N
∑

n=1

K
∑

s=1

s

K
yns −M

)

which results in the Lagrange dual function

g(γ) = min
y

L(y, γ)

s.t.

K
∑

s=0

yns = 1, n ∈ [N],

yns ≥ 0, n ∈ [N], s = 0, . . . , K.

(6)

Then, the corresponding dual problem will be

max
γ ≥ 0

g(γ).

3To check that Slater’s condition holds for (5), notice that there is only one non-affine inequality constraint, (5b), in the primal.

Consider the point where yn
s = 1 for all n ∈ [N], s = K, and yn

s = 0 otherwise. At this point, we have
∑N

n=1

∑K

s=1
s
K
yn
s −M =

N−M < 0 for any M < N , and (5b) holds with strict inequality. Also, (5c) and (5d) respectively represent equality constraints

and affine inequality constraints, and further they are satisfied at the considered point. Hence, we conclude that Slater’s condition

is satisfied for (5) with M < N [21, eq. 5.27]. Notice that if M ≥ N , the problem is trivial as all files can be fully cached in

every cache of the system. The considered point corresponds to this trivial placement and is optimal.

12

By dropping the terms that are independent of the placement parameters, (6) has the same

minimizers as

min
y

K−1
∑

s=0

K − s

s+ 1

∑

g∈Gs+1

πg
s+1max

n∈g
yns + γ

N
∑

n=1

K
∑

s=1

s

K
yns (7a)

s.t.
K
∑

s=0

yns = 1, n ∈ [N], (7b)

yns ≥ 0, n ∈ [N], s = 0, . . . , K. (7c)

We call (7) the Joint Rate and Storage Minimization (JRSM) problem, as the objective is

to minimize the total bandwidth (expected delivery rate) and storage cost of coded caching.

Following the standard interpretation of the Lagrange multipliers, parameter γ can be viewed

as the relative cost of storage per file. Moreover, since strong duality holds, for each storage

capacity M , the optimal dual variable γ∗(M) determines the pricing of the storage that leads

to the same minimizers for the RMSC problem (5) and both the Lagrangian minimization and

JRSM problems in (6) and (7). As a result, we derive the optimal solution of JRSM in Section IV

as an intermediate step in solving RMSC.

IV. OPTIMAL SOLUTION TO JRSM

Finding an analytical solution to (7) is challenging because of the presence of the max

functions that operate over overlapping sets of parameters in the objective. These parameters

are tied together by constraints (7b) for different values of s. The interplay between the outputs

of the max function applied to the overlapping groups under constraints (7b) makes the analysis

difficult. To facilitate the analysis, we establish a connection between the nonlinear part of (7a)

and submodular set functions. This allows us to benefit from the results in submodular function

analysis to find structures in the optimal solution to JRSM. Appendix A provides a review of

submodular functions and the results relevant to our analysis in this paper.

A. An Equivalent Formulation of JRSM

The placement parameters corresponding to s = 0 are {yn0}n∈[N], which determine the portion

of bits that are not stored in any cache for each file n. Also, each set g ∈ G1 includes exactly

13

one file, say g = {i}. Hence, maxn∈g y
n
0 = yi0 and πg

0 = pi. Thus, the objective function (7a)

can be written as

N
∑

n=1

Kpny
n
0 +

K−1
∑

s=1





K − s

s+ 1

∑

g∈Gs+1

πg
s+1max

n∈g
yns +

s

K
γ

N
∑

n=1

yns



+ γ

N
∑

n=1

ynK .

Notice that the first and last sums are in terms of parameters yn0 and ynK , respectively, while the

summation in the middle accounts for parameters yns for s ∈ [K − 1].

Lemma 1: At optimality,
∑N

n=1Kpny
n
0 + γ

∑N
n=1 y

n
K can be written as

∑N
n=1(Kpnαn+ γ(1−

αn))z
n where zn = yn0 + ynK , and αn = 1 if Kpn < γ and αn = 0 if Kpn ≥ γ.

Proof: For a fixed value of zn, we have
∑N

n=1Kpny
n
0 + γ

∑N
n=1 y

n
K = γ

∑N
n=1 z

n +
∑N

n=1(Kpn − γ)yn0 . Hence, if Kpn < γ, setting yn0 = zn and ynK = 0 leads to the smallest

objective and if Kpn ≥ γ, the smallest objective results for yn0 = 0 and ynK = zn.

Corollary 1: For some m ∈ {0, . . . , N}, we have αn = 1, n ≤ m and αn = 0, n > m.

Using Lemma 1, and the fact that zn = 1−
∑K−1

s=1 yns , we get

min
ỹ,α

K−1
∑

s=1

K − s

s+ 1

∑

g∈Gs+1

πg
s max

n∈g
yns +

N
∑

n=1

K−1
∑

s=1

[(s

K
− 1 + αn

)

γ −Kpnαn

]

yns + l(α) (8a)

s.t.

K−1
∑

s=1

yns ≤ 1, n ∈ [N], (8b)

yns ≥ 0, n ∈ [N], s ∈ [K − 1], , (8c)

αn ∈ {0, 1}, n ∈ [N], (8d)

as a problem equivalent to (7), where ỹ is the same as y, except for parameters yn0 and ynK that

are removed, and l(α) = K
∑N

n=1 αnpn + γ
∑N

n=1(1− αn).

To find structures in the optimal vector ỹ, assume that the optimal parameters α∗
n are known.

Then, the optimization problem for ỹ becomes

min
ỹ, t

t +
N
∑

n=1

K−1
∑

s=1

[(s

K
− 1 + α∗

n

)

γ −Kpnα
∗
n

]

yns (9a)

s.t.
K−1
∑

s=1

K−s

s+1

∑

g∈Gs+1

πg
s max

n∈g
|yns | ≤ t, (9b)

14

K−1
∑

s=1

yns ≤ 1, n ∈ [N], (9c)

yns ≥ 0, n ∈ [N], s ∈ [K − 1]. (9d)

In constraint (9b), we used maxn∈g |y
n
s |, which is the l∞-norm instead of maxn∈g y

n
s . This does

not affect the optimal solution as the two functions are equivalent in the nonnegative orthant

specified by (9d) but makes the LHS in form of the l∞-norm in Proposition A.1 of Appendix A.

Notice that objective function (9a) is linear, and both the objective function and the constraints

are in terms of parameters yns for s ∈ [K − 1], n ∈ [N]. For a linear objective function, if the

feasible set is convex and bounded with a finite number of extreme points, then there exists an

extreme point that is optimal [22, Section 2.5]. In the following, we will show that the feasible

set defined by (9b)-(9d) satisfies these properties and derive structures in its extreme points. Any

such structure readily implies a structure in at least one optimal solution to (9).

B. Connection to Submodular Functions

To find the extreme points of the region characterized by (9b), we establish a link to submod-

ular functions. Let us define function

fc(ỹ) =
∆

K−1
∑

s=1

K−s

s+1

∑

g∈Gs+1

πg
s max

n∈g
|yns |.

The subscript c is used to highlight that this function returns the average rate due to the delivery

of the bits that are cached in at least one of the caches in the system. We show that fc(ỹ) is the

Lovász extension of a submodular set function. For that, consider the set [(K − 1)N]. For each

s ∈ [K − 1], objects (s− 1)N + 1, . . . , sN correspond to files 1, . . . , N , respectively. Notice

that these objects belong to [N](s−1)N .

To define the corresponding set function, let us introduce the following for any s ∈ [K − 1]

and g ∈ Gs+1:

• Operator u(s, g) that gives the set g̃ = {(s− 1)N + n | n ∈ g} as output. This is basically

a mapping from the files in g and set sizes s to the objects in [(K − 1)N]. Notice that any

resulting set g̃ is a subset of [N](s−1)N for exactly one s.

15

• Sets G̃s+1 = {u(s, g) | g ∈ Gs+1} and G̃ =
⋃

s∈[K−1] G̃s+1.

• The inverse operators s−1(g̃) and g−1(g̃) that for g̃ ∈ G̃ return the unique s that satisfies

g̃ ⊂ [N](s−1)N , and the set g = {n | s−1(g̃)N + n ∈ g̃}, respectively.

• Weights

ηg̃ =
K − s−1(g̃)

s−1(g̃) + 1
π
g−1(g̃)

s−1(g̃) (10)

for all g̃ ∈ G̃. Notice that when |g̃| = 1, g−1(g̃) = {i} which is a singleton. In that case,

π
g−1(g̃)
s−1(g̃) = pi.

Using the operators and parameters defined above, fc(ỹ) can be written as

fc(ỹ) =
∑

g̃∈G̃

ηg̃ max
n∈g−1(g̃)

|yns−1(g̃)|. (11)

Notice that (11) has the form of the norm function in Proposition A.1 and as a direct consequence

we have the following proposition:

Proposition 1: Function fc(ỹ) is a norm and is the Lovász extension of the submodular

function

Fc(A) =
∑

g̃∈G̃:A∩g̃ 6=∅

ηg̃, (12)

where A ⊂ [(K − 1)N].

From Proposition 1, one concludes that constraint (9b) characterizes a norm-ball of radius t.

For A ⊂ [N](s−1)N , let us define P (A) =
∑

n∈g−1(A) pn. Then, for the extreme points of the

norm-ball, we have the following lemma.

Lemma 2: The extreme points of the norm-ball fc ≤ t are of the form

t
K−s
s+1

[1− (1− P (A))s+1]
v, (13)

where vector v ∈ {−1, 0, 1}KN , Supp(v) = A, and set A is a subset of [N](s−1)N for an

s ∈ [K − 1].

Proof: Based on Proposition A.2, the extreme points of the unit ball fc ≤ 1 are closely

connected to the set of stable inseparable subsets of [(K−1)N] with regard to Fc. We first argue

16

that all subsets of [(K − 1)N] are stable. Consider a set A ⊂ [(K − 1)N]. Augment A with a

new object i to get A∪ {i}. Without loss of generality, let s−1({i}) = ŝ. Since g̃ = {i} belongs

to Gŝ+1 with ηg̃ > 0 and it does not intersect with A, we have fc(A∪{i}) > Fc(A). Hence, any

set A ⊂ [(K − 1)N] is stable with respect to Fc. Consequently, every subset of [N](s−1)N for

s ∈ [K − 1] is also stable.

To find the inseparable sets, consider A ⊂ [(K − 1)N]. Let Bs = {i ∈ A | s−1({i}) = s}.

A necessary condition for A to be inseparable is to have only one nonempty Bs. To show

this, partition A to subsets Bs, s ∈ [K − 1]. Notice that each group g̃ ⊂ G̃ is a subset of

exactly one [N](s−1)N , s ∈ [K − 1]. Hence, if two or more subsets Bs are nonempty, then

Fc(A) =
∑

Bs 6=∅ fc(Bs) and A is separable. Now, consider the case where only one Bs, say Bŝ,

is nonempty. In this case, A ⊂ [N](ŝ−1)N and A can only have nonempty intersections with sets

g̃ ∈ G̃ŝ+1. Since ŝ ≥ 1, for any partitioning of A to P1, . . . , PJ for some J , there is at least one

group g̃ ∈ G̃ŝ+1 with |g̃| ≥ 2 that intersects with both Pi and Pj for every pair i 6= j. Hence,

Fc(A) <
∑J

i=1 fc(Pi). As a result, the set of all stable inseparable subsets of [(K − 1)N] with

regard to Fc is A = {A | A ⊂ [N](s−1)N , s ∈ [K − 1]}.

According to Proposition A.2, the support of every extreme point of the norm-ball of fc belongs

to A. Further, the nonzero entries of the extreme point vector that corresponds to A ∈ A is either

of ±1/Fc(A). Using Proposition 1:

Fc(A) =
∑

g̃⊂G̃:A∩g̃ 6=∅

ηg̃ =
∑

g̃⊂G̃
s−1(A):

A∩g̃ 6=∅

ηg̃ =
K − s−1(A)

s−1(A) + 1

(

1− (1− P (A))s
−1(A)+1

)

(14)

where we used the facts that 1) for A ∈ A, all entries of A belong to only one [N](s−1)N , so

s−1(A) and g−1(A) are well defined, 2) ηg̃ = K−s−1(g̃)
s−1(g̃)+1

π
g−1(g̃)

s−1(g̃) and 3)
∑

g̃⊂G̃
s−1(A):

A∩g̃ 6=∅

ηg̃ equals the

probability of having a demand vector with at most s−1(A) + 1 distinct files from [N] that has

at least one file in g−1(A). The use of A and (14) in Proposition A.2 and scaling the radius of

the ball from 1 to t results in (13).

Corollary 2: For an extreme point ỹ of the norm-ball defined by (9b), for all yns > 0, we have

s = ŝ, for exactly one ŝ ∈ [K − 1].

17

Theorem 1: There is an optimal solution to the JRSM problem in (7) which is of form

(yns)
∗ =











1, s = 0, n ∈ [n∗]; s = s∗, n ∈ [N − n∗]n∗ ,

0, otherwise,

(15)

for some s∗ ∈ [K] and some n∗ ∈ {0, . . . , N}.4

Proof: See Appendix B.

Theorem 1 implies that for every γ ≥ 0 there exists an optimal solution to the JRSM problem

that is integral. For better illustration, we write such an optimal vector y in the matrix form Y

as follows. Matrix Y has N rows corresponding to the files and K + 1 columns corresponding

to the cardinality of subsets of caches. In particular, Yn,s = yns , n ∈ [N], s = 0, . . . , K. Based on

the structures found for yns in Theorem 1, Y is of form

Y =











































0 1 ... s∗−1 s∗ s∗+1 ... K

1 1 0 . . . 0 0 0 . . . 0

2 1 0 . . . 0 0 0 . . . 0

...
...

...
. . .

...
...

...
. . .

...

n∗−1 1 0 . . . 0 0 0 . . . 0

n∗ 0 0 . . . 0 1 0 . . . 0

n∗+1 0 0 . . . 0 1 0 . . . 0

...
...

...
. . .

...
...

...
. . .

...

N 0 0 . . . 0 1 0 . . . 0











































, (16)

i.e., i) all entries are either 0 or 1, ii) each row has exactly one entry 1, iii) at most one column

with index s ≥ 1 has nonzero entries, iv) for that column all entries are 0 for rows 1, . . . , n∗−1

and 1 for rows n∗, . . . , N , for some n∗ ∈ [N]. As a result, for all values of γ ≥ 0 there is an

optimal solution with matrix form (16). Hence, we have the following corollary:

Corollary 3: There exists a finite set Y∗ of vectors that correspond to matrices of form (16)

where |Y∗| ≤ KN + 1 and that set includes at least one optimal solution to the JRSM problem

4Notice that n∗ = 0 corresponds to the case where yn
s∗ = 1 for all n ∈ [N].

18

(7) for every γ ≥ 0.5

V. OPTIMAL SOLUTION TO RMSC

A. Optimal Solution of RMSC in Terms of Optimal JRSM Solution

Assuming that the optimal dual parameter γ∗ is known, we derived structures in the minimizers

of the Lagrangian or equivalently in the optimal solution of JRSM. The derived structures limited

the search space for the optimal JRSM solution to KN + 1 vectors specified by Theorem 1. In

this section, we derive the optimal solution to RMSC by building on the results we derived for

the solution of JRSM in Theorem 1. For that, let us define two sets as follows:

Definition 1: Sets M and R are finite sets defined by storage values {m(y) | y ∈ Y∗} and

expected rates {r(y) | y ∈ Y∗}, respectively.

To characterize the solution of RMSC, we take the following two steps. First, we assume that

set Y∗ and consequently set M are known. Based on this assumption, we derive the optimal

dual parameter γ∗ as a function of storage capacity M in the primal problem. Second, we use

the derived γ∗-M relationship to find set Y∗ and derive the optimal solution to RMSC.

Lemma 3: The optimal dual parameter γ∗ and the storage capacity M in the primal RMSC

problem satisfy the following:

1) Parameter γ∗ is non-increasing in M ;

2) For certain storage capacities M , a continuum of dual parameters γ∗ are optimal;

3) For every two consecutive values M1,M2 ∈ M,M1 < M2, any M ∈ [M1,M2] leads to

the same dual optimal parameter γ∗.

Proof: See Appendix C.

Lemma 3 implies a stairwaise relationship between the optimal dual parameter γ∗ and the storage

capacity M in the primal problem. An illustration of this relationship is shown in Fig. 2. The fact

that γ∗ is non-increasing in M is in agreement with the interpretation of the Lagrange multiplier

γ∗ as the (relative) price per unit of storage [21]: as more storage becomes available, the storage

price remains the same or decreases. The second point in the lemma corresponds to the vertical

5We show in Appendix D that for specific values of γ, there are infinite number of solutions to the JRSM problem.

19

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

M

γ
∗

1

Fig. 2. Here, N = 5, K = 4, and the popularity distribution is Zipf with parameter α = 1.

line segments in Fig. 2. Based on Definition 1, setM which is derived from Y∗ is finite and has

at most KN +1 members. However, γ is a continuous variable and for every γ ≥ 0 there is an

optimal solution to JRSM in Y∗. Hence, an interval of γ values must map to the same M . Third,

a range of values of M are mapped into the same γ∗. Notice that parameter M in the primal

problem can take any nonnegative value, while M is a set of discrete values and is of finite

size. Since every M ≥ 0 corresponds to at least one optimal dual parameter γ, then a continuum

of values for M must map to the same γ∗. We show that parameter γ∗ and the two solutions

y1,y2 ∈ Y
∗ that lead to the two endpoints (m(y1), γ

∗) and (m(y2), γ
∗) of the line segment are

related by γ∗ = r(y1)−r(y2)
m(y2)−m(y1)

. Notice that m(y1), m(y2) ∈ M and r(y1), r(y2) ∈ R. In particular,

if we sort members of M in increasing order as 0 = M0 < M1 < M2 < . . . < Ml = N , then

rates Ri that correspond to storage values Mi follow ordering K = R0 > R1 > . . . > Rl = 0.

Hence

γ∗(M) =







[Ri−Ri+1

Mi+1−Mi
, Ri−1−Ri

Mi−Mi−1
],M = Mi

Ri−1−Ri

Mi−Mi−1
, Mi−1 < M < Mi

with γ∗(M0 = 0) = [K−R1

M1
,+∞] and γ∗(Ml = N) = [0,

Rl−1

N−Ml−1
].

20

The next theorem determines the relationship between the optimal solution of RMSC and the

optimal solution of JRSM which was derived in Theorem 1.

Theorem 2: The RMSC problem (5) has an optimal solution

y∗RMSC(M) =







y∗JRSM(M), M ∈M

Mu−M
Mu−Ml

y∗JRSM(Ml) +
M−Ml

Mu−Ml
y∗JRSM(Mu),M 6∈ M

(17)

where y∗JRSM(m) is the optimal solution of JRSM of the form in Theorem 1 that uses storage m,

and Ml and Mu are the largest element smaller than M and smallest element larger than M in

M, respectively.

Proof: See Appendix D

Optimality of Memory Sharing: Theorem 2 essentially extends a result known for the opti-

mal solution of RMSC for uniform demands to the general case where demands can be nonuni-

form. To elaborate, it has been shown that for uniform demands, if M ∈ {N
K
, 2N

K
, . . . , K N

K
},

then the optimal solution of RMSC is in the form in (16) for some s∗ = 0, . . . , K and n∗ = 1

[15]–[17]. In particular, for uniform demands Muniform = {N
K
, 2N

K
, . . . , K N

K
}. For other values

of M , the optimal solution could be obtained by memory sharing between the two values of

storage in Muniform closest to M . Theorem 2 shows that the same result is valid for nonuniform

demands except for the fact that n∗ might be any value between 1 and N , depending on the

popularity distribution of files. As a result, we propose the following terminology:

Definition 2: For a given number of caches and popularity distribution of files, we call setM

the set of base-cases of the RMSC problem.

Based on Theorem 1, for base-cases of RMSC, there exists an optimal solution which is integral.

Also, from Theorem 2, for other storage capacities, the optimal solution to RMSC can be obtained

by memory sharing between the solutions of two certain base-cases.

B. Algorithm to Derive M

We derive an algorithm with a worst-case complexity of O(K2N2) to find set Y∗ and con-

sequently M for any given number of caches and popularity distribution of files. With M

determined, Theorem 2 analytically solves the RMSC problem for any cache capacity.

21

Algorithm 2 Procedure to Determine the Set of Base-Cases M

1: procedure BASE(K,N, {pn})
2: # Calculate Storage and Rate for the KN + 1 matrices of form (16)

3: Yo ← 0N×(K+1), M0 ← 0, R0 ← K
4: for s = 1, . . . , K do

5: for n = 1 : N do

6: i← (s− 1)N + n
7: Yi ← 0N×(K+1), Yi(1 : n− 1, 0)← 1, Yi(n : N, s)← 1
8: Mi ← m(Y)
9: Ri ← r(Y)

10: end for

11: end for

12: (M,R, Y)← sortM(M,R, Y) # relabel (Mi, Ri, Yi) tuples in increasing order of Mi

13: # Build M, R and Y by keeping solutions that outperform memory sharing between

other cases

14: (Y0,M0,R0)← (0N×(K+1), 0, K)
15: c← 0
16: for i = 1, . . . , NK + 1 do

17: for j = i+ 1 : NK + 1 do

18: Rmsh ←
Mj−Mi

Mj−Mc
Rc +

Mi−Mj

Mj−Mc
Rj

19: if Ri < Rmsh then

20: c← c+ 1
21: (Yc,Mc,Rc)← (Yi,Mi, Ri)
22: break

23: end if

24: end for

25: end for

26: end procedure

To find Y∗, we need to search over the KN + 1 possibilities for y∗ of form (15). For each

such vector y, the storage it uses can be written as a convex combination of the storage used

by two other vectors y1 and y2 that satisfy m(y1) ≤ m(y) and m(y2) ≥ m(y). In other words,

m(y) = m(θy1 + (1 − θ)y2), 0 ≤ θ ≤ 1.6 If for such y1,y2, we further have r(y) ≥ m̃(y),

then y does not belong to Y∗. Hence, by removing such vectors form the KN +1 possibilities,

the remaining set of vectors constitutes Y∗. The BASE procedure in Algorithm 2 implements

this process by starting from Y with all entries in the first column equal to 1. This correspond

to storage 0 and rate K and belongs to Y∗. It then proceeds to the next y with the smallest

storage value. It checks whether it outperforms memory sharing between the y that is already

6except for the two vectors with m(y) ∈ {0, N}.

22

Fig. 3. The effect of cache size on expected delivery rate and the amount of storage used to

cache subsets of files that are exclusively stored in subsets of caches with cardinalities 1, . . . , K
for K = 5, N = 10. Here, the popularity of files follows a Zipf distribution with parameter 1.4.

in Y∗ with the largest storage and every remaining vector that uses more storage compared to

y. If that is the case, it adds the new vector to Y∗, otherwise drops the vector and proceeds to

the next vector.

Fig. 3 shows the expected delivery rate of the proposed method versus the cache capacity for a

nonuniform distribution of files that follows a Zipf density with parameter 1.4. The expected rate

is once calculated based on the solution obtained by Algorithm 2 and once by solving RMSC

numerically. We observe that the resulting optimal rates are in complete agreement. Fig. 3 also

shows the amount of storage used to cache subsets of files that are exclusively stored in subsets of

caches with different cardinalities s ∈ [K]. In other words, for each s, it shows Qs =
∆ ∑N

n=1
s
K
yns

as a function of the cache capacity. As we expect from our analysis, either one or two values

of Qs can be positive for each choice of M .

23

VI. CONCLUSION

In this paper, we applied the structured clique cover delivery algorithm that was proposed

for decentralized coded caching to deliver files with nonuniform request probabilities. We fully

characterized the structure of the optimal placement parameters. We showed that for a finite

set of cache capacities, called base-cases, the optimal placement follows the two group strategy

that does not cache a subset of less popular files, but treats the other files selected for caching

identically regardless of their popularities. A polynomial time procedure was also proposed to

derive this set of cache capacities. We further showed that the optimal placement parameters for

other storage capacities can be obtained by memory sharing between certain base cases. In this

scenario, a grouping of files into two or three groups is optimal.

APPENDIX A

REVIEW OF SUBMODULAR FUNCTIONS AND ANALYSIS

A. Review of Submodular Functions and Relevant Results

We review the definition of a submodular set function and present the results that are related

to our analysis in Section IV. An extended discussion can be found in [23].

Definition 3: Let V = {1, . . . , p} be a set of p objects. For w ∈ R
p, Supp(w) ⊂ V denotes

the support of w, defined as Supp(w) = {j ∈ V, wj 6= 0}.

Definition 4: (Submodular function) A set-function F : 2V → R is submodular if and only

if, for all subsets A,B ⊂ V , we have F (A) + F (B) ≥ F (A ∪B) + F (A ∩ B).

Definition 5: (Lovász extension) Given a set-function F such that F (∅) = 0, the Lovász

extension f : Rp
+ → R of F is defined as

f(w) =

p
∑

k=1

wjkF ({j1, . . . , jk})− F ({j1, . . . , jk−1}),

where w ∈ R
p
+, (j1, . . . , jp) is a permutation such that wj1 ≥ . . . ≥ wjp .

Consider vector δ ∈ {0, 1}p as the indicator vector for subset A ⊂ V , i.e, for i ∈ V , δi = 1

if and only if i ∈ A. Consequently, A is the support of δ. Notice that for the Lovász extension,

f(δ) = F (Supp(δ)). Hence, f can be seen as an extension of F from vectors in {0, 1}p to all

24

vectors in R
p
+. The Lovász extension f has the following properties: 1) it is piecewise-linear, 2)

when F is submodular, f is convex, and 3) minimizing F over subsets, i.e., minimizing f over

{0, 1}p, is equivalent to minimizing f over [0, 1]p.

Definition 6: (Stable Sets) A set A is stable if it cannot be augmented without increasing F ,

i.e., if for all sets B ⊃ A, B 6= A, then F (B) > F (A).

Definition 7: (Separable Sets) A set A is separable if we can find a partition of A into

A = B1 ∪ . . . ∪ Bk such that F (A) = F (B1) + . . .+ F (Bk). A set A is inseparable if it is not

separable.

Proposition A.1: [23, Section 4.1] Let G be a (overlapping) grouping of the objects in V

and d be a nonnegative set-function. For w ∈ R
p, function Ω(w) =

∑

G⊂V d(G) ‖w‖∞ is a

norm if ∪G,d(G)>0G = V and it corresponds to the nondecreasing submodular function F (A) =
∑

G:A∩G 6=∅ d(G).

Proposition A.2: [23, Proposition 2]) The extreme points of the unit ball of Ω are the vectors

1
F (A)

v, with v ∈ {−1, 0, 1}p, Supp(v) = A and A a stable inseparable set.

APPENDIX B

PROOF OF THEOREM 1

To prove Theorem 1, we first prove the following lemma.

Lemma B.1: The extreme points of the region [fc ≤ t]+ defined by (9b) and (9d) are the origin

and points of the form

t
K−s
s+1

[1− (1− P (A))s+1]
v, (18)

where vector v ∈ {0, 1}KN , Supp(v) = A, and set A is a subset of [N](s−1)N for an s ∈ [K−1].

Proof: To obtain the extreme points of [fc ≤ t]+ we begin with the extreme points of the

norm-ball fc ≤ t and remove the ones that have negative coordinates as they do not belong to the

non-negative orthant. Further, [fc ≤ t]+ has extra extreme points that result from the intersection

of fc ≤ t and planes yns = 0. Norm-ball fc is symmetric w.r.t. every plane yns = 0 and hence the

extreme point resulting from the intersection of the norm-ball and such a plane will either be an

extreme point of the norm ball or the midpoint of two extreme points of the norm-ball with yns

25

coordinates of +1 and −1. In the latter case, the yns coordinate of the extreme point of [fc ≤ t]+

will be 0. Either case, Supp(v) will still be a subset of [N](s−1)N for an s ∈ [K − 1]. If there

is no nonzero entry left in the coordinates of the extreme point of the intersection, which is the

case when all planes yns = 0 intersect, the resulting point is the origin.

We now prove Thereom 1.

Proof of Theorem 1: At optimality, we have fc(ỹ
∗) = t∗, as otherwise the objective can

be decreased by replacing t∗ with fc(ỹ
∗), which contradicts the optimality of t∗.

The objective function (9a) calculated at an extreme point of form (18) with nonzero param-

eters for s = so and A is [1 +
∑

n∈g−1(A)(so/K−1+α∗
n)γ−Kpnα∗

n

(K−so)/(so+1)(1−(1−P (A))so+1]t, which is a factor of t. Denote

the denominator of (18) by tu(s, A), i.e., tu(s, A) = K−s
s+1

[1 − (1 − P (A))s+1]. Notice that for

t = tu(so, A), the extreme points of [fc ≤ t]+ are of form yns = 1 for s = so, n ∈ g−1(A), and

yns = 0 otherwise. These parameters satisfy (9b)-(9d) and are feasible. Hence, for any so ∈ [K−1]

and A ⊂ [N](so−1)N , we have

[

1+

∑

n∈g−1(A)(
so
K
− 1 + α∗

n)γ −Kpnα
∗
n

K−so
so+1

(1− (1− P (A))so+1

]

tu(so, A) ≥ t∗+

N
∑

n=1

K−1
∑

s=1

[(
s

K
−1+α∗

n)γ −Kpnα
∗
n](y

n
s)

∗

=

[

1+

∑

n∈g−1(A∗)(
s∗

K
−1+α∗

n)γ−Kpnα
∗
n

K−s∗

s∗+1
(1− (1− P (A∗))s∗+1

]

t∗

where the equality holds as the extreme points of [fc ≤ t∗]+ are in the form of (18), and one

of them, say ȳ, with s = s∗ and A = A∗ has the smallest objective (9a) among the extreme

points. Since the inequality holds for every so ∈ [K − 1] and A ⊂ [N](so−1)N , it also holds for

s = s∗ and A = A∗ in the LHS. This yields tu(s∗, A∗) ≥ t∗ and equivalently t∗

tu(s∗,A∗)
≤ 1. As a

result, the extreme point ȳ also satisfies (9c) and is feasible to (9). Given that it has the smallest

objective among the extreme points of [fc ≤ t∗]+, it is optimal, i.e., ȳ = y∗.

Now, the objective

[

1 +
∑

n∈g−1(A∗)(
s∗

K
−1+α∗

n)γ−Kpnα∗
n

K−s∗

s∗+1
(1−(1−P (A∗))s∗+1

]

t∗ is linear in t∗. Since t∗ ≤ tu(s∗, A∗)

and t∗ = tu(s∗, A∗) is achievable, at optimality we either have t∗ = 0 or t∗ = tu(s∗, A∗),

depending on the sign of the coefficient of t∗. In the former case, we either have cached all files,

i.e., ∀n : (ynK)
∗ = 1, (yns)

∗ = 0, s < K, or no file is cached at all, i.e., ∀n : (yn0)
∗ = 1, (yns)

∗ =

0, s > 1, as in both cases the rate fc due to delivery of the content cached in at least one cache

is 0.

26

In the case of t∗ = tu(s∗, A∗), for s ∈ [K − 1] we have (yns)
∗ = 1, s = s∗, n ∈ g−1(A∗)

and (yns)
∗ = 0 otherwise. Together with Lemma 1, this concludes that at optimality (zn)∗ =

1−
∑K−1

s=1 (y
n
s)

∗ ∈ {0, 1}. Hence, when (zn)∗ = 1 we have (yn0)
∗ = 1 and (ynK)

∗ = 0 if Kpn < γ

and (yn0)
∗ = 0 and (ynK)

∗ = 1 if Kpn ≥ γ.

APPENDIX C

PROOF OF LEMMA 3

To prove Lemma 3, we first show the following result:

Lemma C.1: The capacity constraint (5b) in RMSC is satisfied with equality at optimality,

i.e., no storage remains unused.

Proof: Assume that for storage capacity M , there is an optimal solution y∗ with m(y∗) +

ǫN = M , where ǫ > 0. Then, construct solution y′ with y′ns = (1 − ǫ)yns , s < K and y′nK =

(1−ǫ)ynK+ǫ. Essentially, y′ splits every file into two parts of lengths (1−ǫ)F and ǫF . It uses y∗

for the placement of the parts of length (1− ǫ)F and caches the other ǫF parts on every cache.

This uses (1 − ǫ)m(y∗) + ǫ ≤ (1 − ǫ)M + ǫN < M of storage, which implies that the storage

constraint is satisfied for y′. However, r(y′) = (1 − ǫ)r(y∗) + ǫ × 0 < r(y∗). This contradicts

the optimality of y∗. Hence, the optimal solution of RMSC must satisfy the capacity constraint

by equality.

Proof of Lemma 3: The first property follows from the shadow price interpretation of

the Lagrange multipliers for inequality constraints [21, Section 5.6]. In particular, let denote

the optimal solutions to (5) with storage budgets M1 and M2 < M1 by y∗
1 and y∗

2. Then,

r(y∗
1) ≤ r(y∗

2). Since duality gap is zero, the primal and dual objectives are equal, this implies

r(y∗
1)+ γ∗

1m(y∗
1) ≤ r(y∗

2)+ γ∗
2m(y∗

2). Hence, γ∗
1 ≤ γ∗

2 as otherwise r(y∗
1)+ γ∗

2m(y∗
1) < r(y∗

1)+

γ∗
1m(y∗

1) ≤ r(y∗
2) + γ∗

2m(y∗
2), which contradicts optimality of y∗

2.

The second property follows from the fact that the set γ ≥ 0 in the Lagrangian minimization

problem (6), or equivalently in JRSM, is continuous, while set Y∗ (or M) is finite. Hence, a

range of values of γ must map to the same storage M ∈M and they are all dual optimal.

To prove the third property consider y1,y2 ∈ Y
∗ that correspond to two consecutive storage

values M1 = m(y1) and M2 = m(y2). Without loss of generality assume that M1 < M2. Clearly,

27

M 6∈ M for any M ∈ (M1,M2). Now, notice that i) each capacity M must correspond to some

γ∗ in the dual problem, ii) for each γ ≥ 0 there is an optimal solution to JRSM in Y∗ and a

corresponding storage value in M, hence none of those solutions uses an amount of storage

M 6∈ M and iii) based on Lemma C.1, at optimality all the available storage must be used,

and iv) based on property 1, γ∗ is nondecreasing in M . These point conclude that the optimal

dual parameter for any M ∈ [M1,M2] must belong to {γ∗
M1

, γ∗
M2
}, where γ∗

m represents the

optimal dual parameter for capacity m and based on property 1, γ∗
M2
≤ γ∗

M1
. More specifically,

point (iv) requires γ∗
M = γ∗

M1
for M ∈ [M1,M

′] and γ∗
M = γ∗

M2
for M ∈ (M ′,M2], for some

M1 ≤ M ′ ≤ M2. However, we must have γ∗
M2

= γ∗
M1

as otherwise for any γ∗
M2

< γ′′ < γ∗
M1

corresponds to a value of M 6∈ M, which contradicts point (ii). This concludes property 3,

i.e., for two consecutive values M1,M2 ∈ M,M1 < M2, all capacities M1 ≤ M ≤ M2

correspond to the same dual parameter γ∗. Further, we can derive the optimal dual parameter

for m(y1) ≤M ≤ m̃(y2) as it satisfies r(y1) + γ∗m(y1) = r(y2) + γ∗m(y2) = L∗. Hence,

γ∗ =
r(y1)− r(y2)

m(y2)−m(y1)
. (19)

APPENDIX D

PROOF OF THEOREM 2

Proof: To prove Theorem 2, we consider two cases:

Case I (M ∈ M): This case is straightforward because of the zero duality gap in the

primal-dual framework established in Section III-B. In particular, vector y∗
JRSM ∈ Y∗ with

m(y∗

JRSM) = M is also optimal to RMSC. 7

Case II (M 6∈ M): To derive the optimal solution of RMSC for M 6∈ M, we use

Lemma 3. Let y1,y2 ∈ Y
∗ be the solutions corresponding to the two consecutive storage values

m(y1), m(y2) ∈ M such that m(y1) < M < m(y2). Let γ∗ and L∗ be the corresponding

7A direct proof for optimality of y
∗
JRSM with m(y∗

JRSM) = M for RMSC is as follows. Based on Lemma C.1, the

optimal solution of RMSC satisfies the capacity constraint with equality. Now, assume that y
∗
JRSM is not optimal for the

RMSC problem. This means that r(y∗
RMSC) < r(y∗

JRSM). However, since m(y∗
RMSC) = m(y∗

JRSM) = M , this implies that

r(y∗
RMSC) + γ∗m(y∗

RMSC) < r(y∗
JRSM) + γ∗m(y∗

JRSM). The last result contradicts the optimality of y
∗
JRSM for JRSM. Hence,

y
∗
JRSM must be optimal for the RMSC problem.

28

optimal dual parameter and Lagrangian value, respectively. Since m(·) is linear, for any given

storage m(y1) < M < m(y2), there exists a convex combination of y1 and y2 that uses storage

M . We show that the same convex combination also minimizes the Lagrangian for γ∗. In that

case, we are back to a case similar to Case I, and the same argument used there requires the

convex combination to also optimize RMSC.

Consider yθ;y1,y2
=∆ θy1+(1− θ)y2 for 0 < θ < 1. For the θ for which m(yθ;y1,y2

) = M , we

need to show that yθ;y1,y2
minimizes the Lagrangian for γ∗. This is equivalent to showing that

r(yθ;y1,y2
) + γ∗m(yθ;y1,y2

) = L∗.8 Since m(yθ;y1,y2
) = θm(y1) + (1 − θ)m(y2), it is sufficient

to that r(yθ;y1,y2
) = θr(y1) + (1− θ)r(y2) to prove r(yθ;y1,y2

) + γ∗m(yθ;y1,y2
) = L∗. To show

r(yθ;y1,y2
) = θr(y1) + (1− θ)r(y2), notice that each y ∈ Y∗ has nonzero parameters yns for at

most two values of s, one s = 0 and one s ≥ 1. Assume that y1 and y2 have nonzero entries

respectively for s1 > 0 and s2 > 0 and possibly for s = 0. We consider two cases of s1 6= s2

and s1 = s2. In the former case, r(y1) = Kpny1
n
0 + K−s1

s1+1
(1 − (1 −

∑n1

i=1)
s1+1)y1

n
s1 , r(y2) =

Kpny2
n
0 +

K−s1
s1+1

(1− (1−
∑n2

i=1)
s1+1)y2

n
s1

and r(θy1+(1− θ)y2)) = Kpn(θy1
n
0 +(1− θ)θy2

n
0)+

θK−s1
s1+1

(1− (1−
∑n1

i=1)
s1+1)y2

n
s1
+(1− θ)K−s2

s2+1
(1− (1−

∑n2

i=1)
s2+1)y2

n
s2
= θr̃(y1)+ (1− θ)r(y2).

For the case of s1 = s2 = so, let n1 and n2 be the smallest indexes n with nonzero ynso in the

corresponding two solutions. Then, since m(y1) < m(y2), we must have n2 > n1. Hence, for

the rates we have

r(y1) = kpny
n
0 1 +

K − so
so + 1

∑

g∈Gso+1

πg
so+1max

n∈g
ynso1 = kpny

n
0 1 +

K − so
so + 1

∑

g∈Gso+1,g∩[n1] 6=∅

πg
so+1

r(y2) = kpny
n
0 2 +

K − so
so + 1

∑

g∈Gso+1

πg
so+1max

n∈g
ynso2 = kpny

n
0 2 +

K − so
so + 1

∑

g∈Gso+1,g∩[n2] 6=∅

πg
so+1

and

r(θy1 + (1− θ)y2) = kpn(θy
n
0 1 + (1− θ)yn0 2) +

K − so
so + 1

∑

g∈Gso+1

πg
so+1max

n∈g
θynso1 + (1− θ)ynso2

= kpn(θy
n
0 1 + (1− θ)yn0 2) +

K − so
so + 1

∑

g∈Gso+1,g∩[n1] 6=∅

πg
so+1(θ + (1− θ))

8The equivalence results from the fact that if r(yθ;y
1
,y

2
) + γ∗m(yθ;y

1
,y

2
) < L∗, then y1 and y2 could not be optimal for

γ∗, which is a contradiction.

29

+
K − so
so + 1

∑

g∈Gso+1,g∩[n1]=∅,g∩[n2−n1]n1 6=∅

πg
so+1(1− θ)

= θ



kpny1
n
0 +

K − so
so + 1

∑

g∈Gso+1,g∩[n1] 6=∅=∅

πg
so+1





+ (1− θ)



kpny2
n
0 +

K − so
so + 1

∑

g∈Gso+1∅,g∩[n2] 6=∅

πg
so+1





= θr̃(y1) + (1− θ)r(y2)

where we used the fact that if g ∩ [n1] 6= ∅, then n2 > n1 implies g ∩ [n2] 6= ∅. This completes

the proof of the third feature as we now have

r(yθ;y1,y2
) + γ∗m(yθ;y1,y2

) = θr̃(y1) + (1− θ)r(y2) + γ∗[θm̃(y1) + (1− θ)m(y2)]

= θ[r(y1) + γ∗m(y1)] + (1− θ)[r(y2) + γ∗m(y2)]

= θL∗ + (1− θ)L∗ = L∗.

REFERENCES

[1] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the wireless edge: design aspects, challenges, and future

directions,” IEEE Commun. Mag., vol. 54, no. 9, pp. 22–28, Sep. 2016.

[2] E. Zeydan, E. Bastug, M. Bennis, M. A. Kader, I. A. Karatepe, A. S. Er, and M. Debbah, “Big data caching for networking:

moving from cloud to edge,” IEEE Commun. Mag., vol. 54, no. 9, pp. 36–42, Sep. 2016.

[3] N. Zhao, X. Liu, F. R. Yu, M. Li, and V. C. M. Leung, “Communications, caching, and computing oriented small cell

networks with interference alignment,” IEEE Commun. Mag., vol. 54, no. 9, pp. 29–35, Sep. 2016.

[4] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire, “Femtocaching: Wireless content delivery

through distributed caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402–8413, Dec. 2013.

[5] M. K. Kiskani and H. R. Sadjadpour, “Multihop caching-aided coded multicasting for the next generation of cellular

networks,” IEEE Transactions on Vehicular Technology, vol. 66, no. 3, pp. 2576–2585, March 2017.

[6] N. Pappas, Z. Chen, and I. Dimitriou, “Throughput and delay analysis of wireless caching helper systems with random

availability,” IEEE Access, 2018, available on IEEE Early Access.

[7] J. Song, H. Song, and W. Choi, “Optimal content placement for wireless femto-caching network,” IEEE Transactions on

Wireless Communications, vol. 16, no. 7, pp. 4433–4444, July 2017.

[8] M. A. Maddah-Ali and U. Niesen, “Coding for caching: fundamental limits and practical challenges,” IEEE Commun.

Mag., vol. 54, no. 8, pp. 23–29, Aug. 2016.

30

[9] ——, “Fundamental limits of caching,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[10] ——, “Decentralized coded caching attains order-optimal memory-rate tradeoff,” IEEE/ACM Trans. Networking, vol. 23,

no. 4, pp. 1029–1040, Aug. 2015.

[11] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform demands,” in IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), Apr. 2014, pp. 221–226.

[12] J. Hachem, N. Karamchandani, and S. Diggavi, “Content caching and delivery over heterogeneous wireless networks,” in

IEEE Conference on Computer Communications (INFOCOM), Apr. 2015, pp. 756–764.

[13] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “On the average performance of caching and coded multicasting with random

demands,” in Proc. 11th International Symposium on Wireless Communications Systems (ISWCS), Aug. 2014, pp. 922–926.

[14] J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary popularity distributions,” in Proc. Information Theory and

Applications Workshop (ITA), Feb. 2015.

[15] S. Jin, Y. Cui, H. Liu, and G. Caire, “Structural properties of uncoded placement optimization for coded delivery,” CoRR,

vol. abs/1707.07146, 2017. [Online]. Available: http://arxiv.org/abs/1707.07146

[16] A. M. Daniel and W. Yu, “Optimization of heterogeneous coded caching,” CoRR, vol. abs/1708.04322, 2017. [Online].

Available: http://arxiv.org/abs/1708.04322

[17] S. A. Saberali, H. E. Saffar, L. Lampe, and I. F. Blake, “Adaptive delivery in caching networks,” CoRR, vol.

abs/1707.09662, 2017. [Online]. Available: http://arxiv.org/abs/1707.09662

[18] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis., “Finite-length analysis of caching-aided coded

multicasting,” IEEE Trans. Inf. Theory, vol. 62, no. 10, pp. 5524–5537, Oct. 2016.

[19] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with side information,” IEEE Trans. Inf. Theory, vol. 57,

no. 3, pp. 1479–1494, Mar. 2011.

[20] J. Hachem, N. Karamchandani, and S. N. Diggavi, “Effect of number of users in multi-level coded caching,” in Proc.

IEEE Int. Symp. Information Theory, June 2015, pp. 1701–1705.

[21] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University Press, 2004.

[22] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming. Springer Publishing Company, Incorporated, 2015.

[23] F. R. Bach, “Structured sparsity-inducing norms through submodular functions,” in Advances in Neural Information

Processing Systems, 2010, pp. 118–126.

http://arxiv.org/abs/1707.07146
http://arxiv.org/abs/1708.04322
http://arxiv.org/abs/1707.09662

	I Introduction
	I-A Background
	I-B Related Work
	I-C Our Contributions

	II Problem Setup and Formulation of Utilized Storage and Expceted Delivery rate
	II-A Problem Setup
	II-B Delivery Algorithm
	II-C Formulation of Expected Delivery Rate and Storage

	III Formulation of rmsc! in terms of the placement parameters and characterization of its dual problem
	III-A Formulation of rmsc!
	III-B Duality Framework and Derivation of jrsm! Problem

	IV Optimal Solution to jrsm!
	IV-A An Equivalent Formulation of jrsm!
	IV-B Connection to Submodular Functions

	V Optimal Solution to rmsc!
	V-A Optimal Solution of rmsc! in Terms of Optimal jrsm! Solution
	V-B Algorithm to Derive M

	VI Conclusion
	Appendix A: Review of Submodular Functions and Analysis
	A-A Review of Submodular Functions and Relevant Results

	Appendix B: Proof of Theorem ??
	Appendix C: Proof of Lemma ??
	Appendix D: Proof of Theorem ??
	References

