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The existence of perfect codes in Doob graphs
Denis S. Krotov

Abstract—We solve the problem of existence of perfect codes
in the Doob graph. It is shown that 1-perfect codes in the Doob
graph D(m,n) exist if and only if 6m+3n+1 is a power of
2; that is, if the size of a 1-ball divides the number of vertices.

Index Terms—Perfect codes, Doob graphs, Eisenstein–Jacobi
integers.

I. INTRODUCTION

The codes in Doob graphs are special cases of codes over

Eisenstein–Jacobi integers, see, e.g., [10], [20], which can be

used for the information transmission in the channels with

two-dimensional or complex-valued modulation. The vertices

of a Doob graph can be considered as words in the mixed

alphabet consisting of elements of the quotient (modulo 4
and modulo 2) rings of the ring of Eisenstein–Jacobi integers,

see, e.g., [13]. In contrast to the cases considered in [10],

[20], the number 4 is not prime, and the quotient ring is

not a field. This fact is not a problem from the point of

view of the modern coding theory, which has a rich set of

algebraic and combinatorial tools to deal with rings, see, e.g.,

[24]; moreover, studying codes in Doob graphs is additionally

motivated by the application of association schemes in coding

theory [3]: the algebraic parameters of the schemes associated

with these graphs are the same as for the quaternary Hamming

scheme (this fact can be also treated from the point of view

of the corresponding distance-regular graphs).

In this paper, we completely solve the problem of existence

of perfect codes in the class of Doob graphs. Namely, we show

the existence of 1-perfect codes in the Doob graph D(m,n)
for all m and n that satisfy the obvious necessary condition:

the size 6m+3n+1 of a ball of radius 1 divides the number

42m+n of vertices. In the previous papers [11], [13], [25], the

problem was solved only for the cases when the parameters

satisfy additional conditions admitting the existence of linear

or additive perfect codes, or for small values of m.

The class of Doob graphs is a class of distance-regular

graphs of unbounded diameter, and the problem considered

can be viewed in the general context of the problem of

existence of perfect codes in distance-regular graphs. We

mention some known results in this area, mainly concentrating

on distance-regular graphs important for coding theory. A con-

nected graph is called distance-regular if there are constants sij
such that for every i, j and for every vertex x, every vertex y at

distance i from x has exactly sij neighbors at distance j from

D. S. Krotov is with the Sobolev Institute of Mathematics, Novosibirsk
630090 Russia e-mail: krotov@math.nsc.ru

This work was funded by the Russian Science Foundation (18-11-00136).
The results of this work were presented in part at the Sixteenth International

Workshop on Algebraic and Combinatorial Coding Theory, Svetlogorsk,
Russia, 2–8 September 2018.

This is the accepted version of the paper published in the
IEEE Transactions on Information Theory, 66:3 (2020), 1423–1427,
https://doi.org/10.1109/TIT.2019.2946612 © 2019 IEEE

x. In the Hamming graphs H(n, q), the problem of complete

characterization of parameters of perfect codes is solved only

for the case when q is a prime power [28], [33]: there are no

nontrivial perfect codes except the e-perfect repetition codes

in H(2e + 1, 2), the 3- and 2-perfect Golay codes [6] in

H(23, 2) and H(11, 3), respectively, and the 1-perfect codes

in H((qk − 1)/(q − 1), q). In the case of a non-prime-power

q, no nontrivial perfect codes are known, and the parameters

for which the nonexistence is not proven are restricted by 1-

and 2-perfect codes (the last case is solved for some values

of q), see [9] for a survey of the known results in this area.

The problem of the (non)existence of perfect codes in the

Johnson graphs J(n,w) is known as Delsarte’s conjecture,

see [4] and [7] for the known nonexistence results; in general,

the problem remains open. An interesting open problem is

connected with the problem of existence of 1-perfect codes in

the doubled Johnson (doubled Odd) graph J(2w+1, w, w+1)
(the subgraph of H(2w+1, 2) induced by the words of weight

w and w + 1): the existence of such codes is equivalent to

the existence of Steiner systems S(w,w + 1, 2w + 2); in

particular, the Steiner quadruple system S(3, 4, 8) and the

small Witt design S(5, 6, 12) [1], [32] correspond to nontrivial

1-perfect codes in J(7, 3, 4) and J(11, 5, 6); the nonexistence

of Steiner systems S(4, 5, 15) [21] and S(4, 5, 17) [22] im-

plies the nonexistence of 1-perfect codes in J(19, 9, 10) and

J(23, 11, 12) (in general, the problem remains open, with the

first open case in J(31, 15, 16)). In the Grassmann graphs

Jq(n,w) and the bilinear forms graphs Bq(m,n), nontrivial

perfect codes do not exist [2], see also [19]. Some perfect

codes in dual polar graphs are discussed in [26, p.659], includ-

ing the examples of 1-perfect codes found in [27] in graphs

of diameter 3. Studying diameter-3 antipodal distance-regular

graphs with 1-perfect codes (usually, with some assumptions

on the graph automorphisms) is a separate topic, see [5], [16]–

[18], [29]–[31].

The Doob graph D(m,n) is the Cartesian product of m
copies of the Shrikhande graph and n copies of the complete

graph of order 4 (detailed definitions are given in the next

section). It is a distance-regular graph of diameter 2m + n
with the same parameters (intersection array) as the Hamming

graph H(2m + n, 4). On the other hand, the vertices of the

Doob graph can be naturally associated with the elements of

the module GR(42)m × F
n
4 over the Galois ring GR(42) or

with the elements of the module Z
2m
4 × Z

2n′

2 × Z
n′′

4 over

Z4, where n′ + n′′ = n. In this way, the Doob graph is a

Cayley graph on the corresponding module. The submodules

of the first module are called the linear codes in D(m,n);
the submodules of Z2m

4 × Z
2n′

2 × Z
n′′

4 are called the additive

codes in D(m,n). The history of studying perfect codes

in Doob graphs started from the paper [11], where it was

shown that nontrivial e-perfect codes in D(m,n) can only

exist when e = 1 and 2m + n = (4k − 1)/3 for some

http://arxiv.org/abs/1810.03772v2
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integer k and two 1-perfect codes, in D(2, 1) and D(1, 3),
were constructed. In [13], infinite series of perfect codes in

Doob graphs were obtained. In particular, it was shown that

the necessary condition 2m + n = (4k − 1)/3 is sufficient

if m < n− o(2m+ n); the class of linear perfect codes was

completely characterized; a class of additive perfect codes was

constructed and necessary conditions on m, n′, n′′ for the

existence of additive perfect codes in D(m,n′ + n′′) were

obtained (in a recent work [25], it was shown that those

conditions are also sufficient).

II. DEFINITIONS

The Shrikhande graph Sh can be naturally defined on the

pairs of elements from Z4. Two such pairs (x1, x2) and

(y1, y2) are adjacent if their difference (x1 − y1, x2 − y2) is

one of (0, 1), (0, 3), (1, 0), (3, 0), (1, 1), (3, 3) (so, Sh is a

Cayley graph on Z
2
4).

We will use two representations of the complete graph K4.

In the first one, K4(Z4), its vertices are the elements 0, 1, 2,

3 of Z4; in the second, K4(F4), the elements 0, 1, ξ, ξ2 of

the finite field F4 of order 4.

If m is even, then D(m,n) will be considered as the

Cartesian product of m copies of Sh and n copies of K4(F4)
(in particular, D(0, n) is the Hamming graph H(n, 4)). If m is

odd, then D(m,n) will be considered as the Cartesian product

of m copies of Sh, two copies of K4(Z4) and n − 2 copies

of K4(F4) (note that in the considered class of parameters,

6m+ 3n+ 1 is a power of 4, so n is odd and n = 1 implies

even m). So, the vertex set is the set of words of length 2m+n
from (Z2

4)
m × F

n
4 or (Z2

4)
m × Z

2
4 × F

n−2
4 , and two vertices

are adjacent if their coordinatewise difference has exactly one

non-zero position i, i > 2m, or exactly one non-zero position

i, i ≤ 2m, with value 1 or 3, or exactly two nonzero positions

2i− 1, 2i, where i ∈ {1, . . . ,m}, with values 1, 1 or 3, 3.

The distance between two vertices x̄ and ȳ of D(m,n) (as

well as in any other connected graph) is defined as the number

of edges in the shortest path connecting x̄ and ȳ. Equivalently,

the distance is equal to the sum of distances between the corre-

sponding components of x̄ and ȳ: m Shrikhande components

and n K4-components. The distance form some vertex x̄ of

D(m,n) to the all-zero vertex of D(m,n) is referred to as

the weight of x̄.

In any graph, an e-perfect code is defined as a set of vertices

such that every ball of radius e contains exactly one code

vertex. We define a 1-perfect Hamming code H in H(n, 4),
n = (4k−1)/3, by the check matrix consisting of all columns

of height k whose first nonzero element is 1. To be explicit, we

require the columns to be inverse-lexicographically ordered,

for example (k = 3),




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
ξ2 ξ2 ξ2 ξ2 ξ ξ ξ ξ 1 1 1 1 0 0 0 0 1 1 1 1 0
ξ2 ξ 1 0 ξ2 ξ 1 0 ξ2 ξ 1 0 ξ2 ξ 1 0 ξ2 ξ 1 0 1



 .

III. CONSTRUCTION

The approach of the construction for 1-perfect codes in

D(m,n) is partially similar to that of [11] for tight 2-designs

(the codes formally dual to 1-perfect). We start with the

Hamming code H over F4 in H(2m + n, 4) and replace

subwords of length 4 corresponding to the positions 4i − 3,

4i − 2, 4i − 1, 4i of the codewords by subwords of length

4 over Z4, treated as elements of D(2, 0) if i ≤ [m/2] or

D(1, 2) if i = (m+ 1)/2.

In details, there are some differences with the construction

in [11]. For the code dual to H, there are only 16 possibilities

for subwords in the considered quadruples of coordinates, and

the substitution function used in [11] is an isometry from the

corresponding subcode in H(4, 4) into D(2, 0) (D(1, 2)). In

our case, all 256 possible length-4 words occur as subwords,

and there is no such isometry (indeed, the graphs H(4, 4),
D(1, 2), D(2, 0) are not isomorphic). However, for the re-

sulting code being 1-perfect, we need not control the distance

between any two codewords; it is sufficient only to ensure that

this distance cannot be 1 or 2. To do this, we construct the

substitution bijection between H(4, 4) and D(2, 0) (D(1, 2))
using the principles of the generalized concatenated construc-

tion [34]. It occurs that the resulting construction is close to

a variant of the generalized concatenated construction for 1-

perfect codes in H(n, q) presented in [23].

A. Codes in D(1, 2), D(2, 0) and H(4, 4).

To construct a substitution function with the desired proper-

ties, in each of the graphs D(1, 2), D(2, 0), H(4, 4), we need

two additive codes, of distance 3 and 2 and cardinality 16 and

64, respectively.

Lemma 1. Denote

x̄ = (0, 1, 2, 3), ȳ = (1, 0, 1, 2) ∈ Z
4
4;

z̄ = (0, 0, 1, 1) ∈ Z
4
4;

ū = (0, 0, 0, 2), v̄ = (0, 0, 2, 0) ∈ Z
4
4;

x̄′ = (1, 1, 1, 1), ȳ′ = (0, 1, ξ, ξ2) ∈ F
4
4;

z̄′ = (0, 0, 1, 1) ∈ F
4
4.

Define
C′′ = 〈x̄, ȳ〉, C′ = 〈x̄, ȳ, z̄〉;

D′′ = 〈x̄, ȳ〉, D′ = 〈x̄, ȳ, ū, v̄〉;

E′′ = 〈x̄′, ȳ′〉, E′ = 〈x̄′, ȳ′, z̄′〉.

We state that

(a) C′′ ⊂ C′, D′′ ⊂ D′, E′′ ⊂ E′;

(b) C′, D′, E′ are distance-2 codes of cardinality 64 in

D(1, 2), D(2, 0), H(4, 4), respectively;

(c) C′′, D′′, E′′ are distance-3 codes of cardinality 16 in

D(1, 2), D(2, 0), H(4, 4), respectively.

Proof. We note that since the considered codes are closed

under addition, the code distance coincides with the minimum

nonzero weight of a codeword.

(a) is trivial.

(b). Every codeword of C′ is orthogonal to (1, 1, 1, 3), as

this is true for x̄, ȳ, and z̄. It is easy to check that each of

the 12 words (0, 0, 0, 1), (0, 0, 0, 2), (0, 0, 0, 3), (0, 0, 1, 0),
(0, 0, 2, 0), (0, 0, 3, 0), (0, 1, 0, 0), (0, 3, 0, 0), (1, 0, 0, 0),
(3, 0, 0, 0), (1, 1, 0, 0), (3, 3, 0, 0) of weight 1 in D(1, 2) is not

orthogonal to (1, 1, 1, 3). Hence, C′ does not contain weight-1
words and has code distance larger than 1. The cardinality of

C′ is 4 · 4 · 4, as x̄, ȳ, z̄ are linearly independent.
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Each codeword of D′ is orthogonal to both (0, 2, 0, 2)
and (2, 0, 2, 0), while this is not true for each of the 12
weight-1 words (0, 0, 0, 1), (0, 0, 0, 3), (0, 0, 1, 0), (0, 0, 3, 0),
(0, 0, 1, 1), (0, 0, 3, 3), (0, 1, 0, 0), (0, 3, 0, 0), (1, 0, 0, 0),
(3, 0, 0, 0), (1, 1, 0, 0), (3, 3, 0, 0) in D(2, 0). Hence, D′ does

not contain weight-1 words and has code distance larger than

1. Since D′ is spanned by independent elements of order 4,

4, 2, and 2, its cardinality is 4 · 4 · 2 · 2.

Similar arguments work for E′, orthogonal to (1, 1, 1, 1).
(c). Each of C′′, D′′, E′′ is the span of two linearly

independent words of order 4, so the cardinality is 16 in each

case. Next, it is easy to see that each of the 15 nontrivial linear

combinations of x̄′ and ȳ′ has at most one zero symbol; so, the

minimum weight (and hence the code distance) of E′′ is 3. For

the codes C′′ and D′′, the minimum weight (in D(1, 2) and

D(2, 0), respectively) can be easily found from the complete

list of codewords:

C′′ = D′′ = {(0, 0, 0, 0), (0, 1, 2, 3), (0, 2, 0, 2), (0, 3, 2, 1),
(1, 0, 1, 2), (1, 1, 3, 1), (1, 2, 1, 0), (1, 3, 3, 3),
(2, 0, 2, 0), (2, 1, 0, 3), (2, 2, 2, 2), (2, 3, 0, 1),
(3, 0, 3, 2), (3, 1, 1, 1), (3, 2, 3, 0), (3, 3, 1, 3)}.

Lemma 2. Let c̄ = (c1, . . . , cn) be a codeword of the

Hamming code H, and let ē = (e1, e2, e3, e4) be a codeword

of the code E′′ defined in Lemma 1. Then for every j,
0 ≤ j < (n − 1)/4, the word b̄ = (b1, . . . , bn) whose

components are

bi =

{

ci + ei−4j if i ∈ {4j + 1, 4j + 2, 4j + 3, 4j + 4},
ci otherwise

is also a codeword of H.

Proof. It is sufficient to prove the statement for the case when

c̄ is the all-zero word.

For the all-zero c̄, the word b̄ has the form

(0, . . . , 0, e1, e2, e3, e4, 0, . . . , 0), and its syndrome

P b̄ coincides with P(4j+1,4j+2,4j+3,4j+4) ē, where the

matrix P(4j+1,4j+2,4j+3,4j+4) is composed from the four

corresponding columns of P . By the construction of P
(recall, it consists of all different columns whose first nonzero

element is 1 placed in the inverse lexicographical order), the

considered submatrix has the last row (ξ2, ξ, 1, 0), while the

other rows are multiples of (1, 1, 1, 1). From the definition

of the code E′′ in Lemma 1, we see that its codewords are

orthogonal to both (ξ2, ξ, 1, 0) as (1, 1, 1, 1) (indeed, this

is true for the base codewords x̄′ and ȳ′). It follows that

P(4j+1,4j+2,4j+3,4j+4) ē = 0̄ and, hence, P b̄ = 0̄. That is, b̄
belongs to H.

Lemma 3. For every two cosets C′′

1 , C′′

2 of C′′ that are not

subsets of the same coset of C′, for every x̄ from C′′

1 , there is

ȳ from C′′

2 at distance 1 from x̄. The same holds for the cosets

of D′′ that are not in one coset of D′ and for the cosets of

E′′ that are not in one coset of E′.

Proof. The statement is proven by the following counting ar-

gument. The word x̄ has exactly 12 neighbors. Two neighbors

cannot belong to the same coset of C′′, because C′′ is distance-

3. No one of these 12 neighbors belongs to the same coset of

C′ as x̄, because C′ is distance-2. Since there are 16 cosets

of C′′ and 4 of them are subsets of the same coset of C′

containing x̄, each of the remaining 12 cosets contains exactly

one neighbor of x̄.

B. Main theorem

For the construction, we need two maps, φ and ψ. The

bijective map φ between the vertex sets of H(4, 4) and D(2, 0)
is required to satisfy the following conditions:

(a) ā and b̄ belong to the same coset of E′′ if and only if

φ(ā) and φ(b̄) belong to the same coset of D′′;

(b) ā and b̄ belong to the same coset of E′ if and only if

φ(ā) and φ(b̄) belong to the same coset of D′.

To construct φ, we represent each of the 256 vertices of

H(4, 4) as ē′i + ē′′j + ē′′′k , i, j ∈ {0, 1, 2, 3}, k ∈ {0, . . . , 15},

where

• ē′0, ē′1, ē′2, ē′3 are representatives of the four cosets of E′;

• ē′′0 , ē′′1 , ē′′2 , ē′′3 are representatives of the four cosets of E′′

in E′;

• E′′ = {ē′′′0 , . . . , ē′′′15}.

Now, the bijection φ is defined by

φ(ē′i + ē′′j + ē′′′k ) = d̄′i + d̄′′j + d̄′′′k

for every i from {0, 1, 2, 3}, every j from {0, 1, 2, 3}, and

every k from {0, . . . , 15}. In a similar manner, each of the

256 vertices of D(2, 0) is represented as d̄′i + d̄′′j + d̄′′′k , i, j ∈
{0, 1, 2, 3}, k ∈ {0, . . . , 15}, where

• d̄′0, d̄′1, d̄′2, d̄′3 are representatives of the four cosets of D′;

• d̄′′0 , d̄′′1 , d̄′′2 , d̄′′3 are representatives of the four cosets of D′′

in D′;

• D′′ = {d̄′′′0 , . . . , d̄′′′15}.

The bijective map ψ between the vertex sets of H(4, 4) and

D(1, 2) is constructed similarly, involving the cosets of C′ and

C′′, and satisfies the following conditions:

(c) ā and b̄ belong to the same coset of E′′ if and only if

ψ(ā) and ψ(b̄) belong to the same coset of C′′;

(d) ā and b̄ belong to the same coset of E′ if and only if

ψ(ā) and ψ(b̄) belong to the same coset of C′.

Theorem 1. Let H be the Hamming code in H((4k−1)/3, 4)
whose check matrix consists of all columns with first nonzero

element 1, in the inverse lexicographical order. Let the codes

E′′, E′ in H(4, 4), the codes C′′, C′ in D(1, 2), the codes

D′′, D′ in D(2, 0) be defined as in Lemma 1. Let φ and ψ
be bijective maps from the vertex set of H(4, 4) to the vertex

sets of D(2, 0) and D(1, 2), respectively, satisfying conditions

(a), (b) and (c), (d) above. Let m and n be positive integers

such that 2m+ n = (4k − 1)/3. If m is even, then

C =
{

(

φ(x1, ..., x4), . . . , φ(x2m−3, ..., x2m),

x2m+1, . . . , x2m+n

)

:

(x1, . . . , x2m+n) ∈ H
}
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is a 1-perfect code in D(m,n). If m is odd, then

C =
{

(

φ(x1, ..., x4), . . . , φ(x2m−5, ..., x2m−2),

ψ(x2m−1, ..., x2m+2), x2m+1, . . . , x2m+n

)

:

(x1, . . . , x2m+n) ∈ H
}

is a 1-perfect code in D(m,n).

Proof. We will consider the case when m is even; the

odd case is similar. Assume the receiver get a word ȳ =
(y1, . . . , y2m+n) ∈ Z

2m
4 × F

n
4 , associated with a vertex of

D(m,n). To decode the message under the assumption that an

error of weight at most 1 occurred, one should find a codeword

c̄ at distance at most 1 from ȳ. Consider

x̄ =
(

φ−1(y1, y2), . . . , φ
−1(y2m−1, y2m), y2m+1, . . . , y2m+n

)

∈ F4
2m+n.

If x̄ is a codeword of H, then, by the definition of C, we have

c̄ = ȳ ∈ C. Assume that x̄ 6∈ H. Since H is a 1-perfect code,

there is b̄ = (b1, . . . , b2m+n) ∈ H at distance 1 from x̄. We

consider the codeword z̄ ∈ C defined as

z̄ = (z1, . . . , z2m+n)

=
(

φ(b1, b2, b3, b4), . . . , φ(b2m−3, ..., b2m), b2m+1, . . . , b2m+n

)

.

Note that z̄ is not necessarily the required c̄. However, we can

state the following.

(i) If b̄ differs from x̄ in one of the last n coordinates, then

z̄ and ȳ differ in exactly one, the same as b̄ and x̄,

coordinate; so, c̄ = z̄ in this case. Indeed, z̄ and ȳ trivially

coincide in the other coordinates.

(ii) If b̄ differs from x̄ in one of the first 2m coordinates, say,

(b4i−3, b4i−2, b4i−1, b4i) 6= (x4i−3, x4i−2, x4i−1, x4i),
then there is (c4i−3, c4i−2, c4i−1, c4i) ∈ Z

4
4 in the same

coset of D′′ as (z4i−3, z4i−2, z4i−1, z4i) such that

c̄ = (z1, . . . , z4i−4, c4i−3, c4i−2, c4i−1, c4i,

z4i+1, . . . , z2m+n)

at distance 1 from ȳ. Moreover, c̄ is a codeword of C.

Indeed, the first part of the claim is straightforward from

Lemma 3 and the definition of the map φ. From Lemma 2

and the construction of C, we have c̄ ∈ C.

In any case, there is a codeword c̄ ∈ C at distance at

most 1 from ȳ. From standard counting arguments (the size

of the space equals the size of the code multiplied by the size

of a radius-1 ball), we see that such a codeword is unique.

Therefore, the code is 1-perfect.

So, if there is a 1-perfect code in a 4-ary Hamming graph,

then there is a 1-perfect code in every Doob graph of the same

diameter.

Corollary 1. The Doob graph D(m,n) has a non-trivial e-
perfect code if and only if e = 1 and there is a positive integer

k such that 2m+ n = (4k − 1)/3.

Proof. The “if” and “only if” parts of the statement come

from Theorem 1 and [11, Theorem 3], respectively.

IV. CONCLUDING REMARKS

In this section we briefly discuss some related questions,

including those suggested by the reviewers.

Remark 1 (Unrestricted 1-perfect codes vs additive 1-perfect

codes). For every Doob graph D(m,n) that satisfies the

obvious ball-packing necessary condition on the existence of

1-perfect codes, we can construct such a code by Theorem 1.

In general, the code constructed is not linear or even additive

(closed with respect to addition). Moreover, as was shown

in [13, Theorem 1], the existence of additive 1-perfect codes

implies additional conditions on the parameters m and n.

Namely, 2m+ n = (2Γ+2∆ − 1)/3,

3n = 2Γ+∆ − 1− 2n′′, (1)

1 6= n′′ ≤ 2∆ − 1

for some nonnegative integer Γ, ∆, n′′. Examples of Doob

graphs for which additive 1-perfect codes do not exist, while

unrestricted 1-perfect codes can be constructed by Theorem 1,

are D(6, 9), D(9, 3), D(10, 1). As can be seen from the proof

of the theorem, we do not need additivity to have a good

decoding algorithm. Indeed, decoding the constructed code in

the Doob graph is not more complicate than decoding the

original 4-ary Hamming code of length 2m+n; all additional

operations (mainly, applying φ and φ−1) take o(2m+n) time.

Remark 2 (dual codes). The codes formally dual to the 1-

perfect codes are known as simplex codes or tight 2-designs

(the formal duality of two codes means that the MacWilliams

transform of the distance distribution of one code gives the

distance distribution of the other code). A simplex code in

a Hamming graph H(N, q) or a Doob graph D(m,n) has

N(q − 1) + 1 codewords at mutual distance (N(q − 1) +
1)/q from each other (for D(m,n), we put N = 2m + n
and q = 4). In every D(m,n) such that 2m + n = (4k −
1)/3 for some k, simplex codes were constructed in [11]. So,

it is safe to say that for every 1-perfect code C in a Doob

graph there is a simplex code (tight 2-design) that is formally

dual to C. However, to treat duality in the usual sense, as

a duality between two submodules, we need additive codes

(note that the duality should be defined in a special way to be

compatible with the MacWilliams transform, see [14]). Since

additive 1-perfect codes (and hence, additive simplex codes)

exist only if the parameters satisfy the additional conditions

(1), for any other parameters meeting 2m + n = (4k − 1)/3
the class of 1-perfect codes is connected with the class of

simplex codes only in the way of formal duality (there is still

a challenge in finding a more strict connection, as was done,

for example, in [8] for the formally dual classes of Preparata-

like codes and Kerdock-like codes). It should also be noted

that the parameters of simplex codes (tight 2-designs) are not

proven to be restricted by the case 2m + n = (4k − 1)/3
only. The problem of existence of simplex codes for other

parameters is open for Doob graphs, as well as for Hamming

graphs, where the most attempts are focused on the binary

case (see the Hadamard conjecture).

Remark 3 (from H(2m + n, 4) to D(m,n)). To solve the

problem of parameters of perfect codes in Doob graphs, we

apply the strategy of “switching” between the graphs D(m,n)
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and H(2m+n, 4) by transforming the Shrikhande components

of the Cartesian product, in groups of one or two, to Hamming

(K4) components. This general approach is not new and was

applied for different purposes before; however, the realizations

depend on concrete problems. In [11], isometries between

special vertex sets in H(4, 4), D(1, 2), and D(2, 0) were

used to construct a simplex code in a Doob graph from a

special (not arbitrary) simplex code in a Hamming graph.

In [12], any maximum independent set in a Doob graph is

mapped to a maximum independent set (unrestricted distance-

2 MDS code) in the corresponding Hamming graph; again,

the map is constructed based on a map in the smallest case,

from D(1, 0) to H(2, 4), but the map is set-to-set and cannot

be treated in a point-wise manner. In the current paper, we

use point-to-point maps φ and ψ that preserve some metrical

properties of a special coset partition in H(4, 4) to construct

perfect codes in Doob graphs from a special Hamming code

(we cannot apply the same maps to an arbitrary 1-perfect

code or even to an equivalent Hamming code because we

need to control which subcodes occur in subsequent groups

of coordinates). As shown in [15], one can obtain D(m,n)
from H(2m + n, 4) by a sequence of m Godsil–McKay

switchings, each switching replacing one Shrikhande compo-

nent in the Cartesian product by two K4-components. Godsil–

McKay switching can be treated as a bigective map between

the vertex set of two graphs, and it is also induces, in an

algebraic way, an isomorphism between eigenspaces of the

graphs with the same eigenvalues (so the graphs related by

Godsil–McKay switching are always cospectral). However, it

obviously changes the distances between some vertices, and

so cannot serve the purpose of constructing error-correcting

codes in a straightforward way. It is still a very interesting

question if some bijections φ and ψ with the desired properties

(Section III-B) can be treated as a combination of Godsil–

McKay switchings, but even if they can, this would hardly

simplify the construction or its proof.
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