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Abstract

The discrete Fourier transform test is a randomness test included in NIST SP800-22.
However, the variance of the test statistic is smaller than expected and the theoretical value
of the variance is not known. Hitherto, the mechanism explaining why the former variance is
smaller than expected has been qualitatively explained based on Parseval’s theorem. In this
paper, we explore this quantitatively and derive the variance using Parseval’s theorem under
particular assumptions. Numerical experiments are then used to show that this derived
variance is robust.

1 Introduction

Random number sequences are used in many fields. These sequences play a particularly
important role in information security including cryptography because high “randomness” is
required in such fields. Thus, evaluation of random number sequences and their generators
is indispensable.

Randomness tests are one of the most fundamental evaluation methods in this respect.
These are hypothesis tests, and the null is that the given sequence is truly random. Ran-
domness tests do not require information about the generator which resulted in the given
sequence. Thus, such tests can be widely used without regard to the generators. There are
many kinds of randomness tests and some test sets have been proposed. NIST SP800-22 [1]
is one of the most well-known test sets; the first version was published in 2001 and revision
1a, published in 2010, is currently the most recent variant. Revision 1a consists of 188 test
items which can be grouped according to 15 types.

A discrete Fourier transform test (DFTT) is one of the randomness tests included in
NIST SP800-22. The algorithm for the DFTT included in the first version is as follows:

1. Input an n-bit sequence X. Here, each bit of X is 0 or 1.

2. Convert each bit x to 2x− 1 (each bit becomes 1 or -1).

3. Perform DFT to obtain the Fourier spectrum series

|f0|, |f1|, · · · , |fbn
2 c−1|, (1)

where

|fj | :=

√√√√(n−1∑
k=0

xk cos

(
2πkj

n

))2

+

(
n−1∑
k=0

xk sin

(
2πkj

n

))2

, (2)

with xk being the (k + 1)-th bit of X.
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4. Count the elements of {|f0|, |f1|, · · · , |fbn
2 c−1} satisfying |fi| <

√
3n. Let N1 be such a

number.

5. Compute d defined by

d =
N1 − 0.95n

2√
(0.95)(0.05)n

2

. (3)

6. Compute p-value p defined by

p = erfc

(
|d|√

2

)
, (4)

where erfc denotes the complementary error function.

For j = 1, 2, · · · , n−1, 2
n |fj |

2 follows the χ2-distribution with 2 degrees of freedom as n→∞.
If Z is a stochastic variable and 2

n |Z|
2 follows a χ2-distribution with 2 degrees of freedom,

then

Prob{ |Z| <
√

3n } ∼ 0.95. (5)

Thus, it is expected that N1 approximately follows a normal distribution with an average
and variance of 0.95n

2 and (0.95)(0.05)n
2 , respectively. If this holds, d and p approximately

follow a standard normal distribution and a uniform distribution over the interval [0, 1],
respectively.

However, the following problems were revealed by [2, 3].

• The threshold
√

3n is an approximation and it is not accurate enough for practical use.

• The variance of N1 observed numerically is far smaller than expected.

To address the first problem, Kim et al. proposed that the threshold value should be
changed from

√
3n to

√
−n log(0.05) [2]. If Z is a stochastic variable and 2

n |Z|
2 follows

a χ2-distribution with 2 degrees of freedom,

Prob{ |Z| <
√
−n log(0.05) } = 0.95 . (6)

Then, we can state that the proposed threshold is appropriate. The DFTT included in
revision 1a uses this proposed value.

To address the second problem, Kim et al. also proposed to use (0.95)(0.05)n
4 as an

estimate of the variance of N1 [2]. In other words, because the variable d should follow a
standard normal distribution, they proposed to change the computation of d to

d =
N1 − 0.95n

2√
(0.95)(0.05)n

4

. (7)

Subsequently, Hamano et al. proposed (0.95)(0.05)n
2 × 0.528 ' (0.95)(0.05) n

3.7879 as the
variance of N1 [4] and Pareschi et al. proposed (0.95)(0.05) n

3.8 as that [5]. These proposed
values were experimentally derived but the theoretical value of this variance has not been
derived.

Yamamoto et al. qualitatively explained why the variance of N1 is smaller than
(0.95)(0.05)n

2 based on Parseval’s theorem [6]. We believe that the explanation is persua-
sive. In this paper, we derive the variance of N1 based on Parseval’s theorem with some
assumptions. Although some alternative tests to DFTT have been proposed [7, 8], these are
not dealt with herein, because the DFTT is now preferred and revising a parameter is easier
than revising the algorithms.

The remainder of the paper is organized as follows. In section 2, we introduce the
qualitative explanation based on Parseval’s theorem which has hitherto been documented in
the literature. In section 3, we theoretically derive the value of the variance with Parseval’s
theorem and some assumptions. In section 4, we perform some experiments and discuss the
validity of the result in Section 3. Finally, in section 5 we offer conclusions.
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2 Qualitative explanation based on Parseval’s theorem

In this section, we briefly introduce the qualitative explanation by Yamamoto et al. This
also serves as preparation for the next section.

By Parseval’s theorem, it follows that

n−1∑
j=0

|fj |2 = n

n−1∑
k=0

|xk|2. (8)

For k = 0, 1, · · · , n− 1, |xk|2 = 1 because xk = ±1. Then,

n−1∑
j=0

|fj |2 = n2. (9)

By the symmetry of the Fourier transformation,

|fn−j | = |fj | (10)

for arbitrary j. Then,

bn
2 c−1∑
j=0

|fj |2 =

n2

2 + |f0|2
2 −

|fn
2
|2

2 (n:even)
n2

2 + |f0|2
2 (n:odd)

. (11)

From [9], for j = 1, 2, · · · , n− 1, we have

V
[
|fj |2

]
= n2 − 2n, (12)

where V [Z] is the variance of variable Z. For j = 0, it follows that

V
[
|f0|2

]
= V

(n−1∑
k=0

xk

)2
 (13)

= E

(n−1∑
k=0

xk

)4
− E

(n−1∑
k=0

xk

)2
2

(14)

=

n−1∑
k1=0

n−1∑
k2=0

n−1∑
k3=0

n−1∑
k4=0

E [xk1xk2xk3xk4 ]−

{
n−1∑
k1=0

n−1∑
k2=0

E [xk1xk2 ]

}2

(15)

= 2n2 − 2n, (16)

where E[·] is 1
2n

∑
X∈{−1,1}n(·) . Using (12) and (16),

V

bn
2 c−1∑
j=0

|fj |2

 ≤max

{
4V

[
|f0|2

2

]
, 4V

[ |fbn
2 c|

2

2

]}
(17)

=2n2 − 2n. (18)

If |f0|, |f1|, · · · , |fbn
2 c−1| are mutually independent, then

V

bn
2 c−1∑
j=0

|fj |2

 =

bn
2 c−1∑
j=0

V
[
|fj |2

]
(19)

=
⌊n

2

⌋
(n2 − 2n) + n2. (20)
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Comparing (18) and (20), we conclude that the energy
∑bn

2 c−1
j=0 |fj |2 is restricted to a narrow

area in R by the dependency among |f0|, |f1|, · · · , |fbn
2 c−1|.

Yamamoto et al. claimed that this restriction explains why V [N1] is smaller than
(0.95)(0.05)n

2 . If some elements of {|f0|, |f1|, · · · , |fbn
2 c−1|} take large values, then some

other elements must take small values to maintain the restriction. As a result, the proba-
bility that N1 takes a value far from the average is forced to be small, i.e., V [N1] is smaller
than (0.95)(0.05)n

2 .

3 Quantitative analysis based on Parseval’s theorem

From our perspective, the qualitative explanation introduced in the previous section is per-
suasive. The restriction by Parseval’s theorem will be critical to deriving V [N1]. Thus, in
this section, we theoretically derive V [N1] with Parseval’s theorem under particular assump-
tions. To simplify discussion we assume that n is even, but this is not essential. We define
m as n

2 .

3.1 Assumptions

If we know the analytical form of the joint probability density function depending on
(|f0|, |f2|, · · · , |fm−1|), we can derive V [N1]. However, the form is not known. Thus, we need
to assume a certain analytical form and in this subsection we discuss which such form is
appropriate. First, we introduce the following proposition.

Proposition. 3.1 Let R be an arbitrary natural number. Then, the joint probability density
function depending on

(
1
m |f1|

2, 1
m |f2|

2, · · · , 1
m |fR|

2
)

converges to

1

2R
exp

(
−
∑R

j=1 |fj |2

2m

)
(21)

as m→∞.

In Proposition 3.1, R is a fixed value. As an analogy, let us assume that the joint probability
density function depending on

(
1
m |f0|

2, 1
m |f2|

2, · · · , 1
m |fm−1|

2
)

converges to

1

2m
exp

(
−
∑m−1

j=0 |fj |2

2m

)
. (22)

However, there are two problems:

• Even as n→∞, i.e., m→∞, 1
m |f0|

2 does not follow a χ2-distribution with 2 degrees
of freedom, which is the limit distribution of 1

m |fj |
2, (j 6= 0).

• The energy is restricted to a narrow area by (11).

To address these problems, we assume the following:

• For sufficiently large n, the value of V [N1] will be virtually preserved even if 1
m |f0|

2 are
replaced with a variable following a χ2-distribution with 2 degrees of freedom. Thus,
we assume that 1

m |f0|
2 follows a χ2-distribution with 2 degrees of freedom.

• The energy
∑m−1

j=0 |fj |2 is restricted by (11), and it is not constant. However, by (18),
we can state that the standard deviation of the energy is sufficiently smaller than the
average of that energy. Thus, we assume that

m−1∑
j=0

|fj |2 = 2m2. (23)

Based on the above two assumptions and (22), we further assume the following.

Assumption. 3.1 In Rm,
(
|f0|2, |f2|2, · · · , |fm−1|2

)
is restricted on the surface defined by

(23), and it is uniformly distributed in the area where |fj |2 ≥ 0 j = 0, 1, 2, · · · ,m− 1 on the
surface.
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3.2 Analysis using polar coordinates

To derive V [N1], we need probability density functions depending on |fi|2 for i = 0, 1, · · · ,m−
1 and joint probability density functions depending on

(
|fi|2, |fj |2

)
for i 6= j. In this subsec-

tion, we derive these different density functions under Assumption 3.1.
Under Assumption 3.1, p̄ which is the joint probability density function depending on(

|f0|2, |f1|2, · · · , |fm−1|2
)

is as follows:

p̄(|f0|2, |f1|2, · · · , |fm−1|2) =

{
C1 (|fj |2 ≥ 0 (j = 0, 1, · · · ,m− 1) and

∑m−1
j=0 |fj |2 = 2m2)

0 (otherwise)
.

(24)

We use polar coordinates,

|f0| = r cos θ1, (25)

|f1| = r sin θ1 cos θ2, (26)

|f2| = r sin θ1 sin θ2 cos θ3, (27)

... (28)

|fm−2| = r sin θ1 · · · sin θm−2 cos θm−1, (29)

|fm−1| = r sin θ1 · · · sin θm−2 sin θm−1, (30)

where r ≥ 0, 0 ≤ θi ≤ π (i = 1, 2, · · · ,m − 2), and 0 ≤ θm−1 < 2π. The Jacobian for the
change in coordinates is

rm−1
m−1∏
i=1

(sin θi)
m−i−1

. (31)

For j = 0, 1, · · · ,m− 1, it follows that

d|fj |2 = 2|fj |d|fj |. (32)

Then, we have

m−1∏
j=0

d|fj |2 =2m
m−1∏
j=0

|fj |d|fj |. (33)

=2mrm−1

m−1∏
j=0

|fj |

(m−1∏
i=1

(sin θi)
m−i−1

)
drdθ1dθ2 · · · dθm−1 (34)

=2mr2m−1

(
m−1∏
i=1

(sin θi)
2m−2i−1

cos θi

)
drdθ1dθ2 · · · dθm−1. (35)

Let pj be a probability density function depending on |fj |2 and p(i,j) be a joint probability
density function depending on (|fi|2, |fj |2). First, we derive p0. By (25), |f0|2 = r2 cos2 θ1.
Then, by (24) and (35),

p0(|f0|2)d|f0|2 =

{
C2 (sin θ1)

2m−3
cos θ1dθ1 (0 ≤ |f0|2 ≤ 2m2)

0 (otherwise)
, (36)

and

d|f0|2 = C3 sin θ1 cos θ1dθ1, (37)

where C2 and C3 are constants. Then,

p0(|f0|2) =

m−1
2m2

(
1− |f0|

2

2m2

)m−2
(0 ≤ |f0|2 ≤ 2m2)

0 (otherwise)
. (38)
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Because |f0|2, |f1|2, · · · |fm−1|2 follow the same distribution under Assumption 3.1, for j =
0, 1, · · · ,m− 1,

pj(|fj |2) =

m−1
2m2

(
1− |fj |

2

2m2

)m−2
(0 ≤ |fj |2 ≤ 2m2)

0 (otherwise)
. (39)

By (24), p(i,j) depends only on |fi|2 + |fj |2. Then, by (39),

p(i,j)(|fi|2, |fj |2)

=

 (m−1)(m−2)
(2m2)2

(
1− |fi|

2+|fj |2
2m2

)m−3
(|fi|2 ≥ 0, |fj |2 ≥ 0 and |fi|2 + |fj |2 ≤ 2m2)

0 (otherwise)
. (40)

3.3 Theoretical derivation of V [N1]

In this subsection, we derive V [N1] using the results from the previous subsection. For
notational convenience, we introduce T =

√
−n log(0.05). With this T , we define

Fj :=

{
1 (|fj | ≤ T )

0 (|fj | > T )
, (41)

for j = 0, 1, · · · ,m− 1. Then, the variance is decomposed as

V [N1] =V

m−1∑
j=0

Fj

 (42)

=

m−1∑
j=0

V
[
Fj

]
+

∑
(i,j)|i 6=j

C
[
Fi, Fj

]√
V
[
Fi

]
V
[
Fj

]
, (43)

where C[X,Y ] is the correlation coefficient between variables X and Y . By (39) and (40),
we have V [Fi] and C[Fi, Fj ] as follows.

V [Fi] =

(
1− T 2

2m2

)m−1

−
(

1− T 2

2m2

)2m−2

, (44)

C [Fi, Fj ] =

(
1− T 2

m2

)m−1
−
(

1− T 2

2m2

)2m−2
√
V [Fi]V [Fj ]

. (45)

Substituting (44) and (45) into (43), we arrive at

V [N1] = m×

{(
1− T 2

2m2

)m−1

−
(

1− T 2

2m2

)2m−2}

+m(m− 1)×

{(
1− T 2

m2

)m−1

−
(

1− T 2

2m2

)2m−2}
. (46)

Assuming that V [N1] = (0.95)(0.05)n
a , we have

a =
2× 0.05× 0.95(

1− T 2

2m2

)m−1 − (1− T 2

2m2

)2m−2
+ (m− 1)×

{(
1− T 2

m2

)m−1 − (1− T 2

2m2

)2m−2} . (47)

Figure 1 shows that a approximately converges to 3.7903 as m→∞. Broadly speaking, this
is consistent with previous studies.
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m

a

Figure 1: Plot of (47)

4 Numerical experiments

In the previous section, we used Assumption 3.1. It is obvious that the true distribution
is never the distribution defined by Assumption 3.1. However, they are very close in some
sense and so we expect that (46) and (47), which are derived based on Assumption 3.1, are
appropriate. In this section, we discuss the validity of (46) and (47).

4.1 Experiment 1

By (43) which holds for both distributions, if a converges to a certain value as m → ∞,
then the limit value depends only on the leading terms of V [Fi] and C[Fi, Fj ]. By (44), for
Assumption 3.1,

lim
m→∞

V [Fj ] = (0.05)(0.95). (48)

With the true distribution, 1
m |fj |

2 converges to the χ2-distribution with 2 degrees of freedom
for all j except j = 0, and (48) also holds. We do not need to consider the case that j = 0,

because V [F0] becomes relatively smaller than
∑m−1

j=0 V [Fj ] as m→∞.
Then, we should investigate the leading term of C[Fi, Fj ]. By the same argument, cases

where i = 0 and j = 0 can be excepted. We generated 108 sequences using the Mersenne
Twister [10], performed DFT, and computed C[F1, F2]. Figure 2 compares the C[F1, F2]
with that derived from Assumption 3.1. The results corroborate that the leading term of
C[Fi, Fj ] in both distributions is the same.

4.2 Experiment 2

We computed the value of a with 108 sequences generated by the Mersenne Twister [10]. In
general, randomness tests do not use 108 sequences. However, we need to compute the value
of a with high accuracy to discuss the validity of (46) and (47), so we used many sequences.
Each sequence was 106-bit. The experiments were repeated 10 times and the results are
presented in Table 1. Based on this, we can conclude that 3.7903, which was derived in the
previous section, is close to the experimental result and a more accurate value compared to
those generated in previous studies.

7



Figure 2: Comparing C[F1, F2]

Table 1: Value of a computed using the Mersenne Twister

Trial No. a

1 3.790208
2 3.790127
3 3.790568
4 3.790496
5 3.789058
6 3.791035
7 3.789565
8 3.790191
9 3.790522
10 3.790403

Total 3.790217± 0.000527

5 Conclusion

We have theoretically derived the variance of DFTT test statistics based on Parseval’s theo-
rem. Because the variances reported by previous studies are based on numerical experiments,
we can state that our result is superior subject to the tenability of the assumptions used.
In addition, and importantly, the derived value is consistent with experimental results gen-
erated herein. Thus, we advocate that the value derived in this paper should be used when
DFTT is performed so that randomness can be tested for more precisely.
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Appendix. A Proof of Proposition 3.1

We prove Proposition 3.1. Assume that

sj :=

√
2

n

n−1∑
k=0

xk sin

(
2πkj

n

)
, cj :=

√
2

n

n−1∑
k=0

xk cos

(
2πkj

n

)
.

Proposition 3.1 is equivalent to the following proposition.

Proposition. A.1 Let R be an arbitrary positive integer. As n→∞, s1, c1, s2, c2, · · · , sR, cR
independently follow a standard normal distribution.

Thus, we prove Proposition A.1. First, we introduce the following lemma.

Lemma. A.1 Assume that ε(x) satisfies log cosx = − 1
2x

2 + ε(x). Then, constants C and x̄
exist such that

|x| < x̄ ⇒ ε(x) < Cx4. (49)

We define the characteristic function of the distribution followed by (s1, c1, s2, c2, · · · , sR, cR)
as follows:

φ(u1, v1, u2, v2, · · · , uR, vR) := E

[
exp

(
i

R∑
r=1

(ursr + vrcr)

)]
. (50)

Then,

φ(u1, v1, u2, v2, · · · , uR, vR)

=E

[
exp

(
i

√
2

n

R∑
r=1

(
ur

n−1∑
k=0

xk sin

(
2πkr

n

)
+ vr

n−1∑
k=0

xk cos

(
2πkr

n

)))]

=E

[
n−1∏
k=0

exp

(
ixk

√
2

n

R∑
r=1

(
ur sin

(
2πkr

n

)
+ vr cos

(
2πkr

n

)))]

=

n−1∏
k=0

cos

(√
2

n

R∑
r=1

(
ur sin

(
2πkr

n

)
+ vr cos

(
2πkr

n

)))
.
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For arbitrary (u1, v1, u2, v2, · · · , uR, vR), we have

∃D s.t. ∀k,

∣∣∣∣∣
√

2

n

R∑
r=1

(
ur sin

(
2πkr

n

)
+ vr cos

(
2πkr

n

))∣∣∣∣∣ ≤ D√
n
. (51)

Then, if n is sufficiently large,

∀k, cos

(√
2

n

R∑
r=1

(
ur sin

(
2πkr

n

)
+ vr cos

(
2πkr

n

)))
> 0 (52)

for arbitrary (u1, v1, u2, v2, · · · , uR, vR), and so

log φ(u1, v1, u2, v2, · · · , uR, vR)

=

n−1∑
k=0

log cos

(√
2

n

R∑
r=1

(
ur sin

(
2πkr

n

)
+ vr cos

(
2πkr

n

)))
.

By Lemma A.1 and (51), we have

log φ(u1, v1, u2, v2, · · · , uR, vR)

=− 1

n

R∑
r=1

R∑
r′=1

{
urur′

n−1∑
k=0

sin

(
2πkr

n

)
sin

(
2πkr′

n

)}

− 1

n

R∑
r=1

R∑
r′=1

{
vrvr′

n−1∑
k=0

cos

(
2πkr

n

)
cos

(
2πkr′

n

)}

− 2

n

R∑
r=1

R∑
r′=1

{
urvr′

n−1∑
k=0

sin

(
2πkr

n

)
cos

(
2πkr′

n

)}

+

n−1∑
k=0

ε

(√
2

n

R∑
r=1

(
ur sin

(
2πkr

n

)
+ vr cos

(
2πkr

n

)))

=− 1

n

R∑
r=1

{
u2r

n−1∑
k=0

sin2

(
2πkr

n

)}
− 1

n

R∑
r=1

{
v2r

n−1∑
k=0

cos2
(

2πkr

n

)}
+O

(
1

n

)

=

R∑
r=1

(
−1

2
u2r −

1

2
v2r

)
+O

(
1

n

)
.

For arbitrary (u1, v1, u2, v2, · · · , uR, vR),

lim
n→∞

φ(u1, v1, u2, v2, · · · , uR, vR) = exp

(
R∑

r=1

(
−1

2
u2r −

1

2
v2r

))

=

R∏
r=1

exp

(
−1

2
u2r

)
exp

(
−1

2
v2r

)
.

Thus, we have proved Proposition A.1. Then, it follows from Proposition A.1 that Proposi-
tion 3.1 holds.
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