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Abstract— The problem of quickest detection of dynamic
events in networks is studied. At some unknown time, an event
occurs, and a number of nodes in the network are affected
by the event, in that they undergo a change in the statistics
of their observations. It is assumed that the event is dynamic,
in that it can propagate along the edges in the network, and
affect more and more nodes with time. The event propagation
dynamics is assumed to be unknown. The goal is to design
a sequential algorithm that can detect a “significant” event,
i.e., when the event has affected no fewer than η nodes, as quickly
as possible, while controlling the false alarm rate. Fully connected
networks are studied first, and the results are then extended
to arbitrarily connected networks. The designed algorithms are
shown to be adaptive to the unknown propagation dynamics,
and their first-order asymptotic optimality is demonstrated as the
false alarm rate goes to zero. The algorithms can be implemented
with linear computational complexity in the network size at
each time step, which is critical for online implementation.
Numerical simulations are provided to validate the theoretical
results.

Index Terms— Adaptive algorithms, asymptotic optimality,
event propagation, Network-CuSum (N-CuSum), Spartan-
CuSum (S-CuSum), structured network.

I. INTRODUCTION

IN THE problem of quickest change detection (QCD),
a stochastic system is observed sequentially. At some

unknown time, a change occurs that changes the data generat-
ing process. Observations are taken sequentially with time,
and the objective is to detect the change as quickly as
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Fig. 1. A dynamic event propagates in a network with time.

possible subject to false alarm constraints (see [3]–[6] for
an overview). The QCD framework models a wide range of
applications, e.g., fraud detection, intrusion detection, environ-
mental monitoring, line outage detection in power systems,
quality control in online manufacturing systems and spectrum
monitoring in wireless communications. However, in many
applications, e.g., epidemic detection [7], [8], opinion mining
in social networks [9], anomalous event detection in sensor
networks (e.g., internet of battlefield things) [10], detection
of malicious code spreading in computer networks [11],
the data are usually collected from networks with certain
underlying topologies. Following the occurrence of an event,
it propagates dynamically across the network, affects more
and more nodes, and changes their data generating behaviors
with time (see Fig. 1). The propagation dynamics is usually
unknown in practice, and depends on the underlying network
topology.

Motivated by these applications, we study the problem of
quickest detection of dynamic events in networks. Suppose
a network is monitored in real time by a set of L nodes
that communicate with a fusion center. At some unknown
time, an event occurs in the network that causes eventual
changes in the observations of a connected subset of nodes.
The event occurs at a connected subset of nodes and then
dynamically propagates along the edges in the network, and
the affected nodes form a connected sub-graph, the size
of which grows with time. The propagation dynamics are
assumed to be unknown, i.e., the set of nodes and the
order in which they are affected are unknown. We are inter-
ested in detecting a “significant” event, i.e., one that affects
η ≥ 1 nodes as quickly as possible, subject to false alarm
constraints.
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A. Related Works

The problem in this paper is closely related to the problem
of QCD under the multi-channel setup, in which one or
multiple unknown nodes perceive a change simultaneously
[12]–[16], or alternatively, at different times [17]–[19]. The
major differences from these previous works lie in that:
(i) we are interested in detecting whether the event has
affected at least η nodes, i.e., the event is “significant”
enough, whereas previous works focus on the special case
with η = 1, i.e., whether the event has occurred or not;
(ii) instead of considering the worst-case performance over
all possible times that the nodes are affected [19] or taking a
Bayesian approach [17], [18], we assume that the times that the
nodes are affected are deterministic and unknown, and we are
interested in designing algorithms that adapt to unknown prop-
agation dynamics; and (iii) we consider structured networks,
over which events can only propagate along network edges.

On a temporal scale, the data generating distribution of the
whole network dynamically changes over time. As the event
affects more nodes with time, the network goes through mul-
tiple transient phases in which the sets of affected nodes are
different. This is related to the problem of QCD under transient
dynamics [20]–[23], where after an event occurs, the pre-
change distribution does not change to a persistent post-
change distribution instantaneously, but only after a number
of transient phases. Each transient phase is associated with a
distinct data generating distribution. In [20]–[23], it is assumed
that the number of transient phases and the data generating
distributions associated with each phase are known. In this
paper, event propagation dynamics are unknown. Therefore,
the results in [20]–[23] cannot be directly applied to solve
the problem here. Moreover, in [22] a Bayesian approach is
employed, where it is assumed that the transient durations
are geometrically distributed with statistics known to the
decision maker. In contrast to [22], in this paper, we make
no probabilistic assumptions on the times at which the nodes
are affected.

The data generating distributions for the whole network
before and after η nodes are affected are both composite,
i.e., belong to a set of distributions, as they are determined
by the unknown subset of affected nodes with unknown
change times. Therefore, the problem in this paper is related
to the problem of QCD with composite pre-/post-change
distributions [24]–[27]. However, our problem differs from
these works in the following ways. First, the data generating
distribution before η nodes are affected is composite, whereas
in [24], [25], [27], only the post-change distribution is com-
posite. Second, our test statistics can be computed efficiently
at each time step with a computational complexity linear
in the network size (number of nodes), whereas a sliding
window approach is usually used to control the computational
cost in [24]–[27]. Third, in our problem, the distribution of
samples before and after the nodes are affected by the event are
arbitrary (not necessarily belonging to an exponential family),
and the parameters of the data generating distribution for the
whole network (times at which the nodes are affected by the
event) are discrete, and do not necessarily belong to a compact
parameter space.

The offline setting of our problem has been extensively
studied in the literature [28]–[36]. The aim of these works is
to detect whether there exists a subset of nodes in the network,
which have certain geometric structures (e.g., connected sub-
graphs), and the observations received by this subset of nodes
are generated from a distribution different from the one that
generates the samples for the rest of the nodes in the network.
Our problem is the online dynamic version with a growing
anomalous geometric structure. Hence, a small computational
complexity at each time step is important in order for making
timely decisions. However, many previous works are based
on the scan statistic that scans over all connected subgraphs,
which is computationally inefficient for large networks, and
thus cannot be directly applied to our online setting. As will
be shown later, our algorithms can be updated recursively with
computational complexity linear in the network size at each
time step, and we do not reprocess the previous data over and
over again.

B. Contributions

In this paper, we start with fully connected networks, and
then extend to arbitrarily connected networks.

For fully connected networks, the event can propagate from
any node to any other node. Then, the algorithm design does
not need to account for the fact that the event only propagates
along the edges in the network, and the network structure does
not matter. This simplifies the problem to one where we are
simply interested in detecting when an arbitrary subset of η
nodes has been affected by the event.

For fully connected networks, we solve the QCD problem
by reformulating it as a dynamic composite hypothesis testing
problem, where we distinguish between two hypotheses at
each time instant. The null hypothesis corresponds to the case
that less than η nodes are affected; and the alternative hypoth-
esis corresponds to the case that at least η nodes are affected.
The data generating distributions for the whole network before
and after η nodes are affected are both composite, as they
are determined by the unknown subset of affected nodes
with unknown change times. We take the generalized log-
likelihood ratio between the two composite hypotheses as the
detection statistic, and compare it to a positive threshold. If it
is greater than the threshold, then we stop and raise an alarm;
otherwise, we take another sample from each node in the
network.

We show that the generalized log-likelihood ratio test is
equivalent to one that compares the sum of the smallest
L − η + 1 local Cumulative Sum (CuSum) statistics [37] to
the same threshold. The resulting algorithm, which we refer
to as Spartan-CuSum (S-CuSum), is computationally efficient
with O(L) complexity at each time step. This guarantees that
the algorithm can be implemented efficiently in an online
fashion for large networks. We further show that the S-CuSum
algorithm satisfies the false alarm constraints with a properly
chosen threshold for all scenarios with fewer than η affected
nodes, and adapts to unknown event propagation dynamics.
We then establish the asymptotic optimality of the S-CuSum
algorithm up to a first-order approximation as the false alarm
rate goes to zero.
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For arbitrarily connected networks, the S-CuSum is still
applicable. However, it does not account for the fact that the
event only propagates along the edges in the network, and
thus will trigger more false alarms. A direct generalization of
the generalized log-likelihood ratio test involves a complicated
statistic that scans over all connected sub-graphs and prop-
agation dynamics at each time step. This is computationally
intractable for a large arbitrarily connected network, especially
under the online setting. We then construct an algorithm based
on a thresholding approach, the breadth-first search (BFS)
algorithm and the S-CuSum algorithm, which we refer to
as the Network-CuSum (N-CuSum) algorithm. We show that
the computational complexity of the N-CuSum algorithm is
linear in the network size at each time step, and that it is
asymptotically optimal up to a first-order approximation as
the false alarm rate goes to zero. Moreover, we show through
our numerical results that the N-CuSum algorithm, which
accounts for the network structure, has a better performance
than the S-CuSum algorithm. Both the S-CuSum algorithm
and the N-CuSum algorithm are better than the generalized
multi-chart CuSum algorithm [38], which stops when at least
η local CuSum statistics cross their individual thresholds, and
the network generalized multi-chart CuSum algorithm, which
stops when the local CuSum statistics of at least η connected
nodes cross their individual thresholds simultaneously.

C. Paper Organization

This paper is organized as follows. In Section II, we for-
mulate the problem mathematically. In Section III, we focus
on fully connected networks, present the S-CuSum algorithm,
and present a method to choose the threshold to satisfy
the false alarm constraints. In Section IV, we demonstrate
the asymptotic optimality of the S-CuSum algorithm. In
Section V, we study arbitrarily connected networks, present
the N-CuSum algorithm and demonstrate its asymptotic opti-
mality. In Section VI, we present numerical results. Finally,
in Section VII, we discuss some potential extensions.

II. PROBLEM FORMULATION

Consider a network monitored in real time by a set of L
nodes. We use an unweighted, undirected graph G = (V , E)
to denote the underlying structure of the network. Here,
L = |V |. In practice, an edge connecting two nodes may be
due to the fact that two nodes communicate with each other,
or are geometrically close to each other.

Before an event occurs, node i ∈ {1, 2, . . . , L} receives
independent and identically distributed (i.i.d.) samples from
distribution f0. If an event occurs, and node i is affected by
the event at an unknown time νi , then it starts to receive i.i.d.
samples from distribution f1, i.e., νi is the change-point at
node i . If νi = ∞, node i will not be affected by the event
ever. More specifically, if we denote the observation received
by node i at time k by Xi [k], then

Xi [k] ∼
{

f0, if k < νi ,
f1, if k ≥ νi .

(1)

We assume that the event first affects a connected subset of
nodes, which might be due to the locality of the event, and

then dynamically propagates along the edges in the network
(see Fig. 1 for an example). Equivalently, at every time step,
the induced sub-graph on all the affected nodes is connected.

We consider a centralized setting in which a fusion center
obtains the samples of all the nodes without delay. We
are interested in sequentially detecting a “significant” event,
i.e., one that affects at least η ≥ 1 affected nodes. If an alarm
is triggered at a time when fewer than η nodes are affected,
it is then considered as a false alarm event.

Let ν = {ν1, . . . , νL}, which is unknown in advance.
Without loss of generality, we assume that ν1 ≤ ν2 ≤ · · · ≤
νL , with the ordering being unknown to the decision maker
in advance. We note that νi can be equal to νi+1, i.e., one
node can affect more than one of its neighbors simultaneously.
Then νη is the first time when at least η nodes are affected by
the event. Thus, our problem is to detect the change at νη as
quickly as possible subject to false alarm constraints.

For any ν, denote by C(ν) = {i : νi < ∞} the set of all
the indices of the nodes that will eventually be affected by the
event. Then

|C(ν)| =
∑

1≤i≤L

1{νi<∞} (2)

is the total number of affected nodes. If |C(ν)| = L, then all
the nodes will be affected by the event eventually.

We use Pν to denote the probability measure of the samples
with the set of change-points being ν, and let Eν denote the
corresponding expectation. For a given ν, if |C(ν)| < η,
i.e., νη = ∞, then there are fewer than η nodes that will
be affected under Pν . In this case, if an alarm is triggered,
it is a false alarm. For any stopping time τ , to measure how
frequently false alarms occur, we define the worst-case average
run length (WARL) to false alarm as follows:

WARL(τ ) = inf
ν:|C(ν)|<η

Eν[τ ]. (3)

Then with a larger WARL, we have fewer false alarms.
Let di = νi+1 − νi denote the time it takes for the event to

propagate from node i to node i + 1, for 1 ≤ i ≤ L − 1.
If di = 0, then node i and node i + 1 are affected
simultaneously. Denote D := {dη, dη+1, . . . , dL−1}. For a
fixed D, to measure how quickly we can detect when at
least η nodes are affected, we define the worst-case average
detection delay (WADD) using a criterion based on Pollak’s
criterion [39] as follows:

JD(τ ) = sup
ν1≤···≤νη<∞

Eν[τ − νη|τ ≥ νη]. (4)

We note that the supremum in (4) is only taken over
ν1 ≤ · · · ≤ νη <∞. Therefore, JD[τ ] is a function of D.

We denote by Fk the σ -algebra generated by the obser-
vations of all the nodes up to time k, for k = 1, 2, . . .. We
wish to find a {Fk}k∈N-stopping time that achieves “small”
detection delay, while controlling the false alarm rate. More
specifically, for any D, the goal is to minimize JD[τ ] subject
to a constraint on the WARL:

inf
τ :WARL(τ )≥γ

JD(τ ). (5)



ZOU et al.: QUICKEST DETECTION OF DYNAMIC EVENTS IN NETWORKS 2283

To describe the objective in words, we want to find stopping
rules so that for all possible scenarios with fewer than η
affected nodes, the average run length to false alarm is at
least γ . At the same time, among those stopping rules that
satisfy the false alarm requirement, we want to find the one
that minimizes the WADD for all propagation dynamics after η
nodes are affected. There is no guarantee that the optimization
problem in (5) has a solution, since we require the same
stopping rule to simultaneously minimize the WADD for all
propagation dynamics after η nodes are affected. What we will
show in the following sections is that such a “uniformly” opti-
mum solution can be found up to a first-order approximation
in an appropriately defined asymptotic setting.

Notation: We denote the samples across all the nodes
at time k by X[k] = {X1[k], . . . , X L [k]}, and the samples
across all the nodes from time k1 to k2 by X[k1, k2] =
{X[k1], . . . , X[k2]}. We further define

Zi [k1, k2] =
k2∑

k=k1

log
f1(Xi [k])
f0(Xi [k]) , (6)

which is the log-likelihood ratio for the samples at node
i from time k1 to k2. We use the following conventions:∑k2

j=k1
A j = 0 and

∏k2
j=k1

A j = 1 if k1 > k2. We use
X+ to denote the positive part of X , i.e., X+ = max{X, 0}.
We denote the Kullback-Leibler (KL) divergence between f1
and f0 as

I =
∫

f1(x) log
f1(x)

f0(x)
dx, (7)

which is assumed to be positive and finite. We denote
x = o(1), as c → c0, if ∀� > 0, ∃δ > 0, s.t., |x | ≤ �
if |c − c0| < δ. We denote g(c) ∼ h(c), as c → c0,
if limc→c0

h(c)
g(c) = 1.

III. FULLY CONNECTED NETWORKS

In this section, we study fully connected networks, for
which G is a complete graph. In this case, the event can
propagate from any node to any other node, and the induced
sub-graph on any subset of nodes is connected. We present
the Spartan-CuSum (S-CuSum) algorithm, and show that it
can be implemented efficiently with complexity that is linear
in L at each time step. We then establish a lower bound on the
WARL for the S-CuSum algorithm, and show how to choose
the parameter to satisfy the false alarm constraint.

A. The S-CuSum Algorithm

We reformulate the quickest detection problem in Section II
when G is a complete graph as a dynamic composite hypoth-
esis testing problem, i.e., to distinguish the following two
hypotheses at each time k:

H0[k] :
L∑

i=1

1{νi≤k} < η, (8)

H1[k] :
L∑

i=1

1{νi≤k} ≥ η. (9)

Both the null and alternative hypotheses are composite, since
the data generating distribution depends on unknown ν under
each hypothesis. This hypothesis testing procedure stops once
a decision in favor of the alternative hypothesis is reached;
otherwise, a new sample is taken from each node in the
network.

To distinguish between the two hypotheses, we consider the
log-likelihood ratio between them. Since ν under each hypoth-
esis is unknown, we take a maximum likelihood approach
with respect to the unknown ν, and construct the following
generalized log-likelihood ratio statistic:

W [k] = log

⎛
⎜⎝

max
ν:∑L

i=1 1{νi≤k}≥η
Pν(X[1, k])

max
ν:∑L

i=1 1{νi≤k}<η
Pν(X[1, k])

⎞
⎟⎠ . (10)

The max in the numerator in (10) is taken over all ν such that∑L
i=1 1{νi≤k} ≥ η, where at time k, there are no fewer than η

affected nodes. Likewise, the max in the denominator in (10)
is taken over all ν such that

∑L
i=1 1{νi≤k} < η, where at time

k, there are fewer than η affected nodes.
Since the network is fully connected, the induced sub-graph

on any subset of nodes is connected. Therefore, the max in
both the numerator and denominator in (10) is taken without
explicitly enforcing connectivity and propagation dynamics.

The corresponding stopping time is then given by comparing
W [k] against a pre-determined positive threshold:

τ̃ (b) = inf{k ≥ 1 : W [k] > b}, (11)

where b will be selected according to the false alarm
constraint.

B. A Simpler but Equivalent Form

In this subsection, we develop an equivalent but much
simpler form of (11), which can be computed with complexity
O(L) at each time step.

Let P∞ denote the probability measure with νi = ∞,
∀1 ≤ i ≤ L. Then, it can be easily shown that

W [k] = max
ν:∑L

i=1 1{νi≤k}≥η
log

(
Pν(X[1, k])
P∞(X[1, k])

)

− max
ν:∑L

i=1 1{νi≤k}<η
log

(
Pν(X[1, k])
P∞(X[1, k])

)
. (12)

Due to the fact that

log

(
Pν(X[1, k])
P∞(X[1, k])

)

= log

(
L∏

i=1

∏min{νi−1,k}
j=1 f0(Xi [ j ])∏k

j=νi
f1(Xi [ j ])∏k

j=1 f0(Xi [ j ])

)

=
L∑

i=1

k∑
j=νi

log
f1(Xi [ j ])
f0(Xi [ j ]), (13)

the first term in (12) is equivalent to

max
ν:∑L

i=1 1{νi≤k}≥η

L∑
i=1

k∑
j=νi

log
f1(Xi [ j ])
f0(Xi [ j ]). (14)
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Similarly, the second term in (12) is equivalent to

max
ν:∑L

i=1 1{νi≤k}<η

L∑
i=1

k∑
j=νi

log
f1(Xi [ j ])
f0(Xi [ j ]). (15)

If we denote the individual CuSum statistic [37] at node i
(testing a change from f0 to f1) at time k as

Wi [k] = max
1≤νi≤k

k∑
j=νi

log
f1(Xi [ j ])
f0(Xi [ j ]), (16)

and define a permutation μ(·) such that

Wμ(1)[k] ≥ Wμ(2)[k] ≥ · · · ≥ Wμ(L)[k], (17)

then, τ̃ (b) is equivalent to

τ̂ (b) = inf

⎧⎨
⎩k ≥ 1 :

L∑
i=η

(
Wμ(i)[k]

)+ ≥ b

⎫⎬
⎭ , (18)

which we refer to as the S-CuSum algorithm. Such an equiv-
alence can be established as follows.

1) If Wμ(η)[k] ≥ 0, then (14) is equal to
∑L

i=1

(
Wμ(i)[k]

)+,
and (15) is equal to

∑η−1
i=1 Wμ(i)[k]. It then follows that

W [k] =∑L
i=η

(
Wμ(i)[k]

)+
.

2) If Wμ(η)[k] < 0, then (14) is equal to
∑η

i=1 Wμ(i)[k],
and (15) is equal to

∑η−1
i=1

(
Wμ(i)[k]

)+
. In this case,

W [k] is non-positive, and
∑L

i=η

(
Wμ(i)[k]

)+ = 0. Since
b is positive, the test in (11) is equivalent to comparing∑L

i=η

(
Wμ(i)[k]

)+ to b.

The test in (18) can be implemented efficiently. First of all,
for each node i , Wi [k] can be updated recursively:

Wi [k] = (Wi [k − 1])+ + log
f1(Xi [k])
f0(Xi [k]) . (19)

Second, we do not need to sort all Wi [k] at each time k.
We only need to find the smallest L − η + 1 numbers from
L numbers, which can be solved with O(L) computational
cost using the algorithm in [40] instead of O(L log L). Thus,
the total computational cost at each time k is O(L). Here,
we note that, at time k, each node i may choose to send Xi [k],
log f1(Xi [k])

f0(Xi [k]) , or Wi [k] to the fusion center.

C. Lower Bound on the WARL

The following theorem provides a lower bound on the
WARL for the S-CuSum algorithm.

Theorem 1. The WARL for the S-CuSum algorithm in (18) is
lower bounded as follows:

WARL(τ̂ (b)) ≥ 1

poly(b)
eb, (20)

where poly(b) denotes a polynomial of b.

Proof: To show the lower bound on WARL(τ̂ (b)), it suf-
fices to show that for any ν with νi = ∞, ∀η ≤ i ≤ L,

Eν[τ̂ (b)] ≥ 1

poly(b)
eb. (21)

For any t ∈ N and b > 0, it follows that

Pν(τ̂ (b) ≤ t)

= Pν

⎛
⎝max

1≤k≤t

L∑
i=η

(
Wμ(i)[k]

)+
> b

⎞
⎠

≤
t∑

k=1

Pν

⎛
⎝ L∑

i=η

(
Wμ(i)[k]

)+
> b

⎞
⎠ . (22)

Since
∑L

i=η

(
Wμ(i)[k]

)+ ≤∑L
i=η (Wi [k])+ , we have

Pν

⎛
⎝ L∑

i=η

(
Wμ(i)[k]

)+
> b

⎞
⎠

≤ Pν

⎛
⎝ L∑

i=η

(Wi [k])+ > b

⎞
⎠ . (23)

By [14, Lemma B1], it then follows that

Pν

⎛
⎝ L∑

i=η

(Wi [k])+ > b

⎞
⎠ ≤ poly(b)e−b, (24)

where poly(b) has an order of L − η. Therefore,
Pν(τ̂ (b) ≤ t) ≤ t · poly(b)e−b, which implies that

Eν[τ̂ (b)] =
∞∑

t=0

Pν(τ̂ (b) ≥ t)

≥
∞∑

t=0

(1− t · poly(b)e−b)+

=
eb/poly(b)∑

t=0

(
1− t · poly(b)e−b

)

= 1

poly(b)
eb. (25)

�
Corollary 1. To guarantee WARL(τ̂ (b)) ≥ γ , it suffices to
choose b such that

1

poly(b)
eb = γ, (26)

and b ∼ log γ , as γ →∞.

Proof: The result follows from Theorem 1. �

IV. ASYMPTOTIC ANALYSIS

In this section we study the asymptotic performance of
the proposed S-CuSum algorithm in (18) and demonstrate its
asymptotic optimality. For our asymptotic analysis to be non-
trivial, we let both the prescribed lower bound on the WARL,
γ , and dη, dη+1, . . . , dL−1, go to infinity. Indeed, if the event
propagates fast, i.e., dη, dη+1, . . . , dL−1 are small compared
to log γ , then the event propagation dynamics can be ignored,
and only considering the number of nodes that will be affected
eventually is sufficient for approximating the performance
well. This case corresponds to the asymptotic scenario where
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Fig. 2. Example with L = 3.

dη, dη+1, . . . , dL−1 have a smaller order than log γ . However,
if the event propagates slowly, and dη, dη+1, . . . , dL−1 are
large and cannot be ignored compared to log γ , then the
event can be detected even before affecting all nodes that
will eventually be affected. In this case, we would like to
characterize how the fundamental performance limit depends
on the underlying event propagation dynamics instead of
only considering the number of nodes that will be eventually
affected. Therefore, in order to perform a general and relevant
asymptotic analysis, we let dη, dη+1, . . . , dL−1 go to infinity
with γ . Without loss of generality, suppose that

dη+i−1 ∼ ci
log γ

i I
, (27)

as γ → ∞, where ci ∈ [0,∞] for i = 1, . . . , L − η are
unknown. We further assume that dL = ∞, cL−η+1 = ∞.
Here if dη+i−1 has an order less than log γ , then ci = 0,
and if dη+i−1 has an order greater than log γ , then ci = ∞.
This asymptotic setup covers the two cases mentioned above
corresponding to fast and slow event propagation. Such
an asymptotic setting is only used for the convenience of
analysis, and as an approximation of the performance when
dη, dη+1, . . . , dL−1 and γ are large. Applying the algorithm
in practice does not rely on this assumption. We further note
that dη, dη+1, . . . , dL−1 do not depend on γ , but as will be
shown later, the ratio between dη, dη+1, . . . , dL−1 and log γ
will affect the fundamental performance limits1.

In the following, we first present an example with L = 3
and η = 2 to understand the results, and then move on to the
general results.

A. Example: L = 3 and η = 2

Consider a fully connected network with three nodes,
i.e., L = 3. Our goal is to detect when at least two nodes
are affected, i.e., η = 2. Then the S-CuSum algorithm is
equivalent to comparing the sum of the smallest two individual
CuSum statistics to a threshold b:

τ̂ (b) = inf

{
k ≥ 1 : min

1≤i< j≤3
(Wi [k])+ +

(
W j [k]

)+ ≥ b

}
.

(28)

For simplicity, we use the notion of phase i to denote the
phase in which there are i affected nodes. Then after an event
occurs, the network first changes from phase 0 to phase 1, then
to phase 2, and eventually stabilizes in phase 3 (see Fig. 2).

1In this paper, we focus on first order asymptotics, for which considering
the scaling between dη, dη+1, . . . , dL−1 and log γ is sufficient. For a more
accurate characterization (e.g., second-order and/or third-order analyses),
a more accurate asymptotic setup needs to be considered, which is a topic for
future research.

Fig. 3. Scenario 1: d2 is large.

For this example, the (first-order) asymptotic optimality
of the S-CuSum algorithm is characterized in the following
proposition.

Proposition 1. Let the threshold b ∼ log γ so that
WARL(τ̂ (b)) ≥ γ . Assume that d2 and γ go to infinity as
in (27), then the S-CuSum is asymptotically optimal:

JD(τ̂ (b)) ∼ inf
τ :WARL(τ )≥γ

JD(τ )

∼

⎧⎪⎪⎨
⎪⎪⎩

log γ

I
, if c1 > 1,

log γ

(
c1

I
+ 1− c1

2I

)
, if c1 ≤ 1.

(29)

Proof: The proof for this special case is omitted. See
detailed proof for the general case in Theorem 4. �
The optimal performance shows a dichotomy depending on
whether c1 > 1 or not. In the following, we will first provide
a heuristic explanation for the dichotomy, and then provide
the results for the general case together with rigorous proofs.

Roughly speaking, if we consider the CuSum statistic at
node i , before the change-point νi , it is small and close to 0,
and after the change-point, it grows with a positive slope
of I . Therefore, by (28), the S-CuSum is close to 0 in phases
0 and 1, and grows with slope I in phase 2 and with slope 2I
in phase 3.

If d2 I > b, i.e., c1 > 1, then the S-CuSum statistic crosses
the threshold b within phase 2 (see Fig. 3). The detection
delay for this case is b/I . If d2 I ≤ b, i.e., c1 ≤ 1, then the
S-CuSum statistic is not large enough to cross the threshold b
within phase 2, and it needs more samples from phase 3 (see
Fig. 4). The detection delay is then equal to the sum of the
duration of phase 2 and the number of samples needed from
phase 3:

d2 + b − d2 I

2I
∼ b

(
c1

I
+ 1− c1

2I

)
. (30)

Depending on whether or not phase 2 is long enough, the per-
formance of the S-CuSum algorithm shows a dichotomy.

B. Asymptotic Universal Lower Bound on the WADD

In this subsection, we study the universal lower bound on
the WADD for any stopping rule with the WARL no smaller
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Fig. 4. Scenario 2: d2 is small.

than γ . We denote

h = inf{1 ≤ j ≤ L − η + 1 :
j∑

i=1

ci ≥ 1}. (31)

Theorem 2. Suppose (27) holds. Then as γ →∞,

inf
τ :WARL(τ )≥γ

JD(τ )

≥ log γ

(
h−1∑
i=1

ci

i I
+ 1−∑h−1

i=1 ci

h I

)
(1− o(1)). (32)

Proof: See Appendix A. �
Theorem 2 suggests that to meet the asymptotic universal
lower bound, an algorithm should be adaptive to the unknown
dη, dη+1, . . . , dL−1. An intuitive understanding of h is that the
algorithm shall stop within phase h+ η, when there are h+ η
affected nodes.

The proof is based on a change-of-measure argument and a
Law of Large Numbers argument for the log-likelihood ratio
statistics, similar to those in [24]. However, a major difference
in the change-of-measure argument compared to [24] is that
the “pre-change” mode is composite, i.e., there are multiple
possible scenarios with fewer than η affected nodes. Further-
more, the post-change statistic is more complicated, since the
propagation dynamics is unknown, and the number of affected
nodes is changing with time.

C. Asymptotic Upper Bound on the WADD

Recall that we can choose b ∼ log γ such that the false
alarm constraint is satisfied. Then, by (27), it follows that

dη+i−1 ∼ ci
b

i I
, (33)

as γ →∞, where ci ∈ [0,∞], for every i = 1, . . . , L − η.
An asymptotic upper bound on the WADD for the S-CuSum

algorithm in (18) is characterized in the following theorem.

Theorem 3. Suppose (33) holds. Then as b→∞,

JD(τ̂ (b)) ≤ b

(
h−1∑
i=1

ci

i I
+ 1−∑h−1

i=1 ci

h I

)
(1+ o(1)). (34)

Proof: See Appendix A. �
From Theorem 3, it is clear that although the

S-CuSum algorithm does not exploit the knowledge of

dη, dη+1, . . . , dL−1, the performance is still adaptive to
the unknown dη, dη+1, . . . , dL−1. This is consistent with
the insights from the asymptotic universal lower bound in
Theorem 2.

The proof of the asymptotic upper bound on WADD is
based on partitioning the samples into independent blocks and
applying the Law of Large Numbers for the log-likelihood
ratio statistics, as in [24, Theorem 4]. The major difficulty
here is due to the more complicated test statistic, in which the
number of affected nodes changes with time.

D. Asymptotic Optimality of S-CuSum

We are now ready to establish the asymptotic optimality of
the S-CuSum algorithm, which is presented in the following
theorem.

Theorem 4 (S-CuSum, Asymptotic Optimality). Let the
threshold b ∼ log γ so that WARL(τ̂ (b)) ≥ γ . Assume that
dη, dη+1, . . . , dL−1 and γ go to infinity as in (27), then the
S-CuSum algorithm is asymptotically optimal:

JD(τ̂ (b)) ∼ inf
τ :WARL(τ )≥γ

JD(τ )

∼ log γ

(
h−1∑
i=1

ci

i I
+ 1−∑h−1

i=1 ci

h I

)
. (35)

Proof: This result follows from Theorems 1, 2 and 3. �

V. ARBITRARILY CONNECTED NETWORKS

In this section, we extend results of the previous section to
arbitrarily connected networks.

Since we assume that the event propagates along edges
in the network, the induced sub-graph on the affected nodes
is then connected at each time step. Here, for an arbitrarily
connected network, the induced sub-graph on some subset
of nodes may not be connected. Therefore, although the
S-CuSum algorithm still applies, and it is asymptotically
optimal (up to a first-order approximation), it will have more
false alarms due to the fact that it may raise alarms when
it detects η nodes that are not connected (as we will show
numerically in Section VI).

To exploit knowledge of the network structure, one can
directly adapt the generalized log-likelihood ratio test in (10).
However, this will involve a scan statistic over all possible
propagation dynamics along the edges in the network, which
leads to a combinatorial problem over a large search space.
Therefore, it is computationally infeasible, especially for large
networks.

In the following, we present the Network-CuSum
(N-CuSum) algorithm, which not only employs knowledge
of the network structure, but does so in a computationally
efficient way. We then establish the first-order asymptotic
optimality of the N-CuSum algorithm. Also, as will be shown
in the numerical results in Section VI, for an arbitrarily
connected network, the N-CuSum algorithm performs much
better than the S-CuSum.
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A. The N-CuSum Algorithm

At each time step k, we update the local CuSum statistics
Wi [k], ∀1 ≤ i ≤ L. We then compare each local CuSum
statistic to a threshold log b, and delete this node if its CuSum
statistic is less than log b. The resulting graph is then denoted
by G
[k]. For this step, the computational complexity is O(L).
These deleted nodes are highly likely to be not affected by the
event.

We run the BFS algorithm on G
[k] to recover all connected
components of G
[k]: C1[k], C2[k], .... The computational
complexity for this step is at most O(L + |E |). We then run
the S-CuSum algorithm on each connected component, and use
S-CuSumi [k] to denote the test statistic value of the S-CuSum
algorithm on Ci [k]:

S-CuSumi [k] = min
C 
⊆Ci [k]:

|C 
|=|Ci [k]|−η+1

∑
i∈C 


(Wi [k])+ . (36)

If any of these statistics crosses the threshold b, we stop and
raise an alarm. For this step, the computational complexity
is less than O(L). Therefore, the overall computational com-
plexity at each time step is O(L+|E |), which means that this
algorithm scales well as the network size grows, assuming that
the network is not dense. The N-CuSum algorithm is described
in detail in Algorithm 1.

B. Performance Analysis of the N-CuSum Algorithm

We next provide theoretical analysis for the N-CuSum
algorithm. The following theorem provides a lower bound on
the WARL for the N-CuSum algorithm.

Theorem 5. The WARL for the N-CuSum algorithm is lower
bounded as follows:

WARL(τ̄ (b)) ≥ 1

poly(b)
eb. (37)

Proof: It can be shown that S-CuSumi [k] is less than the
S-CuSum statistic applied on the whole network, for any i and
k. Therefore,

WARL(τ̄ (b)) ≥WARL(τ̂ (b)). (38)

Together with Theorem 1, this completes the proof. �
To guarantee WARL(τ̄ (b)) ≥ γ , it suffices to choose b such

that

1

poly(b)
eb = γ, (39)

and b ∼ log γ .
For the asymptotic analysis, we choose the same asymptotic

setting as in (27) in Section IV. By choosing b ∼ log γ ,
we also have (33). We then have the asymptotic upper bound
on the WADD for the N-CuSum algorithm as characterized in
the following theorem.

Theorem 6. Suppose (33) holds. Then as b→∞,

JD(τ̄ (b)) ≤ b

(
h−1∑
i=1

ci

i I
+ 1−∑h−1

i=1 ci

h I

)
(1+ o(1)). (40)

Algorithm 1 N-CuSum
Input:
G : graph
η: size of sub-graph of interest
f0, f1: distributions before and after change
b: threshold
Output:
τ̄ : stopping time
Initialization:
Wi [0] ← 0, for 1 ≤ i ≤ L
k = 0
Method:
while 1 do

k ← k + 1
Observe Xi [k], for 1 ≤ i ≤ L
Wi [k] ← (Wi [k − 1])+ + log f1(Xi [k])

f0(Xi [k])
G
[k] ← G
for i = 1 to L do

if Wi [k] ≤ log b then
Delete node i and all edges connected to node i in

G
[k]
end if

end for
All connected components of G
[k]: C1[k], C2[k], . . .←

run BFS on G
[k]
for i=1,2,… do

S-CuSumi [k] ←Run S-CuSum on Ci [k]
if S-CuSumi [k] ≥ b then

τ̄ ← k
Break

end if
end for

end while
Return τ̄

Proof: See Appendix A. �
The proof of the asymptotic upper bound is similar to that
of Theorem 3, but requires a more careful construction. This
is due to the dependency between the individual S-CuSum
statistics and the partition of the graph G
[k] into con-
nected components. The asymptotic universal lower bound in
Theorem 2 also applies to the arbitrarily connected network
here. We then establish the asymptotic optimality of N-CuSum
in the following theorem.

Theorem 7 (N-CuSum, Asymptotic Optimality). Let thresh-
old b ∼ log γ so that WARL(τ̄ (b)) ≥ γ . Assume that
dη, dη+1, . . . , dL−1 and γ go to infinity as in (27), then the
N-CuSum algorithm is asymptotically optimal:

JD(τ̄ (b)) ∼ inf
τ :WARL(τ )≥γ

JD(τ )

∼ log γ

(
h−1∑
i=1

ci

i I
+ 1−∑h−1

i=1 ci

h I

)
. (41)

Proof: This result follows from Theorems 2, 5 and 6. �
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Fig. 5. Sample evolution paths of all individual CuSums and the S-CuSum.
CuSum i denotes the individual CuSum statistic at node i , for i = 1, 2, 3.

VI. NUMERICAL RESULTS

In this section, we present some numerical results. We start
with an example to demonstrate a typical evolution path of the
S-CuSum algorithm. We then study a fully connected network
with three nodes. We compare the S-CuSum algorithm to a
generalization of the multi-chart CuSum algorithm in [38]
which stops when at least η local CuSums have crossed
their individual thresholds. We further study two networks
that are not fully connected: a lattice network with 36 nodes
(see Fig. 7) and an arbitrary network with 16 nodes (see
Fig. 10). We also consider a network generalized multi-chart
CuSum algorithm, which is to wait until η local CuSums have
crossed their individual thresholds simultaneously, and those
nodes form a connected subgraph. We compare the general-
ized multi-chart CuSum, the network generalized multi-chart
CuSum, the S-CuSum and the N-CuSum algorithms. For all
four algorithms, the communication complexity at each time
step is L, since we are considering a centralized setting.

A. A Sample Evolution Path of S-CuSum

In Fig. 5, we plot the evolution paths of the S-CuSum
statistic and all the individual CuSum statistics. We consider
a fully connected network with L = 3 and η = 2. We choose
f0 = N (0, 1), and f1 = N (1, 1). We set ν = {1, 40, 80}.
There are in total three phases, depending on the number of
affected nodes.

In phase 1, i.e., k < 40, only the statistic of CuSum 1
grows with a positive slope, and all the other statistics are
small and close to zero. Then, in phase 2, i.e., 40 ≤ k < 80,
the statistics of CuSum 1, CuSum 2 and S-CuSum grow with
a positive slope. In this phase, the S-CuSum statistic is almost
the same as the CuSum 2 statistic, which is due to the fact
that the S-CuSum statistic is the sum of the smallest two
individual CuSum statistics, i.e. CuSum 2 and CuSum 3. Since
the CuSum 3 statistic is small and close to zero, the S-CuSum
statistic is almost the same as the CuSum 2 statistic in this
phase. Eventually, in phase 3, i.e., k ≥ 80, the statistics of
CuSum 1, CuSum 2 and CuSum 3 all increase with a positive
slope. In this phase, the S-CuSum statistic is the sum of the
CuSum 2 and CuSum 3 statistics. Therefore, the slope of the
S-CuSum statistic is larger than that in phase 2.

Fig. 6. Comparison between the S-CuSum algorithm and the generalized
multi-chart CuSum algorithm for a fully connected network.

In summary, the S-CuSum statistic is small and close to zero
with only one affected node, and gradually grows but with
different slopes with two and three affected nodes. Thus, the
S-CuSum algorithm is adaptive to the unknown propagation
dynamics.

B. Comparison between S-CuSum and Generalized
Multi-Chart CuSum

We study the performance of the S-CuSum algorithm,
validate our theoretical assertions, and compare it with a
generalization of the multi-chart CuSum algorithm in [38],
which stops when at least η local CuSum algorithms have
crossed their individual thresholds simultaneously. Here also
we consider a fully connected network with L = 3 and η = 2.
We choose f0 = N (0, 1), and f1 = N (0.4, 1). Here we
choose ν1 = ν2 = 1, and d2 = 40 to simulate the average
detection delay, and choose ν1 = 1, ν2 = ν3 =∞ to simulate
the average run length to false alarm. The plot is averaged over
1000 runs. We plot WADD versus WARL for the S-CuSum
algorithm and the generalized multi-chart CuSum algorithm
in Fig. 6.

In Fig. 6, the slope of the curve corresponding to the
S-CuSum algorithm gradually changes after WADD= 40,
which validates our theoretical results in Proposition 1. Fur-
thermore, the S-CuSum algorithm performs better than the
generalized multi-chart CuSum algorithm, especially when
WADD≥ d2. This is because when WADD≥ d2, there are
three affected nodes. The samples from the third affected node
also contain information about whether there are no fewer
than η affected nodes (although the local CuSum statistic at
the third affected node is not large), and this information is
used by the S-CuSum algorithm but not the multichart CuSum
algorithm.

C. Comparison on a Lattice Network

We consider a lattice network with 36 nodes (see Fig. 7).
We set η = 4, f0 = N (0, 1), and f1 = N (1, 1). To simulate
the average detection delay, we assume that the event first
affects nodes 14, 15, 16, 22 at time 1, then propagates to
nodes 9 and 17 at time 10, and no other node is affected by
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Fig. 7. A dynamic event propagates in a lattice network.

Fig. 8. Comparison among the generalized multi-chart CuSum algorithm,
the N-generalized multi-chart CuSum algorithm, the S-CuSum algorithm and
the N-CuSum algorithm for a lattice network.

the event. To simulate the average run length to false alarm,
we assume that nodes 14, 15, 16 are affected at time 1, and no
other node is affected by the event. We repeat the simulation
for 1000 times. As we can see from Fig. 8, the N-CuSum
algorithm has the best performance among the four algorithms.
Compared to the S-CuSum algorithm, the N-CuSum algorithm
has significantly reduced the average detection delay, which is
due to its effective exploitation of the network structure.

Under the same setting used to simulate the average detec-
tion delay as shown in Fig. 8, we plot the average number
of connected components in G
[k] when N-CuSum crosses
the threshold b, as a function of the threshold b in Fig. 9.
We observe that as b increases, the average number of con-
nected components decreases, and its value is between 1.5
and 4.5. This is because for large b, the unaffected nodes are
eliminated with high probability, and the resulting graph G
[k]
contains mostly the affected nodes.

We also compare the computational complexity of these
four algorithms. We consider the case where all nodes are
not affected. We ran the algorithms for 10000 steps without
stopping (b = ∞), and repeated the experiment for 100 times.
We ran the experiments on a 2.0GHz Intel core i5 CPU
using Matlab. The average time consumption for 10000 steps
(in seconds) is given in Table I. We observe that all four

Fig. 9. Number of connected components in G 
[k] when N-CuSum crosses
the threshold.

TABLE I

COMPARISON OF TIME CONSUMPTION

algorithms take less than one second. Also, not surprisingly,
the algorithms that exploit the network structure consume
more computational power.

D. Comparison on an Arbitrary Network

We further consider an arbitrary network with 16 nodes
(see Fig. 10). We set η = 4, f0 = N (0, 1) and f1 = (1, 1).
To simulate the average detection delay, we assume that the
event first affects nodes 1, 4, 12, 14, and then propagates to
nodes 3, 5, 8 at time 10. To simulate the average run length
to false alarm, we assume that nodes 5, 7, 15 are affected at
time 1, and no other node is affected by the event. We repeat
the simulation for 1000 times.

Similar conclusions to the ones for Fig. 8 can be obtained
from Fig. 11. In particular, we observe that the N-CuSum
algorithm has the best performance among these four algo-
rithms. Compared to other algorithms, the N-CuSum algorithm
has a much smaller average detection delay, which is due
to its effective exploitation of network structure and event
propagation dynamics. Moreover, we can observe a slope
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Fig. 10. Dynamic event propagation in an arbitrary network.

Fig. 11. Comparison of the generalized multi-chart CuSum algorithm, the N-
generalized multi-chart CuSum algorithm, the S-CuSum algorithm and the
N-CuSum algorithm for a general network.

change in the S-CuSum and N-CuSum algorithms, which
verifies the theoretical assertions in Theorems 4 and 7.

VII. DISCUSSION

The results in this paper can be easily generalized to the
case in which the distributions of the samples are different
across the different nodes (heterogeneous sensors). For exam-
ple, the generalized S-CuSum algorithm for this case is also
constructed by comparing the sum of the smallest L − η + 1
local CuSums to a threshold b, and hence can be implemented
efficiently. The asymptotic optimality of this algorithm can
also be established similarly, but the optimal performance
takes on a more complicated form.

In our modeling and analysis we have assumed that only one
connected subgraph in the network is affected. In an arbitrarily
connected network, if two or more events occur simultane-
ously, two or more connected subgraphs could be affected.
Here the goal might be to detect whether there exists one event
that has affected at least η nodes; two small events are not of
interest. Then the S-CuSum algorithm is clearly not going to
be asymptotically optimal in this case, because it clubs all the
affected nodes together ignoring the network structure. The
N-CuSum algorithm is also not going to be asymptotically
optimal for the following reason. The N-CuSum algorithm
may not be able to correctly delete the unaffected nodes, and
this could result in bridges between small affected connected

subgraphs (with less than η affected nodes) to form a big
one (with more than η nodes), thus triggering false alarms.
Developing an efficient algorithm to handle the case of two or
more events occurring simultaneously is an interesting open
problem.

In this paper, the observations are assumed to be i.i.d. before
and after the change-point at each node. It is clearly of interest
to generalize to the case with non i.i.d. observations using
tools described in [6]. Furthermore, we assumed that the data
generating distributions before and after a node is affected
by the event are known. In many practical applications, this
assumption may not hold, and it is of further interest to
construct algorithms that do not rely on complete knowl-
edge of the distributions and still provide good performance
[41], [42]. In this paper, we consider a centralized setting,
in which all the samples are available at a fusion center.
We also extened our results to the distributed setting where this
is no fusion center and the sensors communicate directly with
each other [43]. The adversarial setting is also worth exploring,
in which some nodes may be comprised by an adversarial
party.

APPENDIX

We recall the following useful lemma, which is a slight
generalization of the Weak Law of Large Numbers.

Lemma 1. [44, Lemma A.1] Suppose random variables
Y1, Y2, . . . , Yk are i.i.d. on (	,F , P) with E[Yi ] = μ > 0,
and denote Sk =∑k

i=1 Yi , then for any � > 0, as n→∞,

P

(
max1≤k≤n Sk

n
− μ > �

)
→ 0. (42)

For a given tuple of {dη, dη+1, . . . , dL−1}, it can be shown
that

JD[τ ] = sup
ν1≤···≤νη<∞

Eν [τ − νη|τ ≥ νη]
≥ sup

ν1=ν2=···=νη−1=1
1≤νη<∞

Eν[τ − νη|τ ≥ νη]. (43)

It then suffices to lower bound (43) for any stopping rule τ
that satisfies the false alarm constraint. In the following of the
proof, ν is specified by ν1 = ν2 = · · · = νη−1 = 1, νη, and
dη, dη+1, . . . , dL−1.



ZOU et al.: QUICKEST DETECTION OF DYNAMIC EVENTS IN NETWORKS 2291

For simplicity, for any � > 0, denote

αγ = log γ

(
h−1∑
i=1

ci

i I
+ 1−∑h−1

i=1 ci

h I

)
(1− �). (44)

By the Markov inequality,

Eν [τ − νη|τ ≥ νη]
≥ Pν(τ − νη ≥ αγ |τ ≥ νη)αγ . (45)

It then suffices to show that

Pν(τ − νη ≥ αγ |τ ≥ νη)→ 1, (46)

as γ →∞.
We denote ν̄ = {1, . . . , 1,∞, ...,∞} with the first η − 1

elements being 1, and all the remaining elements being infin-
ity. Clearly, under Pν̄ , there are η − 1 affected nodes. For
any stopping time τ that satisfies the false alarm constraint,
we have

Eν̄ [τ ] ≥ γ, (47)

which implies that for each m < γ , there exists some ν ≥ 1,
such that

Pν̄(τ ≥ ν) > 0 and Pν̄(τ < ν + m|τ ≥ ν) ≤ m

γ
. (48)

This can be shown by contradiction as in [24, Theorem 1].
By a change of measure argument, it follows that

Pν̄

(
νη ≤ τ < νη + αγ

)
= Eν̄

(
1{νη≤τ<νη+αγ }

)
= Eν

(
1{νη≤τ<νη+αγ }

Pν̄(X[νη, τ ])
Pν(X[νη, τ ])

)

≥ Eν

(
1{νη≤τ<νη+αγ ,log

Pν̄ (X[νη,τ ])
Pν (X[νη,τ ])≥−a}

Pν̄(X[νη, τ ])
Pν(X[νη, τ ])

)

≥ e−a
Pν

(
νη ≤ τ < νη + αγ , log

Pν̄(X[νη, τ ])
Pν(X[νη, τ ]) ≥ −a

)

= e−a
Pν

(
νη ≤ τ < νη + αγ , log

Pν(X[νη, τ ])
Pν̄(X[νη, τ ]) ≤ a

)

≥ e−a
Pν

(
νη ≤ τ < νη + αγ ,

max
νη≤ j≤νη+αγ

log
Pν(X[νη, j ])
Pν̄(X[νη, j ]) ≤ a

)
, (49)

where a will be specified later.
The event {τ ≥ νη} only depends on X[1, νη − 1], which

follows the same distribution under Pν and Pν̄ . This implies
that

Pν(τ ≥ νη) = Pν̄(τ ≥ νη). (50)

It then follows that

Pν̄

(
νη ≤ τ < νη + αγ |τ ≥ νη

)
≥ e−a

Pν

(
νη ≤ τ < νη + αγ ,

max
νη≤ j≤νη+αγ

log
Pν(X[νη, j ])
Pν̄(X[νη, j ]) ≤ a

∣∣∣∣τ ≥ νη

)
. (51)

Due to the fact that for any events A and B ,
P(A ∩ B) ≥ P(A)− P(Bc), it follows that

Pν

(
νη ≤ τ < νη + αγ ,

max
νη≤ j≤νη+αγ

log
Pν(X[νη, j ])
Pν̄(X[νη, j ]) ≤ a

∣∣∣∣τ ≥ νη

)

≥ Pν

(
νη ≤ τ < νη + αγ

∣∣∣∣τ ≥ νη

)

− Pν

(
max

νη≤ j≤νη+αγ

log
Pν(X[νη, j ])
Pν̄(X[νη, j ]) > a

∣∣∣∣τ ≥ νη

)
(a)= Pν

(
νη ≤ τ < νη + αγ

∣∣∣∣τ ≥ νη

)

− Pν

(
max

νη≤ j≤νη+αγ

log
Pν(X[νη, j ])
Pν̄(X[νη, j ]) > a

)
, (52)

where (a) is due to the fact that the event {τ ≥ νη} only
depends on X[1, νη−1], which is independent from X[νη, j ],
∀νη ≤ j ≤ νη + αγ .

Combining (51) and (52), we obtain

Pν

(
νη ≤ τ < νη + αγ

∣∣∣∣τ ≥ νη

)
≤ ea

Pν̄

(
νη ≤ τ < νη + αγ |τ ≥ νη

)
+ Pν

(
max

νη≤ j≤νη+αγ

log
Pν(X[νη, j ])
Pν̄(X[νη, j ]) > a

)
. (53)

By (48), it follows that for m = αγ , there exists νη, such
that

Pν̄

(
νη ≤ τ < νη + αγ

∣∣∣∣τ ≥ νη

)
≤ αγ

γ
. (54)

Let a = (1− �2) log γ , then

ea
Pν̄

(
νη ≤ τ < νη + αγ |τ ≥ νη

)
≤ γ 1−�2 αγ

γ

→ 0, as γ →∞. (55)

We then show the second term in (52) also converges to
0 as γ →∞. It can be shown that

Pν

(
max

νη≤ j≤νη+αγ

log
Pν(X[νη, j ])
Pν̄(X[νη, j ]) > a

)

= Pν

(
max

νη≤ j≤νη+αγ

|C(ν)|∑
i=η

j∑
k=νi

log
f1(Xi [k])
f0(Xi [k]) > a

)

→ 0, as γ →∞, (56)

where the last step follows by applying Lemma 1.
Combining (55) and (56), it follows that

Pν

(
νη ≤ τ < νη + αγ

∣∣∣∣τ ≥ νη

)
→ 0, (57)

as γ →∞. This concludes the proof.
By the recursive structure of (Wi [k])+, and the fact that it is

always non-negative, and is zero when k = 0, then for a given
D, the worst-case of the average detection delay is achieved
when ν1 = · · · = νη = 1.
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Now
L∑

i=η

(
Wμ(i)[k]

)+
= min

C 
:|C 
|=L−η+1

∑
i∈C 


(Wi [k])+

(a)≥ min
C 
⊆C(ν):|C 
|=|C(ν)|−η+1

∑
i∈C 


(Wi [k])+ , (58)

where (a) is due to the fact that (Wi [k])+ is always
non-negative, especially for i /∈ C(ν).

Define the stopping rule N(b):

N(b)= inf

{
k : min

C 
⊆C(ν):|C 
|=|C(ν)|−η+1

∑
i∈C 


(Wi [k])+>b

}
.

(59)

It then follows that τ̂ (b) ≤ N(b). Therefore, it suffices to
establish an upper bound on the Eν [N(b)].

For simplicity, for any � > 0, we denote

αb = b

(
h−1∑
i=1

ci

i I
+ 1−∑h−1

i=1 ci

h I

)
(1+ �). (60)

Now

Eν [N(b)/αb] ≤
∞∑

�=0

Pν (N(b)/αb > �)

≤ 1+
∞∑

�=1

Pν (N(b)/αb > �) . (61)

We then bound Pν (N(b)/αb > �) for every � ≥ 1 as
in (62), shown at the bottom of this page, where (a) is

by the definition of Wi [k]; (b) follows by the independency
among the random variables: X[1, αb], X[αb + 1, 2αb], . . . ,
X[(�− 1)αb + 1, �αb].

We then bound the first term in (62). It follows that

Pν

((
min

C 
⊆C(ν):
|C 
|=|C(ν)|−η+1

∑
i∈C 


Zi [max{1, νi }, αb] < b
))

≤
∑

C 
⊆C(ν):
|C 
|=|C(ν)|−η+1

Pν

(∑
i∈C 


Zi [max{1, νi }, αb] < b
))

. (63)

It is clear that for large b,

αb >

h−1∑
i=1

dη+i−1. (64)

Moreover,
∑

i∈C 
 Zi [max{1, νi }, αb] is the summation of the
log-likelihood ratios of the samples from f1. Therefore,
for any C 
 ⊆ C(ν) such that |C 
| = |C(ν)| − η + 1,∑

i∈C 
 Zi [max{1, νi }, αb] is the sum of the log likelihood ratio
between f1 and f0 of at least

dη + 2dη+1 + . . .+ (h − 1)dη+h−2 + h(αb −
h−1∑
i=1

dη+i−1)

(65)

number of samples generated by f1. Then by the Weak Law
of Large Numbers, it follows that∑

i∈C 
 Zi [max{1, νi }, αb]
b

→ β, (66)

Pν (N(b)/αb > �)

= Pν

(
∀1 ≤ k ≤ �αb : min

C 
⊆C(ν):
|C 
|=|C(ν)|−η+1

∑
i∈C 


(Wi [k])+ < b

)

≤ Pν

((
k = αb : min

C 
⊆C(ν):
|C 
|=|C(ν)|−η+1

∑
i∈C 


(Wi [k])+ < b
)⋂(

k = 2αb : min
C 
⊆C(ν):

|C 
|=|C(ν)|−η+1

∑
i∈C 


(Wi [k])+ < b
)

⋂
· · ·
⋂(

k = �αb : min
C 
⊆C(ν):

|C 
|=|C(ν)|−η+1

∑
i∈C 


(Wi [k])+ < b
))

(a)≤ Pν

((
min

C 
⊆C(ν):
|C 
|=|C(ν)|−η+1

∑
i∈C 


Zi [max{1, νi }, αb] < b
)⋂(

min
C 
⊆C(ν):

|C 
|=|C(ν)|−η+1

∑
i∈C 


Zi [max{αb + 1, νi }, 2αb] < b
)

⋂
· · ·
⋂(

min
C 
⊆C(ν):

|C 
|=|C(ν)|−η+1

∑
i∈C 


Zi [max{(�− 1)αb + 1, νi }, �αb] < b

))

(b)= Pν

(
min

C 
⊆C(ν):
|C 
|=|C(ν)|−η+1

∑
i∈C 


Zi [max{1, νi }, αb] < b

)
× Pν

(
min

C 
⊆C(ν):
|C 
|=|C(ν)|−η+1

∑
i∈C 


Zi [max{αb + 1, νi }, 2αb] < b

)

× · · · × Pν

(
min

C 
⊆C(ν):
|C 
|=|C(ν)|−η+1

∑
i∈C 


Zi [max{(�− 1)αb + 1, νi }, �αb] < b

)
. (62)
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in probability, where β > 1. Therefore, as b→∞,

Pν

(∑
i∈C 


Zi [max{1, νi }, αb] < b

)
→ 0. (67)

Together with (63), this further implies that

Pν

(
min

C 
⊆C(ν):
|C 
|=|C(ν)|−η+1

∑
i∈C 


Zi [max{1, νi }, αb] < b

)

≤
∑

C 
⊆C(ν):
|C 
|=|C(ν)|−η+1

δ



= δ, (68)

where δ
 and δ can be arbitrarily small for large b.
Following similar steps, we can also show that each term

in (62) is upper bounded by δ for large b. Therefore,

Pν (N(b)/αb > �) ≤ δ�, (69)

and

Eν[N(b)/αb] ≤ 1+
∞∑

�=1

δ�

= 1

1− δ
. (70)

This implies that

Eν [N(b)] ≤ αb

1− δ

= b

(
h−1∑
i=1

ci

i I
+ 1−∑h−1

i=1 ci

h I

)
1+ �

1− δ
. (71)

Due to the fact that � is chosen arbitrarily and δ can be
arbitrarily small for large b, as b→∞,

Eν[N(b)] ≤ b

(
h−1∑
i=1

ci

i I
+ 1−∑h−1

i=1 ci

h I

)
(1+ o(1)). (72)

This concludes the proof.
By the recursive structure of (Wi [k])+, and the fact that it

is always non-negative, and is zero when k = 0, then for a
given D, the worst-case of the average detection delay is
achieved when ν1 = · · · = νη = 1.

We use the same notation of αb as in (60). It can be shown
that

Eν [τ̄ (b)/αb] ≤
∞∑

�=0

Pν (τ̄ (b)/αb > �)

≤ 1+
∞∑

�=1

Pν (τ̄ (b)/αb > �) . (73)

Recall that we assume that ν1 ≤ ν2 ≤ · · · ≤ νL , and for
large b, we have (64). We then denote H = {1, 2, . . . , h} as the
set of indices of nodes that have changed their distribution by
the time αb. For simplicity of notation, we use S-CuSumH [k]
to denote the test statistic value of the S-CuSum on H at
time k:

S-CuSumH [k] = min
C 
⊆H :

|C 
|=|H |−η+1

∑
i∈C 


(Wi [k])+ . (74)

We next bound Pν (τ̄ (b)/αb > �) for every � ≥ 1 as follows:
Pν (τ̄ (b)/αb > �)

= Pν

(
∀1 ≤ k ≤ �αb : max

i
S-CuSumi [k] < b

)

= Pν

(
∀1 ≤ k ≤ �αb : A[k] ∪ B[k]

)

≤ Pν

(
∀k ∈ {αb, 2αb, . . . , �αb} : A[k] ∪ B[k]

)
(75)

where A[k] and B[k] are two events defined as follows:
A[k] =

{{
max

i
S-CuSumi [k] < b

} ∩ {∃i : H ⊆ Ci [k]
}}

,

B[k] =
{{

max
i

S-CuSumi [k] < b
} ∩ {∀i : H �⊆ Ci [k]

}}
.

(76)

We first analyze A[k]. Suppose that for some i∗,
H ⊆ Ci∗ [k], then

S-CuSumi∗ [k] ≥ S-CuSumH [k]. (77)

Combining with the fact that

max
i

S-CuSumi [k] ≥ S-CuSumi∗ [k], (78)

it then follows that{
max

i
S-CuSumi [k] < b

} ⊆ {S-CuSumi∗ [k] < b
}

⊆ {S-CuSumH [k] < b
}
. (79)

This further implies that

A[k] ⊆
{{

S-CuSumH [k] < b
} ∩ {∃i : H ⊆ Ci [k]

}}
⊆ {S-CuSumH [k] < b

}
. (80)

For any 1 ≤ j ≤ �, it follows from the definition of CuSum
statistic Wi [k] that

S-CuSumH [ jαb]
= min

C 
⊆H :
|C 
|=|H |−η+1

∑
i∈C 


(Wi [ jαb])+

≥ min
C 
⊆H :

|C 
|=|H |−η+1

∑
i∈C 


Zi [max{νi , ( j − 1)αb + 1}, jαb]. (81)

We then define

A
[ jαb]

=

⎧⎪⎨
⎪⎩ min

C 
⊆H :
|C 
|=|H |−η+1

∑
i∈C 


Zi [max{νi , ( j−1)αb+1}, jαb] < b

⎫⎪⎬
⎪⎭.

(82)

It is clear that ∀1 ≤ j ≤ �,

A[ jαb] ⊆ A
[ jαb], (83)

and A
[ jαb] only depends on the samples from ( j − 1)αb + 1
to jαb.

We then analyze B[k]. By the assumption that the event
propagates along the edges in the network, the sub-graph
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induced on H is connected. If ∀ j ∈ H , W j [k] ≥ log b, then
there must exist Ci [k] that contains all nodes in H . Therefore,
it follows that

{∀i : H �⊆ Ci [k]} ⊆
{∃ j ∈ H : W j [k] < log b

}
. (84)

Therefore, we have

B[k]
⊆
{{

max
i

S-CuSumi [k] < b
} ∩ {∃i ∈ H : Wi [k] < log b}

}
⊆ {∃i ∈ H : Wi [k] < log b} . (85)

Similarly, ∀1 ≤ j ≤ �, it follows from the definition of
Wi [ jαb] that

Wi [k] ≥ Zi [max{νi , ( j − 1)αb + 1}, jαb]. (86)

We then define

B 
[ jαb]
= {∃i ∈ H : Zi [max{νi , ( j − 1)αb + 1}, jαb] < log b} .

(87)

It follows that ∀1 ≤ j ≤ �,

B[ jαb] ⊆ B 
[ jαb], (88)

and B 
[ jαb] only depends on the samples from ( j − 1)αb+ 1
to jαb.

Combining (83) and (88), equation (75) can be further
bounded as follows:

Pν (τ̄ (b)/αb > �)

≤ Pν

(
∀k ∈ {αb, 2αb, . . . , �αb} : A
[k] ∪ B 
[k]

)

=
�∏

j=1

Pν

(
A
[ jαb] ∪ B 
[ jαb]

)

≤
�∏

j=1

(
Pν

(
A
[ jαb]

)
+ Pν

(
B 
[ jαb]

))
. (89)

Following similar steps as from (62) to (69), we can show that
for large b, ∀1 ≤ j ≤ �,

Pν

(
A
[ jαb]

)
≤ δ/2, (90)

where δ can be arbitrarily small.
Then by the Weak Law of Large Numbers, for large b,

we obtain

Pν

(
B 
[ jαb]

)
≤
∑
i∈H

Pν

(
Zi [max{νi , ( j − 1)αb + 1}, jαb] < log b

)

≤
∑
i∈H

δ



= δ/2, (91)

where δ
 can be made arbitrarily small for large b, and hence
so can δ.

Therefore,

Pν (τ̄ (b)/αb > �) ≤ δ�, (92)

and following steps similar to those in (70) to (72), we
conclude the proof.
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