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Abstract

The largest minimum weights among quaternary Hermitian linear
complementary dual codes are known for dimension 2. In this paper,
we give some conditions on the nonexistence of quaternary Hermitian
linear complementary dual codes with large minimum weights. As a
consequence, we completely determine the largest minimum weights
for dimension 3, by using a classification of some quaternary codes. In
addition, for a positive integer s, an entanglement-assisted quantum
error-correcting [[21s+5, 3, 165+ 3; 215+ 2]] code with maximal entan-
glement is constructed for the first time from a quaternary Hermitian
linear complementary dual [26, 3, 19] code.

1 Introduction

Linear complementary dual (LCD for short) codes are linear codes that inter-
sect with their dual trivially. LCD codes were introduced by Massey [14] and
gave an optimum linear coding solution for the two user binary adder channel.

*Department of Computer Science, Shizuoka University, Hamamatsu 432-8011, Japan.
email: araya@inf.shizuoka.ac.jp

TResearch Center for Pure and Applied Mathematics, Graduate School of Information
Sciences, Tohoku University, Sendai 980-8579, Japan. email: mharada@tohoku.ac. jp.

‘Research Center for Pure and Applied Mathematics, Graduate School of
Information Sciences, Tohoku University, Sendai 980-8579, Japan. email:
kensaito@ims.is.tohoku.ac. jp.


http://arxiv.org/abs/1904.07517v2

Recently, much work has been done concerning LCD codes for both theoreti-
cal and practical reasons (see e.g. [1], [5], [6], [8], [11], [I2] and the references
given therein). For example, if there is a quaternary Hermitian LCD [n, k, d]
code, then there is a maximal entanglement [[n, k,d;n — k]| entanglement-
assisted quantum error-correcting code (EAQECC for short) (see e.g. [11]
and [12]). From this point of view, quaternary Hermitian LCD codes play
an important role in the study of maximal entanglement EAQECC’s.

It is a fundamental problem to determine the largest minimum weight
dy(n, k) among all quaternary Hermitian LCD [n, k] codes for a given pair
(n, k). It was shown that dy(n,2) = [ 2| ifn =1,2,3 (mod 5) and dy(n,2) =

4] —1if n=0,4 (mod 5) for n > 35in [10] and [12]. In this paper, we give
some conditions on the nonexistence of quaternary Hermitian LCD codes
with large minimum weights. We give a classification of (unrestricted) qua-
ternary [4r, 3, 3r| codes for r = 9,10, 12, 13,14, 16 and quaternary [43, 3, 32]
codes. Using the above classification and the classification in [3], we com-
pletely determine the largest minimum weight among all quaternary Her-
mitian LCD codes of dimension 3. In addition, for a positive integer s, a
maximal entanglement [[21s+ 5,3, 165+ 3; 215+ 2|] EAQECC is constructed
for the first time from a quaternary Hermitian LCD [26, 3, 19] code.

This paper is organized as follows. In Section Bl we prepare some def-
initions, notations and basic results used in this paper. In Section [B we
give characterizations of quaternary Hermgtian LCD codes. It is shown that
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there is no quaternary Hermitian LCD [*5=s, k, 4"~ 's] code for k > 3 and

s > 1 (Theorem B3)). In addition, if 4(4*~1n — Lg_la) < k, where k > 3
and 4a — 3n > 1, then there is no quaternary Hermitian LCD [n, k, a] code
C with d(C*#) > 2, where d(C) denotes the minimum (Hamming) weight
of a quaternary code C' and C*# denotes the Hermitian dual code of C.
If 4(4F=1n — A‘kg—_la) > k > 3, where 4o — 3n > 1 and there is no quater-
nary Hermitian LCD [4(4F1n — %a), k,3(4%tn — %a)] code Cjy with
d(C’OlH) > 2, then there is no quaternary Hermitian LCD [n, k, a] code C'
with d(C+#) > 2 (Theorem [34). In Section M from the classification of
quaternary codes of dimension 3 by Bouyukliev, Grassl and Varbanov [3], we
determine dy(n, 3) for n < 35. We emphasize that there is a quaternary Her-
mitian LCD [26, 3, 19] code. This implies the existence of a quaternary Her-
mitian LCD [21s+5, 3, 165+ 3] code for s > 1 (Proposition [5.4]). We also give
a classification of quaternary [4r, 3, 3r] codes for r = 9,10, 12, 13,14, 16 and
quaternary [43,3,32] codes. In Section Bl we completely determine dy(n, 3)



(Theorem [5.1]). This result is mainly obtained by applying Theorems
and [3.4] to the classification of some quaternary codes of dimension 3 given
in Section Ml As a consequence of Proposition 5.4, we show that there is a
maximal entanglement [[21s + 5,3, 16s + 3;21s + 2]] EAQECC for s > 1.
This determines the largest minimum weight among maximal entanglement
[21s + 5,3,d;21s + 2]] EAQECC’s as 16s + 3 (Remark (.5). Finally, in
Appendix, we give a proof of Proposition 2.4

2 Preliminaries

In this section, we prepare some definitions, notations and basic results used
in this paper.

2.1 Definitions and notations

We denote the finite field of order 4 by Fy = {0,1,w,w?}, where w? = w +
1. For any element o € 4, the conjugation of « is defined as @ = a?.
Throughout this paper, we use the following notations. Let 0, and 1, denote
the zero vector and the all-one vector of length s, respectively. Let O denote
the zero matrix of appropriate size. Let I}, denote the identity matrix of order
k and let AT denote the transpose of a matrix A. For a matrix A = (a;;),
the conjugate matrix of A is defined as A = (@;;). For a k x n matrix A, we
denote by A®) the k x ns matrix ( A - A )

A quaternary [n, k] code C' is a k-dimensional vector subspace of F}. A
generator matrix of a quaternary [n, k| code C'is a k x n matrix such that the
rows of the matrix generate C. The weight wt(x) of a vector x € F} is the
number of non-zero components of x. A vector of C'is called a codeword of C'.
The minimum non-zero weight of all codewords in C' is called the minimum
weight d(C) of C. A quaternary [n, k,d] code is a quaternary [n, k] code with
minimum weight d. The weight enumerator of a quaternary [n, k] code C'
is the polynomial > ; A;y*, where A; denotes the number of codewords of
weight ¢ in C'. Two quaternary [n, k| codes C' and C” are equivalent if there
is an n X n monomial matrix P over F; with C' = {zP | z € C'}.

For any (unrestricted) quaternary [n,k,d] code, the Griesmer bound is

given by
g
> — .
=3 |4 1)



Throughout this paper, we use the following notation:

aa(n, k) :max{d€Z>o|n2§ Lﬂ} 2)

=0

where Z~, denotes the set of nonnegative integers.

The Euclidean dual code C* of a quaternary [n, k| code C' is defined as
Ct ={x € F} | (z,y) = Oforally € C}, where (z,y) = > i, x;y; for
r=(21,...,2,),y = (y1,--.,yn) € F}. The Hermitian dual code C*+# of a
quaternary [n, k] code C'is defined as C+# = {z € F} | (x,y)y = 0 for all y €
C }, where (z,y)g => 1wy for v = (21,...,2,),y = (Y1, ..., yn) €Ff. A
quaternary code C' is called Euclidean linear complementary dual if CNC+ =
{0, }. A quaternary code C'is called Hermitian linear complementary dual
if CNC*H# ={0,}. These two families of quaternary codes are collectively
called linear complementary dual (LCD for short) codes. Note that quater-
nary Hermitian LCD codes are also called zero radical codes (see e.g. [11]
and [12]).

A quaternary code C' is called Hermitian self-orthogonal if C C C+7. A
quaternary code C' is called even if the weights of all codewords of C are
even. It is known that a quaternary code C is Hermitian self-orthogonal if
and only if C' is even [I3] Theorem 1]. In addition, a quaternary code C' is

Hermitian self-orthogonal if and only if GG = O for a generator matrix GG
of C.

A 2-(v,k,\) design D is a pair of a set P of v points and a collection
of k-element subsets of P (called blocks) such that every 2-element subset
of P is contained in exactly A blocks. The number of blocks that contain a
given point is traditionally denoted by r, and the total number of blocks is
b. Often a 2-(v, k, ) design is simply called a 2-design. A 2-design is called
symmetric if v = b. A 2-design can be represented by its incidence matriz
A = (aj;), where a;; = 1 if the j-th point is contained in the i-th block and
a;; = 0 otherwise.

2.2 Quaternary Hermitian LCD codes

The following characterization gives a criterion for quaternary Hermitian
LCD codes and is analogous to [I4] Proposition 1].

Proposition 2.1 ([8 Proposition 3.5]). Let C' be a quaternary code. Let G
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be a generator matriz of C'. Then C is Hermitian LCD if and only if ered
s nonsingular.

Throughout this paper, we use the above characterization without men-
tioning this.
Lemma 2.2. Suppose that there is a quaternary Hermitian LCD [n,k,d|
code C. If dy(n — 1,k) < d — 1, then d(C*+#) > 2.
Proof. Suppose that d(C*+#) = 1. Then some column of a generator matrix of
C is 0L, By deleting this column, a quaternary Hermitian LCD [n — 1, k, d]
code is constructed. This contradicts the assumption that dy(n — 1,k) <
d—1. ]

Lemma 2.3. Let Gy and G5 be generator matrices of a quaternary Hermitian
LCD [ny,k,dq] code and a quaternary Hermitian self-orthogonal [no, k, ds]
code, respectively. Then the code with generator matrix ( Gy Gy ) s a
quaternary Hermitian LCD [ny + na, k,d’| code with d' > dy + do.

Proof. The straightforward proof is omitted. O

2.3 Determination of dy(n,2)

Suppose that there is an (unrestricted) quaternary [n,2,d] code. By the
Griesmer bound (), we have
4
d < {—”J . (3)

5

Lu, Li, Guo and Fu [12] Lemma 3.1] constructed a quaternary Hermitian
LCD [n,2,[%]] code for n = 1,2,3 (mod 5) and n > 3, and a quaternary
Hermitian LCD [n,2, [ 2] — 1] code for n = 0,4 (mod 5) and n > 4. The
following proposition is mentioned in [12], by quoting [10].
Proposition 2.4 (Li [I0]). Ifn = 0,4 (mod 5), then there is no quaternary
Hermitian LCD [n,2, |4 ]] code.
Remark 2.5. In Appendix, we give a proof of the above proposition for the
sake of completeness.

Hence, one can determine dy(n,2) as follows:

in o =
ddm2)={L5J ifn=1,23 (mod5),

2] -1 ifn=0,4 (mod5),
for n > 3.



3 Nonexistence of some quaternary Hermi-

tian LCD codes

In this section, we give results on the nonexistence of some quaternary Her-
mitian LCD codes.

An easy counting argument yields the following lemma. We give a proof
for the sake of completeness. Recall that b and r denote the number of blocks
of a 2-(v, k, A) design D and the number of blocks containing a given point
of D, respectively.

Lemma 3.1. Let n and « be positive integers. Let m = (mq,...,m,) be
a vector of ZY,. Suppose that there is a 2-(v,k, \) design D. Let A be the
incidence matriz of D. If each entry of the b x 1 Z-matriz Am” is at least
a, then

roz—i\_zg\:lmj <m; < ;mj — f:;a,
for anyie {1,... v}
Proof. Fix a point p of D. Define the following sets:
Xo={ie{l,....;b} | ayp=0}and X; ={i € {1,...,b} | ap, = 1},

where A = (a;;). Let w; denote the i-th entry of the b x 1 Z-matrix Am”.
Then we have

Zwi:rmp+ Z )\mj:(r—)\)mij)\imj.

i€X, Je{L,...o}\{p} J=1

Since > e x, Wi+ Diex, Wi = S w = 22 j—1m;, we have
v
Y wi= (=AY m;—(r—Am,
i€ Xo j=1
Since | X;| = and | Xo| = b — r, we have
ra < Zwi and (b—71)a < Zwi.
i€Xq i€Xo

This completes the proof. O



According to [12], we define the k x (L;l) matrices Sy by inductive
constructions as follows:

si= (1),

Se—1 0L, Sp Sk-1 Sk-1
5% = 3 if k > 2.

04k71,1 1 141@71,1 w14k71,1 w214k71,1
3 3 3 3

The matrix Sy, is a generator matrix of the quaternary [ Lk, 451] simplex
code. It is known that the quaternary [ —L ke, 4k sunplex code is a con-
stant weight code. More precisely, the code contalns codewords of weights 0
and 41 only. Thus, for k > 2, the quaternary [ —L k,45=1] simplex code

is even. By [I3, Theorem 1], the quaternary [ L k,4%1] simplex code is
Hermitian self-orthogonal for & > 2.
Let h,(;) be the i-th column of Sj. For a vector m = (mq,...,mu_,) €

4k 1
Z.§ with Y7, m; =n, we define a matrix:

k_ k_

Gulm) = (W) ).
—— ~ -
m1columns Mgk _q columns

For a quaternary [n k;] code C' with d(C*#) > 2, there is a vector m =

(mq, ... 4k k1) € Z such that C'is equivalent to a code with generator
matrix Gk( ) We denote the code by Ci(m).

ak—1
Lemma 3.2. Suppose that k > 3, m = (my,....,mu_,) € Z.§ and
. >
Y. m; = n. If a quaternary [n, k] code Ci(m) has minimum weight at least
a, then
gk=1 1

for anyie{l,...,‘lkg_l}.

Proof. 1t is well known that the supports of the codewords of Welght 4k=1
the quaternary [£52, k, 45~1] simplex code form a symmetric 2-(£5-1, 4% 3
4%=2) design for k: > 3 (see e.g. [ p. 8]). As the 2-design D in Lemma B:I:I



consider the symmetric 2—(%—_1,4’“_1 3 - 4%72) design. Since d(C’k( ) > «,
it follows from the structure of C(m) that each entry of the =% x 1 matrix
AmT is at least . The result follows from Lemma Bl O

If we write n = %s, then ay(n, k) = 4 1s (see @) for ay(n, k)).

Theorem 3.3. Suppose that k > 3. If n =0 (mod £=1 1), then there is no
quaternary Hermitian LCD [n, k, au(n, k)] code.

Proof. Write n = k—_s Suppose that there is a quaternary Hermitian LCD
[4k3_1 , 4k 1) code C. Since a4(—s 1,k) < 4b1s — 1, d(Ctr) > 2 by

Lemma Thus, we may assume that C' is equivalent to a code Cj(m) for
4k 1
some vector m = (my,... 4k #-1) € Zsg . Consider the conditions given

in (). Since we have

k_ k_ k=1 _
4'%—3(4 3 18) = s and 1 3 18—43 4k_214k_1828,

by Lemma B.2, we have m; = s for each 7. This means that m = sl _,.
3
Since SkS_kT = (0, we have
7 o7
Gir(sLuy)Gi(sLuy) = Sl — 0.
By [13, Theorem 1], Ck(m) is quaternary Hermitian self-orthogonal, which
is a contradiction. O
Set

4k —1
ra(n, k,a) = 4""1n —

«a,

for positive integers n, k and «. The following theorem is one of the main
results in this paper.

Theorem 3.4. Suppose that k > 3 and 4o — 3n > 1.

(i) Suppose that 4ry(n,k, ) < k. Then there is no quaternary Hermitian
LCD [n,k,a] code C with d(C+#) > 2.

(ii) Suppose that 4ry(n, k, ) > k. If there is no quaternary Hermitian LCD
[4r4(n, k, ), k, 3ry(n, k, )] code Cy with d(Cy™) > 2, then there is no
quaternary Hermitian LCD [n, k, ] code C with d(C*+#) > 2.
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Proof. Suppose that there is a quaternary Hermitian LCD [n, k, o] code C
with d(Ct#) > 2. Then C is equivalent to a code Cy(m) with generator

aF o1
matrix G (m) for some vector m = (mq,...,mu_,) € Z-; . Since d(C) =
- >
a, by Lemma [3.2] we have
da — 3n < m;,

4k—1
3

Gr(m) are hfj), then we obtain a matrix G of the following form:

G=(G s ),

for each i € {1,..., }. Thus, at least 4o« — 3n columns of the matrix

by permuting columns of Gi(m). Here, Gy is a k X ng matrix, where

k _
n0:4(4k—1n—4 !

a) =dry(n, k, a).

The code C" with generator matrix 512405—371)

orthogonal [n/, k,d’] code, where

is a quaternary Hermitian self-

k

n' = (4a — 3n) and d' = (4a — 3n)4"1.

Since SkS_kT = O, we have GG = GOG_OT. Since rank(G@T) = k, we have
rank(Gp) > rank(GoG_oT) = k.
(i) Suppose that 4ry(n, k, ) < k. Since Gy is a k x 4ry(n, k, @) matrix,
k> 4ry(n, k,«) > rank(Go) > k,
which is a contradiction.

(ii) Suppose that 4ry(n,k,«a) > k. Let Cy be the quaternary code with

generator matrix G. Since GG = GOG_OT, Cy is a quaternary Hermi-
tian LCD [ng, k] code. Tt follows from the form of G that d(Cy™) > 2.
Let dy denote the minimum weight of Cyy. By Lemma 23] o > dy + d'.
Since C" is a constant weight code, there is a codeword of weight dg+ d’
in Cx(m). Thus, a = dy + d’ then we have

dy = —(4]”C —la+ 4F=13p = 3ra(n, k, o).

Therefore, there is a quaternary Hermitian LCD [4ry(n, k, ), k, 3ry(n, k, a)]
code Cy with d(Cy™7) > 2.



This completes the proof. O

Remark 3.5. If 4o — 3n > 1, then we have

4% —1
3 Y

n > 4ry(n, k, o) +

since n — 4ry(n, k,a) > 2(=3n(4* — 1) + Bn+ 1)(4* — 1)) = £ (4F — 1).

4 Quaternary codes of dimension 3

In this section, a classification of (unrestricted) quaternary codes of dimen-
sion 3 is done for some lengths by using computer calculations (see Lemma 5.0l
for the motivation of our classification). All computer calculations were done
by programs in MAGMA [2] and programs in the language C.

4.1 Classification method

A shortened code C' of a quaternary code C' is the set of all codewords
in C' which are 0 in a fixed coordinate with that coordinate deleted. A
shortened code C' of a quaternary [n, k, d| code C' with d > 2 is a quaternary
[n—1, k, d] code if the deleted coordinate is a zero coordinate and a quaternary
[n— 1,k —1,d] code with d’ > d otherwise.

By considering the inverse operation of shortening, every quaternary
[n,3,d] code with d > 2 is constructed from some quaternary [n—1, 2, d'] code
with d’ > d. By considering equivalent quaternary codes, we may assume
that a quaternary [n — 1,2, d’] code has the following generator matrix:

1 0104 O |14 1, 1. 14, (5)
0 104 14|04 1, wlg w21a6 ’

where a1 + a3 =n —d —2 and a3 + a4 + a5 + ag = d' — 1. For the generator
matrix (@) of each of all inequivalent quaternary [n — 1,2,d'] codes with
d’' > d, consider the generator matrices ( I3 M ) , where

Oal OCL2 1[13 10,4 1(15 10«6
M — Oal 1a2 0[13 1(14 W1a5 w21a6 ) (6)
r1 To | Tz X4 T5 Te
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where z; = (2;1,...,%;4,), under the condition that x;; < z;; for j < k
and z;, € {0,1}. Here, we consider a natural order on the elements of
F, as follows 0 < 1 < w < w? In this way, all quaternary [n,3,d] codes,
which must be checked further for equivalences, are constructed. By checking
equivalences among these codes, we complete a classification of quaternary
[n, 3, d] codes.

4.2 Lengths up to 35

Here we investigate the values dy(n,3) for n = 4,5,...,35. Let di'(n,3)
denote the largest minimum weight among all (unrestricted) quaternary
[n, 3] codes (see [7] for the current information on d3!(n,3)). Lu, Li, Guo
and Fu [12] found quaternary Hermitian LCD codes having large minimum
weights for dimension 3. From [I2, Tables 3 and 4], we know dy(n,3) =
dil(n, 3) for

n=78,91011,12, 13,17, 18,23,24, 25,28, 29, 30, 33, 34.

For n < 35, Bouyukliev, Grassl and Varbanov [3] completed the classifica-
tion of (unrestricted) quaternary [n,3,d3"(n,3)] codes. The number of the
inequivalent quaternary [n, 3, dj!(n, 3)] codes are given in [3, Table 3]. Based
on the number given in [3| Table 3|, we reconstructed all inequivalent qua-
ternary [n, 3, d4(n, 3)] codes for

n =4,5,6,14, 15,16, 19, 20, 21, 22, 26, 27, 31, 32, 35,

by using the method in Section EETl Then we found that dy(n,3) < d§'(n, 3
for the above lengths except 26. For length 26, we found that dy(n,3) =
dd(n,3). For the remaining lengths, from [I2, Tables 3 and 4], we know
ds(n,3) = di(n,3)—1. This determines the largest minimum weight d,(n, 3)
for lengths n = 4,5,...,35, where the results are listed in Table Il In
the table, the reference about the existence of quaternary Hermitian LCD
[n,3, ds(n,3)] codes is also listed.

We give details for the case dy(26,3) = 19. There are five inequivalent
quaternary [26,3,19] codes [3| Table 3]. We verified that one of them is

11



Table 1: d4(n,3) (n =4,5,...,35)

n | dy(n,3) | Reference n | da(n,3) | Reference
4 1 [12] Table 3] | 20 14 [12, Table 3]
5 2 [12, Table 3] | 21 15 [12] Table 3]
6 3 [12] Table 3] | 22 15 [12] Table 4]
7 4 [12, Table 3] | 23 16 [12] Table 4]
8 5 [12] Table 3] | 24 17 [12] Table 4]
9 6 [[2, Table 3] | 25| 18 | [I2) Table 4]
0| 6 [[2, Table 3] | 26 | 19 Cag

1n| 7 [[2, Table 3] | 27 | 19 | [12) Table 4]
12 8 [12, Table 3] | 28 20 [12, Table 4]
13 9 [12] Table 3] | 29 21 [12, Table 4]
14 9 [12, Table 3] | 30 22 [12, Table 4]
15| 10 | [12 Table3] | 31| 22 | [I2 Table 4]
16| 11 [[2, Table 3] | 32| 23 [12, Table 4]
17| 12 | [2 Table3] | 33| 24 | [I2 Table 4]
18 13 [12, Table 3] | 34 25 [12] Table 4]
19 13 [12] Table 3] | 35 25 [12], Table 4]

Hermitian LCD. This code Cy has the following generator matrix:

10000O0O0OOT1TT1T1 11

01 00111 140O0O0 01

001111 wwlluwwO
111 1 1 11 1 1 1 1 1 1
111 1 www w w o w W ],
l ww w01l ww 0 1 w w w

and the following weight enumerator:

1+ 33y" + 18y%° 4 352! 4 9422,

4.3 Lengths 36, 40, 43, 48, 52, 56 and 64

By using the method in Section Bl a classification of (unrestricted) qua-
ternary [4r, 3, 3r| codes for r = 9,10, 12,13, 14, 16 and quaternary [43, 3, 32]

12



codes was done. These codes have minimum weights d§''(n, 3). To save space,
the results are given only.

Proposition 4.1. (i) There are two inequivalent quaternary [4r, 3, 3r] codes
Cyri (i =1,2), none of which is Hermitian LCD for r =9, 10.

(ii) There are ten inequivalent quaternary [43, 3, 32] codes Cyz; (i = 1,2, ...,10),
none of which is Hermitian LCD.

(i) There are five inequivalent quaternary [4r, 3, 3r] codes Cy.; (1 =1,2,...,5),
none of which is Hermitian LCD for r = 12,13.

(iv) There are siz inequivalent quaternary [56, 3,42] codes Cs; (1 = 1,2,...,6),
none of which is Hermitian LCD.

(v) There are 15 inequivalent quaternary [64, 3, 48] codes Cey; (1 = 1,2,...,15),
none of which is Hermitian LCD.

Table 2: Vectors v] (j =1,2,...,22)

Y

i vl i vl i v} i v} i v}
110,016 LY | 11] (LLO) [16] Lwl |21 Lwhw)
2 (0,0,1) | 7| 1,000 | 12| (1,1,1) | 17| (L) | 22| (1w w?)
31 (0,1,0) | 8 | (1,0,1) | 13| (1,1,0) | 18 | (1,w,w?)

4] (0,11 | 9| (Low) | 14] (11,07 | 19| (1,w?0)

50 (0,5,0) |10 ] (1,0,w?) | 15| (1,w,0) | 20 | (L,w? 1)

In order to display the matrices M in (@) for generator matrices ( I3 M )
of Cyy (r=9,10,12,13,14,16) and Cy3,, we give some vectors v} of length
3 in Table 2l Let n; (j = 1,2,...,22) be the number of the columns of A/
in (@), which are equal to v;. The numbers n; (j =1,2,...,22) are listed in
Tables B and @l The weight enumerators W,,; of C,,; are listed in Table

5 Determination of dy(n,3)

The aim of this section is to establish the following theorem, which is one of
the main results in this paper.

13



Table 3: (ny,ng,...,n0)

Code (Tll,TLQ, . ,7’L22)
036,1 (07 17 07 27 27 27 07 27 27 27 17 27 27 27 07 27 27 27 17 27 27 2)
036,2 (Oa 17 Oa 27 25 27 07 27 27 27 17 27 27 27 17 17 27 27 17 27 27 2)
C'40,1 (07 07 17 27 27 27 17 27 27 27 27 27 27 27 27 17 27 27 27 27 27 2)
040,2 (07 17 17 27 27 27 17 27 07 27 27 27 27 27 27 27 27 27 27 27 27 2)
Theorem 5.1. Suppose that n > 6. Then
| L6 | ifn=5913,17,18 (mod 21),
d4(n7 3) = Llﬁ_lrLJ -1 anE 071727374767 77 87

10,11,12,14,15,16,19,20 (mod 21).

Remark 5.2. For n = 2,3,4,8,9,12,13,17,18 (mod 21), the above result is
known [12, Table 4].

Suppose that there is an (unrestricted) quaternary [n,3,d] code. Write
n = 21ls +t, where 0 < ¢t < 20. By the Griesmer bound (), we have
d < ay(n,3), where ay(n,3) are listed in Table [ for each n = 21s+t (s > 1
ift=0,1,2and s > 0if t = 3,4,...,20).

Lemma 5.3 (Lu, Li, Guo and Fu [12]). If there is a quaternary Hermitian
LCD |n,3,d] code, then there is a quaternary Hermitian LCD [21s+n, 3, 165+
d| code for every positive integer s.

By the Griesmer bound (Il) and [12, Table 4], we have
dy(21s +5,3) = 16s + 2 or 165 + 3.

The code Cyg given in Section is a quaternary Hermitian LCD [26, 3, 19]
code. By Lemmal[5.3] there is a quaternary Hermitian LCD [215'4-26, 3, 165"+
19] code for a positive integer s’. Therefore, we have the following:

Proposition 5.4. For a positive integer s, dy(21s +5,3) = 16s + 3.

Remark 5.5. An [[n, k, d;c]] EAQECC C encodes k information qubits into

n channel qubits with the help of ¢ pairs of maximally entangled Bell states.

The parameter d is called the minimum weight of C. The EAQECC C can cor-
d—1

rect up to | 5= | errors acting on the n channel qubits (see e.g. [11] and [12]).
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Table 5: Weight enumerators

Wi Weight enumerator Wi Weight enumerator
Wae1 | 1+ 48y + 12y8 + 3y>? Waeo | 1+ 45y27 + 15y8 + 3y3!
Wao 1 1+ 36y30 + 24y31 + 3y32 Wi | 14 48y30 + 15y32

Wiz | 14 45y%% + 1593 + 3y Wiz | 1+ 39y3% + 24y3*

Wiss | 14 39y32 + 12y33 + 12y3° Wiza | 14 27y3% + 24y33 + 12434
Wiss | 14 42y3% + 18y3* + 3y*° Wise | 1+ 15y3% + 48y33

Wisz | 1+ 54y32 + 6y3° + 3y10 Wiss | 14 51y3? + 12y36

W43,9 1+ 51y32 + 12y36 W43_]10 1+ 63y32

Wis1 | 14 57y%¢ + 3y™0 + 3y™* Wiso | 1+ 54y3° + 9y™°

W4g_]3 1+ 54y36 + 9y40 W4g_]4 1+ 45y36 + 18y38

W4g_]5 1 + 60y36 + 3y48

Wsa1 | 144293 + 15970 + 6y Wsao | 1+ 45y3% + 12y%0 + 3y + 3y*
Wsas | 14 48y3% + 12440 + 3y*® Wsaa | 1+ 45y3% + 15y40 + 3y47
Wsas | 14 48y3° + 9y*0 + 6y

Wse1 | 1+ 36y + 24y™ + 3y™® Wse2 | 1+ 45y*2 + 15y* + 3y*°
Wses | 14 48y*% + 12y** + 3y*® Wsea | 1+ 42y*% +21y*

Waes | 14 36y*2 +21y*3 + 3y* + 3y*" | Waee | 1+ 33y*2 + 24y*3 + 3y** + 3446
Wea1 | 1+ 51y* + 12y°2 Wea2 | 1+ 51y™ + 12y°2

Weas | 14 51y*® + 12y52 Weaa | 1+ 15y8 + 48y*?

Weas | 14 57y*® + 3y>? + 3y5° Weae | 1+ 5dy® + 6y52 + 356
Weaz | 1+ 54y*® + 6y°2 + 3y°° Weas | 1427y + 24y + 12450
Weao | 14 39y* + 12949 + 12¢°! Wea10 | 1+ 45y*8 + 15y°0 + 3y°4
Wea1 | 1+ 42y* +18y° + 3y°2 Weano | 1+ 57y*® + 6y°°

Wea1s | 1+ 63y*8 Wea1a | 1+ 39y*8 4 24y°°

Wea1s | 1+ 60y*8 + 3y%4

An [[n, k,d;0]] EAQECC is a standard quantum code. An [[n,k,d;n — k|
EAQECC is called mazimal entanglement. If there is a quaternary Hermi-
tian LCD [n, k, d] code, then there is a maximal entanglement [[n, k, d;n — k]
EAQECC (see e.g. [11] and [12]). From Proposition [5.4] there is a maximal
entanglement [[21s+ 5, 3, 165+ 3; 215 + 2]] EAQECC for a positive integer s.
It was shown in [9, Theorem 7] that d < % for an [[n, k, d; c]] EAQECC.
Hence, a maximal entanglement [[21s+45, 3,165+ 3; 215+ 2]] EAQECC meets
the above bound for a positive integer s. Therefore, the largest minimum
weight among all maximal entanglement [[21s + 5,3, d; 21s + 2]] EAQECC’s

is 16s + 3 for a positive integer s.
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Table 6: Griesmer bound ay(n, 3)

n ay(n,3) n ay(n,3) n ay(n,3)
21s 16s 21s +7 | 16s+4 | 21s+ 14 | 165 + 10
21s+1 16s 21s+8 | 16s+5 | 21s+15 | 165+ 11
21s+2 16s 21s+9 | 16546 | 21s+ 16 | 165 + 12
21s+3 | 16s+1 | 21s4+10 | 16s+7 | 21s + 17 | 165 + 12
21s+4 | 16s+2 | 21s+ 11 | 16s+8 | 21s+ 18 | 165+ 13
21s+5 | 16s+3 | 2ls+12 | 165+ 8 | 21s+19 | 16s + 14
2ls+6 | 16s+4 | 21s+13 | 16s+9 | 21s + 20 | 16s + 15

From [12, Tables 3 and 4] and Proposition 5.4 we have

dy(21s +2,3) = 16s, dy(21s +3,3) = 165 + 1,
dy(21s+4,3) = 165+ 2, d4(21s+5,3) = 16s + 3,

for a positive integer s, and
dy(21s 4+ 7,3) = 165 + 4, ds(21s 4+ 8,3) = 165 + 5,
ds(21s4+9,3) = 165 + 6, ds(21s 4+ 12,3) = 165 + 8,
dy(21s +13,3) =165+ 9, dy(21s+17,3) = 165 + 12,
d4(21s + 18,3) = 16s + 13,

for a nonnegative integer s. In the remainder of this section, we consider the
remaining cases.
As a special case of Theorem B (ii), we have the following:

Lemma 5.6. Suppose that

(16,12), (20,15), (32, 24), (36, 27), (40, 30),
(o, do) € { (48,36), (52,39), (56, 42), (64, 48) } '

If there is no quaternary Hermitian LCD [ng,3,do] code C with d(C*#) > 2.
Then there is no quaternary Hermitian LCD [21s + ng, 3, 16s + do] code D
with d(D+1) > 2 for a positive integer s.

Proposition 5.7. For a positive integer s, dy(21s,3) = 16s — 1.

Proof. By Theorem B3] d4(21s,3) < 16s — 1. There is a quaternary Hermi-
tian LCD [21, 3,15] code [12, Table 3]. By Lemma[5.3] there is a quaternary
Hermitian LCD [21s, 3, 16s — 1] code. O
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The results in Table [I] are used in the following proposition.
Proposition 5.8. For a nonnegative integer s,

dy(21s +11,3) = 165+ 7,  dy(21s + 16,3) = 165 + 11,
ds(21s + 20,3) = 165 + 14.

Proof. Suppose that (ng,dy) € {(16,12),(20,15),(32,24)} and s is a non-
negative integer. From Table [I there is no quaternary Hermitian LCD
[no, 3, dg] code. Hence, by Lemma 5.6, there is no quaternary Hermitian LCD
215+ ng, 3,165 + dy] code C' with d(C+#) > 2. Suppose that there is a qua-
ternary Hermitian LCD [n, 3,d] code D with d(D*#) = 1. By Lemma 22 a
quaternary Hermitian LCD [n — 1,3, d] code is constructed. This contradicts
the Griesmer bound (see Table [A]).
It was shown in [I2 Tables 3 and 4] that

dy(215+11,3) > 165+ 7, dy(21s + 16,3) > 165+ 11,
dy(215 + 20,3) > 165 + 14.

From Table[l] it is known that there is no quaternary Hermitian LCD [11, 3, §]
code. This completes the proof. O

The results in Proposition 1] are used in the following proposition.
Proposition 5.9. For a nonnegative integer s,

dy(21s+1,3) =165 — 1,  dy(21s+6,3) = 165 + 3,
ds(21s +10,3) = 165 + 6,  dy(21s + 14,3) = 165+ 9,
ds(21s + 15,3) = 165 + 10, dy(21s + 19,3) = 165 + 13.

Proof. Suppose that s is a nonnegative integer and
(no, do) € {(36,27), (40, 30), (48, 36), (52, 39), (56,42), (64,48)}.

By Proposition E1] (i), (iii)—(v), there is no quaternary Hermitian LCD
[no, 3, do] code. Hence, by Lemma[5.6, there is no quaternary Hermitian LCD
215 + ng, 3, 165 + do] code C' with d(C+#) > 2. Now suppose that there is a
quaternary Hermitian LCD [21s + ng, 3, 16s + dy] code D with d(D*#) = 1.
By Lemma [2Z2] a quaternary Hermitian LCD [21s + ng — 1, 3,165 + do — 1]
code is constructed. This contradicts dy(21s,3) = 16s — 1 in Proposition [(.7]
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if 21s +ng =21s+ 1 (s > 1), and this contradicts the Griesmer bound (see
Table [0) otherwise.
It was shown in [I2 Tables 3 and 4] that

di(21s +1,3) > 16s — 1,  du(21s +6,3) > 165 + 3,
dy(21s +10,3) > 165 + 6,  dy(21s + 14,3) > 165 + 9,
ds(21s +15,3) > 165 + 10, du(21s + 19,3) > 165 + 13.

From Table[[]and Proposition [4.1] (ii), it is known that there is no quaternary
Hermitian LCD [n, 3, d] code for

(n,d) = (6,4), (10, 7), (14, 10), (15,11),
(19,14), (27,20), (22, 16), (31, 23), (35, 26), (43, 32).
This completes the proof. O

Combining Propositions [(.4] 5.7 and 0.9 with Remark 5.2, we deter-
mine dy(n,3) as described in Table [l and we complete the proof of Theo-
rem [5.11

Table 7: dy(n,3) (n > 6)

n ds4(n,3) Reference n ds(n,3) Reference

21s 16s — 1 | Proposition 5.7 | 21s+ 11 | 16s+ 7 | Proposition £.8]
2ls+1 | 16s — 1 | Proposition 21s+12 | 16s+8 [12] Table 4]
21s +2 16s [12, Table 4] | 21s+ 13 | 165+ 9 [12], Table 4]
2ls+3 | 16s+1 [12, Table 4] | 21s+14 | 16s+9 | Proposition
21s+4 | 16s+2 | [12, Table 4] | 21s+ 15 | 16s + 10 | Proposition
21s+5 | 16s + 3 | Proposition B4 | 21s 4+ 16 | 16s + 11 | Proposition B.8]
21s4+6 | 16s+ 3 | Proposition 21s +17 | 165+ 12 | [12], Table 4]
215 +7 | 16s+4 | [I2 Table 4] | 21s+18 | 165+ 13 | [I2, Table 4]
21s+8 | 16s+5 | [12, Table 4] | 21s+ 19 | 16s + 13 | Proposition
21s+9 | 16s+6 | [12] Table 4] | 21s+20 | 16s + 14 | Proposition (.8l
21s+10 | 16s + 6 | Proposition
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Appendix

In Appendix, we give a proof of Proposition 241 For a = (a1, as,...,a;5) €
22, we define a quaternary [n,2] code C(a) having generator matrix of the
form G(a) = ( I, M(a) ), where

R Oal 1[12 1(13 1(14 1[15
M(“)_<1a1 0, Lo, wls, w?l, /- (7)

It is trivial that any quaternary [n,2] code C' is equivalent to some C'(a) if
d(C*i) > 2. By considering all codewords, the weight enumerator of the
code C'(a) is written using aq, as, . .., as as follows:

14+ 3y1+a1+a3+a4+a5 + 3y1+a2+a3+a4+a5
+ 3y2+a1+a2+a4+a5 + 3y2+a1+a2+a3+a4 + 3y2+a1+a2+a3+a5.
. 71 . . .
The matrix G(a)G(a) is written using ay, as, ..., as as follows:

1+ as +as + aq + as as + way + wlas
as + w?ay + was l+ar+az+as+as |-

——T
Hence, the determinant of G(a)G(a) is written using ai, as, . . ., a5 as follows:

1+a; +as + aras + ajas + ajaq + aras + asas + asas + asas

+ (w + w?)(azay + azas + aqas).

(8)

Lemma 5.10. Suppose that n = 0,4 (mod 5). If there is a quaternary
Hermitian LCD [n,2,|%]] code C, then d(C*+#) > 2.
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Proof. Suppose that n = 0,4 (mod 5). Suppose that there is a quaternary
Hermitian LCD [n,2, [%2]] code C' with d(C*+#) = 1. By Lemma 22, a
quaternary Hermitian LCD [n — 1,2, | %]] code is constructed. This contra-
dicts ([B]). O

Suppose that n = 0,4 (mod 5). Let C' be a quaternary Hermitian LCD
n, 2, L%"J] code. By Lemma [5.10, we may assume without loss of generality
that C' = C(a), that is, C' has generator matrix of the following form G(a) =
(I, M(a) ), where M(a)is listed in (7). From the length and the minimum
weight of C(a), ay, as, ..., a5 satisfy the following conditions:

4n
_|_' E ‘aZ_{5J(] ,2), 9)
i€{1,2,3,4,51\{j}

2+ Y aiz{%”J (j =3,4,5), (10)

1€{1,2,3,4,5}\{j}

24 > a=n (11)

i€{1,2,3,4,5}

From (@)—(I), we have

o <n— L%”J (i =3,4,5).
e Suppose that n = 5s. From (I2)), we have
a; <s—1(G=12)and a; <s (i =3,4,5).
Then we have
n=2+a+ay+ a3+ a4+ a5 <5Hs =n.
Hence, we have

ap=ay=s—1and a3 = a4 = a5 = s.

———T
By (8), using s, the determinant of G(a)G(a) is written as 10s? — 6s.
Hence, C(a) is not Hermitian LCD for every positive integer s.
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e Suppose that n = 5s + 4. From (I2), we have
a; <s(i=1,2)and a; <s+1 (i =3,4,5).
Then we have
n=24+a+a+az3+as+a5s <dHs+5=n+1.
Hence, we have

i€ {1,2} |a; <s—2} =|{i€{3,4,5} |a; <s—1} =0,
i€ {1,2} |aj=s— 1} +|{i € {3,4,5} | a; = s}| = 1.

This yields that there are the five possibilities for a = (ay, as, as, as, as),

where the results are listed in Table[8 The determinant det of G(a)G (a)T
is also listed in Table[8 Therefore, C; (i = 1,2,...,5) is not Hermitian
LCD for every positive integer s.

This completes the proof of Proposition 2.4

Table 8: Case n = 5s +4

C(a) a = (a1,a,a3,a4,as) det
C1 | (s—1,s,s+1,5s+1,5+1) | 10s®>+ 10s
Co | (s,s—1,s+1,s+1,5+1) | 10s> 4 10s

Cs (s,s,8,s+1,s+1) 10s% + 10s + 2
Cy (s,8,8s+1,8,5+1) 10s? + 105 + 2
Cs (s,s,s+1,s+1,s) 105 + 105 + 2
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