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Abstract—Consider a stream of status updates generated by a
source, where each update is of one of two types: high priority
or ordinary (low priority). These updates are to be transmitted
through a network to a monitor. However, the transmission policy
of each packet depends on the type of stream it belongs to. For the
low priority stream, we analyze and compare the performances
of two transmission schemes: (i) Ordinary updates are served
in a First-Come-First-Served (FCFS) fashion, whereas, in (ii),
the ordinary updates are transmitted according to an M/G/1/1
with preemption policy. In both schemes, high priority updates
are transmitted according to an M/G/1/1 with preemption policy
and receive preferential treatment. An arriving priority update
discards and replaces any currently-in-service high priority
update, and preempts (with eventual resume for scheme (i)) any
ordinary update. We model the arrival processes of the two kinds
of updates, in both schemes, as independent Poisson processes.
For scheme (i), we find the arrival and service rates under which
the system is stable and give closed-form expressions for average
peak age and a lower bound on the average age of the ordinary
stream. For scheme (ii), we derive closed-form expressions for
the average age and average peak age of the high priority and
low priority streams. We finally show that, if the service time
is exponentially distributed, the M/M/1/1 with preemption policy
leads to an average age of the low priority stream higher than the
one achieved using the FCFS scheme. Therefore, the M/M//1/1
with preemption policy, when applied on the low priority stream
of updates and in the presence of a higher priority scheme, is
not anymore the optimal transmission policy from an age point
of view.

I. INTRODUCTION

While the classical notion of delay is a measure of how
long a packet spends in transit, the ‘Age of Information’ [1] is
a receiver-centric notion that measures how fresh the data is
at the receiver. Specifically, with u(t) denoting the generation
time of the last successfully received packet before time t,
one defines ∆(t) = t − u(t) as the instantaneous age of the
information at the receiver at time t. One can then consider

∆ = lim
τ→∞

1

τ

∫ τ

0

∆(t)dt, (1)

as the (time) average age. Observe that ∆(t) increases linearly
in the intervals between packet receptions, and when a packet
is received, ∆(t) jumps down to the delay experienced by
this packet. This results in a sawtooth sample path as in
Fig. 1. In [2]–[7] the properties of ∆ were investigated under
the assumption that the packets are generated by a Poisson
process, and various transmission policies (M/M/1, M/M/∞,
gamma service time,. . . ).

A related metric, called average peak age, was introduced
in [4] as the average of the value of the instantaneous age
∆(t) at times just before its downward jumps. In Fig. 1, Kj

denotes the instantaneous age just before the reception of the

jth successfully transmitted packet, and hence, the average
peak age is given by

∆peak = lim
N→∞

1

N

N∑
j=1

Kj . (2)

Yates et al., in [8], studied the average age when considering
multiple sources sending update through one queue. They
computed the average age for three scenarios: all sources
transmit according to an M/M/1 FCFS policy, all sources
transmit according to an M/M/1/1 with preemption policy and
all sources transmit according to an M/M/1/1 with preemption
in waiting policy. In the M/M/1/1 with preemption policy, if a
newly generated update finds the system busy, the transmitter
preempts the one currently in service and starts sending
the new packet. On the other hand, in the M/M/1/1 with
preemption in waiting policy, the system has a buffer of size 1
and if the generated update finds the system busy, it replaces
any waiting update in the buffer. In [9], Huang et al. also
consider multiple sources transmitting through a single queue
but in this case they assume a generally distributed service
time. Moreover, they study two scenarios: all sources transmit
according to an M/G/1 FCFS policy or all sources transmit
according to an M/G/1/1 with blocking policy. For each one of
these policies, the authors give the expression of the average
peak age of each source. In [10], Najm et al. also consider
multiple sources sending through one queue. However, the
authors derive the closed-form expressions of the average
age and average peak age when assuming an M/G/1/1 with
preemption, with the service time having a generic distribution.
In their analysis, Najm et al. reintroduce the detour flow graph
technique which we will use extensively in this paper.

In this paper, we assume updates are generated according to
a Poisson process with rate λ, and that updates belong to two
different streams where each stream i is chosen independently
with probability pi, i = 1, 2. So we have two independent
Poisson streams with rates λ1 = λp1 and λ2 = λp2. However,
unlike [8]–[10], we assume a different transmission policy for
each stream. The two independent streams generated by the
source can be used to model different types of content carried
by the packets of each stream. For example, if the source is
a sensor, one stream could carry emergency messages (fire
alarm, high pressure, etc.) and thus it needs to be always as
fresh as possible while the other stream will carry regular
updates and hence is not age sensitive. Therefore, it stands
to reason to transmit these two streams in a different manner.
The paper is divided into three parts:
• In the first part, we assume a different transmission policy

for each stream. The regular stream will be transmitted
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according to a FCFS policy, whereas the high priority
stream will be sent by preemption; packets of the high
priority stream preempt all packets including packets of
their own stream. We further assume that the service time
requirements of the two streams are different. Although
packets from both streams spend an exponential time in
service, a packet of the regular stream is served at rate
µ1, while a packet of the high priority stream at rate
µ2. This model was first presented by the authors of the
current paper in [11]. In this part, we will answer the
following questions: What should the relation between
λ1, µ1, λ2 and µ2 be for the system to be stable? How
does each stream affect the average age of the other
one? What are the ages of each stream? To answer these
questions, we give a necessary and sufficient condition for
the system stability and find the steady-state distribution
of the underlying state-space. We also give closed-form
expressions for both the average peak-age and a lower
bound on the average age of the regular stream, and
compare them to the average age of the high-priority
stream.

• In the second part, we assume the same transmission
policy for both streams. We use an M/G/1/1 with pre-
emption scheme. However, we consider that a packet
from the low-priority (or regular) stream is served ac-
cording to a service-time distribution similar to that of
the random variable S1, whereas an update from the
high-priority stream is served according to a service
time distribution identical to that of the variable S2. We
denote by fS1

(t) and fS2
(t) the respective probability

density functions (p.d.f) of these service times. In this
part, we generalize part of the results presented in [12],
relative to the preemption policy, and derive closed-form
expressions for the average age and average peak age for
any type of service-time distribution. Kaul et al., in [12],
address a similar problem. They consider multiple sources
with different priorities with source 1 given the highest
priority and source M the lowest priority. Two types of
transmission schemes are investigated: (i) an M/M/1/1
with preemption where any new packet from source i
preempts the packet currently in service if this update
belongs to source j with j ≥ i, and (ii) an M/M/1/2*
where any new packet from source i that finds the server
busy would be placed in a buffer of size 1. However, if
the buffer is already occupied by an update from source
j, j ≥ i, then the waiting packet is dropped and replaced
by the new one from source i.

• In the third part, we compare, through simulations, the
performance of the FCFS policy and that of the M/G/1/1
with preemption on the age of the low priority stream. In
this part, we show, through numerical results, that pre-
emption is not the optimal transmission scheme to adopt,
in the presence of higher priority streams, even when
the service time is exponential. This comes as a surprise
since it was shown, by Bedewy et al. in [13], [14], that
the LCFS with preemption policy is optimal when we
consider a single source generating updates according
to a Poisson process and the service time at each hop

t0 t1 D1 t2 t′1 t3 D′1D2 t′2D
′
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′
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′
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Fig. 1: Variation of the instantaneous age of stream U1.

is exponentially distributed. In fact, we observe that the
FCFS policy achieves a lower average age than the one
achieved by the M/M/1/1 with preemption scheme. This
means that if we are designing a system with a high and a
low priority stream, and we have a choice between FCFS
and M/G/1/1 with preemption as transmission schemes
for the low priority stream, we should implement a FCFS
transmission policy.

This paper is structured as follows: In Section II, we start by
defining the update generation mechanism, common to both
models and the different variables needed in our study. In
Section III, we study our first model and derive the stability
condition of the system and its stationary distribution. The
closed-form expressions of the average peak-age and the lower
bound on the average age of the regular stream are computed
in Section III-C. In Section IV, we analyze the second model
and compute the average age and average peak-age of both
streams. Finally, in Section V, we present some numerical
results and show through an example that the FCFS policy
outperforms the M/M/1/1 with preemption, from the low
priority stream point of view.

II. SYSTEM MODEL

We consider a sender that generates packets (or updates)
according to a Poisson process of rate λ. Each packet, inde-
pendently of the previous packets, is of type 1 with probability
p1 and of type 2 with probability p2 = 1 − p1. We can thus
see our sender as consisting of two sources generating two
independent Poisson streams U1 and U2 with rates λ1 = λp1

and λ2 = λp2 respectively, λ = λ1 + λ2 (see [15]). As noted
in the introduction, the different streams can be used to model
packets of different types of content, for example, emergency
messages, alerts, error messages, warnings, notices, etc.

We also assume that the updates are sent through a single
server (or transmitter) to a monitor. The service times of
packets from stream U1 are i.i.d according to fS1(t), and those
for stream U2 are i.i.d according to fS2(t). The difference in
service rates between the two streams accounts for the possible
difference in compression, packet length, etc., between the two
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Source 1

Source 2

Monitor

Fig. 2: Diagram representing the model with FCFS for the low
priority stream.

streams. In Section III, the service time of each packet is
considered to be exponentially distributed, with rate µ1 for
stream U1 and rate µ2 for stream U2. However, in Section IV
we keep the distributions general.

III. FCFS FOR THE LOW-PRIORITY STREAM

In this model, we constrain the transmitter so that all packets
from stream U1 should be sent. Hence, the server applies a
FCFS policy on the packets from stream U1 with a buffer to
save waiting updates. Whereas, we assume that the information
carried by stream U2 is more time sensitive (or has higher pri-
ority) hence we aim to minimize its average age. To this end,
the transmitter is permitted to perform packet management: In
this case, we assume the server applies a preemption policy
whenever a packet from U2 is generated. This means that if a
newly generated packet from stream U2 finds the system busy
(serving a packet from U1 or U2), the server preempts the
update currently in service and starts serving the new packet.
On the one hand, if the preempted packet belongs to U1, this
packet is placed back at the head of the U1-buffer so that it can
be served once the system is idle again. On the other hand,
if the preempted packet belongs to U2 then it is discarded.
However, if a newly generated U1-packet finds the system busy
serving a U2-packet, it is placed in the buffer and served when
the system becomes idle. This choice of policy for the age
sensitive stream is based on the conclusion reached in [14],
that for exponentially distributed packet transmission times,
the M/M/1/1 with preemption policy is the optimal policy
among causal policies. Fig. 2 gives a graphical representation
of this model.

These ideas are illustrated in part in Fig. 1 which also shows
the variation of the instantaneous age of stream U1. In this
plot, ti and Di refer to the generation and delivery times of
the ith packet of stream U1 while t′i and D′i are the start and
end times of the ith period during which the system is busy
serving packets from stream U2 only. Notice that for stream
U1 none of the generated packets is discarded and all packets
are received in the order of their generation.

A. System Stability and Stationary Distribution

The fact that we seek to receive all of stream U1 updates
and that stream U2 has a higher priority and preempts stream
U1 might lead to an unstable system. In order to derive
the necessary and sufficient condition for the stability of the
system, we study the Markov chain of the number of packets
in the system (in service and waiting) shown in Fig. 3. In
this chain, q0 is the idle state where the system is completely

q0 q1 q2 q3

q′1 q′2 q′3 q′4

λ1

λ2

µ1

λ1

λ2

µ1

λ1

λ2

µ1

λ2

λ1

µ2

λ1

µ2

λ1

µ2 µ2

Fig. 3: Markov chain governing the number of packets in the
system.

empty. States qi, i > 0, in the upper row refer to states where
the queue is serving a packet from stream U1, whereas states
q′i, i > 0, in the row below correspond to the queue serving a
packet from stream U2. In both cases, there are i − 1 stream
U1 updates waiting in the buffer.

The system leaves state q0 at rate λ1 to state q1 when a
packet from stream U1 is generated first and it leaves q0 at
rate λ2 to state q′1 when a packet from stream U2 is generated
first. However, when the system enters state qi, i > 0, three
exponential clocks start: (i) a clock with rate µ1, which
corresponds to the service time of the stream U1 packet being
served, (ii) a clock with rate λ1, which corresponds to the
generation time of stream U1 packets and (iii) a clock with
rate λ2, which corresponds to the generation time of stream
U2 packets. If the µ1-clock ticks first, the system goes to
state qi−1: This means that the current stream U1 packet was
delivered and the queue begins the service of the next one
in the buffer (if there is any). However, if the λ1-clock ticks
first, a new stream U1 update is generated and added to the
buffer, hence the system goes to state qi+1. Whereas, if the
λ2-clock ticks first, the system preempts the packet currently
in service and places it back at the head of the buffer and
starts the service of the newly generated stream U2 update.
Thus the system goes to state q′i+1. When the system enters
a state q′i, i > 0, two exponential clocks start: the clock with
rate λ1 and a clock with rate µ2, which corresponds to the
service time of a stream U2 packet. If the λ1-clock ticks first,
the newly generated stream U1 packet is placed in the buffer
and the stream U2 update is continued to be served. Hence
the system goes to state q′i+1. However, if the µ2-clock ticks
first, the stream U2 packet has finished service and the system
starts serving the first stream U1 packet in the buffer (if there
is any). Hence the system goes to state qi−1.

This next theorem gives the necessary and sufficient condi-
tion for the above system to be stable, as well as its stationary
distribution.

Theorem 1. The system described in Section III is stable, i.e.
the average number of packets in the queue is finite, if and
only if

µ1 > λ1

(
1 +

λ2

µ2

)
. (3)

In this case the Markov chain shown in Fig. 3 has a stationary
distribution Π = [π0, π1, . . . , πi, . . . , π

′
1, . . . , π

′
i, . . . ], where

πi denotes the stationary probability of state qi, i ≥ 0, and
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π′i denotes the stationary probability of state q′i, i > 0. This
stationary distribution is described by the following system of
equations,

π0 =
µ2

µ2 + λ2
− λ1

µ1
, (4)

[
πi
π′i

]
=
[
0 I2

]
Hi


λ
µ1
− µ2λ2

µ1(λ1+µ2)
λ2

λ1+µ2

1
0

π0, i ≥ 1 (5)

where λ = λ1 + λ2, H =

[
C D
I2 0

]
,

C =

[
1 + λ

µ1
− µ2λ2

µ1(µ2+λ1) − µ2λ1

µ1(µ2+λ1)
λ2

µ2+λ1

λ1

µ2+λ1

]
,D =

[
−λ1

µ1
0

0 0

]
.

I2 is the 2× 2 identity matrix and 0 is the 2× 2 zero matrix.

Corollary 1. If we define N(t) to be the number of stream
U1 packets in the system at time t, then its moment generating
function is φN(t)

φN(t)(s) = π0

(
µ1(λ1+λ2+µ2−λ1e

s)

µ1µ2+µ1λ1−es(λ2
1+λ1λ2+λ1µ1+λ1µ2)+λ2

1e
2s

)
,

(6)
where π0 is given by (4). Particularly, the expected value of
N(t) is

E (N(t)) =
λ1

(
2λ2µ2 + λ2µ1 + λ2

2 + µ2
2

)
(µ2 + λ2) (µ1µ2 − λ1 (µ2 + λ2))

. (7)

Proof. The distribution given by (4) and (5) satisfy the detailed
balance equations of the Markov chain shown in Fig. 3.
Moreover, (3) is the condition needed to have π0 > 0. As
for the expression for φN(t)(s), it is a consequence of (4)
and (5). The appendix in Section VII-A and Section VII-B
presents a full technical version of the proof for Theorem 1
and Corollary 1.

B. Interpretation of the stability condition

The condition in (3) can be interpreted in two equivalent
ways:

1) For an M/M/1 system with one source and an update rate
λ1 and service rate µ1, we need µ1 > λ1 for the system
to be stable. However, in the case of stream U1 we need
to compensate for the amount of time the second stream
occupies the system. This explains the additional λ1λ2

µ2

term in (3) compared to an M/M/1 system.
2) Define the map f from the state-space of the chain as

f(s) = 0 if s is in {q0, q1, . . . } and f(s) = 1 if s ∈
{q′1, q′2, . . . }. For each s and s′ for which f(s) = 0 and
f(s′) = 1 the transition rate from s to s′ is the same
(λ2) and similarly for s and s′ with f(s) = 1, f(s′) = 0,
(µ2). Consequently F (t) = f(s(t)), with s(t) being the
state at time t, is Markov (which would not be the case
for an arbitrary f ), and it is easily seen that F (t) = 0 a
fraction φ0 = µ2/(λ2 +µ2) amount of time, F (t) = 1 a
fraction φ1 = λ2/(λ2 +µ2) amount of time. This means
that φ0 is the fraction of time spent by the system serving

0

1

λ2 µ2

Fig. 4: Markov chain representing whether the system is
serving U2 packets (state 1) or not (state 0).

U1 packets or being idle, and φ1 is the fraction of time
the system spends serving U2 packets. The Markov chain
representing the process F (t) is given by Fig. 4. Thus,
while the Markov chain in Fig. 3 moves right at rate λ1,
it moves left at a rate µ1φ0. The system is stable only if
the rate of moving left is larger than the rate of moving
right; which gives the condition (3).

C. Ages of Streams U1 and U2

1) Preliminaries: In this section, unless stated otherwise,
all random variables correspond to stream U1. We also follow
the convention where a random variable U with no subscript
corresponds to the steady-state version of Uj that refers to the
random variable relative to the jth received packet from stream
U1. To differentiate between streams, we will use superscripts,
which means that U (i) corresponds to the steady-state variable
U relative to stream Ui , i = 1, 2.

In addition to this, we adopt the following notation:
• X(i) is the interarrival time between two consecutive gen-

erated updates from stream Ui, so fX(i)(x) = λie
−λix,

i = 1, 2
• S(i) is the service time random variable of stream Ui

updates, so fS(i)(t) = µie
−µit, i = 1, 2,

• Tj is the system time, or the total time spent by the jth

stream-U1 update in the queue (sum of its waiting time
and its service time).

In our model, we assume the service time of the updates from
the different streams to be independent of the interarrival time
between consecutive packets (belonging to the same stream or
not).

2) Analysis of the System: Given the aforementioned de-
scription of the model, we can define for each U1 packet j
a “virtual” service time Zj that could be different from its
“physical” service time S(1)

j . We define the “virtual” service
time Zj as follows:

Zj = Dj −max(Dj−1, tj), (8)

where Dj is the delivery time of the jth packet and tj is its
generation time. Fig. 1 shows the “virtual” service time for
packets 3 and 4.

For stream U1, given that the average age calculations seem
to be intractable, we compute its average peak age and give
a lower bound on its average age. To this end, we first study
the steady state “virtual” service time Z.
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We define the event

Ψj = {packet j finds the system in state q′1}

and its complement Ψj . Then, we need the following lemmas.

Lemma 1. Let Yj be the “virtual” service time of packet j
given that this packet does not find the system in state q′1, i.e.
P (Yj > t) = P

(
Zj > t|Ψj

)
. Then, in steady state,

φY (s) = E
(
esY
)

=
µ1(µ2 − s)

s2 − s(µ2 + µ1 + λ2) + µ1µ2
. (9)

Similarly, let Y ′j be the “virtual” service time of packet j given
that this packet finds the system in state q′1, i.e. P

(
Y ′j > t

)
=

P (Zj > t|Ψj). Then, in steady state,

φY ′(s) = E
(
esY

′
)

=
µ1µ2

s2 − s(µ2 + µ1 + λ2) + µ1µ2
. (10)

Proof. This proof is based on the detour flow graph (or signal
flow graph) method. An overview of this method as well as
the complete proof are presented in Section VII-C.

3) Average Peak-Age of Stream U1: It is worth noting that
the system under consideration cannot be seen as an M/G/1
queue with service time distributed as Z, because the “virtual”
service times of different packets are correlated. Indeed, if we
know that the “virtual” service time of packet j, Zj , is big,
then with very high probability the (j + 1)th packet will be
generated during the service of the jth packet. Hence, with
high probability, Zj+1 will be distributed as Y . Whereas, if
Zj is small, then there is a non-negligible probability with
which the (j+1)th packet will find the system serving stream
U2. Hence, Zj+1 will be distributed as Y ′.

Theorem 2. The average peak age of stream U1 is given by

∆peak,1 =
1

λ1
+

2λ2µ2 + λ2µ1 + λ2
2 + µ2

2

(µ2 + λ2) (µ1µ2 − λ1 (µ2 + λ2))
. (11)

Proof. As we can deduce from Fig. 1, the jth peak Kj =

X
(1)
j + Tj where X(1)

j is the jth interarrival time for stream
U1 and Tj is the system time of the jth stream U1 update. At
steady state, we get ∆peak,1 = E (K) = E

(
X(1)

)
+ E (T ).

From Little’s law we know that E (T ) = E (N(t))E
(
X(1)

)
,

with the expected number of stream U1 packets E (N(t)) given
by (7) and E

(
X(1)

)
= 1/λ1.

4) Lower Bound on the Average Age of Stream U1: We now
compute a lower bound of the average age.

Consider a fictitious system where if a stream U1 arrival
finds the system in state q′1, then the stream U2 packet that
is being served is discarded (and the stream U1 packet enters
service immediately). The instantaneous age process of this
fictitious system is pointwise less than the instantaneous age
of the true system, consequently its average age lower bounds
the true average age. Note that the fictitious system from the
point of view of the stream U1 is M/G/1, with service time
distributed like Y in (9).

Lemma 2. Assume an M/G/1 queue with interarrival time
X(1) exponentially distributed with rate λ1 and service time Y
whose moment generating function is given by (9). The service

time and the interarrival time are assumed to be independent.
Then the distribution of the system time T is

fT (t) = C1e
−α1t(µ2 − α1)− C1e

−α2t(µ2 − α2), t ≥ 0, (12)

where α1, α2 > 0 are the roots of the quadratic expression

s2 − s(µ1 + µ2 + λ2 − λ1) + µ1µ2 − λ1µ2 − λ1λ2,

C1 =
(1− ρ)µ1

α2 − α1
,

and ρ = λ1E (Y ) = λ1(µ2+λ2)
µ1µ2

.

Proof. See Appendix VII-D.

From [2], we know that the average age of the M/G/1 queue
with interarrival time X(1) and service time Y is

∆LB = λ1

(
1

2
E
(
X

(1)
j

2)
+ E

(
TjX

(1)
j

))
, (13)

where for the jth packet we have Tj = (Tj−1−X(1)
j )+ +Yj ,

f(x) = (x)+ = x1{x≥0} and 1{.} is the indicator function.
So E

(
TjX

(1)
j

)
becomes

E
(
TjX

(1)
j

)
= E

(
X

(1)
j (Tj−1 −X(1)

j )+
)

+E (Yj)E
(
X

(1)
j

)
,

(14)
where the second term is due to the independence between Yj
and X(1)

j .

Proposition 1.

E
(
X

(1)
j (Tj−1 −X(1)

j )+
)

=
λ1µ2 + 2λ1λ2

µ2
1(µ1µ2 − λ1(µ2 + λ2))

+
λ2λ1

µ2

(
(µ2 + µ1 + λ2)2 − 2µ1µ2

µ2
1(µ2 + λ1)(µ1µ2 − λ1(µ2 + λ2))

)
+
λ2λ1

µ2

(
2µ2λ1(µ1 + λ2) + λ2(λ2

1 + µ2)

µ2
1(µ2 + λ1)2(µ1µ2 − λ1(µ2 + λ2))

)
. (15)

Proof. Given that Tj−1 and X(1)
j are independent then

E
(
X

(1)
j (Tj−1 −X(1)

j )+
)

=

∫ ∞
0

∫ ∞
x

x(t− x)fT (t)λ1e
−λ1xdtdx

Replacing fT (t) by its value in (12) and using the fact that

α1 + α2 = µ1 + µ2 + λ2 − λ1,

α1α2 = µ1µ2 − λ1µ2 − λ1λ2,

we get (15) after some computations.

Theorem 3.

∆LB =
1

λ1
+
µ2 + λ2

µ1µ2
+

λ2
1µ2 + 2λ2

1λ2

µ2
1(µ1µ2 − λ1(µ2 + λ2))

+
λ2λ

2
1

µ2

(
(µ2 + µ1 + λ2)2 − 2µ1µ2

µ2
1(µ2 + λ1)(µ1µ2 − λ1(µ2 + λ2))

)
+
λ2λ

2
1

µ2

(
2µ2λ1(µ1 + λ2) + λ2(λ2

1 + µ2)

µ2
1(µ2 + λ1)2(µ1µ2 − λ1(µ2 + λ2))

)
.

(16)
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Source 1

Source 2

Server Monitor

Fig. 5: Diagram representing the model with preemption for
the low priority stream.

This is also a lower bound on the true average age of stream
U1 packets.

Proof. Using (15), E (Yj) = E (Y ) = µ2+λ2

µ1µ2
and E

(
X

(1)
j

)
=

E
(
X(1)

)
= 1

λ1
, we can find a closed-form expression for

E
(
TjX

(1)
j

)
. Replacing this expression in (13) and using the

fact that E
(
X

(1)
j

2)
= 2

λ2
1

, we obtain a closed-form expression
of the average age ∆LB of an M/G/1 queue with interarrival
time X(1) and service time Y .

5) Average Age of Stream U2: By design, stream U2 is not
interfered at all by stream U1 hence behaves like a traditional
M/M/1/1 with preemption queue with generation rate λ2 and
service rate µ2. The average age of this stream was computed
in [3] to be

∆U2 =
1

µ2
+

1

λ2
. (17)

IV. M/G/1/1 WITH PREEMPTION FOR THE LOW-PRIORITY
STREAM

Fig. 5 presents an illustration of the model. In this model,
we assume we have no memory, hence packets from stream
U1 preempt each other. However, if an arriving U1 packet finds
the system busy serving a U2 packet, the server discards the
stream U1 packet because stream U2 packets are given higher
priority. Furthermore, the server applies a preemption policy
whenever a packet from U2 is generated. This means that if a
newly generated packet from stream U2 finds the system busy
(serving a packet from U1 or U2), the server preempts the
update currently in service and starts serving the new packet.
Moreover, if the preempted packet belongs to U1 or U2, this
packet is discarded.

These ideas are illustrated in part in Fig. 6, which also shows
the variation of the instantaneous age of stream U1. In this
plot, tj refers to the generation time of the jth packet, and
Di corresponds to the delivery time of the ith successfully
received packet of stream U1. As in this case not all the packets
generated by source U1 are received, we distinguish between
generated packets and successful packets. Moreover, t′i and
D′i are the start and end times of the ith period during which
the system is busy serving packets only from stream U2.

A. Ages of Streams U1 and U2

1) Preliminaries: In this section also, unless stated oth-
erwise, all random variables correspond to stream U1. We
also follow the convention where a random variable U with
no subscript corresponds to the steady-state version of Uj

t0 t1 D1 t2 t′1 t3t4D′1 t5D2 t′2D
′
2 t
′
3 D
′
3
t6 t′4t7 D

′
4
t8 t9D3

∆(t)

∆0

K1

Q1

K2

Q2

K3

Q3

System busy serving stream U2

T3T2

Y2
Y1

X5 X9

Fig. 6: Variation of the instantaneous age of stream U1.

that refers to the random variable relative to the jth received
packet from stream U1. To differentiate between streams, we
use superscripts, so that U (i) corresponds to the steady-state
variable U relative to stream Ui , i = 1, 2.

In contrast to Section III, here we follow a slightly different
notation:
• X(i) is the interarrival time between two consecutive gen-

erated updates from stream Ui, so fX(i)(x) = λie
−λix,

i = 1, 2,
• S(i) is the service time random variable of stream Ui

updates with p.d.f fS(i)(t), i = 1, 2,
• Tj is the system time, or the time spent by the jth

successfully received stream U1 update in the queue,
• Yj to be the interdeparture time between the jth and j+

1th successfully received stream U1 updates.
• R(τ) = max {n : Dn ≤ τ} is the number of successfully

received updates from stream 1 in the interval [0, τ ].
Given that in this model there is no waiting in the queue, the
system time of a received packet is equal to its service time.
In our model, we assume the service time of the updates from
the different streams to be independent of the interarrival time
between consecutive packets (regardless if they belong to the
same stream).

Finally, two important quantities that we will use extensively
are
• Pλ = E

(
e−λS

(1)
)

=
∫
fS(1)(t)e−λtdt,

• Lλ2
= E

(
e−λ2S

(2)
)

=
∫
fS(2)(t)e−λ2tdt.

These are the Laplace transform of fS(1)(t) and fS(2)(t)
evaluated at λ = λ1 + λ2 and λ2, respectively.

2) Average Age and Average Peak age of Stream U1:

Lemma 3. For the priority preemption system described
above, the moment generating function of the system time T
corresponding to stream U1 is given by

φT (s) =
Pλ−s
Pλ

. (18)

Proof. All variables in this proof corresponds to stream U1.
The system time Tj of the jth successfully received packet
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corresponds to the service time of the jth received packet
given that service was completed before any new arrival
(because any new packet from any stream will preempt
the current update being served). Therefore, in steady state,
P (T > t) = P

(
S(1) > t|S(1) < min

(
X(1), X(2)

))
. Hence,

for L = min
(
X(1), X(2)

)
,

fT (t) = lim
ε→0

P (T ∈ [t, t+ ε])

ε

= lim
ε→0

P
(
S(1) ∈ [t, t+ ε]|S(1) < L

)
ε

= lim
ε→0

P(S(1)∈[t,t+ε])P(S(1)<L|S(1)∈[t,t+ε])
εP(S(1)<L)

=
fS(1)(t)P (L > t)

P
(
S(1) < L

) =
fS(1)(t)e−λt

P
(
S(1) < L

) ,
where the last equality is due to the fact that L is exponentially
distributed with rate λ = λ1 + λ2. Thus,

φT (s) = E
(
esT
)

=

∫ ∞
0

fS(1)(t)

P
(
S(1) < L

)e−(λ−s)tdt

=
Pλ−s

P
(
S(1) < L

) .
Finally,

P
(
S(1) < L

)
=

∫ ∞
0

fS(1)(t)P (L > t) dt

=

∫ ∞
0

fS(1)(t)e−λtdt = Pλ.

Lemma 4. The moment generating function of the interdepar-
ture time of stream U1, Y , is

φY (s) =
λ1Pλ−s (λ2Lλ2−s − s)

λ1Pλ−s (λ2Lλ2−s − s)− s(λ2 − s)
. (19)

Proof. We use again the detour flow graph method. The
detailed proof is presented in Section VII-E.

Before presenting the main theorem of this section, we need
the following lemma that proves that the studied system is
ergodic.

Lemma 5. Consider stream U1. For any j ≥ 1, the random
variables Tj and Yj relative to the jth successful packet are
independent. Moreover the process (Yj)j≥1 is i.i.d, with its
distribution given by Lemma 4, and the process R(τ) =
sup{n ∈ N;Dn ≤ τ} is a renewal process.

Proof. Let Lj = min
(
X

(1)
j , X(2)

)
. Since the interarrival

times for both streams are exponential and independent, Lj is
also exponential with rate λ = λ1 + λ2. Except Lj , all other
variables are relative to stream U1. The jth successful packet
leaves the queue empty hence Yj = X̂j+Zj . X̂j = Lj−Tj is
the remaining time between the departure of the stream-U1 j

th

successful packet, and the generation time of the next packet
to be transmitted (it can belong to stream U1 or stream U2).
Zj is the time for a new stream-U1 packet to be successfully
delivered. Zj does not overlap with Tj and thus is independent
from it. As for X̂j , we also obtain that it is independent of

Tj . Intuitively, since Lj is exponentially distributed with rate
λ and thus memoryless, then the distribution of the remainder
X̂j is independent of the value of Tj . Indeed, X̂j is also
exponentially distributed with rate λ. A more formal proof
can be found in Appendix VII-F.

Furthermore, since Yj−1 = X̂j−1+Zj−1, X̂j is independent
from Tj and the interarrival process is i.i.d and independent
from the i.i.d service process, then X̂j and Zj are independent
of Yj−1. This implies that for any j ≥ 1, Yj−1 and Yj are
independent. Moreover, it is clear that the Zj’s have the same
distribution. Since the X̂j’s are exponential with rate λ then
the (Yj)j≥1 is an i.i.d process. Given that Yj is the interval
of time between the receptions of two consecutive successful
stream-U1 packets, then the number of successfully received
packets in the interval [0, τ ], R(τ), is a renewal process.

Now we can state the main theorem of this section.

Theorem 4. Assume an M/G/1/1 queue with preemption and a
sender consisting of two sources generating packets according
to two independent Poisson processes with rates λi, i = 1, 2,
such that λ = λ1 +λ2. Moreover, packets belonging to stream
i are served according to S(i). If stream U2 is given higher
priority over stream U1, then

1) the average age of stream U1 is given by

∆1 =
1

λ1PλLλ2

+
1− Lλ2

− λ2E
(
S(2)e−λ2S

(2)
)

λ2Lλ2

(20)
2) and the average peak age of stream U1 is given by

∆peak,1 =
1

λ1PλLλ2

+
E
(
S(1)e−λS

(1)
)

Pλ
. (21)

Proof. By Lemma 5, R(τ) forms a renewal process. By
[15], limτ→∞

R(τ)−1
τ = 1

E(Y ) , where Y is the steady-state
interdeparture random variable. Introducing the quantity Cj =∫Dj+1

Dj
∆(t)dt to be the reward function over the renewal

period Yj , we obtain using renewal reward theory [15], [16]
that

∆1 = lim
τ→∞

1

τ

∫ τ

0

∆(t)dt =
E(Cj)

E(Yj)
=

E(Qj)

E(Yj)
=

E(Q)

E(Y )
<∞,

where Q is the steady-state counterpart of Qj , and the last
equality stems from the fact that the average age for Stream 1
can also be also expressed as the sum of the geometric areas
Qj under the instantaneous age curve of Fig. 6.

It was shown in [4], [17], [18] that, using Fig. 6,

E (Q) =
1

2
E
(
Y 2
)

+ E (TY ) .

Since, by Lemma 5, the variables Tj and Yj are independent
for any j ≥ 1, then

E (Q) =
1

2
E
(
Y 2
)

+ E (T )E (Y ) .

Therefore,

∆1 = E (T ) +
E
(
Y 2
)

2E (Y )
(22)
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Moreover, from Fig. 6 we see that the peak age at the instant
before receiving the jth packet is given by

Kj = Tj−1 + Yj−1.

Hence, at steady state we get

∆peak,1 = E (K) = E (T ) + E (Y ) . (23)

Using Lemma 3, we obtain E (T ) = P−1
λ E

(
S(1)e−λS

(1)
)

.

Using Lemma 4, we get that E (Y ) = (λ1PλLλ2)
−1 and

E
(
Y 2
)

2E (Y )
= − 1

λ2
−

E
(
S(1)e−λS

(1)
)

Pλ
−

E
(
S(2)e−λ2S

(2)
)

Lλ2

+
1

λ1PλLλ2

+
1

λ2Lλ2

.

Using these expressions in (22) and (23), we achieve our result
for stream U1.

3) Average Age of Stream U2: By design, stream U2 is
not at all interfered by stream U1 hence behaves like a
traditional M/G/1/1 with preemption queue with generation
rate λ2 and service time S(2). The average age of this stream
was computed in [10], [19] to be

∆2 =
1

λ2Lλ2

. (24)

V. DISCUSSION ON THE AGE OF THE LOW PRIORITY
STREAM

Having analyzed the FCFS and the M/G/1/1/ with preemp-
tion transmission schemes for the low priority streams, we can
now compare their performances.

A. Relative to the FCFS policy

Fig. 7a shows the simulated average age, the average peak-
age (∆peak,1) and the lower bound on the average age (∆LB),
as computed in the previous section for stream U1, and the
average age (∆U2 ) of stream U2. In this plot, we fix µ1 = 10,
µ2 = 5, λ1 = 2 and vary λ2. As we can see, for stream U1

the average age, the lower bound, and the average peak-age
grow without bounds when λ2 gets close to µ1µ2

λ1
− µ2. This

observation is in line with our result in Theorem 1 and the
stability condition (3). In this simulation, we also notice that
the average peak age and the lower bound appear to be good
bounds on the average age, especially for small λ2 and for
values of λ2 ∼ 0 close to the limit µ1µ2

λ1
− µ2.

It is easy to see via a coupling argument that if we increase
λ2, the age process ∆U1(t) of the U1 stream will stochastically
increase. We see from the plots that the lower bound on
∆U1 and that its average peak-age exhibit the same behavior.
However, the average age of stream U2 is decreasing in λ2

(from (17)). Consequently, minimizing ∆U2 and minimizing
∆U1 are conflicting goals.

We have seen that the average age of stream U2 is not
affected by the presence of the other stream. However, Fig. 7a
shows the effect of stream U2 on the average age of stream
U1 (∆1). For this, we plot the average age (∆ref ) of an
M/M/1 queue with generation rate λ1 = 2 and service rate

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
2

100

101
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e 

(lo
g 

sc
al

e)

Average Age lower bound for stream 1
Average Age for stream 2
Average Age for M/M/1 queue with service rate 1
Simulated Average Age when using FCFS
Average Peak Age when using FCFS

(a) µ1 = 10, µ2 = 5, λ1 = 2 and λ2 < µ1µ2
λ1

− µ2 = 20.

0 2 4 6 8
2
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e)

Average Age lower bound for stream 1
Average Age for stream 2
Average Age for M/M/1 queue with service rate 1
Simulated Average Age when using FCFS
Average Peak Age when using FCFS

(b) µ1 = 6, µ2 = 18, λ1 = 4 and λ2 < 9.

Fig. 7: Plot of the average age for stream U2 and average peak
age and lower bound on the average age for stream U1.

µ1 = 10 (given in [2]). We observe an expected behavior:
for very low values of λ2, the two average ages and the
lower bound ∆LB are close (they are all equal at λ2 = 0).
However, as λ2 increases the presence of stream U2 quickly
leads to an increase in ∆1. In fact, for λ2 = 5, ∆1 is already
50% higher than ∆ref . This shows that the presence of the
priority stream U2 takes a heavy toll on the stream U1 age.
Another observation is that the average age curve of stream
U2 crosses the average age of stream U1 at a value of λ2,
denoted λ∗2 = 1.9. This means that for λ2 ≤ λ∗2, stream U2

has an average age higher than stream U1. These observations
show that not all values of λ2 are suitable for our system. A
small λ2 will not ensure for stream U2 the priority it needs,
whereas a large λ2 will make the average age of stream U1

large and the system unstable.
Fig. 7b plots the same quantities as Fig. 7a but under

different settings: in this case, µ1 = 6, µ2 = 18, λ1 = 4
and λ2 < 9. In this particular scenario, we notice that the
lower bound is a tight bound on the simulated average age for
all values of λ2, and it is tighter than the average peak age.

B. Relative to the M/G/1/1 with preemption policy

A close observation of Equations (20) and (21) leads to the
following remarks:
• If the service time for stream U2 is 0, ∆1 = 1

λ1Pλ
≥

1
λ1Pλ1

, where ∆ = 1
λ1Pλ1

is the value of the average of
stream U1 if stream U2 is not present. This result is due to
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the fact that whenever a stream U2 packet is generated, it
immediately preempts the stream U1 packet being served
hence increases the instantaneous age of the latter stream.

• By using L’Hopital’s rule, we can show that

lim
λ2→0

∆1 = ∆ =
1

λ1Pλ1

as it is expected. The average peak-age also converges to
its value when no stream U2 exists.

• Special case: assume S(1) ∼ Exp(µ1) and S(2) ∼
Exp(µ2). Then

∆1 = (µ1+λ1)
λ1µ1

(
µ2+λ2

µ2

)
+ λ2

µ2

(
µ2+λ2

λ1µ1
+ 1

µ2+λ2

)
(25)

and

∆peak,1 =
1

µ1 + λ1 + λ2
+

(µ1 + λ1 + λ2)(µ2 + λ2)

λ1µ1µ2
.

(26)
Equation (25) coincides exactly to the result obtained by
Kaul et al. in [12] for the stream with lowest priority and
when we have two sources.
Denoting ∆Norm = µ1+λ1

µ1λ1
to be the average age of

stream U1 when stream U2 does not exist (see [17]), we
can compute the additional age the presence of stream
U2 costs to stream U1:

∆diff = ∆1 −∆Norm

= λ2

λ1µ1
+ λ2

λ1µ2
+ λ2

µ1µ2
+

λ2
2

λ1µ1µ2
+ λ2

µ2(µ2+λ2) .

By letting µ2 → ∞ we obtain ∆diff → λ2

λ1µ1
> 0, and

by taking λ2 = 0 we obtain ∆diff = 0 as predicted by
the previous two remarks.

C. Comparing the two policies

Using (11), (25) and (26), we compare the performance of
the preemption policy on stream U1 with that of the FCFS
scheme from an age point of view when the service times
corresponding to both sources are exponential. Fig. 8a plots
the average ages and average peak-ages relative to stream
U1 for the preemption, as well as for the FCFS schemes.
In both cases, we assume stream U1 packets are generated
according to a Poisson process of rate λ1 = 2 and served
according to an exponential service time with rate µ1 = 10.
As for stream U2 updates, they are generated according to
a Poisson process with rate λ2 and served according to an
exponential service time with rate µ2 = 5. We observe from
Fig. 8a that the preemption scheme performs worse than
the FCFS except when λ2 is close to the FCFS stability
condition. This observation comes as a surprise because we
would think that the constraint of delivering all generated
packets imposed by a FCFS system would pull the age up,
compared to the more flexible preemptive scheme. However,
we can explain this result in the following way: When using
the preemptive scheme and not storing any updates, the system
incurs a substantial idle time (from the source U1 point of
view) during which it waits for a new stream-U1 update to
be generated. In fact, this is a direct consequence of the
first remark in Section V-B. Moreover, Bedewy et al. in [14]
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(a) µ1 = 10, µ2 = 5, λ1 = 2.
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(b) µ1 = 6, µ2 = 5, λ1 = 2.
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(c) µ1 = 10, µ2 = 5, λ1 = 4.

Fig. 8: Comparison between the average peak ages of the low
priority source U1 when using the FCFS and the preemption
schemes and assuming exponential service times.

show that for a single source and exponential service time,
the optimal policy to adopt is the preemptive scheme. Fig. 8a
proves that the introduction of an additional source with higher
priority has a significant impact on the performances of the
different transmission schemes. For instance, the preemption
scheme is not optimal anymore even for exponential service
times. However, we can notice that for λ2 very close to 0,
the M/G/1/1 scheme has a lower average age than the FCFS
scheme, which is to be expected.
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Fig. 8b and Fig. 8c also plot the average age and average
peak-age relative to stream U1 for both schemes (preemption
and FCFS). Compared to Fig. 8a, in Fig. 8b we keep λ1 = 2
and µ2 = 5 but decrease the service rate of stream U1 to
µ1 = 6. Whereas for Fig. 8c, we keep µ1 = 10 and µ2 = 5 but
increase the generation rate of stream-U1 packets to λ1 = 4. In
Fig. 8b, we notice that by decreasing the service rate of stream
U1, the performances of the FCFS scheme and the M/G/1/1
scheme get closer compared to Fig. 8a. We can explain this
behavior in the following way: the performances exhibited by
the two transmission schemes in Fig. 8b are worse than their
respective counterparts in Fig. 8a because every transmitted
packet needs more time on average to be serviced. However,
the FCFS scheme is more affected by this degradation in
service than the M/G/1/1 scheme due to the compound effect
of a slower service time on the waiting time of the packets in
the queue. This means that the packets waiting in the queue
will sustain a higher waiting time on average which will affect
the age.

In Fig. 8c, we notice that by increasing the generation rate of
stream U1, the performances of the M/G/1/1 scheme becomes
better than that of the FCFS scheme for λ2 ≤ 1 and λ2 ≥ 2.5,
while the two performances are very close in the interval 1 ≤
λ2 ≤ 2.5. This shows that λ1 increases, preemption performs
better than FCFS because of two simultaneous effects:

1) The idle time incurred by the M/G/1/1/ system waiting
for a new packet is reduced. Hence the impact of the
presence of stream U2, as explained in the first remark
of Section V-B, is decreased.

2) As λ1 increases, the queue for the FCFS system becomes
more congested. This leads to an increase of the average
waiting time sustained by the packets.

These two effects explain why we notice a paradigm shift and
why in this case it is better to adopt an M/G/1/1 scheme.

To sum up, Fig. 8 shows that, for Poisson generation process
and exponential service time, the M/G/1/1 scheme is not
optimal anymore and that the FCFS scheme might perform
better depending on the values of λ1, λ2, µ1 and µ2.

VI. CONCLUSION

In this paper, we have studied the effect of implementing
content-dependent policies on the average age of the packets.
We have considered a sender that generates two independent
Poisson streams with one stream having higher priority than
the other stream. The “high priority” stream is sent using a
preemption policy, whereas at first the “regular” stream is
transmitted using a FCFS policy and then it is transmitted
using preemption. We derived the stability condition for the
former system, as well as closed-form expressions for the
average peak-age and a lower bound on the average age of
the “regular” stream. For the latter system we have given
exact expressions for the average age and average peak-age of
the “regular” stream and we have shown through simulations
that, even if the service times relative to both streams are
exponential, preemption is not the optimal strategy to adopt for
the “regular” stream. In fact, for some fixed service rates and
“regular” stream generation rate, the FCFS strategy performs

better for a large interval of “high priority”- stream generation
rate.
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VII. APPENDIX

A. Proof of Theorem 1

Theorem. The system described in Section III is stable, i.e.
the average number of packets in the queue is finite, if and
only if

µ1 > λ1

(
1 +

λ2

µ2

)
. (27)

In this case the Markov chain shown in Fig. 3 has a stationary
distribution Π = [π0, π1, . . . , πi, . . . , π

′
1, . . . , π

′
i, . . . ], where

πi denotes the stationary probability of state qi, i ≥ 0, and
π′i denotes the stationary probability of state q′i, i > 0. This
stationary distribution is described by the following system of
equations,

π0 =
µ2

µ2 + λ2
− λ1

µ1
, (28)

[
πi
π′i

]
=
[
0 I2

]
Hi


λ
µ1
− µ2λ2

µ1(λ1+µ2)
λ2

λ1+µ2

1
0

π0, i ≥ 1 (29)

where λ = λ1 + λ2, H =

[
C D
I2 0

]
,

C =

[
1 + λ

µ1
− µ2λ2

µ1(µ2+λ1) − µ2λ1

µ1(µ2+λ1)
λ2

µ2+λ1

λ1

µ2+λ1

]
,D =

[
−λ1

µ1
0

0 0

]
.

I2 is the 2× 2 identity matrix and 0 is the 2× 2 zero matrix.

Proof. Assume that

µ1 > λ1

(
1 +

λ2

µ2

)
. (30)

The detailed balance equations of the Markov chain given by
Fig. 3 are given by:

λπ0 = µ1π1 + µ2π
′
1,

(λ1 + µ2)π′1 = λ2π0,

for i ≥ 1,

πi+1 =

(
1 +

λ

µ1
− µ2λ2

µ1(µ2 + λ1)

)
πi −

µ2λ1

µ1(µ2 + λ1)
π′i

− λ1

µ1
πi−1,

π′i+1 =
λ2

µ2 + λ1
πi +

λ1

µ2 + λ1
π′i,

(31)
where λ = λ1 + λ2. For easier notation we denote

a1 = 1 +
λ

µ1
− µ2λ2

µ1(µ2 + λ1)
,

a2 =
µ2λ1

µ1(µ2 + λ1)
,

a3 =
λ1

µ1
,

a4 =
λ2

µ2 + λ1
,

a5 =
λ1

µ2 + λ1
.

Rewriting (31) in matrix form and using the above notation,
we get 

πi+1

π′i+1

πi
π′i

 =


a1 −a2 −a3 0
a4 a5 0 0
1 0 0 0
0 1 0 0



πi
π′i
πi−1

π′i−1

 .

Let Ai =


πi+1

π′i+1

πi
π′i

, C =

[
a1 −a2

a4 a5

]
, D =

[
−a3 0

0 0

]
and

H =

[
C D
I2 0

]
. Then

Ai = HAi−1.

Thus
Ai = HiA0, i ≥ 0 (32)

where A0 =


π1

π′1
π0

0

 =


λ
µ1
− µ2λ2

µ1(λ1+µ2)
λ2

λ1+µ2

1
0

π0, using the first

two equations of system (31).
(32) shows that in order to find the stability criterion of

the system in (31) we first need to study the properties of H.
For that we compute its eigenvalues l0, l1, l2, l3 by solving the
characteristic equation |lI4 −H| = 0. This leads to

|lI4 −H| = l(l − 1)(l2 − l(a1 + a5 − 1) + a3a5). (33)

H has two obvious eigenvalues l0 = 0 and l3 = 1. To find
the last two eigenvalues, let’s find the root of the quadratic
polynomial

p(l) = l2 − l(a1 + a5 − 1) + a3a5. (34)

It can be shown through simple algebra that the discriminant of
the above polynomial is strictly positive. Hence the remaining
eigenvalues l1 and l2 are real and distinct. Let’s assume that
l1 < l2. This means that the matrix H is diagonalizable and
can be written as

H = BΛB−1,

where the columns of B are the eigenvectors of H and form
a basis of R4. We denote by e0, e1, e2, e3 the eigenvectors
corresponding to l0, l1, l2, l3.

So we can write A0 as

A0 = (α0e0 + α1e1 + α2e2 + α3e3)π0, (35)

with α0, α1, α2, α3 ∈ R. Hence for i > 0,

Ai = HiA0

= (α0H
ie0 + α1H

ie1 + α2H
ie2 + α3H

ie3)π0

= (α0l
i
0e0 + α1l

i
1e1 + α2l

i
2e2 + α3l

i
3e3)π0

= (α1l
i
1e1 + α2l

i
2e2 + α3e3)π0, (36)

since l0 = 0 and l3 = 1. Equation (36) shows that three
conditions need to be satisfied for the system to be stable and
a steady-state distribution to exist:
• Condition 1: |l1| < 1 and |l2| < 1.
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• Condition 2: α3 = 0.
• Condition 3: α1l

i
1e1 + α2l

i
2e2 has positive components

for all i > 0.
Condition 1 and Condition 2 ensure that

lim
i→∞

πi = lim
i→∞

π′i = 0

and thus the sum of all probabilities, π0 +
∑∞
i=1(πi + π′i),

does not diverge. Condition 3 makes sure that the components
of Ai are positive probabilities. We will show that (30) is
sufficient for the above three conditions to hold.

Given that l1 and l2 are the roots of (34) then the following
holds

l1l2 = a3a5

l1 + l2 = a1 + a5 − 1. (37)

However, l1l2 = a3a5 =
λ2
1

µ1(µ2+λ1) ≥ 0. This means that
either both l1 and l2 are positive or they are both negative.
Using (37) again, we notice that

l1 + l2 = a1 + a5 − 1 =
λ1µ2 + λ2

1 + λ1λ2 + λ1µ1

µ1(µ2 + λ1)
≥ 0.

This shows that both l1 and l2 are strictly positive (since 0 is
not a root of p(l)). So to prove that Condition 1 is satisfied we
need to prove that l1 < l2 < 1. This is equivalent to show that
(34) evaluated at 1 is strictly positive and that l1l2 < 1 since
p(l) is a convex quadratic function in l > 0. Using simple
algebra it can be shown that

p(1) = 1− (a1 +a5−1) +a3a5 =
µ1µ2 − λ1(µ2 + λ2)

µ1(µ2 + λ1)
> 0,

where the last inequality is due to (30). Moreover, (30) tells
us that µ1 should be strictly bigger that λ1. Thus we get that

l1l2 =
λ1

µ1

λ1

µ2 + λ1
< 1.

This shows that 0 < l1 < l2 < 1 and that Condition 1 is
satisfied.

To prove Condition 2 we start by computing the eigenvec-
tors of H. For l0 = 0, we solve the system given by He0 = 0.
If e0 =

[
u1 u2 u3 1

]T
then

a1 −a2 −a3 0
a4 a5 0 0
1 0 0 0
0 1 0 0



u1

u2

u3

1

 =


0
0
0
0

 .
This system leads to e0 =

[
0 0 0 1

]T
. Similarly, for j =

1, 2, 3, if ej =
[
u1 u2 u3 1

]T
then solving the system

a1 −a2 −a3 0
a4 a5 0 0
1 0 0 0
0 1 0 0



u1

u2

u3

1

 = lj


u1

u2

u3

1


leads to ej =

[
lj(lj − a5) lja4 lj − a5 a4

]T
.

We know that H = BΛB−1. If

Λ =


1 0 0 0
0 l2 0 0
0 0 l1 0
0 0 0 0

 ,

then

B =


1− a5 l2(l2 − a5) l1(l1 − a5) 0
a4 l2a4 l1a4 0

1− a5 l2 − a5 l1 − a5 0
a4 a4 a4 1

 .
Note that the determinant of B, |B|, is non-zero when we
assume (30). Indeed,

|B| = a4a5(l2 − l1)(−2 + a5 − a3a5 + a1) < 0

since l2 > l1 and −2+a5−a3a5 +a1 = −p(1) < 0 as shown
before. In order to compute α3, we rewrite (35) as follows

A0 =
[
e3 e2 e1 e0

] 
α3

α2

α1

α0

π0 = B


α3

α2

α1

α0

π0.

But we also know that

A0 =


λ
µ1
− µ2λ2

µ1(λ1+µ2)
λ2

λ1+µ2

1
0

π0 =


a1 − 1
a4

1
0

π0.

Thus

B


α3

α2

α1

α0

 =


a1 − 1
a4

1
0

 . (38)

Solving the system in (38) with respect to α3, α2, α1 and α0

we get that 
α3

α2

α1

α0

 =


0
1

l2−l1−1
l2−l1

0

 .
Thus α3 = 0 and Condition 2 is proved. Note that we didn’t
need any assumptions to prove this condition.

Given the above results, we can now rewrite the system in
(36) as 

Ai = (α2l
i
2e2 + α1l

i
1e1)π0, i > 0

A0 = (α2e2 + α1e1)π0 =


a1 − 1
a4

1
0

π0.
(39)

Using (39) we can prove Condition 3. In fact, for any i > 0,

α2l
i
2e2 + α1l

i
1e1

(a)
= α2

(
li2e2 − li1e1

)
(b)
� α2l

i
1(e2 − e1)

(c)
= li1


a1 − 1
a4

1
0


(d)
� 0,

where x � y for some vectors x and y means that the
components of x− y are strictly positive and
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(a) is because α2 = −α1,
(b) is because 0 < l1 < l2,
(c) is obtained from the second equality in (39),
(d) follows since a1 − 1 > 0 and a4 > 0.

Up till now we have shown that if µ1 > λ1

(
1 + λ2

µ2

)
,

the system described in Section II is stable and a steady-state
distribution exists given by (39). The final point to prove in
Theorem 1 is the expression of π0. For that we solve for π0

the following equation

π0 +

∞∑
i=1

πi + π′i = π0 +
[
0 0 1 1

] ∞∑
i=1

Ai = 1.

Using the first equation of (39) and replacing α1 and α2 by
their expressions in function of l1 and l2, using the fact that
l1 + l2 and l1l2 are given by (37) and finally replacing a1, a2,
a3, a4 and a5 by their expressions in function of λ1, λ2, µ1,
µ2 we get

π0 =
µ2

µ2 + λ2
− λ1

µ1
.

B. Proof of Corollary 1

Corollary. If we define N(t) to be the number of stream U1

packets in the system at time t, then its moment generating
function is φN(t)

φN(t)(s) = π0

(
µ1(λ1+λ2+µ2−λ1e

s)

µ1µ2+µ1λ1−es(λ2
1+λ1λ2+λ1µ1+λ1µ2)+λ2

1e
2s

)
,

(40)
where π0 is given by (4). Particularly, the expected value of
N(t) is

E (N(t)) =
λ1

(
2λ2µ2 + λ2µ1 + λ2

2 + µ2
2

)
(µ2 + λ2) (µ1µ2 − λ1 (µ2 + λ2))

. (41)

Proof. At any point in time, there are exactly i stream U1

packets in the system if we are in state qi or q′i+1 in the Markov
chain given by Fig. 3. This means that the probability of having
exactly i stream U1 packets in the system is πi+π′i+1. Hence,
using the same quantities as in Section VII-A

φN(t)(s)=
∑∞
n=0 e

sn(πi + π′i+1) =
∑∞
n=0 e

sn

AT
n


0
1
1
0




=

∞∑
n=0

esnα2π0

(ln2 e2 − ln1 e1)T


0
1
1
0




= α2π0

∑∞n=0 (esl2)
n

eT2


0
1
1
0

−∑∞n=0 (esl1)
n

eT1


0
1
1
0




= α2π0

(
1

1−l2es (l2a4 + l2 − a5)− 1
1−l1es (l1a4 + l1 − a5)

)
= α2π0(l2 − l1)

(
a4 + 1− a5e

s

1− (l1 + l2)es + l1l2e2s

)
.

(42)

s0start

s1

s2

1

a

v

b

u

Fig. 9: Semi-Markov chain representing the “virtual” service
time Yj .

where the quantities used here are the one defined in the proof
of Theorem 1. Thus,

φN(t)(s) = π0

(
µ1(λ1+λ2+µ2−λ1e

s)
µ1µ2+µ1λ1−es(λ1µ2+λ2

1+λ1λ2+λ1µ1)+λ2
1e

2s

)
.

This last equality is obtained by using (37), α2 = 1
l2−l1 and

replacing a1, a2, a3, a4, a5 by their expressions in function
of λ1, λ2, µ1 and µ2 in (42). Finally,

E(N(t)) =
dφN(t)(s)

ds

∣∣∣
s=0

=
λ1(2λ2µ2+λ2µ1+λ2

2+µ2
2)

(µ2+λ2)(µ1µ2−λ1(µ2+λ2)) .

C. Proof of Lemma 1 and overview on the detour flow graph
method

Lemma. Let Yj be the “virtual” service time of packet j
given that this packet does not find the system in state q′1, i.e.
P (Yj > t) = P

(
Zj > t|Ψj

)
. Then, in steady state,

φY (s) = E
(
esY
)

=
µ1(µ2 − s)

s2 − s(µ2 + µ1 + λ2) + µ1µ2
. (43)

Similarly, let Y ′j be the “virtual” service time of packet j given
that this packet finds the system in state q′1, i.e. P

(
Y ′j > t

)
=

P (Zj > t|Ψj). Then, in steady state,

φY ′(s) = E
(
esY

′
)

=
µ1µ2

s2 − s(µ2 + µ1 + λ2) + µ1µ2
. (44)

Proof. We start by proving (43). For this, we use the detour
flow graph method. Fig. 9 shows the semi-Markov chain
relative to the “virtual” service time Yj of the jth packet of
first stream U1. Since the system is ergodic, it also applies to
any packet at steady state. This chain is constituted of three
states:
• s0: in this state, the system is idle from a stream-U1 point

of view. This means that no stream-U1 packet is being
served.

• s1: in this state, a stream-U1 packet is in service.
• s2: in this state, a stream-U2 packet is in service.

When the jth packet reaches the head of the buffer, the
system is in the idle state s0. Hence, with probability 1 it
goes immediately to state s1 where it starts serving the jth

packet. Due to the memoryless property of the interarrival
time of the second stream X(2), two clocks start: a service
clock S(1) and a clock X(2). The service clock ticks first
with probability a = P

(
S(1) < X(2)

)
and its value A has

distribution P (A > t) = P
(
S(1) > t|S(1) < X(2)

)
. At this

point, the stream U1 packet, currently being served, finishes



14

service before any packet from the other stream is generated,
and the system goes back to state s0. This ends the “vir-
tual” service time Yj . Clock X(2) ticks first with probability
v = 1−a = P

(
X(2) < S(1)

)
and its value V has distribution

P (V > t) = P
(
X(2) > t|X(2) < S(1)

)
. At this point, a new

stream U2 update is generated and preempts the stream U1

packet currently in service. In this case, the system goes to
state s2, where the preempted stream U1 update is placed back
at the head of the buffer, and the system starts service of the
stream U2 update.

When the system arrives in state s2, this means a new
stream U2 packet was just generated and is starting its service.
Thus, two clocks start: a service clock S(2) and a clock
X(2). The service clock ticks first with probability u =
P
(
S(2) < X(2)

)
and its value U has distribution P (U > t) =

P
(
S(2) > t|S(2) < X(2)

)
. At this point, the packet currently

being served finishes service before any new stream U2 packet
is generated, and the system goes back to state s1 where the
jth packet of stream U1 starts its service again. However, clock
X(2) ticks first with probability b = 1 − u, and its value B
has distribution P (B > t) = P

(
X(2) > t|X(2) < S(2)

)
. At

this point, a new stream U2 update is generated and preempts
the one currently in service. In this case, the system stays in
state s2.

From the above analysis, we see that the “virtual” service
time is given by the sum of the values of the different clocks
on the path starting and finishing at s0. For example, for the
path s0s1s2s1s2s2s1s0 in Fig. 9, the “virtual” service time
Y = V1 + U1 + V2 + B1 + U2 + A1, where all the random
variables in the sum are mutually independent. This value of Y
is also valid for the path s0s1s2s2s1s2s1s0. Hence, Y depends
on the variables Aj , Bj , Uj , Vj and their number of occur-
rences and not on the path itself. Therefore, the probability
that exactly (i1, i2, i3, i4) occurrences of (A,B,U, V ) occur,
which is equivalent to the probability that

Y =

i1∑
k=1

Ak +

i2∑
k=1

Bk +

i3∑
k=1

Uk +

i4∑
k=1

Vk

is given by ai1bi2ui3vi4Q(i1, i2, i3, i4), where Q(i1, i2, i3, i4)
is the number of paths with this combination of occurrences.
Taking into account the fact that the {Ak, Bk, Uk, Vk} are
mutually independent and denoting by {I1, I2, I3, I4} the
random variables associated with the number of occurrences
of {A,B,U, V } respectively, the moment generating function
of Y is,

φY (s) = E
(
E
(
esY | (I1, I2, I3, I4) = (i1, i2, i3, i4)

))
=

∑
i1,i2,i3,i4

[
ai1bi2ui3vi4Q(i1, i2, i3, i4)

E
(
es(

∑i1
k=1 Ak+

∑i2
k=1 Bk+

∑i3
k=1 Uk+

∑i4
k=1 Vk)

)]
=

∑
i1,i2,i3,i4

[
ai1bi2ui3vi4Q(i1, i2, i3, i4)

E
(
esA
)i1 E (esB)i2 E (esU)i3 E (esV )i4] . (45)

In order to compute (45), we modify the state diagram
in Fig. 9 and represent it as a detour flow graph (also

called signal flow graph [20], [21]) as shown in Fig. 10a.
For that, we first notice that the “virtual” service time Y
is the interval of time spent by the system between two
consecutive s0 states. That’s why, in Fig. 10a, we split the
s0 state into two states: a starting state s0 and an end state
s̄0. Hence, there is a one-to-one correspondence between the
different paths from s0 to s̄0 and the different combinations
in which we can write Y in function of (A,B,U, V ). In
order to capture the number of occurrences of the quantities
(A,B,U, V ) over a certain path, we associate with each label
four “dummy” variables (D1, D2, D3, D4) and the exponents
of (D1, D2, D3, D4) correspond to the number of occurrences
of (A,B,U, V ) respectively. For example, if between two
states sj and si (for any i, j), the edge has a label that contains
the factor D1D

2
4 , then it means that the system spent a time of

A+ 2V when passing from sj to si. Since we are interested
in the distribution of Y , we multiply the labels of the edges in
the detour flow graph by the probability of such label being
visited. For example, given that the system is at state s1, it
jumps to state s2 with probability v and after spending a time
V . Thus the label from s1 to s2 is vD4.

Using Mason’s gain formula [20], we know that the gener-
ating function H1(D1, D2, D3, D4) of the detour flow graph
shown in Fig. 10a, can be written as

H1(D1, D2, D3, D4)

=
∑

i1,i2,i3,i4

[
Q(i1, i2, i3, i4)ai1bi2ui3vi4Di1

1 D
i2
2 D

i3
3 D

i4
4

]
,

(46)

where Q(i1, i2, i3, i4) is the number of paths with i1 occur-
rences of A, i2 occurrences of B, i3 occurrences of U , i4
occurrences of V . Comparing (45) and (46), we notice that

φY (s) = H1

(
E
(
esA
)
,E
(
esB
)
,E
(
esU
)
,E
(
esV
))
.

Moreover, given a directed graph G = (V,E) with algebraic
label L(e) on its edges, and a node u ∈ V with no incoming
edges, the transfer function H(v) from u to a node v is the
sum over of all paths from u to v with each path contributing
the product of its edge labels to the sum (see [20]–[22]). The
complete set of transfer functions {H(v) : v ∈ V } can be
computed easily by solving the linear equations:{

H(u) = 1

H(w) =
∑
w′:(w′,w)∈E H(w′)L((w′, w)), w 6= u.

Solving the system of linear equations above for the detour
flow graph of Fig. 10a, (46) becomes

H1(D1, D2, D3, D4) =
aD1(1− bD2)

1− bD2 − uD3vD4
. (47)

From [8, Appendix A, Lemma 2], we know that A, B, U and
V are exponentially distributed with E

(
esB
)

= E
(
esU
)

=
λ2+µ2

λ2+µ2−s and E
(
esA
)

= E
(
esV
)

= λ2+µ1

λ2+µ1−s . Simple com-
putations show that a = µ1

µ1+λ2
, b = λ2

µ2+λ2
, u = µ2

µ2+λ2
,

v = λ2

µ1+λ2
. Finally, replacing the above expressions into (47),

we get our result.
To prove (44), we use the same method as before. But in this

case, we notice that the jth packet from stream U1 finds the
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s0 s1 s̄0

s2

1 aD1

vD4 uD3

bD2

(a)

s0

s2

s1

s̄0

1

uD3

bD2

vD4

aD1

(b)

Fig. 10: Detour flow graphs for (a) Y and (b) Y ′.

system busy serving a packet from stream U2. This translates
in the detour flow graph shown in Fig. 10b. The generating
function of this graph is

H2(D1, D2, D3, D4) =
aD1uD3

1− bD2 − vD4uD3
. (48)

For (D1, D2, D3, D4) =
(
E
(
esA

)
,E

(
esB

)
,E

(
esU

)
,E

(
esV

))
and replacing a, b, u and v by their values in (48), we obtain
(44).

D. Proof of Lemma 2
Lemma. Assume an M/G/1 queue with interarrival time X(1)

exponentially distributed with rate λ1 and service time Y
whose moment generating function is given by (9). The service
time and the interarrival time are assumed to be independent.
Then the distribution of the system time T is

fT (t) = C1e
−α1t(µ2 − α1)− C1e

−α2t(µ2 − α2), t ≥ 0, (49)

where α1, α2 > 0 are the roots of the quadratic expression

s2 − s(µ1 + µ2 + λ2 − λ1) + µ1µ2 − λ1µ2 − λ1λ2,

C1 =
(1− ρ)µ1

α2 − α1
,

and ρ = λ1E (Y ) = λ1(µ2+λ2)
µ1µ2

.

Proof. From [23, p. 166], we know that the Laplace transform
of the system time T is

E
(
e−sT

)
=

(1− ρ)sφY (−s)
s− λ1(1− φY (−s))

.

Replacing φY (−s) by its expression in (43) we get

E
(
e−sT

)
=

(1−ρ)µ1(µ2+s)
s2+s(µ1+µ2+λ2−λ1)+µ1µ2−λ1µ2−λ1λ2

=
(1− ρ)µ1(µ2 + s)

(s− s1)(s− s2)

= s
(1− ρ)µ1

(s− s1)(s− s2)
+

(1− ρ)µ1µ2

(s− s1)(s− s2)
, (50)

where s1 and s2 are two real roots of the quadratic equation

s2 + s(µ1 + µ2 + λ2 − λ1) + µ1µ2 − λ1µ2 − λ1λ2.

Moreover, due to condition (3),

s1 + s2 = −µ1 − µ2 − λ2 + λ1 < 0

and
s1s2 = µ1µ2 − λ1µ2 − λ1λ2 > 0.

This proves that both roots s1 and s2 are negative. Let

G(s) =
(1− ρ)µ1

(s− s1)(s− s2)
,

and g(t) its inverse Laplace transform. Using the initial value
theorem:

g(0+) = lim
s→∞

sG(s) = 0. (51)

Using (51) and the expression of G(s), (50) can be written as

E
(
e−sT

)
= sG(s)− g(0+) + µ2G(s). (52)

Therefore, the probability density function of the system time
fT (t) (which is the inverse Laplace transform of E

(
e−sT

)
) is

fT (t) = g′(t) + µ2g(t). (53)

By partial fraction expansion,

G(s) =
C1

s− s1
− C1

s− s2
,

where C1 = (1−ρ)µ1

s1−s2 . Denoting α1 = −s1 > 0 and α2 =
−s2 > 0, we get

G(s) =
C1

s+ α1
− C1

s+ α2
, and C1 =

(1− ρ)µ1

α2 − α1
.

Thus,
g(t) = C1e

−α1t − C1e
−α2t,

and

fT (t) = C1e
−α1t(µ2 − α1)− C1e

−α2t(µ2 − α2).

E. Proof of Lemma 4

Lemma. The moment generating function of the interdepar-
ture time of stream U1, Y , is

φY (s) =
λ1Pλ−s (λ2Lλ2−s − s)

λ1Pλ−s (λ2Lλ2−s − s)− s(λ2 − s)
. (54)

Proof. We use the detour flow graph method. We define
Λ = min

(
X(1), X(2)

)
. As Λ is the minimum of independent

exponential random variables, then it is also exponentially
distributed with rates λ = λ1 + λ2. Fig. 11 shows the semi-
Markov chain relative to the interdeparture time Yj between
the jth and j+1th successfully received packet of stream U1.
This chain is composed of 4 states:
• q0 is the idle state reached after the reception of a stream-
U1 packet. This means the system is empty.

• q1 is the state where a stream-U1 packet is being served.
• q1′ is the state where a stream-U2 packet is being served.
• q0′ is the idle state reached after the reception of a

stream-U2 packet. At this point also the system is empty.
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f
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a

Fig. 11: Semi-Markov chain representing the M/G/1/1 inter-
departure time for stream U1.

The need to differentiate between states q0 and q0′ will
become clear shortly after.

When the jth packet is delivered to the monitor, the system
is in the idle state q0. Due to the memoryless property of
the interarrival times of both streams, two clocks start: a
clock X(1) and a clock X(2). Clock X(1) ticks first with
probability a = P

(
X(1) < X(2)

)
, at which point a new packet

from stream U1 will be generated first and the system goes
to state q1. The value A of the clock when it ticks has
distribution P (A > t) = P

(
X(1) > t|X(1) < X(2)

)
. Clock

X(2) ticks first with probability z = 1−a = P
(
X(2) < X(1)

)
,

at which point a new packet from stream U2 is generated
first and the system goes to state q1′ . The value Z of this
second clock when it ticks has distribution P (Z > t) =
P
(
X(2) > t|X(2) < X(1)

)
.

When the system arrives in state q1, this means a packet
from stream U1 is starting its service. Thus, due to the
memoryless property of X(2), three clocks start: a service
clock S(1), clock X(1) and clock X(2). The service clock
ticks first with probability u = P

(
S(1) < Λ

)
and its value

U has distribution P (U > t) = P
(
S(1) > t|S(1) < Λ

)
. At

this point, the stream U1 packet currently being served fin-
ishes service before any new packet is generated and the
system goes back to state q0. This ends the interdepar-
ture time Yj . Clock X(1) ticks first with probability b =
P
(
X(1) < min

(
S(1), X(2)

))
and its value B has distribu-

tion P (B > t) = P
(
X(1) > t|X(1) < min

(
S(1), X(2)

))
. At

this point, a new stream U1 update is generated before
any other update from other streams and preempts the one
currently in service. In this case the system stays in state
q1. The third clock X(2) ticks first with probability d =
P
(
X(2) < min

(
S(1), X(1)

))
and its value D has distribution

P (D > t) = P
(
X(2) > t|X(2) < min

(
S(1), X(1)

))
. At this

point, a new update from stream U2 is generated, preempts
the one currently in service and the system switches to state
q1′ .

When the system arrives in state q1′ , this means a packet
from stream U2 is starting its service. Thus, due to the
memoryless property of X(2), two clocks are of interest: a

service clock S(2) and clock X(2). What happens to stream
U1 is irrelevant, as it has lower priority and any generated
packet will be discarded. The service clock ticks first with
probability f = P

(
S(2) < X(2)

)
and its value F is distributed

according to P (F > t) = P
(
S(2) > t|S(2) < X(2)

)
. At this

point, the stream U2 packet currently being served finishes
service before any new packet is generated and the system goes
to state q0′ . Otherwise, clock X(2) ticks first with probability
v = 1 − f = P

(
X(2) < S(2)

)
and has value V distributed

as P (V > t) = P
(
X(2) > t|X(2) < S(2)

)
. At this point, a

new update from stream U2 is generated, preempts the one
currently in service and the system stays in state q1′ .

Finally, when the system arrives in state q0′ , this means
the system is idle but no update from stream U1 has been
delivered. Given that X(1) and X(2) are memoryless, the
system in state q0′ behaves exactly as if it were in state q0.

From the above analysis, we see that the interdeparture time
is given by the sum of the values of the different clocks on
the path starting and finishing at q0. For example, for the path
q0q1q1′q0′q1′q0′q1q0 in Fig. 11, the interdeparture time Y =
A1 + D1 + F1 + Z1 + F2 + A2 + U1, where all the random
variables in the sum are mutually independent. This value of
Y is also valid for the path q0q1′q0′q1q1′q0′q1q0. Hence Y
depends on the variables Aj , Bj , Dj , Fj , Uj , Vj , Zj and their
number of occurrences and not on the path itself. Therefore,
the probability that exactly (i1, i2, i3, i4, i5, i6, i7) occurrences
of (A,B,D, F, U, V, Z) happen, which is equivalent to the
probability that

Y =
∑i1
k=1Ak +

∑i2
k=1Bk +

∑i3
k=1Dk +

∑i4
k=1 Fk +

∑i5
k=1 Uk +

∑i6
k=1 Vk +

∑i7
k=1 Zk

is given by ai1bi2di3f i4ui5vi6zi7Q(i1, i2, i3, i4, i5, i6, i7),
where Q(i1, i2, i3, i4, i5, i6, i7) is the number of paths with this
combination of occurrences. Taking into account the fact that
the {Ak, Bk, Dk, Fk, Uk, Vk, Zk} are mutually independent,
the moment generating function of Y is

φY (s) = E
(
E
(
esY | (I1, I2, I3, I4, I5, I6, I7) = (i1, i2, i3, i4, i5, i6, i7)

))
=
∑

i1,i2,i3,
i4,i5,i6,i7

[
ai1bi2di3f i4ui5vi6zi7Q(i1, i2, i3, i4, i5, i6, i7)

E
(
es(

∑i1
k=1 Ak+

∑i2
k=1 Bk+

∑i3
k=1Dk+

∑i4
k=1 Fk+

∑i5
k=1 Uk+

∑i6
k=1 Vk+

∑i7
k=1 Zk)

)]
=
∑

i1,i2,i3,
i4,i5,i6,i7

[
ai1bi2di3f i4ui5vi6zi7Q(i1, i2, i3, i4, i5, i6, i7)

E
(
esA
)i1 E (esB)i2 E (esD)i3 E (esF )i4 E (esU)i5 E (esV )i6 E (esZ)i7],

(55)

where {I1, I2, I3, I4, I5, I6, I7} are the random
variables associated with the number of occurrences of
{A,B,D, F, U, V, Z}, respectively.

In order to compute (55), we modify the state diagram in
Fig. 11 and represent it as a detour flow graph (also called
signal flow graph [20], [21]) as shown in Fig. 12. For that, we
first notice that the interdeparture time Y is the interval of time
spent by the system between two consecutive q0 states. That’s
why, in Fig. 12, we split the q0 state into two states: a starting
state q0 and an end state q̄0. Hence, there is a one-to-one
correspondence between the different paths from q0 to q̄0 and
the different combinations in which we can write Y in function
of (A,B,D, F, U, V, Z). In order to capture the number of
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aW1

zW7

bW2
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vW6
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aW1

Fig. 12: Detour flow graph of the M/G/1/1 interdeparture time
for stream U1.

occurrences of the quantities (A,B,D, F, U, V, Z) over a
certain path, we associate with each label seven “dummy”
variables (W1,W2,W3,W4,W5,W6,W7) and the exponents
of (W1,W2,W3,W4,W5,W6,W7) correspond to the number
of occurrences of (A,B,D, F, U, V, Z) respectively. For ex-
ample, if between two states qj and qi (for any i, j), the edge
has a label that contains the factor W1W

2
3 , then it means that

the system spent a time of A + 2D when passing from qj
to qi. Since we are interested in the distribution of Y , we
multiply the labels of the edges in the detour flow graph by the
probability of such label being visited. For example, given that
the system is at state q1′ , it jumps to state q0′ with probability
f and after spending a time F . Thus the label from q1′ to q0′

is fW4.
Using Mason’s gain formula [20], we know that the generat-

ing function H(W1,W2,W3,W4,W5,W6,W7) of the detour
flow graph shown in Fig. 12, can be written as

H(W1,W2,W3,W4,W5,W6,W7)

=
∑

i1,i2,i3,
i4,i5,i6,i7

[
Q(i1, i2, i3, i4, i5, i6, i7)ai1bi2di3f i4ui5vi6zi7

W i1
1 W

i2
2 W

i3
3 W

i4
4 W

i5
5 W

i6
6 W

i7
7

]
, (56)

where Q(i1, i2, i3, i4, i5, i6, i7) is the number of paths with i1
occurrences of A, i2 occurrences of B, i3 occurrences of D,
i4 occurrences of F , i5 occurrences of U , i6 occurrences of
V , i7 occurrences of Z. Comparing (55) and (56), we notice
that

φY (s) = H
(
E
(
esA
)
,E
(
esB
)
,E
(
esD
)
,E
(
esF
)
,E
(
esU
)
,E
(
esV
)
,E
(
esZ
))
.

Moreover, given a directed graph G = (V,E) with algebraic
label L(e) on its edges, and a node u ∈ V with no incoming
edges, the transfer function H(v) from u to a node v is the
sum over of all paths from u to v with each path contributing
the product of its edge labels to the sum (see [20]–[22]). The
complete set of transfer functions {H(v) : v ∈ V } can be
computed easily by solving the linear equations:{

H(u) = 1

H(w) =
∑
w′:(w′,w)∈E H(w′)L((w′, w)), w 6= u.

Solving the system of linear equations above yields the transfer
function as

H(W1,W2,W3,W4,W5,W6,W7)

=
uW5aW1(1− vW6)

(1− zW7fW4 − vW6) (1− bW2)− dW3aW1fW4
.

(57)

Using [10, Lemma1] and Lemma 3, we know that E
(
esB
)

=

E
(
esD
)

= λ(1−Pλ−s)
(λ−s)(1−Pλ) , E

(
esA
)

= E
(
esZ
)

= λ
λ−s ,

E
(
esF
)

=
Lλ2−s
Lλ2

and E
(
esV
)

=
λ2(1−Lλ2−s)

(λ2−s)(1−Lλ2 ) . Moreover,
we can notice that U has the same distribution as the system
time T so E

(
esU
)

= Pλ−s
Pλ

. Simple computations show that
a = λ1

λ , b = λ1

λ (1− Pλ), d = λ2

λ (1− Pλ), f = Lλ2
,

u = Pλ, v = 1 − Lλ2
, z = λ−λ1

λ . Finally, replacing the
above expressions into (57), we get our result.

F. Proof of Lemma 5

Lemma. Consider stream U1. For any j ≥ 1, the random
variables Tj and Yj relative to the jth successful packet
are independent. Moreover the process (Yj)j≥1 is i.i.d, with
its distribution given by Lemma 4, and the process R(τ) =
sup{n ∈ N;Dn ≤ τ} is a renewal process.

Proof. Let Lj = min
(
X

(1)
j , X(2)

)
. Since the interarrival

times for both streams are exponential and independent, Lj is
also exponential with rate λ = λ1 + λ2. Except Lj , all other
variables are relative to stream U1. The jth successful packet
leaves the queue empty hence Yj = X̂j+Zj . X̂j = Lj−Tj is
the remaining time between the departure of the stream-U1 j

th

successful packet, and the generation time of the next packet
to be transmitted (it can belong to stream U1 or stream U2).
Zj is the time for a new stream-U1 packet to be successfully
delivered. Zj does not overlap with Tj and thus is independent
from it. As for X̂j , we also obtain that it is independent of Tj .
To prove this, notice that for a successfully received packet j
the joint distribution fLj ,Tj (x, t) can be written as

fLj ,Tj (x, t) = fL,T |L≥T (x, t|x ≥ t) =

{
0 if x < t
fL,S(x,t)
P(S<L) if x > t

,

(58)
where L = min

(
X(1), X(2)

)
and S is the generic service

time. These two variables are independent. Now, using a
change of variable we obtain

fX̂j ,Tj (x̂, t) = fLj−Tj ,Tj (x̂, t) = fLj ,Tj (x̂+ t, t)

=

{
0 if x̂ < 0
fL,S(x̂+t,t)
P(S<L) if x̂ > 0

=

{
0 if x̂ < 0
λe−λ(x̂+t)fS(t)

P(S<L) if x̂ > 0

=

{
0 if x̂ < 0(
λe−λx̂

) e−λtfS(t)
P(S<L) if x̂ > 0

=

{
0 if x̂ < 0
h(x̂)g(t) if x̂ > 0

. (59)
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Moreover, X̂i is exponential with rate λ since

P
(
X̂j > t

)
= P (Lj > t+ Sj |Lj > Sj)

=
P (Lj > t+ Sj)

P(Lj > Sj)

=
1

P(Lj > Sj)

(∫ ∞
0

e−λ(t+s)fSj (s)ds

)
= (1 + λθ)k

(
e−λt

(1 + λθ)k

)
= e−λt. (60)

(59) and (60) show that X̂j and Tj are indeed independent.
Given that X̂j and Zj are both independent from Tj , then Yj
and Tj are also independent.

Furthermore, since Yj−1 = X̂j−1+Zj−1, X̂j is independent
from Tj and the interarrival process is i.i.d and independent
from the i.i.d service process, then X̂j and Zj are independent
of Yj−1. This implies that for any j ≥ 1, Yj−1 and Yj are
independent. Moreover, it is clear that the Zj’s have the same
distribution. Since the X̂j’s are exponential with rate λ then
the (Yj)j≥1 is an i.i.d process. Given that Yj is the interval
of time between the receptions of two consecutive successful
stream-U1 packets, then the number of successfully received
packets in the interval [0, τ ], R(τ), is a renewal process.
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