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Abstract

It is known that Hall’s sextic residue sequence has some desirable features of

pseudorandomness: an ideal two-level autocorrelation and linear complexity of the

order of magnitude of its period p. Here we study its correlation measure of order k

and show that it is, up to a constant depending on k and some logarithmic factor,

of order of magnitude p1/2, which is close to the expected value for a random

sequence of length p. Moreover, we derive from this bound a lower bound on

the N th maximum order complexity of order of magnitude log p, which is the

expected order of magnitude for a random sequence of length p.
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1 Introduction

1.1 Hall’s sextic residue sequence

For a prime p of the form p = 6f + 1, Hall’s sextic residue sequence H = (hn) of

period p is defined as follows: Let g be a primitive root modulo p and

Cℓ = {g6i+ℓ|i = 0, 1, · · · , f − 1}, ℓ = 0, 1, · · · , 5, (1)

be the cyclotomic cosets modulo p of order 6. Then we put

hn =

{

1 if n mod p ∈ C0 ∪ C1 ∪ C3,
0 otherwise,

n = 0, 1, . . . (2)

Hall’s sextic sequence has several desirable features of pseudorandomness:
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• It has a small out-of-phase autocorrelation. In particular, if p = 4u2+27 and g is

chosen such that 3 ∈ C1, then it has ideal 2-level autocorrelation (or equivalently

C0 ∪ C1 ∪ C3 is a difference set), see [11].

• It has large linear complexity of order of magnitude p over F2, see [20].

• It has large linear complexity over some other fields, see [8, 12].

• It has large k-error linear complexity over Fp for k < (p− 1)/2, see [2].

• It has maximum 2-adic complexity, see [27] and also [16] for a short proof.

All these features of pseudorandomness consider a full period of the sequence.

However, for cryptographic applications usually only a part of a period of the sequence

is used. In this paper we deal with some aperiodic measures of pseudorandomness, the

correlation measure of order k and the N th maximum order complexity.

1.2 Correlation measure of order k

The correlation measure of order k of a binary sequence (sn) of length N is defined as

Ck(sn) = max
M,D

∣

∣

∣

∣

∣

M−1
∑

n=0

(−1)sn+d1
+sn+d2

+···+sn+d
k

∣

∣

∣

∣

∣

,

where the maximum is taken over all D = (d1, d2, · · · , dk) with non-negative integers

d1 < d2 < · · · < dk and M such that M − 1 + dk ≤ N − 1. This measure of

pseudorandomness was introduced by Mauduit and Sárközy in [21].

A sequence S = (sn) is considered a good pseudorandom sequence if the value of

Ck(S) (at least for small k) is small in terms of N .

The main result of this paper is the following upper bound on the correlation mea-

sure of order k of Hall’s sextic sequence.

Theorem 1 Let H = {h0, h1, · · · , hp−1} be a period of Hall’s sextic sequence defined

by (2). Then the correlation measure of order k of H satisfies

Ck(H) = O

(

(

14

3

)k

kp1/2 log p

)

.

Here we used the notation A = O(B) if A ≤ cB for a positive absolute constant c.
We will prove Theorem 1 in Section 2.

By [1] for a sequence S of length N with very high probability the correlation

measure Ck(S) is up to a constant depending on k of order of magnitude
√
N logN .

In this sense Hall’s sextic sequence behaves (almost) like a random sequence.

Moreover, Theorem 1 implies bounds on two other measures of pseudorandomness

for parts of a period of a sequence, the N th maximum order complexity and the N th

linear complexity.
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Note that bounds on the correlation measure of order k of characteristic sequences

of consecutive unions of cyclotomic classes of order m were studied in [9]. How-

ever, Hall’s sextic residue sequence is not covered by the construction of [9] and our

approach is slightly different.

More precisely, [9] also deals with the case that the running index n is substituted

by f(n) for a polynomial f(X) over Fp of degree k which satisfies certain conditions.

However, the result is trivial if k > p1/2 but the polynomial used to define Hall’s

sequence has larger degree k ≥ (p+ 5)/6:

Let C′
i be the ith cyclotomic class of order 6 with respect to the primitive element

g−1 and note that C6−i = C′
i for i = 0, 1, . . . , 5. Then let f(n) be the mapping which

interchanges C2 and C3, that is,

f(n) =







gn, n ∈ C2,
g−1n, n ∈ C3,
n, otherwise.

Then we have

hn =

{

0, 1 ≤ (indg−1(f(n)) mod 6) ≤ 3,
1, otherwise,

n = 1, . . . , p− 1,

which is of the form of sequences which are studied in [9]. (Note that actually [9] deals

with the sequence ((−1)hn)p−1
n=0 over {−1, 1}.) Obviously, f cannot be represented by

a polynomial f(X) of degree one and is of the form

f(X) = X

5
∑

i=0

AiX
i(p−1)/6

by [22, Theorem 1]. Hence, deg f ≥ (p + 5)/6 and [9] does not give a nontrivial

bound.

1.3 Nth Maximum order complexity

The N th maximum order complexity M(S, N) of a binary sequence S = (sn) is

the smallest positive integer M such that there is a polynomial f(x1, . . . , xM ) ∈
F2[x1, . . . , xM ] with

si+M = f(si, si+1, . . . , si+M−1), 0 ≤ i ≤ N −M − 1,

see [18, 19, 23].

By [17] for any binary sequence S we have the following relation between the

maximum order complexity and the correlation measure of order k:

M(S, N) ≥ N − 2M(S,N)+1 max
1≤k≤M(S,N)+1

Ck(S, N), N ≥ 1.

Combining this relation and Theorem 1 we get the following lower bound on the max-

imum order complexity of Hall’s sextic residue sequence.
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Corollary 1 For the N th maximum order complexity of Hall’s sextic residue sequence

we have

M(H, N) = Ω

(

log

(

min{N, p}
p1/2 log2 p

))

.

Here A = Ω(B) is equivalent to B = O(A).
The expected value of the N th maximum-order complexity is of order of magni-

tude logN , see [18] as well as [23] (Remark 4) and references therein. Hence, the

N th maximum order complexity of Hall’s sextic residue sequence for any N with

p1/2 log3 p ≤ N ≤ p is at least of this desired order of magnitude.

1.4 Nth linear complexity

For N ≥ 1 the N th linear complexity L(S, N) over F2 of a binary sequence S = (sn)
is the shortest Length L of a linear recurrence relation over F2

sn+L = cL−1sn+L−1 + · · ·+ c0sn, 0 ≤ n ≤ N − L− 1,

which is satisfied by the first N sequence elements. (We use the convention that

L(S, N) = 0 if the first N terms of the sequence are all 0 and L(S, N) = N if

S0 = s1 = · · · = sN−2 = 0 and sN−1 = 1.)

[4, Theorem 1] gives a lower bound on the N th linear complexity of S in terms of

the correlation measure of order k:

L(S, N) ≥ N − max
1≤k≤L(S,N)+1

Ck(S), N ≥ 1.

Combining this bound with Theorem 1 we get for Hall’s sextic residue sequence H

L(H, N) = Ω

(

log

(

min{N, p}
p1/2 log2 p

))

.

The implied constant can be explicitly calculated. This result can be even obtained in

a simpler way from Corollary 1 observing that

L(H, N) ≥ M(H, N)

with a slightly weaker implied constant.

Some experiments indicate that L(H, N) is much larger and we consider it an in-

teresting open problem to improve this lower bound on L(H, N).
Note that there is another figure of merit closely related to the correlation measure

of order k, the arithmetic autocorrelation. Rather moderate bounds on the arithmetic

autocorrelation of Hall’s sextic residue sequence can be obtained combining Theorem 1

and [13].

2 Proof of Theorem 1

Let η be a multiplicative character of Fp of order 3 and put

δ1(n) =
1 + η(n) + η2(n)

3
, n ∈ F

∗
p.

4



Then we have

δ1(n) =

{

1 if n ∈ C0 ∪C3,
0 if n ∈ C1 ∪C2 ∪ C4 ∪ C5.

Let χ be a multiplicative character of Fp of order 6 and put

ω = χ(g),

where g is the primitive root modulo p fixed for the definition of the cyclotomic cosets

in (1) and

δ2(n) =
1 + ω−1χ(n) + ω−2χ2(n) + · · ·ω−5χ5(n)

6
.

Then we have

δ2(n) =

{

1, if n ∈ C1,
0, if n ∈ C0 ∪C2 ∪ C3 ∪ C4 ∪ C5,

n ∈ F
∗
p.

Now δ(n) defined by

δ(n) = δ1(n) + δ2(n), n ∈ F
∗
p,

is the characteristic function of C0 ∪ C1 ∪ C3 ⊂ F
∗
p. Hence, Hall’s sextic sequence

H = (hn) defined by (2) satisfies

hn = δ(n), n = 1, 2, . . . , p− 1,

and we have

(−1)hn = 1− 2δ(n)

=
−2

3

(

η(n) + η2(n)
)

− 1

3

(

ω−1χ(n) + ω−2χ2(n) + · · ·+ ω−5χ5(n)
)

for n = 1, 2, . . . , p− 1. Note that η ∈ {χ2, χ4}. Now

∣

∣

∣

∣

∣

M−1
∑

n=1

(−1)hn+d1
+...+hn+d

k

∣

∣

∣

∣

∣

can be estimated by 7k sums of the form

(

2

3

)k
∣

∣

∣

∣

∣

M−1
∑

n=1

χ((n+ d1)
m1 · · · (n+ dk)

mk)

∣

∣

∣

∣

∣

with 1 ≤ m1, . . . ,mk ≤ 5. A variant of Weil’s theorem for incomplete character sums,

see for example [25, Lemma 3.4], gives the bound

O(kp1/2 log p)

for the absolute value of the inner character sums. Collecting everything, Theorem 1

follows. �
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3 Legendre sequence and Ding-Helleseth-Lam sequence

There are several other cyclotomic sequences with similar features of pseudorandom-

ness. We mention only the Legendre sequence and the Ding-Helleseth-Lam sequence.

3.1 Legendre sequence

Similar results are known for the Legendre sequence L = (ℓn) of prime period p >
2 which is the characteristic sequence of the quadratic residues modulo p, that is, a

cyclotomic sequence of order 2:

• It has small out-of-phase autocorrelation and in particular ideal 2-level autocor-

relation if p ≡ 3 mod 4, see [24].

• It has large linear complexity of order of magnitude p, see [7, 26].

• It has kth error linear complexity over Fp of order of magnitude p for k < (p−
1)/2, see [3].

• Its 2-adic expansion is maximal, see [27, 16, 15].

• It has small correlation measure of order k of order of magnitude kp1/2 log p,

see [21].

• Its N th maximum order complexity is at least log(min{N, p}/p1/2)+O(log log p),
see [17].

• Its N th linear complexity is at least of order of magnitudemin{N, p}/(p1/2 log p),
see [25, Theorem 9.2] or combine [21] and [4].

• Its arithmetic autocorrelation is moderately small, see [14].

3.2 Ding-Helleseth-Lam sequence

Ding et al. [5] introduced a cyclotomic generator of order 4. Let C0 = {x4 : x ∈ F
∗
p}

be the subgroup of F∗
p of bi-squares and C1 = gC0 for a primitive root g modulo p.

Then the Ding-Helleseth-Lam sequence D = (dn) is the characteristic sequence of

C0 ∪ C1.

• Its out-of-phase autocorrelation is small and it has optimum three-level autocor-

relation (or equivalently C0 ∪C1 is an almost difference set) if p = x2 + 4 with

x ≡ 1mod, see [5, Theorem 4].

• It has linear complexity close to its period, see [6], if 2 ∈ D0.

• It has maximum 2-adic complexity, see [27, 16].

• For k < (p−1)/2 it has k-error linear complexity over Fp of order of magnitude

p, see [2].

• Its correlation measure of order k is estimated in [9].
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• Its N th maximum order complexity can be lower bounded by combining [17]

and [9].

It is possible to extend the results of this paper to cyclotomic sequences of higher

order m. For the special case of characteristic sequences of the union of consecutive

cyclotomic classes see [9]. However, for odd m the correlation measure of order k can

be very large, see [9], and for even m the implied constant in the bound on the corre-

lation measure of order k either depends on m (non-consecutive case) or we have an

additional factor of (log p)k (consecutive case [9]). Hence, the Hall sequence, the Leg-

endre sequence and the Ding-Helleseth-Lam sequence are certainly the most attractive

candidates for cryptographic applications.

Moreover, there are several other sequence constructions using characters of finite

fields or elliptic curves over finite fields, see for example [10] and references therein.
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