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Abstract—In this paper, we study tail inequalities of the
largest eigenvalue of a matrix infinitely divisible (i.d.) series,
which is a finite sum of fixed matrices weighted by i.d. random
variables. We obtain several types of tail inequalities, including
Bennett-type and Bernstein-type inequalities. This allows us
to further bound the expectation of the spectral norm of a
matrix i.d. series. Moreover, by developing a new lower-bound
function for Q(s) = (s + 1) log(s + 1) − s that appears in
the Bennett-type inequality, we derive a tighter tail inequality
of the largest eigenvalue of the matrix i.d. series than the
Bernstein-type inequality when the matrix dimension is high. The
resulting lower-bound function is of independent interest and can
improve any Bennett-type concentration inequality that involves
the function Q(s). The class of i.d. probability distributions is
large and includes Gaussian and Poisson distributions, among
many others. Therefore, our results encompass the existing work
[1] on matrix Gaussian series as a special case. Lastly, we show
that the tail inequalities of a matrix i.d. series have applications in
several optimization problems including the chance constrained
optimization problem and the quadratic optimization problem
with orthogonality constraints.

Index Terms—Random matrix, tail inequality, infinitely divis-
ible distribution, largest eigenvalue, optimization

I. INTRODUCTION

Random matrices have been widely used in many machine

learning and information theory problems, e.g., compressed

sensing [2, 3, 4], coding theory [5], kernel method [6], esti-

mation of covariance matrices [7, 8], and quantum information

theory [9, 10, 11]. In particular, sums of random matrices

and the tail behavior of their extreme eigenvalues (or singular

values) are of significant interest in theoretical studies and

practical applications (cf. [12]). Ahlswede and Winter pre-

sented a large-deviation inequality for the extreme eigenvalues

of sums of random matrices [13]. Tropp improved upon their

results using Lieb’s concavity theorem [1]. Hsu et al. provided

tail inequalities for sums of random matrices that depend on
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intrinsic dimensions instead of explicit matrix dimensions [14].

By introducing the concept of effective rank, Minsker extended

Bernstein’s concentration inequality for random matrices [15]

and refined the results in [14]. There have also been many

other works on the eigenproblems of random matrices (cf.

[16, 17, 18, 19, 20]), and the list provided here is incomplete.

A simple form of sums of random matrices can be expressed

as
∑

k ξkAk with random variables ξk and fixed matrices Ak.

This form has played an important role in recent works on

neural networks [21], kernel methods [22] and deep learning

[23], where the original weighted (or projection) matrices can

be replaced with structured random matrices, such as circulant

and Toeplitz matrices with Gaussian or Bernoulli entries. Note

that these two distributions, along with uniform distributions

and Rademacher distributions, belong to the family of sub-

Gaussian distributions1, and many techniques dedicated to

sub-Gaussian random matrices have been developed (e.g.,

[1, 14]). However, to the best of our knowledge, random matrix

research beyond that is still very limited.

The tail behavior of ‖∑k ξkAk‖, where ‖A‖ stands for

the spectral norm of the matrix A, is strongly related to

several optimization problems, including the Procrustes prob-

lem and the quadratic assignment problem (cf. [24, 25]).

Nemirovski analyzed efficiently computable solutions to these

optimization problems [24], and showed that the tail behavior

of ‖∑k ξkAk‖ provides answers to 1) the safe tractable

approximation of chance constrained linear matrix inequalities,

and 2) the quality of semidefinite relaxations of a general

quadratic optimization problem. He also proved a tail bound

for ‖∑k ξkAk‖, where {ξk} obey either distributions sup-

ported on [−1, 1] or Gaussian distributions with unit variance,

and presented a conjecture for the “optimal” expression of

the tail bound [24]. Anthony So applied the non-commutative

Khintchine’s inequality to achieve a solution to Nemirovski’s

conjecture [25]. Note that the aforementioned results assume

that {ξk} obey distributions supported on [−1, 1] or Gaussian

distributions with unit variance. These assumptions will not al-

ways be satisfied in practice, and it is advantageous to explore

whether these efficiently computable optimization solutions

would also hold in a broader setting. We answer this question

in the affirmative in this paper.

In this work, we study and prove tail bounds for the random

matrix
∑

k ξkAk, where random variables {ξk} are infinite

1A random variable ξ is said to be sub-Gaussian if its moment generating

function (mgf) satisfies E[eθξ] ≤ eθ
2c2 (∀θ ∈ R), where c is an absolute

constant.
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divisible distributions. The class of infinitely divisible (i.d.)

distributions includes Gaussian distributions, Poisson distribu-

tions, stable distributions and compound Poisson distributions

as special cases (cf. [26, 27]). In recent years, techniques

developed for i.d. distributions have been employed in im-

portant applications in the fields of image processing [28] and

kernel methods [29]. Note that there is no intersection between

sub-Gaussian distributions and i.d. distributions except for

Gaussian distributions (cf. Lemma 5.5 of [19]). We therefore

believe that our works on random matrix with respect to i.d.

distributions will complement earlier results for sub-Gaussian

distributions and provide useful applications in the fields of

learning and optimization, and beyond.

A. Overview of the Main Results

There are three main contributions of this paper: 1) we

obtain tail inequalities for the largest eigenvalue of the matrix

infinitely divisible (i.d.) series
∑

k ξkAk, where the ξk are

i.d. random variables; 2) we construct a piecewise function to

bound the function Q(s) = (s+1) log(s+1)− s from below

when s ∈ (0, c] for any given 1 < c < +∞, and the new

lower bound function is the tightest up to date; and 3) we show

that the tail inequalities of matrix i.d. series provide efficiently

computable solutions to several optimization problems.

First, we develop a matrix moment-generating function

(mgf) bound for i.d. distributions as the starting point for

deriving the subsequent tail inequalities for the matrix i.d.

series. Then, we derive the tail inequality given in (5) for

the matrix i.d. series, which is difficult to compute because

of the integral of an inverse function. Therefore, by intro-

ducing the additional condition that the Lévy measure has a

bounded support, we simplify the aforementioned result into a

Bennett-type tail inequality [cf. (6)] that contains the function

Q(s) = (s+1) log(s+1)− s, and we also replace Q(s) with

B(s) = s2

2(1+s/3) to obtain a Bernstein-type tail inequality

[cf. (10)] for the matrix i.d. series. In addition, we bound the

expectation of the spectral norm of the matrix i.d. series.

Since B(s) cannot bound Q(s) from below sufficiently

tightly when s is large (cf. Fig. 1), we introduce another

function HP (s) [cf. (16)] to bound Q(s) from below more

tightly than B(s) when s ∈ (0.8831, c] for any 1 < c < +∞
(cf. Remark 3.3). Although HP (s) is a piecewise function, all

sub-functions of HP (s) share the simple form β0s
τn (where

β0 = 2 log 2 − 1) and thus have a low computational cost,

and the subdomains of HP (s) can be arbitrarily selected as

long as points 1 and c are included in the ordered sequence

P as the smallest and largest elements, respectively. Based on

HP (s) (especially with P = {1, c}), we obtain another type

of tail inequality for matrix i.d. series that is tighter than the

Bernstein-type result given in (10) when Rt
ρ(σ2+V ) > 0.8831.2

We show that the tail result based on HP (s) provides a tighter

upper bound on the largest eigenvalue of a matrix i.d. series

2In general, the tail inequality P{ξ > t} describes the probability
characteristics of the event in which the value of a random variable ξ is
greater than a given positive constant t. Consequently, the tail inequality
provides more useful information in the case of Rt

ρ(σ2+V )
> 0.8831 than

in the case of Rt
ρ(σ2+V )

≤ 0.8831.

than is possible with the Bernstein-type result when the matrix

dimension is high. The results regarding Q(s) and HP (s) are

applicable for any Bennett-type concentration inequality that

involves the function Q(s).
Using the resulting tail bounds for random i.d. series, we

study the properties of two optimization problems: chance

constrained optimization problems and quadratic optimization

problems with orthogonality constraints, which covers several

well-studied optimization problems as special cases, e.g., the

Procrustes problem and the quadratic assignment problem. Al-

though these problems have been exhaustively explored in the

works [24, 25], their results are built under the assumption that

ξk obey either distributions supported on [−1, 1] or Gaussian

distributions with unit variance, which restricts the feasibility

of the results in practical problems that do not satisfy the

assumption. By using the tail inequalities for random i.d.

series to resolve an extension of Nemirovski’s conjecture

(cf. Conjecture 4.1), we show that the results obtained in

[24, 25] are also valid in the i.d. scenario, where ξk obey

i.d. distributions instead of distributions supported on [−1, 1]
or Gaussian distributions.

The remainder of this paper is organized as follows. Section

II introduces necessary preliminaries on i.d. distributions and

Section III presents the main results of this paper. In Section

IV, we study the application of random i.d. series in a number

of optimization problems. Section V concludes the paper. In

the appendix, we provide a detailed introduction to the Lévy

measure (part A) and prove the main results of this paper (part

B).

II. PRELIMINARIES ON INFINITELY DIVISIBLE

DISTRIBUTIONS

In this section, we first introduce several definitions related

to infinitely divisible (i.d.) distributions and then present the

matrix mgf inequality for i.d. distributions.

A. Infinitely Divisible Distributions

A random variable ξ has an i.d. distribution if for any n > 1,

there exists a sequence {ξ(1)n , · · · , ξ(n)n } of independent and

identically distributed (i.i.d.) random variables such that ξ

has the same distribution as ξ
(1)
n + · · · + ξ

(n)
n . Equivalently,

i.d. distributions can be defined by means of a characteristic

exponent, as follows.

Definition 2.1: Let φ(θ) be the characteristic exponent of a

random variable ξ:

φ(θ) := logE
{
eiθξ
}
= log

∫ +∞

−∞

eiθξdP (ξ), θ ∈ R.

The distribution of ξ is said to be i.d. if for any n ∈ N, there

exists a characteristic exponent φn(θ) such that

φ(θ) = φn(θ) + · · ·+ φn(θ)︸ ︷︷ ︸
n

.

Now, we need to introduce the concept of the Lévy measure.

Definition 2.2 (Lévy Measure): A Borel measure ν defined

on R is said to be a Lévy measure if it satisfies
∫

R

min{u2, 1}ν(du) <∞ and ν({0}) = 0. (1)
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The Lévy measure describes the expected number of jumps

of a certain height in a time interval of unit length; a more

detailed explanation is given in Appendix A. The following

theorem provides a sufficient and necessary condition for i.d.

distributions:

Theorem 2.1 (Lévy-Khintchine Theorem): A real-valued

random variable ξ is i.d. if and only if there exists a triplet

(b, σ2, ν) such that for any θ ∈ R, the characteristic exponent

φ(θ) is of the form

φ(θ) = ibθ− σ2θ2

2
+

∫

R

(
eiθu − 1− iθu1(|u|<1)

)
ν(du), (2)

where b ∈ R, σ ≥ 0 and ν is a Lévy measure.

This theorem states that an i.d. distribution can be character-

ized by the triplet (b, σ2, ν). Refer to [26, 27] for details.

B. Matrix Inequalities for Infinitely Divisible Distributions

Let the symbol � denote the semidefinite order on self-

adjoint matrices. For any real functions f and g, the trans-

fer rule states that if f(a) ≤ g(a) for any a ∈ I , then

f(A) � g(A) when the eigenvalues of the semidefinite matrix

A lie in I . Below, we present the matrix mgf bound for i.d.

distributions as the starting point for deriving the desired tail

results for matrix i.d. series.

Lemma 2.1: Let ξ be an i.d. random variable with the triplet

(b, σ2, ν), and suppose that Eξ = 0. Given a fixed self-adjoint

matrix A with λmax(A) ≤ 1, it holds that for any 0 < θ ≤M ,

EeξθA � eΦ(θ)·A2

, (3)

where λmax(·) stands for the largest eigenvalue, M :=
sup{θ ≥ 0 : E eθ|ξ| < +∞} and

Φ(θ) :=
σ2θ2

2
+

∫

R

(
eθ|u| − θ|u| − 1

)
ν(du). (4)

The proof of this lemma is given in Appendix B-A. Note that

if the Lévy measure ν is the zero measure, then the mgf result

given in (3) is analogous to the mgf result EeξθA = eθ
2
A

2/2

(∀θ ∈ R) when ξ is Gaussian (cf. Lemma 4.3 of [1]).

III. TAIL INEQUALITIES FOR MATRIX INFINITELY

DIVISIBLE SERIES

In this section, we first present two types of tail inequal-

ities for matrix i.d. series: Bennett-type and Bernstein-type

inequalities. By analyzing the characteristics of the function

Q(s) = (s+1) · log(s+1)−s that appears in the Bennett-type

result, we introduce a piecewise function H(s) to bound Q(s)

from below and thus obtain a new tail inequality for matrix

i.d. series. We also study the upper bound of the expectation

of ‖∑k ξkAk‖.

A. Tail Inequalities for Matrix Infinitely Divisible Series

By using the the matrix mgf bound (3), we first obtain the

tail inequality for the matrix i.d. series
∑

k ξkAk:

Theorem 3.1: Let A1, · · · ,AK be fixed d-dimensional self-

adjoint matrices with λmax(Ak) ≤ 1 (k = 1, · · · ,K), and let

ξ1, · · · , ξK be independent centered i.d. random variables with

the triplet (b, σ2, ν) and M := sup{θ ∈ R : E eθ|ξ| < +∞}.

Define ρ := λmax

(∑
k A

2
k

)
. Then for all 0 < t < α(M−)

ρ , we

have

2P

{
λmax

(
∑

k

ξkAk

)
> t

}
= P

{∥∥∥
∑

k

ξkAk

∥∥∥ > t

}

≤ 2d exp

(
−ρ ·

∫ t/ρ

0

α−1(s)ds

)
, (5)

where α(M−) is the left limit at M , and α−1(s) is the inverse

of

α(s) := σ2s+

∫

R

|u|(es|u| − 1)ν(du), 0 < s < M.

The proof of this theorem is given in Appendix B-B.

Remark 3.1: Since the matrices Ak (1 ≤ k ≤ K) are

self-adjoint, the matrix
∑

k A
2
k is self-adjoint and positive

semidefinite. Therefore, ρ is non-negative and the above result

is non-trivial.

Considering the difficulties that arise in computing the func-

tion α(s) and its inverse α−1(s), we introduce the additional

condition that ν has a bounded support to simplify the above

result, which leads to the following corollary.

Corollary 3.1: If ν has a bounded support with R =
inf{α > 0 : ν({u : |u| > α}) = 0}, then for any t > 0,

2P

{
λmax

(
∑

k

ξkAk

)
> t

}
= P

{∥∥∥
∑

k

ξkAk

∥∥∥ > t

}

≤2d · exp
(
−ρ(σ

2 + V )

R2
·Q
(

Rt

ρ(σ2 + V )

))
, (6)

where V :=
∫
R
|u|2ν(du), and

Q(s) := (1 + s) · log(1 + s)− s. (7)

The proof of this corollary is given in Appendix B-C.

Roughly speaking, the condition that ν has a bounded

support means that large jumps may not occur on the path

of the Lévy process that is generated from the i.d. distribution

with triplet (b, σ2, ν). Refer to Appendix A for the explanation

for this condition.

Note that the tail inequality (6) is similar in form to the

matrix Bennett result (cf. Theorem 6.1 of [1]). Following the

classical method of bounding Q(s) from below, the Bernstein-

type result can be derived based on the fact that

Q(s) ≥ B(s) ≥ T (s), s ≥ 0, (8)

where

B(s) :=
s2

2(1 + s/3)
; T (s) :=

{
3s/4, s ≥ 3;
s2/4, 0 < s < 3.

(9)

As shown in Fig. 1, the function B(s) = s2

2(1+s/3) can

tightly bound Q(s) from below when s is close to the origin,

whereas there will be a large discrepancy between Q(s) and

B(s) when s is far from the origin. This is because B(s)
is derived from the Taylor expansion at the point s = 0 (cf.

Chapter 2.7 of [30]). To facilitate the analysis of Q(s), the

function B(s) is relaxed to a looser lower-bound function
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T (s), which is a piecewise function with the following sub-

functions: s2/4 when s ∈ (0, 3); and 3s/4 when s ∈ [3,∞).
Although the function T (s) does not bound Q(s) sufficiently

tightly, the result presented in (15) below shows that T (s)
provides the same rate of growth as Q(s) when s is close to

the origin or approaches infinity. This phenomenon suggests

that the coefficients 3/4 and 1/4 of the sub-functions 3s/4 and

s2/4, respectively, are probably not sufficiently well-tuned.

0 0.5 1 1.5 2 2.5 3
s

0

0.5

1

1.5

2

2.5

3

y

Q(s)

B(s)

T(s)

(a) s ∈ (0, 3]

0 2 4 6 8 10 12 14 16 18 20
s

0

5

10

15

20

25

30

35

40

45

y

Q(s)

B(s)

T(s)

(b) s ∈ (0, 20]

Fig. 1. The function curves of Q(s), B(s) and T (s).

Corollary 3.2: Let ξ1, · · · , ξK be independent i.d. random

variables satisfying the conditions in Corollary 3.1. Then for

any t > 0,

2P

{
λmax

(
∑

k

ξkAk

)
> t

}
= P

{∥∥∥
∑

k

ξkAk

∥∥∥ > t

}

≤2d · exp
(
−3

2
· t2

3ρ(σ2 + V ) +Rt

)
(10)

≤
{

2d · exp
(
− 3

4 · t
R

)
, if Rt > 3ρ(σ2 + V );

2d · exp
(
− t2

4ρ(σ2+V )

)
, if 0 < Rt ≤ 3ρ(σ2 + V ).

This corollary shows that the probability of the event

‖∑k ξkAk‖ > t is bounded by O(e−c1t) when t is large

and that its upper bound is of the form O(e−c2t
2

) when t is

small.

Recalling Inequality (4.9) of [1], the expectation

E
∥∥∑

k ξkAk

∥∥ for a random Gaussian series is bounded

by the term O[
√
log(c · d)]. In a similar way, we use the

tail bound presented in (10) to obtain an upper bound on

E‖
∑

k ξkAk‖ for a random i.d. series.

Theorem 3.2: Let ξ1, · · · , ξK be independent i.d. random

variables satisfying the conditions in Corollary 3.1. Then

E

∥∥∥∥∥
∑

k

ξkAk

∥∥∥∥∥ ≤ 3R

4
· log

(
2d · e1+

9ρ2(σ2+V )2

2R2

)
. (11)

Because of the existence of the Lévy measure ν, the upper

bound on E‖
∑

k ξkAk‖ for a random i.d. series is of the

form O[log(c · d)], which differs from the Gaussian bound

of O[
√
log(c · d)]. Recalling the Lévy-Itô decomposition (cf.

[27]), the higher expectation bound for a matrix i.d. series

arises from the existence of the compound Poisson (with drift)

components of the i.d. distribution.

Remark 3.2:

Note that the aforementioned tail results for matrix i.d. se-

ries can be generalized to the scenario of sums of independent

i.d. random matrices X1, · · · ,XK , all of whose entries are i.d.

random variables with the generating triplet (b, σ2, ν). As a

starting point, we first obtain the mgf bound for the self-adjoint

i.d. random matrix X with (b, σ2, ν) and λmax(X) ≤ 1:

EeθX � eΦ(θ)·E(X2), ∀ 0 < θ ≤M, (12)

which can be proven in a manner similar to Lemma 2.1.

We then arrive at upper bounds on P
{∥∥∑

k Xk

∥∥ > t
}

and E
∥∥∑

k Xk

∥∥ with the same forms as those of the pro-

posed results for matrix i.d. series except that the term

ρ = λmax

(∑
k A

2
k

)
is replaced by ρ0 = λmax

(∑
k E(X

2
k)
)

[cf. (5), (6), (10), (17) and (11)]. These results can also be

regarded as an extension of the existing vector-version results

(cf. [31, 32]).

B. A Lower-Bound Function of Q(s)

As discussed above, both B(s) and T (s) are lower bound

functions for Q(s), but they do not bound Q(s) sufficiently

tightly when s is far from the origin (cf. Fig. 1) because they

stem from the Taylor expansion at the origin. We adopt a more

direct strategy to analyze the behavior of the function Q(s);
for earlier discussions on this topic, refer to [33, 34].

We consider the following inequality:

(s+ 1) · log(s+ 1)− s ≥ β · sτ , ∀ s > 0, (13)

where the parameter β is expected to be a constant independent

of s such that β · sτ bounds Q(s) from below as tightly as

possible. For any s ∈ (0, 1) ∪ (1,+∞), define

τ(β, s) :=
log
(
(s+ 1) log(s+ 1)− s

)
− log(β)

log(s)
. (14)

Then, it follows L’Hospital’s rule that

lim
s→0+

τ(β, s) = 2 and lim
s→+∞

τ(β, s) = 1, ∀β > 0. (15)

The two limits in (15) suggest that piecewise function T (s)
indeed captures the rate of growth of the function Q(s) as s
approaches either the origin or infinity.
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Now, we must choose the parameter β. As shown in Fig.

2, the function τ(β, s) is sensitive to the choice of β, and the

value of τ(β, s) will vary dramatically near the point s = 1 if

parameter β is not chosen well. Therefore, we should select a

β such that the variation of τ(β, s) near s = 1 is kept as small

as possible, i.e., such that the discrepancy between τ(β, 1−)
and τ(β, 1+) is minimized. The follow lemma is also derived

from L’Hospital’s rule:

Lemma 3.1: Let β0 = 2 log 2− 1. Then,

lim
s→1−

τ(β0, s) = lim
s→1+

τ(β0, s) =
log 2

2 log 2− 1
.

This lemma shows that with the parameter choice β =
2 log 2−1, the point s = 1 is a removable discontinuity of the

function τ(β, s); i.e., τ(β, 1−) = τ(β, 1+). In other words, if

we add a supplementary definition of τ(β, 1) := log 2
2 log 2−1 , the

resulting function τ(β, s) will be continuous on the domain

(0,+∞). Therefore, parameter β should be selected such that

β = β0 = 2 log 2− 1.

0 0.5 1 1.5 2 2.5 3
s

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

τ
(β

,s
)

β=0.38

β=0.384

β=0.386

β=0.38629

Fig. 2. The function curves of τ(β, s) w.r.t. different β settings

By using the function τ(β0, s), we can develop another

lower-bound function for Q(s) as follows.

Proposition 3.1: Given an arbitrary positive constant c > 1
and an integer N > 1, let P = {p0, p1, · · · , pN} be an ordered

sequence such that 1 = p0 < p1 < · · · < pN−1 < pN = c,
and define

HP (s) :=





β0 · s2, 0 < s ≤ p0;
β0 · sτ1 , p0 < s ≤ p1;
β0 · sτ2 , p1 < s ≤ p2;

...
...

β0 · sτn , pN−1 < s ≤ pN ,

(16)

where β0 = 2 log 2 − 1 and τn := τ(β0, pn) (n =
1, 2, · · · , N ). Then, for all s ∈ (0, c], we have Q(s) ≥
HP (s) ≥ H{1,c}(s), where the first equality holds when

s = p0 or s = pN ; and the second equality holds when

P = {1, c}.

As suggested by this result, a piecewise function HP (s) to

bound Q(s) from below can be built when s has a bounded

domain (0, c] by means of the following steps: (i)

1) Let β0 = 2 ln 2 − 1, and select a constant c to form an

interval (0, c].
2) Select an integer N > 1 and an ordered sequence P :=

{p0, p1, · · · , pN} such that 1 = p0 < p1 < · · · < pN =
c.

3) If s ∈ (0, 1], then HP (s) = β0s
2; if s ∈ (pn−1, pn],

then HP (s) = β0s
τn , where τn = τ(β0, pn) (n =

1, 2, · · · , N ).

The resulting functionHP (s) has the following characteristics:

• There is no additional restriction on the choice of the

constant c, the integer N and the points p1, p2, · · · , pN−1

other than 1 = p0 < p1 < · · · < pN = c. This means that

suitable parameters c, N and {p1, p2, · · · , pN−1} can be

chosen in accordance with the requirements of various

practical problems.

• Although HP (s) is a piecewise function, all parts of

HP (s) share the same coefficient β0 = 2 log 2 − 1, and

the parameters τn are the values of function τ(β0, s) at

the partition points pn (n = 1, 2, · · · , N ). Therefore, the

computation of HP (s) has a low cost.

• For any choice of P , the piecewise function HP (s) has

the same form β0 · s2 when s ∈ (0, 1]. In particular,

H{1,c}(s) (i.e., with P = {1, c}) is a continuous function

on (0, c), and the difference between H{1,c}(s) and

HP (s) is not significant for any other choice of P (cf.

Fig. 3). Hence, Hc(s) := H{1,c}(s) can be adopted as the

lower-bound function for Q(s) if there are no additional

requirements on the ordered sequence P .

0 5 10 15 20 25 30 35 40 45 50
s

0

20

40

60

80

100

120

140

160

y

Q(s)

HP
1

(s)

HP
2

(s)

Fig. 3. The function curves of HP w.r.t. different P settings, where P1 =
{1, 15, 25, 40, 50} and P2 = {1, 50}. Although the function HP1

is closer
to Q(s) than HP2

is, the curve of HP1
is not continuous and the discrepancy

between HP1
and HP2

is not significant.

Remark 3.3:

As shown in Fig. 4, the lower-bound function Hc(s)
performs better than the function B(s), which is derived

from the Taylor expansion, when s ∈ (0.8831, c]; moreover,

although B(s) bounds Q(s) more tightly than Hc(s) does

when s ∈ (0, 0.8831], there is only a slight discrepancy

between Hc(s) and B(s) on this interval.3 As a result, the

3The range of s ∈ (0.8831, c) is the numerical solution to the inequality
Hc(s) > B(s).
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
s
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0.1
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0.35
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(0.8831,0.3013)
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(a) s ∈ (0, 1]
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x
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H(s)

(b) s ∈ (0, 1000]

Fig. 4. The function curves of Q(s), B(s), T (s) and Hc(s) with c =
1000. The curves of Hc(s) and B(s) intersect approximately at the point
(0.8831, 0.3013), and the function Hc(s) is closer to Q(s) than B(s) is
when 0.8831 < s < 1000.

method of bounding Q(s) that is proposed in (13) is not only

effective but also corrects for the shortcoming of the Taylor-

expansion-based method (8), i.e., the local approximation at

the origin.

By recalling the tail inequality (6) and replacing the function

Q(s) with Hc(s), we obtain, for any 0 < Rt
ρ(σ2+V ) ≤ c,

2P
{
λmax

(∑

k

ξkAk

)
> t
}
= P

{∥∥∥
∑

k

ξkAk

∥∥∥ > t
}

(17)

≤





2d · exp
(
− β0

ρ(σ2+V ) · t2
)
, if 0 < Rt

ρ(σ2+V ) ≤ 1;

2d · exp
(
− β0·R

τc−2

[ρ·(σ2+V )]τc−1 · tτc
)
, if 1 < Rt

ρ(σ2+V ) ≤ c,

where τc = τ(β0, c). As shown in Fig. 5, the above result

provides a bound that is tighter than the one achieved by the

Bernstein-type results in (10) when Rt
ρ(σ2+V ) ∈ (0.8831, c),

and is only slightly looser than the Bernstein-type bound based

on B(s) when Rt
ρ(σ2+V ) ∈ (0, 0.8831).

Remark 3.4:

Since the function Hc(s) is defined on the bounded interval

(0, c], the result given in (17) cannot be used to analyze

the asymptotic behavior of P{λmax(
∑

k ξkAk) > t} as t

0 5 10 15
t

0

0.5

1

1.5

2

2.5

3

3.5

4

y

Q-based

B-based

T-based

Hc-based

Fig. 5. The curves of Q-based, B-based, T -based and Hc-based tail bounds,
where, for simplicity, the parameters are set as d = 2, R = 4 and ρ(σ2 +
V ) = 4.

goes to infinity. However, since Hc(s) bounds Q(s) from

below more tightly than B(s) (or T (s)) does on the bounded

domain s ∈ (08831, c], the result given in (17) provides a

more accurate description of the non-asymptotic behavior of

P{λmax(
∑

k ξkAk) > t} when Rt
ρ(σ2+V ) > 3. The following

alternative expressions for the Bernstein-type result given in

(10) and the Hc-based result given in (17) can respectively be

obtained: with probability at least 1− δ,

λmax

(
∑

k

ξkAk

)
≤ 4R(log 2d− log δ)

3
(18)

and

λmax

(
∑

k

ξkAk

)
≤
((

log 2d− log δ
)[
ρ(σ2 + V )

]τc−1

β0Rτc−2

) 1
τc

.

These expressions suggest that λmax

(∑
k ξkAk

)
is bounded

by the term O((log d)
1
τc ) with 1 < τc < 2, which is a tighter

bound than the right-hand side of the Bernstein-type result

(18) when the matrix dimension d is high.

IV. APPLICATIONS IN OPTIMIZATION

In this section, we will show that the derived tail inequalities

for random i.d. series can be used to solve two types of

optimization problems: chance constrained optimization prob-

lems and quadratic optimization problems with orthogonality

constraints. These optimization problems are reviewed in

Section IV-A, and Nemirovski’s conjecture [24] for efficiently

computable solutions to these two optimization problems is

introduced. We argue that the requirement in Nemirovski’s

conjecture is not practical, generalize the requirement using

matrix i.d. series, and provide a solution to the extended

version of Nemirovski’s conjecture in Section IV-B. Lastly,

we re-derive efficiently computable solutions to both types of

optimization problems with a matrix i.d. series requirement in

Section IV-C.
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A. Relevant Optimization Problems

It has been pointed out in the pioneering work of [24] that

the behavior of
∑

k ξkAk is strongly related to the efficiently

computable solutions to many optimization problems, e.g., the

chance constrained optimization problem and the quadratic

optimization problem with orthogonality constraints. Several

well-studied optimization problems are included in the latter as

special cases, such as the Procrustes problem and the quadratic

assignment problem. We begin with a brief introduction of

these optimization problems.

1) Chance Constrained Optimization Problem: Consider

the following chance constrained optimization problem (cf.

[25]): given an N -dimensional vector c ∈ RN and an

ǫ ∈ (0, 1), find

min
x∈RN

cTx subject to (19)

{
F(x) ≤ 0, (a);

P

{
A0(x)−

∑K
k=1 ξkAk(x) � 0

}
≥ 1− ǫ, (b),

where F : RN → RL is an efficiently computable vector-

valued function with convex components; A0,A1, · · · ,AK :
RN → SM are affine functions taking values in the space SM

of symmetric M ×M matrices with A0(x) � 0 for all x ∈
RN ; and ξ1, · · · , ξK are independent random variables with

zero mean. The main challenge in solving this optimization

lies in the chance constraint (19-b).

By letting A′
k(x) = (A0(x))

−1/2Ak(x)(A0(x))
−1/2, we

have

P

{
A0(x)−

K∑

k=1

ξkAk(x) � 0
}
= P

{ K∑

k=1

ξkA′
k(x) � I

}
.

It is subsequently necessary to find a sufficient condition for

the inequality

P

{
K∑

k=1

ξkA′
k(x) � I

}
≥ 1− ǫ, (20)

and to guarantee that the condition can be efficiently com-

putable in optimization. For example, So proposed the fol-

lowing condition [25]:

K∑

k=1

(A′
k(x))

2 � γI with γ = γ(ǫ) > 0. (21)

By using the Schur complement, it can be equivalently ex-

pressed as a linear matrix inequality:



γA0(x) A1(x) · · · AK(x)
A1(x) γA0(x)

...
. . .

AK(x) γA0(x)


 � 0. (22)

If the constraint (19-b) is replaced with the inequality (22),

the chance-constrained optimization problem will become

tractable. To guarantee the validity of this replacement, it is

necessary to consider the following problem:

(P1) Is the condition (21) sufficient for the inequality

(20)?

2) Quadratic Optimization Problems with Orthogonality

Constrains: Let M
M×N be the space of M × N real

matrices equipped with the trace inner product X • Y =
tr(XTY) = tr(YTX). Consider the following quadratic

optimization problem:

min
X∈MM×N

X • AX subject to





X • BiX ≤ 1, ∀ i = 1, · · · , I; (a)
CX = 0; (b)
‖X‖ ≤ 1, (c)

(23)

where A,B1, · · · ,BI : MM×N → MM×N are self-adjoint lin-

ear mappings (note that they can be represented as symmetric

MN ×MN matrices); B1, · · · ,BI are positive semidefinite;

C : MM×N → RL is a linear mapping (which can be

represented as symmetric L×MN matrices); and ‖X‖ is the

spectral norm of X. As addressed in [24], this optimization

problem covers many well-studied optimization problems with

the orthogonality constraint XTX = I as special cases,

e.g., the Procrustes problem and the quadratic assignment

problem. By exploiting the structure of these problems, the

orthogonality constraint XTX = I can be relaxed to the

constraint (23-c) without loss of generality.

The optimization problem can be directly tackled by using

the semidefinite programming (SDP) relaxation:

minD •Y subject to



Bi •Y ≤ 1, ∀ i = 1, · · · , I; (a)
CTC •Y = 0; (b)
S(Y) � IM , T (Y) � IN ; (c)
Y ∈ SMN , Y � 0, (d)

(24)

where SMN is the space of MN ×MN symmetric matrices;

D,B1, · · · ,BI are the MN ×MN symmetric matrices cor-

responding to the self-adjoint linear mappings D,B1, · · · ,BI

respectively; C is the L × MN matrix corresponding to

the mappings C; S : SMN → SM is the linear mapping

such that given X ∈ MM×N , XXT � IM if and only

if S
(
(VecX)(VecX)T

)
� IM ; and T : S

MN → S
N is

the linear mapping such that XTX � IN if and only if

T
(
(VecX)(VecX)T

)
� IN . Refer to Section 3.1.1 of [25]

for details of these notations.

By using the ellipsoid method, the solution Ŷ to the

optimization problem (24) can be obtained with an additive

error π > 0 in polynomial time. That is, if θ∗ is the optimal

value of (24), the ellipsoid method can be used for any π > 0
to obtain a solution Ŷ in polynomial time such that Ŷ is

feasible for (24) and satisfies θ̂ := A • Ŷ ≥ θ∗ − π, where

A is the MN ×MN symmetric matrix corresponding to the

self-adjoint linear mapping A in (23).

The solution X̂ ∈ MM×N to the optimization problem

(23) can be achieved by using Ŷ along with a degree of

randomness. Since Ŷ � 0, there exists a positive semidefinite

matrix Ŷ1/2 ∈ S
MN such that Ŷ = Ŷ1/2Ŷ1/2. Since

Ŷ1/2AŶ1/2 is also symmetric, it has a spectral decompo-

sition Ŷ1/2AŶ1/2 = UTΛU, where U is an MN ×MN
orthogonal matrix and Λ is an MN ×MN diagonal matrix.

Let ξ = (ξ1, ξ2, · · · , ξMN )T be an MN -dimensional random

vector, where ξn (1 ≤ n ≤ MN) are i.i.d. with zero mean



8

and unit variance. The solution X̂ is ultimately achieved via

Vec X̂ = Ŷ1/2UT ξ. Alternatively, X̂ can be expressed as

X̂ =

MN∑

i=1

ξiQi, (25)

where Qi ∈ RM×N and VecQi is the i-th column vector of

the matrix Ŷ1/2UT (1 ≤ i ≤ MN ). To explore the quality

of solution X̂, the following problem should be considered:

(P2) Does X̂ act as a high-quality solution to the opti-

mization problem (23) with a reasonable (at least

larger than 1/2) probability?

B. An Extension of Nemirovski’s Conjecture

Nemirovski [24] pointed out that the aforementioned two

problems P1 and P2 can be reduced to a question about the

behavior of the upper bound of Pr{‖∑k ξkAk‖ > t} and the

“optimal” answer to this question can be achieved by resolving

the following conjecture:

Conjecture 4.1: ([24, 25]) Let ξ1, · · · , ξK be i.i.d. random

variables with zero mean, each of which obeys either dis-

tribution supported on [−1, 1] or Gaussian distribution with

unit variance. Let A1, · · · ,AK be arbitrary M ×N matrices

satisfying

K∑

k=1

AkA
T
k � IM and

K∑

k=1

AT
k Ak � IN .

Then, whenever t = O
[√

ln(M +N)
]
, we have

P

{∥∥∥∥∥

K∑

k=1

ξkAk

∥∥∥∥∥ > t

}
≤ θ1 · exp(−θ2 · t2), (26)

where θ1 and θ2 are absolute constants.

Nemirovski [24] showed that the inequality (26) is achieved

when t = O
[
(ln(M + N))

1
6

]
, while there is a gap between

this value of t and the conjectured value O
[√

ln(M +N)
]
.

Anthony So used a non-commutative Khintchine inequality to

show that when t = O
[√

(1 + α) ln max{M,N}
]
, for any

α ≥ 1/2 (cf. [25]),

P

{∥∥∥∥∥

K∑

k=1

ξkAk

∥∥∥∥∥ > t

}
≤ O

[
(max{M,N})−α

]
. (27)

Note that these results are built under the assumption that

ξ1, · · · , ξK are either Gaussian distributions or distributions

supported on [−1, 1]. However, the assumption will not always

be satisfied in practice. Therefore, we extend the content of the

conjecture to the i.d. scenario, i.e., whether the inequality (26)

is still valid when ξ1, · · · , ξK are independent i.d. random vari-

ables with zero mean and unit variance. The following theorem

provides a solution to the extended version of Nemirovski’s

conjecture.

Theorem 4.1: Assume that A1, · · · ,AK are fixed M ×N
matrices satisfying λmax(D(Ak)) ≤ 1 for any 1 ≤ k ≤ K
and denote ρ1 := λmax(

∑
k D

2(Ak)), where

D(A) :=

[
0 A

A∗ 0

]
.

Let ξ1, · · · , ξK be independent i.d. random variables with

the triplet (b, σ2, ν), each of which has zero mean and

unit variance. Suppose that ν has a bounded support with

R = inf{α > 0 : ν({u : |u| > α}) = 0} and set

V :=
∫
R
|u|2ν(du). For any α > 0, denote

cα :=
(1 + α) ln(M +N)√

β0
·max{1,

√
R}

×max
{
1,

√
ρ1(σ2 + V )

R

}
.

Let τα := τ(β0, cα) ∈ (1, 2], where τ(·) is defined in (14) and

β0 = 2 ln 2− 1. Then, when

t =

[
(1 + α) · [ρ1(σ2 + V )]τα−1 · ln(M +N)

β0 · Rτα−2

] 1
τα

>
σ2 + V

R
, (28)

it holds that

P

{∥∥∥∥∥

K∑

k=1

ξkAk

∥∥∥∥∥ > t

}
≤ (M +N)−α, α > 0. (29)

This theorem shows that if ξ1, · · · , ξK are i.d. distributions,

the probability that ‖∑K
k=1 ξkAk‖ > t can also be bounded

by the term (M + N)−α (α > 0) when t = O
[
((1 +

α) lnmax{M,N})1/τ ] (1 < τ ≤ 2). This solution is in

accordance with So’s solution (27) to the original Nemirovski

conjecture up to some constant. Therefore, the discussion in

Section IV-A is also valid in the setting of matrix i.d. series.

Remark 4.1: According to the tail inequality (17), when

t =

√
(α+ 1) · [ρ1(σ2 + V )] · ln(M +N)

β0
≤ σ2 + V

R
,

the result (29) still holds. However, to satisfy this condition, an

assumption about the distribution of the i.d. random variable

ξk needs to be imposed, i.e., the value of R should be small

enough. This will restrict the generality of the result, so we

omit it here.

C. Solutions to Problems P1&P2

In this section, we will provide solutions to the aforemen-

tioned problems P1 and P2 in the i.d. scenario. By using the

tail inequality (17), we first arrive at the solution to Problem

P1:

Theorem 4.2: Consider the chance constrained optimization

problem (19). Let ξ1, · · · , ξK be independent i.d. random

variables satisfying the conditions in Theorem 4.1. Denote

ρ2 := λmax(
∑

k(A′
k(x))

2). For any ǫ ∈ (0, 1/2], let c > 1
satisfy that

2M exp

(
−c

2β0ρ2(σ
2 + V )

R2

)
≤ ǫ. (30)

If it holds that
K∑

k=1

(A′
k(x))

2 � γI (31)



9

with

γ ≤ γ2(ǫ) :=

(
β0R

τc−2

[
ρ2(σ2 + V )

]τc−1
log(2Mǫ )

) 1
τc

,

then the positive semidefinite constraint (22) is a tractable

approximation of the constraint (19-b).

Note that since τc = τ(β0, c) takes value from the interval

(1, log(2)
2 log(2)−1

)
when c > 1, γ2(ǫ) = O

(
log(2Mǫ )−1/τc

)
is

smaller than the value γ = O
(
log(Mǫ )

−1/2
)

obtained in the

scenario of either the distributions with [−1, 1] support or

Gaussian distributions (cf. [25]) when the matrix size M is

large.

Next, we consider the solution to Problem P2 in the matrix

i.d. scenario. Consider the quadratic optimization problem

(23). The following theorem proves the properties of the

solution X̂ =
∑MN

i=1 ξiQi in (25).

Theorem 4.3: Following the notations in (23) and (24). Let

ξ1, · · · , ξMN be independent i.d. random variables satisfying

the conditions in Theorem 4.1. Then, it holds that

i) E
{
X̂ • DX̂

}
= θ̂;

ii) E
{
X̂ • BiX̂

}
≤ 1, ∀i = 1, · · · , I;

iii) CX̂ = 0;

iv) E
{
X̂X̂T

}
= IM and E

{
X̂T X̂

}
= IN .

Its proof is similar to the proof of Proposition 1 in [25], so

we omit it here.

This theorem shows that the matrix i.d. series X̂ =∑MN
j=1 ξjQj satisfies the constraints of the original optimiza-

tion problem (23) when taking expectation. It remains to

justify whether X̂ can also satisfy the constraints (23-a) and

(23-c) with reasonable probability (at least larger than 1/2).

Theorem 4.4: Assume that ξ1, · · · , ξMN are independent

i.d. random variables satisfying the conditions in Theorem

4.1. Let B′
i = UŶ1/2BiŶ

1/2UT (i = 1, · · · , I) and denote

by colj [(B
′
i)

1/2] the matrix whose j-th column is the j-th
column of the matrix (B′

i)
1/2 and the other entries are all

zero (j = 1, · · · ,MN ). Denote ρ3 := λmax(
∑MN

j=1 Q2
j) and

ρ
(i)
4 := λmax

(∑MN
j=1 (colj [(B

′
i)

1/2])2
)
. Then, with probability

at least 1/2, it holds that

‖X̂‖ ≤
[
3[ρ3(σ

2 + V )]τ2−1 · ln(M +N)

β0 ·Rτ2−2

] 1
τ2

, (32)

and for any 1 ≤ i ≤ I

X̂ • BiX̂ ≤
[
3[ρ

(i)
4 (σ2 + V )]τ2−1 · ln(M +N)

β0 ·Rτ2−2

] 2
τ2

. (33)

This theorem implies that

X := X̂ ·
[
3[ρ∗(σ

2 + V )]τ2−1 · ln(M +N)

β0 · Rτ2−2

]−1
τ2

is feasible to the quadratic optimization problem

(23) with a probability larger than 1/2, where

ρ∗ = max{ρ3, ρ(1)4 , ρ
(2)
4 , · · · , ρ(I)4 }. It thus also provides a

solution to Problem P2.

V. CONCLUSION

The class of i.d. distributions is large and includes important

probability distributions, such as Gaussian and Poisson distri-

butions, that are widely used in several fields. To the best of

our knowledge, however, little work has been done on random

matrix theory with respect to i.d. distributions. In this paper,

we are mainly concerned with the tail inequalities of the largest

eigenvalue of a matrix i.d. series, and our results encompass

Tropp’s work [1] on matrix Gaussian series as a special case.

Our proof strategy is as follows. We first relax the Bennett-type

result (6) into a Bernstein-type result (10) by replacing Q(s)
with B(s) or T (s) (8). Subsequently, we present an upper

bound on the expectation E
∥∥∑

k ξkAk

∥∥, which is looser than

the bound for the Gaussian case (cf. Inequality (4.9) of [1])

because of the existence of compound Poisson components in

the i.d. distribution (cf. the Lévy-Itô decomposition).

Since the function B(s) does not bound Q(s) from below

sufficiently tightly (cf. Fig. 4), we develop a new lower-bound

function HP (s) to bound Q(s) from below on a bounded

domain s ∈ (0, c], where the partition P = {S0, S1, · · · , SN}
is an ordered sequence such that 1 = S0 < S1 < · · · <
SN = c for any given c ∈ (1,+∞). Although HP (s) is

a piecewise function, its computational cost is low because

all sub-functions of HP (s) are uniformly expressed in the

form β0 · sτn, where β0 = 2 log 2 − 1 and τn = τ(β0, Sn)
(n = 1, 2, · · · , N ). Based on HP (s), we obtain another

tail inequality for matrix i.d. series that is tighter than the

Bernstein-type result given in (10) when Rt
ρ(σ2+V ) > 0.8831

and provides a tighter upper bound on λmax

(∑
k ξkAk

)
when

the matrix dimension d is high. Our results concerning the

functions Q(s) and HP (s) are also applicable for any Bennett-

type concentration inequality that involves the function Q(s).
In addition, we study the application of random i.d. series in

several optimization problems including 1) the safe tractable

approximation of chance constrained linear matrix inequalities,

and 2) the quality of the semidefinite relaxation of a general

non-convex quadratic optimization problem with orthogonal-

ity constraints, which covers two well-studied optimization

problems as special cases: the Procrustes problem and the

quadratic assignment problem. These two problems have been

extensively studied in [24, 25] under the assumption that {ξk}
are sub-Gaussian, whereas in reality this assumption will not

always be satisfied. We are able to extend the feasibility

of the findings in [24, 25] to the case in which {ξk} are

i.d. distributions.

Since the tail inequalities considered in this paper depend

on the matrix dimension, they will become loose in the

high-dimensional case [12]. Similar to the results obtained

in existing works, these inequalities can be improved by

introducing the concept of effective dimension [15] or intrinsic

dimension [14]. In our future work, we will also consider the

extension of these results to the infinite-dimensional case.

APPENDIX A

LÉVY MEASURE

Before introducing the Lévy measure, we first present a

discussion of Lévy processes. For further details, the reader is
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referred to [27].

Definition A.1 (Lévy Process): A process X = {Xt : t ≥ 0},

defined on a probability space (Ω,F ,P), is said to be a Lévy

process if it has the following properties:

1) The paths of X are P-almost surely right continuous

with left limits.

2) P(X0 = 0) = 1.

3) For 0 ≤ s ≤ t, Xt−Xs is equal in distribution to Xt−s.

4) For 0 ≤ s ≤ t, Xt−Xs is independent of {Xu : u ≤ s}.

Given a Lévy process {Xt : t ≥ 0}, consider the jump process

∆X := {∆Xt}0≤t≤T , that is,

∆Xt = Xt −Xt− , ∀ 0 ≤ t ≤ T,

where Xt− := lims→t− Xs. It follows Definition A.1 that for

any fixed t > 0, ∆Xt = 0 almost surely.

Moreover, given a set A ∈ B(R/{0}) such that 0 /∈ A, let

the random measure of the jumps be defined as

µ(ω; t, A) :=#{0 ≤ s ≤ t; ∆Xs(ωs) ∈ A}
=
∑

s≤t

1A(∆Xs(ωs)), 0 ≤ t ≤ T,

where ω denotes joint probability events in the time interval

[0, t] and ωs denotes events related to the s-time distribution of

the Lévy process {Xt : t ≥ 0}. As defined above, the measure

µ(ω; t, A) counts the number of jumps of a size included in

A up to time t in the process {Xt : t ≥ 0}.

The Lévy measure is finally defined as

ν(A) :=E
{
µ(ω; 1, A)

}
= E




∑

s≤1

1A(∆Xs(ωs))





=
∑

s≤1

E
{
1A(∆Xs(ωs))

}
(jumps are independent)

=
∑

s≤1

Es

{
1A(∆Xs(ωs))

}
,

where the expectations E and Es are taken w.r.t. ω and ωs,

respectively. The Lévy measure describes the expected number

of jumps of a certain height (belonging to A) in a time interval

of unit length.

APPENDIX B

PROOFS OF THE MAIN RESULTS

Here, we prove Lemma 2.1, Theorem 3.1, Corollary 3.1,

Theorem 3.2 and Theorem 4.1.

A. Proof of Lemma 2.1

Let ψ(θ) : R → C denote the characteristic function of

the i.d. random variable ξ ∈ R with the triplet (b, σ2, ν). Let

(ξ0, ξ
′
0), (ξ1, ξ

′
1) ∈ R×R be i.d. vectors with the characteristic

functions ψ0(θ, θ
′) = ψ(θ) · ψ(θ′) and ψ1(θ, θ

′) = ψ(θ + θ′)

(θ, θ′ ∈ R) respectively. For any 0 ≤ r ≤ 1, let (ξr , ξ
′
r) be a

random vector with the characteristic function4

ψr(θ, θ
′) :=

[
ψ0(θ, θ

′)
]1−r ·

[
ψ1(θ, θ

′)
]r

=
[
ψ(θ) · ψ(θ′)

]1−r[
ψ(θ + θ′)

]r
. (34)

Remark B.1: Here, we justify why ψr(θ, θ
′) is a charac-

teristic function. Recalling Definition 2.1, we have φ(θ) =
logψ(θ), thus rφ(θ) = log

[
ψ(θ)

]r
for any 0 ≤ r ≤ 1.

It follows from Theorem 2.1 that
[
ψ(θ)

]r
is the character-

istic function of the i.d. random variable with the triplet

(rb, rσ2, rν). Since the product of a finite number of char-

acteristic functions is also a characteristic function, the term

ψr(θ, θ
′) is a characteristic function.

To prove Lemma 2.1, we first need the following lemma,

which is the one-dimensional case of Proposition 2 of [35].

Lemma B.1: Let ξ be an i.d. random variable with the triplet

(b, σ2, ν). If f, g : R → R are differentiable functions such

that E|f(ξ)|,E|g(ξ)|,E|f(ξ)g(ξ)| <∞, then

Ef(ξ)g(ξ) − Ef(ξ)Eg(ξ) =

∫ 1

0

Er

{
σ2

▽f(ξr) · ▽g(ξr)

+

∫

R

(
f(ξr + u)− f(ξr)

)(
g(ξ′r + u)− g(ξ′r)

)
ν(du)

}
dr,

where the expectation Er is taken on the joint distribution of

(ξr, ξ
′
r) and ▽ is the derivative notation.

The expectation Er has the following properties:

Lemma B.2: If ψr(−iθ,−iθ′) exists for any r ∈ [0, 1], it

holds that

Er

{
eθξ

′

r

}
= E

{
eθξ
}
. (35)

Proof of Lemma B.2. According to (34), for any r ∈ [0, 1],
we arrive at

Er

{
eθξ

′

r

}
=ψr(−i0,−iθ)
=
[
ψ(−i0) · ψ(−iθ)

]1−r[
ψ(−i0− iθ)

]r

=
[
ψ(−iθ)

]1−r[
ψ(−iθ)

]r

=ψ(−iθ) = E
{
eθξ
}
. (36)

This completes the proof. �

Lemma 2.1 can be proven by using the techniques presented

in Houdré’s work [31].

Proof of Lemma 2.1. As stated in Theorem 25.3 of [36],

since the function ey (y ∈ R) is submultiplicative, it holds

that

Ω :=
{
s ≥ 0 : Ees|ξ| < +∞

}

=

{
s ∈ R :

∫

|u|>1

es|u|ν(du) < +∞
}
.

4Recalling Definition 2.1, we have φ(θ) = logψ(θ), thus rφ(θ) =
log

[

ψ(θ)
]r

for any 0 ≤ r ≤ 1. It follows from Theorem 2.1 that
[

ψ(θ)
]r

is the characteristic function of an i.d. random variable with the triplet
(rb, rσ2, rν). Since the product of a finite number of characteristic functions
is also a characteristic function, the function ψr(θ, θ′) is ultimately proven
to be a characteristic function.
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Since 0 < es|u| − s|u| − 1 < es|u|, it follows the definition of

the Lévy measure ν (cf. Definition 2.2) that

Ω =

{
s ≥ 0 :

∫

|u|>1

(
es|u| − s|u| − 1

)
ν(du) < +∞

}
.

Based on the convexity of the exponential function, the set Ω
is an interval of R and contains zero, but it cannot degenerate

to {0}. We adopt the notation Ω = [0,M ] with

M = sup

{
s ≥ 0 :

∫

|u|>1

es|u|ν(du) < +∞
}
.

Thus, the following discussion is valid.

By Lemma B.1, we have

E
{
ξ · esξ

}
− Eξ · Eesξ

=

∫ 1

0

Er

{
σ2 · de

sξ′r

dξ′r

+

∫

R

(ξr + u− ξr)
(
es(ξ

′

r+u) − esξ
′

r

)
ν(du)

}
dr

=

∫ 1

0

Er

{
sesξ

′

rσ2 + esξ
′

r

∫

R

u
(
esu − 1

)
ν(du)

}
dr

≤
(
σ2s+

∫

R

|u|
(
es|u| − 1

)
ν(du)

)
·
∫ 1

0

Er

{
esξ

′

r

}
dr

=

(
σ2s+

∫

R

|u|
(
es|u| − 1

)
ν(du)

)
· E
{
esξ
}
. (37)

The last equality is derived from Lemma B.2.

Let L(s) := Eesξ
′

. It follows from Eξ = 0 that

dL(s)

ds

1

L(s)
=

Eξesξ

Eesξ
≤ σ2s+

∫

R

|u|
(
es|u| − 1

)
ν(du).

Therefore, we have
∫ θ

0

dL(s)

ds

1

L(s)
ds

≤
∫ θ

0

(
σ2s+

∫

R

|u|
(
es|u| − 1

)
ν(du)

)
ds,

thus

logEesξ
∣∣∣
θ

0
≤ σ2θ2

2
+

∫

R

(
eθ|u| − θ|u| − 1

)
ν(du). (38)

From the proof of Lemma 6.7 in [1], we obtain the following

inequality:

eλθ|u| − λθ|u| − 1

λ2
≤ eθ|u| − θ|u| − 1, ∀λ ≤ 1. (39)

By combining (38) and (39), we have for any λ ≤ 1,

Eeλθξ ≤ exp

(
σ2θ2λ2

2
+ λ2

∫

R

(
eθ|u| − θ|u| − 1

)
ν(du)

)
.

Given a self-adjoint matrix A with λmax(A) ≤ 1, it follows

the transfer rule that

EeξθA � eΦ(θ)·A2

, (40)

where for any 0 < θ < M ,

Φ(θ) :=
σ2θ2

2
+

∫

R

(
eθ|u| − θ|u| − 1

)
ν(du). (41)

This completes the proof. �

B. Proof of Theorem 3.1

Proof of Theorem 3.1: Let ρ := λmax

(∑
k A

2
k

)
. It follows

from Lemma 2.1 that, for any t > 0,

P

{
λmax

(∑

k

ξkAk

)
> t

}

≤e−θt · tr exp
(
∑

k

logEeθtkAk

)

≤e−θt · tr exp
(
Φ(θ) ·

∑

k

A2
k

)

≤e−θt · d · λmax

(
exp

(
Φ(θ) ·

∑

k

A2
k

))

=d · exp
(
−θt+Φ(θ) · λmax

(
∑

k

A2
k

))

=d · exp (−θt+Φ(θ) · ρ) , (42)

where the first inequality follows from Theorem 3.6 of [1].

By (4), since Eeθξ < +∞ for all 0 < θ < M , Φ(θ) is

infinitely differentiable on (0,M), with

Φ′(θ) := α(θ) = σ2θ +

∫

R

|u|
(
eθ|u| − 1

)
ν(du) > 0, (43)

and

Φ′′(θ) = σ2 +

∫

R

|u|2eθ|u|ν(du) > 0. (44)

Then, we minimize the right-hand side of (42) w.r.t. θ.

According to (43) and (44), for any 0 < t < α(M−)
ρ ,

min0<θ<M {ρ · Φ(θ) − θ · t} is achieved when θ = α−1(t/ρ).
Since Φ(0) = α(0) = α−1(0) = 0, we have

Φ
(
α−1(t/ρ)

)
=

∫ α−1(t/ρ)

0

α(s) ds

=

∫ t/ρ

0

s dα−1(s)

=(t/ρ) · α−1(t/ρ)−
∫ t/ρ

0

α−1(s) ds. (45)

Thus, for any 0 < t < α(M−)
ρ ,

min
0<θ<M

{ρ · Φ(θ) − θ · t} =ρ · Φ
(
α−1(t/ρ)

)
− t · α−1(t/ρ)

=− ρ ·
∫ t/ρ

0

α−1(s)ds.

This completes the proof. �

C. Proof of Corollary 3.1

Proof of Corollary 3.1: Since the support is supp(ν) ⊆
[−R,R], it holds that Eeθ|ξ| < +∞ for any θ > 0. Thus, we
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have

α(θ) =σ2θ +

∫

R

|u|
(
eθ|u| − 1

)
ν(du)

=σ2θ +

∫

|u|≤R

|u|2
(

∞∑

k=1

θk|u|k−1

k!

)
ν(du)

≤σ2θ +

∫

|u|≤R

|u|2
(

∞∑

k=1

θkRk−1

k!

)
ν(du)

=σ2θ + V

(
eθR − 1

R

)
≤ (σ2 + V )

(
eθR − 1

R

)
. (46)

Note that if the strictly increasing functions α, β : R+ → R+

satisfy α(s) ≤ β(s) for all s ≥ 0, then their inverse functions

satisfy β−1(s) ≤ α−1(s) for all s ≥ 0. As shown in (43) and

(44), α(s) is an increasing function, thus α−1(s) is also an

increasing function. By combining (5) and (46), we obtain, for

any t > 0,

P

{
λmax

(
∑

k

ξkAk

)
> t

}

≤d · exp
(
−ρ ·

∫ t/ρ

0

α−1(s)ds

)

≤d · exp
(
−ρ ·

∫ t/ρ

0

1

R
· log

(
1 +

Rs

σ2 + V

)
ds

)

=d · exp
(
−ρ(σ

2 + V )

R2
·Q
(

Rt

ρ(σ2 + V )

))
,

where Q(s) := (1 + s) · log(1 + s) − s. This completes the

proof. �

D. Proof of Theorem 3.2

Proof of Theorem 3.2: Based on the special partition S0 =
1 and S1 = +∞, we arrive at the following tail inequality for

a matrix i.d. series: for any t ∈ (0,+∞)/{1},

P

{∥∥∥
∑

k

ξkAk

∥∥∥ > t

}
(47)

≤





2d · exp
(
−β0t

R

)
, if t > ρ(σ2+V )

R ;

2d · exp
(
− β0t

2

ρ(σ2+V )

)
, if 0 < t ≤ ρ(σ2+V )

R ,

where β0 = 2 log 2 − 1. Since x + e−x ≤ 1 + x2/2 (x > 0),

we have

E

∥∥∥
∑

k

ξkAk

∥∥∥ =

∫ +∞

0

P

{∥∥∥
∑

k

ξkAk

∥∥∥ > t

}
dt

≤β−1
0 · log

(
2d · e

ρ(σ2+V )
R

)

+ 2d ·
∫ +∞

β−1
0 log

(
2d·e

ρ(σ2+V )
R

) e−β0tdξ

=β−1
0 · log

(
2d · e

ρ(σ2+V )
R

)
+ β−1

0 · e−
ρ(σ2+V )

R

=β−1
0 · log

(
2d · e

ρ(σ2+V )
R

+e−
ρ(σ2+V )

R

)

≤β−1
0 · log

(
2d · e1+

ρ2(σ2+V )2

2R2

)
.

This completes the proof. �

E. Proof of Theorem 4.1

Proof of Theorem 4.1: First, if t satisfies the condition

(28), we have

t =

[
(α+ 1) · ln(M +N) · [ρ1(σ

2 + V )]τα−1

β0 ·Rτα−2

] 1
τα

=

[
(α+ 1) ·R · ln(M +N)

β0

] 1
τα

· [ρ1(σ
2 + V )]1−

1
τα

R1− 1
τα

.

Since it follows from (14) and (15) that 1 < τα ≤ 2 for any

α > 0, we arrive at

t <
(α + 1) ln(M +N)√

β0
·max{1,

√
R}·max

{
1,

√
σ2 + V

R

}
,

which suggests that t < cα (∀α > 0). By using the dilation

method (cf. Section 2.6 of [1]), we then have
∥∥∥∥∥

K∑

k=1

ξkAk

∥∥∥∥∥ = λmax

(
K∑

k=1

ξkD(Ak)

)
, (48)

where

D(A) :=

[
0 A

A∗ 0

]
.

Note that smax(Ak) = λmax(D(Ak)) ≤ 1 for all k =
1, 2, · · · ,K . According to (17), we then arrive at

P

{∥∥∥∥∥
∑

k

ξkAk

∥∥∥∥∥ > t

}

=P

{
λmax

(
∑

k

ξkD(Ak)

)
> t

}
(49)

≤





(M +N) · exp
(
− β0

ρ1(σ2+V ) · t2
)
,

if 0 < Rt
ρ1(σ2+V ) ≤ 1;

(M +N) · exp
(
− β0·R

τcα−2

[ρ1(σ2+V )]τcα−1 · tτcα
)
,

if 1 < Rt
ρ1(σ2+V ) ≤ cα,

Substituting (28) into the last inequality of (49) leads to the

result (29). This completes the proof. �

F. Proof of Theorem 4.2

Proof of Theorem 4.2: According to (31), it holds that

λmax

(
A′

k(x)/γ
)
≤ 1. We will consider two cases respectively:

1) γ ≥ R
ρ2(σ2+V ) ; and 2) R

cρ2(σ2+V ) ≤ γ < R
ρ2(σ2+V ) for an

arbitrary c > 1.

When γ ≥ R
ρ(σ2+V ) , it follows from (6) that

P

{∥∥∥∥∥
∑

k

ξk

( 1
γ
A′

k(x)
)∥∥∥∥∥ >

1

γ

}

≤2M exp

{
− β0
ρ2(σ2 + V )γ2

}
. (50)

Given an ǫ ∈ (0, 1/2), if it satisfies that 2M exp
{

−
β0

ρ(σ2+V )γ2

}
≤ ǫ, then the choice of γ should satisfy that

γ ≤ γ1(ǫ) :=

√
β0

ρ2(σ2 + V ) log
(
2M
ǫ

) , (51)
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and meanwhile guarantee that R
ρ2(σ2+V ) ≤ γ1(ǫ), which means

that

ǫ > 2M · exp
(
−β0ρ2(σ

2 + V )

R2

)
.

This relation is only valid when R is sufficiently large, so the

case of γ ≥ R
ρ2(σ2+V ) is not friendly enough to facilitate the

optimization problem. We will omit this case

When R
cρ2(σ2+V ) ≤ γ < R

ρ2(σ2+V ) for an arbitrary c > 1, it

also follows from (17) that

P

{∥∥∥∥∥
∑

k

ξk

( 1
γ
A′

k(x)
)∥∥∥∥∥ >

1

γ

}

≤2M exp

{
− β0R

τc−2

[
ρ2(σ2 + V )

]τc−1
γτc

}
. (52)

For any ǫ ∈ (0, 1/2), if the right-hand side of (52) can be

bounded by the constant ǫ, the choice of γ should satisfy the

following condition:

γ ≤ γ2(ǫ) :=

(
β0R

τc−2

[
ρ2(σ2 + V )

]τc−1
log(2Mǫ )

) 1
τc

.

It is clear that when

2M exp

(
−c

2β0ρ2(σ
2 + V )

R2

)

≤ ǫ ≤ 2M exp

(
−β0ρ2(σ

2 + V )

R2

)
, (53)

it holds that R
cρ2(σ2+V ) ≤ γ ≤ γ2(ǫ) <

R
ρ2(σ2+V ) . The first

inequality of (53) holds by setting appropriate c > 1 and the

second inequality holds when ǫ is small enough. Therefore, the

validity of the inequality (53) is guaranteed. We then arrive at

P

{
∑

k

ξkA′
k(x) � I

}
= P

{∥∥∥∥∥
∑

k

ξkA′
k(x)

∥∥∥∥∥ ≤ 1

}

=P

{∥∥∥∥∥
∑

k

ξk

(1
γ
A′

k(x)
)∥∥∥∥∥ ≤ 1

γ

}
> 1− ǫ. (54)

This completes the proof. �

G. Proof of Theorem 4.4

Proof of Theorem 4.4: By setting α = 2, it follows from

Theorem 4.1 that with probability at least 1/4,

‖X̂‖ ≤
[
3[ρ3(σ

2 + V )]τ2−1 · ln(M +N)

β0 ·Rτ2−2

] 1
τα

. (55)

For any 1 ≤ i ≤ I , we have

X̂ • BiX̂ = Bi • Ŷ1/2UT ξξTUŶ1/2 = ξTB′
iξ,

where B′
i = UŶ1/2BiŶ

1/2UT � 0 because Bi � 0. Then,

we can equivalently rewrite

X̂ • BiX̂ = ‖(B′
i)

1/2ξ‖2 =

∥∥∥∥∥∥

MN∑

j=1

ξjcolj [(B
′
i)

1/2]

∥∥∥∥∥∥

2

.

According to Theorem 4.1, for any i = 1, 2, · · · , I , we have

with probability at least 1/4,

X̂ • BiX̂ ≤
[
3[ρ

(i)
4 (σ2 + V )]τ2−1 · ln(M +N)

β0 · Rτ2−2

] 2
τ2

. (56)

Therefore, both of the inequalities (55) and (56) are valid with

probability at least 1− (1/4+1/4) = 1/2. This completes the

proof. �
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