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Abstract

In this paper, we investigate the partition inequality, joint convexity, and Pinsker’s inequality, for a divergence that generalizes
the Tsallis Relative Entropy and Kullback–Leibler divergence. The generalized divergence is defined in terms of a deformed
exponential function, which replaces the Tsallis q-exponential. We also constructed a family of probability distributions related to
the generalized divergence. We found necessary and sufficient conditions for the partition inequality to be satisfied. A sufficient
condition for the joint convexity was established. We proved that the generalized divergence satisfies the partition inequality, and
is jointly convex, if, and only if, it coincides with the Tsallis relative entropy. As an application of partition inequality, a criterion
for the Pinsker’s inequality was found.
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Kullback–Leibler divergence, Tsallis relative entropy, generalized divergence, family of probability distributions, partition
inequality, joint convexity, Pinsker’s inequality.

I. INTRODUCTION

Statistical divergences play an essential role in Information Theory [1]. Divergence can be interpreted as a measure of

dissimilarity between two probability distributions. Applications that use it span from areas such as communications to

econometric and other physical systems [1]. Entropy can be derived from the notion of divergence. Numerous definitions

of divergence can be found in the literature. The interest in different statistical divergences is motivated by applications related

to optimization and statistical learning, since more flexible functions and expressions may be suitable for larger classes of data

and signals, leading to more efficient information recovery methods [2], [3], [4]. The divergence usefulness depends on its

properties, such as non negativity, monotonicity and joint convexity, among others.

The counterpart of Shannon entropy is the well-known Kullback–Leibler (KL) divergence [5], denoted by DKL(· || ·), which

is extensively used in Information Theory. Tsallis relative entropy Dq(· || ·), which generalizes KL divergence, is defined in

terms of the q-logarithm [6], [7]. Both KL divergence and Tsallis relative entropy satisfy some important properties, such as

non negativity, joint convexity, and Pinsker’s inequality [8], [9], [10]. A generalized divergence Dϕ(· || ·) can be defined in

terms of a deformed exponential function ϕ, which plays the role of q-logarithm in Tsallis relative entropy. The generalized

divergence appeared before in the literature, as a specific case in a broader class of divergences. Zhang in [11] introduced

a divergence denoted by D
(α)
f,ρ (· || ·), where α ∈ [−1, 1], andf and ρ are functions. The generalized divergence corresponds

to Zhang’s divergence with α = −1, and ρ = f−1 = ϕ−1 for a deformed exponential function ϕ. In [12], another class of

divergences was investigated. The divergences Dc
β(· || ·) in this class are given in terms of parameters β = (φ,M1,M2,M3, λ).

Expression (1) in [12], which defines Dc
β(· || ·), reduces to the generalized divergence, with φ = −ϕ−1, M1 = 1, M2 = 1,

M3 = (ϕ−1)′(q), and λ = λ# is the counting measure.

In [11], [12], the proposed divergences were investigated from a geometric and minimization perspectives. Some properties,

which are useful in Information Theory, have not been analyzed for these divergences. In this work, we investigate the partition

inequality, joint convexity, and Pinsker’s inequality. We also consider the family of probability distributions associated with the

generalized divergence Dϕ(· || ·). We showed necessary and sufficient conditions for the generalized divergence to satisfy the

partition inequality. A sufficient condition for the joint convexity of Dϕ(· || ·) was found. We proved that Dϕ(· || ·) satisfies the

partition inequality, and is jointly convex, if, and only if, it coincides with the Tsallis relative entropy Dq(· || ·). Ours results

for Pinsker’s inequality are in accordance to previous works [13], [14].

The rest of paper is organized as follows. In Section II-A we provide the definition of generalized divergence. Section II-B

is devoted to the construction of a family of probability distributions. Properties of the generalized divergence are studied in

Section III. Finally, conclusions and perspectives are stated in Section IV.
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II. GENERALIZED DIVERGENCE

The generalized divergence is defined in terms of a deformed exponential function ϕ(·). Writing the KL divergence or Tsallis

relative entropy in appropriate form, we can obtain the generalized divergence by replacing ln(·) or lnq(·) by the inverse of a

deformed exponential ϕ−1(·). We also provide a construction of a family of probability distributions related the generalized

divergence.

A. Definitions

For simplicity we denote the set of all probability distributions on In = {1, . . . , n} by

∆n =

{

(p1, . . . , pn) :

n
∑

i=1

pi = 1 and pi ≥ 0 for all i

}

.

The generalized divergence is defined for probability distribution in the interior of ∆n, which is denoted by ∆◦
n. A probability

distribution p = (pi) belongs to ∆◦
n if and only if pi > 0 for each i,

A deformed exponential function is a convex function ϕ : R → [0,∞) such that limu→−∞ ϕ(u) = 0 and limu→∞ ϕ(u) = ∞.

It is easy to verify that the ordinary exponential and Tsallis q-exponential are deformed exponential functions. The Tsallis

q-exponential expq : R → [0,∞) is given by

expq(x) =

{

[1 + (1 − q)x]
1/(1−q)
+ , if q ∈ (0, 1],

exp(x), if q = 1,

where [x]+ = x for x ≥ 0, and = 0 otherwise. The Tsallis q-logarithm lnq : (0,∞) → R is defined as the inverse of expq(·),
which is given by lnq(x) =

1
1−q (x

1−q − 1) if q ∈ (0, 1].
Fixed a deformed exponential function ϕ : R → [0,∞), the generalized divergence (or generalized relative entropy) between

two probability distributions p = (pi) and q = (qi) in ∆◦
n is defined as

Dϕ(p || q) =
n
∑

i=1

ϕ−1(pi)− ϕ−1(qi)

(ϕ−1)′(pi)
. (1)

Clearly, expression (1) reduces to the KL divergence DKL(p || q) = −
∑n

i=1 pi ln
(

qi
pi

)

if ϕ is the exponential function. Tsallis

relative entropy in its standard form is given by Dq(p ‖ q) = −
∑n

i=1 pi lnq
(

qi
pi

)

. The equality

−pi
(qi/pi)

1−q − 1

1− q
=

1

pqi

(p1−q
i − 1

1− q
−
q1−q
i − 1

1− q

)

shows that Dq(· ‖ ·) can be written as in (1) if ϕ is the Tsallis q-exponential.

The non-negativity of Dϕ(· ‖ ·) is a consequence of the concavity of ϕ−1(·). Because ϕ−1(·) is concave, it follows that

(y − x)(ϕ−1)′(y) ≤ ϕ−1(y)− ϕ−1(x), for all x, y > 0. (2)

Using this inequality with y = pi and x = qi, we can write

Dϕ(p ‖ q) =
n
∑

i=1

ϕ−1(pi)− ϕ−1(qi)

(ϕ−1)′(pi)
≥

n
∑

i=1

(pi − qi) = 0.

Its is clear that Dϕ(p ‖ q) = 0 if p = q. The converse depends on whether ϕ−1(x) is strictly concave. Indeed, if we suppose

that ϕ−1(x) is strictly concave, then an equality in equation (2) is attained if and only if x = y. Therefore, when ϕ−1(x) is

strictly concave, the equality Dϕ(p ‖ q) = 0 is satisfied if and only if p = q.

In addition to similarities between the generalized divergence, KL divergence, and Tsallis relative entropy, there exists another

motivation for the choice of expression given as in (1). We can associate with the generalized relative entropy Dϕ(· ‖ ·) a

ϕ-family of probability distributions, just as the KL divergence is related to the moment-generating function in a exponential

family of probability distributions.

B. Families of probability distributions

For each probability distribution p = (pi) ∈ ∆◦
n, we can define a deformed exponential family (of probability distributions)

centered at p. A deformed exponential family consists of a parameterization for the set ∆◦
n. We remark that a deformed

exponential family depends on the centered probability distribution p. We can associate with each probability distribution

p ∈ ∆◦
n a deformed exponential family centered at p.
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Assume that ϕ : R → [0,∞) is a positive, deformed exponential function with continuous derivative. Fixed p = (pi) ∈ ∆◦
n,

let c = (ci) be a vector such that pi = ϕ(ci) for each i. We also fix a vector u0 = (u0i) such that u0i > 0 for each i, and

n
∑

i=1

u0iϕ
′(ci) = 1. (3)

A deformed exponential family (of probability distributions) centered at p is a parameterization of ∆◦
n, which maps each vector

u = (ui) in the subspace

Bϕ
c
=

{

(u1, . . . , un) :
n
∑

i=1

uiϕ
′(ci) = 0

}

to a probability distribution q = (qi) ∈ ∆◦
n by the expression

qi = ϕ(ci + ui − ψc(u)u0i), (4)

where ψc : B
ϕ
c
→ [0,∞) is the normalizing function, which is introduced so that (4) defines a probability density in ∆◦

n.

The choice for u ∈ Bϕ
c

is not arbitrary. Thanks to this choice, it is possible to find ψc(u) ≥ 0 for which expression (4) is

a probability density in ∆◦
n. We will justify this claim. Because ϕ(·) is convex, it follows that

yϕ′(x) ≤ ϕ(x+ y)− ϕ(x), for all x, y ∈ R. (5)

Using (5) with x = ci and y = ui, we can write, for any u ∈ Bϕ
c

,

1 =

n
∑

i=1

uiϕ
′(ci) +

n
∑

i=1

ϕ(ci) ≤
n
∑

i=1

ϕ(ci + ui).

By the definition of ϕ(·), the map

g(λ) =

n
∑

i=1

ϕ(ci + ui − λu0i)

is continuous, approaches 0 as λ → ∞, and tends to ∞ as α → ∞. Since ϕ(·) is strictly increasing, it follows that g(·) is

strictly decreasing. Then we can conclude that there exists a unique λ0 = ψc(u) ≥ 0 for which qi = ϕ(ci + ui − λ0u0i) is a

probability distribution in ∆◦
n.

The generalized divergence Dϕ(· ‖ ·) is associated with the deformed exponential family (4) by the equality

ψc(u) = Dϕ(p ‖ q) =
n
∑

i=1

ϕ−1(pi)− ϕ−1(qi)

(ϕ−1)′(pi)
. (6)

Using
∑n

i=1 uiϕ
′(ci) = 0, together with the constraint (3), we can write

ψc(u) =
n
∑

i=1

(−ui + ψc(u)u0i)ϕ
′(ci). (7)

It is clear that

− ui + ψc(u)u0i = ϕ−1(pi)− ϕ−1(qi), (8)

and

ϕ′(ci) =
1

(ϕ−1)′(pi)
. (9)

Inserting (8) and (9) into (7), we obtain (6).

If ϕ is the exponential function, and u0i = 1, the deformed exponential family reduces to the well known exponential family:

qi = exp(ui −Kp(u)) · pi, (10)

where Kp(u) is the cumulant-generating function, which equals the normalizing function ψc(u).

III. PROPERTIES OF THE GENERALIZED DIVERGENCE

The KL divergence and Tsallis relative entropy satisfy the partition inequality, and are jointly convex. They also satisfy

Pinsker’s inequality. We will investigate under what conditions these properties hold for the generalized divergence. Throughout

this section we assume that (ϕ−1)′′(x) is continuous and > 0.
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A. Partition inequality

Partition inequality, which is a case of the data processing inequality, will be used in the proof of Pinsker’s inequality. Let

A = {A1, . . . , Ak} be a partition of In = {1, . . . , n}, i.e., A is a collection of subsets Aj ⊆ In such that Ai ∩ Aj = ∅, for

i 6= j, and
⋃k

j=1 Aj = In. For any probability distribution p = (pi), we define the probability distribution p
A = (pAj ) as

pAj =
∑

i∈Aj

pi, for each j = 1, . . . , k.

The next result gives a necessary and sufficient condition for the partition inequality to be satisfied.

Proposition 1. For the divergence Dϕ(· || ·) to satisfy the partition inequality

Dϕ(p || q) ≥ Dϕ(p
A || qA), (11)

for all probability distributions p = (pi) and q = (qi), and any partition A of In, it is necessary and sufficient that the

function g = −
(ϕ−1)′

(ϕ−1)′′
be superadditive, i.e., the inequality

g(x+ y) ≥ g(x) + g(y), (12)

be satisfied for all x, y ∈ (0, 1) such that x+ y ∈ (0, 1).

The proof of Proposition 1 requires some preliminary results which are presented in the sequel.

Lemma 2. Fix any α ∈ (0, 1). The mapping

Fα(x, y) = ϕ((1− α)ϕ−1(x) + αϕ−1(y)),

is superadditive in (0, 1)× (0, 1) if, and only if,

G(x, y) = ϕ−1(ϕ(x) + ϕ(y))

is convex in {(x, y) ∈ R
2 : ϕ(x) + ϕ(y) ∈ (0, 1)}.

Proof: Let xi, yi ∈ (0, 1) be such that x1 + x2 ∈ (0, 1) and y1 + y2 ∈ (0, 1). The superadditivity of Fα implies that

ϕ((1 − α)ϕ−1(x1 + x2) + αϕ−1(y1 + y2))

≥ ϕ((1− α)ϕ−1(x1) + αϕ−1(y1))

+ ϕ((1 − α)ϕ−1(x2) + αϕ−1(y2)). (13)

Denote si = ϕ−1(xi) and ti = ϕ−1(yi) for i = 1, 2. Thus inequality equation (13) is equivalent to

(1− α)ϕ−1(ϕ(s1) + ϕ(s2)) + αϕ−1(ϕ(t1) + ϕ(t2))

≥ ϕ−1[ϕ((1 − α)s1 + αt1) + ϕ((1 − α)s2 + αt2)],

which shows the desired result.

Lemma 3. The function G, as defined in Lemma 2, is convex if and only if g = −
(ϕ−1)′

(ϕ−1)′′
is superadditive in (0, 1).

Proof: For the function G to be convex, it is necessary and sufficient that its Hessian HG be positive semi-definitive,

which is equivalent to tr(HG) ≥ 0 and JG = det(HG) ≥ 0, where tr(·) denotes the trace of a matrix and det(·) is the

determinant of a matrix (see [15]). Letting z = ϕ(x) + ϕ(y), we can express

∂2G

∂x2
(x, y) = ϕ′′(x)(ϕ−1)′(z) + [ϕ′(x)]2(ϕ−1)′′(z), (14)

∂2G

∂y2
(x, y) = ϕ′′(y)(ϕ−1)′(z) + [ϕ′(y)]2(ϕ−1)′′(z), (15)

and
∂2G

∂x∂y
(x, y) = ϕ′(x)ϕ′(y)(ϕ−1)′′(z). (16)

If we divide the right-hand side of (14) by −ϕ′′(x)(ϕ−1)′′(z) ≥ 0, and we use

[ϕ(x)′]2

ϕ(x)′′
= −

(ϕ−1)′(ϕ(x))

(ϕ−1)′′(ϕ(x))
(17)
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into the resulting expression, we obtain

−
(ϕ−1)′(z)

(ϕ−1)′′(z)
+

(ϕ−1)′(ϕ(x))

(ϕ−1)′′(ϕ(x))
= g(z)− g(ϕ(x)).

As a result, we conclude that ∂2G/∂x2 ≥ 0 (and similarly ∂2G/∂y2 ≥ 0) if g is superadditive. Using expressions (14)–(16)

for the partial derivatives of G, we find

JG(x, y) = (ϕ−1)′(z)(ϕ−1)′′(z)ϕ′′(x)ϕ′′(y)

·

{

(ϕ−1)′(z)

(ϕ−1)′′(z)
+

[ϕ′(y)]2

ϕ′′(y)
+

[ϕ′(x)]2

ϕ′′(x)

}

.

In view of (17), it follows that JG(x, y) ≥ 0 is equivalent to g(z) ≥ g(ϕ(x)) + g(ϕ(y)). Thus G is convex if and only if g is

superadditive in (0, 1).

Remark 4. Similar versions of these lemmas appeared previously in the literature (see [16, sec. 3.16] and [17]). The hypothesis

in these versions was weaker, or just one direction was proved.

Now, we may proceed to the proof of the main result in this section.

Proof of Proposition 1: Sufficiency. Lemmas 2 and 3 imply that

Fα(x, y) = ϕ((1− α)ϕ−1(x) + αϕ−1(y)),

is superadditive in (0, 1) × (0, 1), for each α ∈ (0, 1). Considering A = {A1, . . . , Ak}, we denote pAj =
∑

i∈Aj
pi and

qAj =
∑

i∈Aj
qi. By the superadditivity of Fα(x, y), we can write

1

1− α

n
∑

i=1

[pi − Fα(qi, pi)]

≥
1

1− α

k
∑

j=1

[pAj − Fα(q
A
j , p

A
j )]. (18)

An application of L’Hôpital’s rule on the limit below provides

lim
α↑1

y − Fα(x, y)

1− α
= lim

α↑1

y − ϕ((1 − α)ϕ−1(x) + αϕ−1(y))

1− α

= ϕ′(ϕ−1(y))[−ϕ−1(x) + ϕ−1(y)]

=
ϕ−1(y)− ϕ−1(x)

(ϕ−1)′(y)
.

Thus, in the limit α ↑ 1, expression (18) becomes

Dϕ(p || q) ≥ Dϕ(p
A || qA),

which is the asserted inequality.

Necessity. It is clear that if (11) holds for all p = (pi), q = (qi), and A, then

ϕ−1(p1)− ϕ−1(q1)

(ϕ−1)′(p1)
+
ϕ−1(p2)− ϕ−1(q2)

(ϕ−1)′(p2)

≥
ϕ−1(p1 + p2)− ϕ−1(q1 + q2)

(ϕ−1)′(p1 + p2)
(19)

is satisfied for all p1, p2 and q1, q2 in (0, 1) such that the sums p1 + p2 and q1 + q2 are in (0, 1). Let us fix p1, p2 ∈ (0, 1). We

rewrite (19) as

ϕ−1(p1)

(ϕ−1)′(p1)
+

ϕ−1(p2)

(ϕ−1)′(p2)
−

ϕ−1(p1 + p2)

(ϕ−1)′(p1 + p2)

≥
ϕ−1(q1)

(ϕ−1)′(p1)
+

ϕ−1(q2)

(ϕ−1)′(p2)
−

ϕ−1(q1 + q2)

(ϕ−1)′(p1 + p2)
,

which is satisfied if and only if the function

F (q1, q2) =
ϕ−1(q1)

(ϕ−1)′(p1)
+

ϕ−1(q2)

(ϕ−1)′(p2)
−

ϕ−1(q1 + q2)

(ϕ−1)′(p1 + p2)
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attains a global maximum at (q1, q2) = (p1, p2). By a simple calculation, it can be verified that ∇F (p1, p2) = 0. Moreover,

we express the determinant of the Hessian of F at (p1, p2) as

JF (p1, p2) =
(ϕ−1)′′(p1)

(ϕ−1)′(p1)

(ϕ−1)′′(p2)

(ϕ−1)′(p2)

−
(ϕ−1)′′(p1 + p2)

(ϕ−1)′(p1 + p2)

(ϕ−1)′′(p2)

(ϕ−1)′(p2)

−
(ϕ−1)′′(p1)

(ϕ−1)′(p1)

(ϕ−1)′′(p1 + p2)

(ϕ−1)′(p1 + p2)

=
1

g(p1)

1

g(p2)
−

1

g(p1 + p2)

[

1

g(p1)
+

1

g(p2)

]

.

Because JF (p1, p2) ≥ 0, it follows that g(p1 + p2) ≥ g(p1) + g(p2).

Remark 5. If ϕ(x) = exp(x) the function g = −
(ϕ−1)′

(ϕ−1)′′
is the identity function which is additive, therefore superadditive.

B. Joint convexity

In this section, we find a sufficient condition for the joint convexity of Dϕ(· || ·). We also show that Dϕ(· || ·) satisfies the

partition inequality, and is jointly convex, if, and only if, the deformed exponential function is a scaled and translated version

of the Tsallis exponential.

The generalized divergence Dϕ(· || ·) is said to be jointly convex if the inequality

Dϕ(λp1 + (1− λ)p2 || λq1 + (1 − λ)q2)

≤ λDϕ(p1 || q1) + (1− λ)Dϕ(p2 || q2) (20)

is satisfied for all probability distributions p1,p2 and q1, q2 in ∆◦
n, and each λ ∈ [0, 1].

Before we find a sufficient condition for the joint convexity of Dϕ(· || ·), we show some preliminary results.

Lemma 6. The function g = −
(ϕ−1)′

(ϕ−1)′′
is (strictly) concave if and only if h =

ϕ′

ϕ′′
is (strictly) concave.

Proof: Inserting the expressions (ϕ−1)′ = 1/ϕ′(ϕ−1) and

(ϕ−1)′′ = −
ϕ′′(ϕ−1) · (ϕ−1)′

[ϕ′(ϕ−1)]2

into the definition of g, we can write

g = ϕ′(ϕ−1)
ϕ′(ϕ−1)

ϕ′′(ϕ−1)
= ϕ′(ϕ−1)h(ϕ−1).

Some calculations show that

g′+ = 1 + h′+(ϕ
−1),

where (·)′+ denotes the right derivative. By the fact of ϕ−1 is strictly increasing, we conclude that g′+ is (strictly) decreasing

if and only if h′+ is (strictly) decreasing. As a result, for g to be (strictly) concave, it is necessary and sufficient that h be

(strictly) concave.

Lemma 7. The function g = −
(ϕ−1)′

(ϕ−1)′′
is concave if and only if the mapping

Fα(x, y) = ϕ((1 − α)ϕ−1(x) + αϕ−1(y)), (x, y) ∈ R
2,

is concave for each α ∈ (0, 1).

Proof: Let us denote zα = (1− α)ϕ−1(x) + αϕ−1(y). Some calculations show that

∂2Fα

∂x2
(x, y) = (1− α)(ϕ−1)′′(x)ϕ′(zα)

+ [(1− α)(ϕ−1)′(x)]2ϕ′′(zα),

∂2Fα

∂y2
(x, y) = α(ϕ−1)′′(y)ϕ′(zα)

+ [α(ϕ−1)′(y)]2ϕ′′(zα),
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and

∂2Fα

∂x∂y
(x, y) = α(1 − α)(ϕ−1)′(x)(ϕ−1)′(y)ϕ′′(zα),

which we use to find the following expression for the determinant of the Hessian of Fα at (x, y):

JFα
(x, y) = α(1− α)ϕ′(zα)ϕ

′′(zα)(ϕ
−1)′′(x)(ϕ−1)′′(y)

·

{

ϕ′(zα)

ϕ′′(zα)
+ α

[(ϕ−1)′(y)]2

(ϕ−1)′′(y)
+ (1− α)

[(ϕ−1)′(x)]2

(ϕ−1)′′(x)

}

.

Denote h = ϕ′/ϕ′′. Noticing that
[(ϕ−1)′]2

(ϕ−1)′′
= −

ϕ′(ϕ−1)

ϕ′′(ϕ−1)
, (21)

we conclude that JFα
(x, y) ≥ 0 is equivalent to h(zα) ≥ (1 − α)h(ϕ−1(x)) + αh(ϕ−1(y)).

To show that the Hessian of Fα is negative semi-definitive, we have to verify, in addition, that its trace is non-positive. Since

h is concave and non-negative, we have

ϕ′(zα)

ϕ′′(zα)
− (1− α)

ϕ′(ϕ−1(x))

ϕ′′(ϕ−1(x))
≥ 0. (22)

If we insert (21) into (22), and multiply the resulting expression by (1− α)ϕ′′(zα)(ϕ
−1)′′(x) ≤ 0, we get

∂2Fα

∂x2
(x, y) = (1− α)(ϕ−1)′′(x)ϕ′(zα)

+ [(1− α)(ϕ−1)′(x)]2ϕ′′(zα) ≤ 0.

Analogously, we also have (∂2Fα/∂x
2)(x, y) ≤ 0. Consequently, the Hessian of Fα has a negative trace.

From Lemma 6, it follows that g is concave if and only if Fα is concave for each α ∈ (0, 1).

Proposition 8. If the function g = −
(ϕ−1)′

(ϕ−1)′′
is concave, then the divergence Dϕ(· || ·) is jointly convex.

Proof: According to Lemma 7, the mapping

Fα(x, y) = ϕ((1 − α)ϕ−1(x) + αϕ−1(y)), (x, y) ∈ R
2,

is concave for each α ∈ (0, 1). Fixed an arbitrary pj = (pji) and qj = (qji) in ∆◦
n for j = 0, 1, define

pλ = (1 − λ)p0 + λp1,

qλ = (1 − λ)q0 + λq1,

for each λ ∈ (0, 1). Hence we can write

1

1− α

n
∑

i=1

[pλi − Fα(qλi, pλi)]

≤ (1− λ)
1

1 − α

n
∑

i=1

[p0i − Fα(q0i, p0i)]

+ λ
1

1 − α

n
∑

i=1

[p1i − Fα(q1i, p1i)]. (23)

Using L’Hôpital’s rule in the limit below, we obtain

lim
α↑1

y − Fα(x, y)

1− α
= lim

α↑1

y − ϕ((1 − α)ϕ−1(x) + αϕ−1(y))

1− α

= ϕ′(ϕ−1(y))[−ϕ−1(x) + ϕ−1(y)]

=
ϕ−1(y)− ϕ−1(x)

(ϕ−1)′(y)
.

Thus, in the limit α ↑ 1, expression (23) becomes

Dϕ(pλ || qλ) ≤ (1− λ)Dϕ(p0 || q0) + λDϕ(p1 || q1),

which is the desired result.
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The next result is a partial converse of Proposition 8.

Lemma 9. If the divergence Dϕ(· || ·) is jointly convex for some n ≥ 3, then the function g = −
(ϕ−1)′

(ϕ−1)′′
satisfies the inequality

g
(x+ y

2

)

≥
g(x) + g(y)

2
, (24)

for all x, y ∈ (0, 1) such that x+ y ∈ (0, 1).

Proof: If p1 = (p1i), p2 = (p2i) and q1 = (q1i), q2 = (q2i) then inequality (20) is equivalent to

n
∑

i=1

[

λ
ϕ−1(p1i)

(ϕ−1)′(p1i)
+ (1− λ)

ϕ−1(p2i)

(ϕ−1)′(p2i)

−
ϕ−1(λp1i + (1− λ)p2i)

(ϕ−1)′(λp1i + (1− λ)p2i)

]

≥
n
∑

i=1

[

λ
ϕ−1(q1i)

(ϕ−1)′(p1i)
+ (1− λ)

ϕ−1(q2i)

(ϕ−1)′(p2i)

−
ϕ−1(λq1i + (1− λ)q2i)

(ϕ−1)′(λp1i + (1− λ)p2i)

]

. (25)

For the fixed probability distributions

p1 = (p1, p2, p, p13, . . . , p1n), (26)

p2 = (p2, p1, p, p23, . . . , p2n), (27)

in ∆◦
n, we consider

q1 = (p1 + x, p2 + y, p− x− y, p13, . . . , p1n), (28)

q2 = (p2 + y, p1 + x, p− x− y, p23, . . . , p2n), (29)

where x and y are taken so that q1 and q2 are in ∆◦
n. Inserting these probability distributions into (25) with λ = 1/2, we can

infer that the function

F (x, y) =
1

2

ϕ−1(p1 + x)

(ϕ−1)′(p1)
+

1

2

ϕ−1(p2 + y)

(ϕ−1)′(p2)

−
ϕ−1(12 (p1 + x) + 1

2 (p2 + y))

(ϕ−1)′(12p1 +
1
2p2)

+
1

2

ϕ−1(p2 + y)

(ϕ−1)′(p2)

+
1

2

ϕ−1(p1 + x)

(ϕ−1)′(p1)
−
ϕ−1(12 (p2 + y) + 1

2 (p1 + x))

(ϕ−1)′(12p2 +
1
2p1)

attains a global maximum at (x, y) = (0, 0). Further, we can also write

JF (0, 0) =
[ 1

g(p1)
−

1

2

1

g(12p1 +
1
2p2)

]

·
[ 1

g(p2)
−

1

2

1

g(12p1 +
1
2p2)

]

−
[1

2

1

g(12p1 +
1
2p2)

]2

=
1

g(p1)

1

g(p2)
−

1

g(12p1 +
1
2p2)

[1

2

1

g(p2)
+

1

2

1

g(p1)

]

,

where JF (0, 0) is the determinant of the Hessian of F at (0, 0). Since F (x, y) attains a maximum at (0, 0), inequality

JF (0, 0) ≥ 0 implies g(12p1 +
1
2p2) ≥

1
2g(p1) +

1
2g(p2).

Proposition 10. Assume that n ≥ 3. Then the generalized divergence Dϕ(· || ·) satisfies the partition inequality, and is jointly

convex, if, and only if,

ϕ−1(x) = b lnq(x) − a, for x ∈ (0, 1),

for some q > 0 and b > 0, a ∈ R.

Proof: Clearly, inequalities (12) and (24) are satisfied for all x, y ∈ (0, 1]. Therefore, the function g(x) is superadditive and

concave for x ∈ (0, 1/2). It is easy to verify that g(0+) = 0. To see this, we apply the limit x ↓ 0 in 0 ≤ g(x) ≤ g(x+y)−g(y),
and use the continuity of g at y. In addition, because g(x) is concave with g(0+) = 0, the function g(x) is also subadditive
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for x ∈ (0, 1/2). Making y ↓ 0 in g(λx+(1−λ)y) ≥ λg(x)+ (1−λ)g(y), we obtain that g(λx) ≥ λg(x) for λ ∈ [0, 1]. From

the inequalities g(x) ≥ x
x+yg(x + y) and g(y) ≥ y

x+yg(x + y), it follows that g(x) + g(y) ≥ g(x + y). Hence we conclude

that g(x) is additive for x ∈ (0, 1/2).
By [18, Theorem 13.5.2], there exists q > 0 such that g(x) = x/q for x ∈ (0, 1/2). Using (12), and letting y ↓ 0 in (24),

we get

g(x) ≥ g
(x

2

)

+ g
(x

2

)

, and g
(x

2

)

≥
g(x)

2
,

which imply g(x) = 2g(x/2) for all x ∈ (0, 1). Hence, expression g(x) = x/q is also verified for x ∈ (0, 1). Solving

g(x) = −
(ϕ−1)′(x)

(ϕ−1)′′(x)
=
x

q

with respect to ϕ−1(x), we find b > 0 and a ∈ R such that

ϕ−1(x) = b
x1−q

1− q
− a

= b lnq(x)− a, for q 6= 1,

and

ϕ−1(x) = b ln(x)− a, for q = 1,

for every x ∈ (0, 1).
The converse direction follows from Propositions 1 and 8.

C. Pinsker’s inequality

Pinsker’s inequality relates the divergence with the ℓ1-distance. This inequality implies that convergence in divergence is

stronger than convergence in the ℓ1-distance For the KL divergence, Pinsker’s inequality is given by

DKL(p || q) ≥
1

2
‖p− q‖21, (30)

where ‖p− q‖1 =
∑n

i=1 |pi − qi| is the ℓ1-distance between probability distributions p = (pi) and q = (qi) in ∆◦
n.

The next result shows Pinsker’s inequality for the generalized divergence.

Theorem 11 (Pinsker’s Inequality). Suppose that the partition inequality (11) holds. In addition, assume that

c = inf
0<p<q<1

1

8

1

q − p

[

−
(ϕ−1)′(q)

(ϕ−1)′(p)
+

(ϕ−1)′(1− q)

(ϕ−1)′(1− p)

]

> 0. (31)

Then, for any probability distributions p = (pi) and q = (qi) in ∆◦
n, the generalized divergence satisfies the inequality

Dϕ(p || q) ≥ c‖p− q‖21. (32)

Proof: Let A = {A1, A2} be a partition of In, where A1 = {i : pi ≥ qi} and A2 = {i : pi < qi}. Hence we can write

‖p− q‖1 =

n
∑

i=1

|pi − qi|

=
∑

i∈A1

(pi − qi) +
∑

i∈A2

(qi − pi)

= (pA1 − qA1 ) + (qA2 − pA2 )

= ‖pA − q
A‖1.

By the partition inequality

Dϕ(p || q) ≥ Dϕ(p
A || qA),

we see that it suffices to show

Dϕ(p
A || qA) ≥ c‖pA − q

A‖21. (33)

Let us denote pA1 = p and qA1 = q. Then inequality (33) can be rewritten as

ϕ−1(p)− ϕ−1(q)

(ϕ−1)′(p)
+
ϕ−1(1− p)− ϕ−1(1− q)

(ϕ−1)′(1− p)
≥ 4c(p− q)2,
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since ‖pA − q
A‖1 = 2(p− q). For a fixed p ∈ (0, 1), we define the function

F (q) =
ϕ−1(p)− ϕ−1(q)

(ϕ−1)′(p)

+
ϕ−1(1− p)− ϕ−1(1 − q)

(ϕ−1)′(1 − p)
− 4c(p− q)2,

for q ∈ (0, 1). By the symmetry of the terms p and q in (31), it is clear that

c = inf
0<q<p<1

1

8

1

q − p

[

−
(ϕ−1)′(q)

(ϕ−1)′(p)
+

(ϕ−1)′(1− q)

(ϕ−1)′(1− p)

]

> 0.

As a result, the derivative

F ′(q) = (q − p)

{

1

q − p

[

−
(ϕ−1)′(q)

(ϕ−1)′(p)
+

(ϕ−1)′(1− q)

(ϕ−1)′(1− p)

]

− 8c

}

is ≥ 0 for q > p, and ≤ 0 for q < p. We conclude that F (q) attains a minimum at q = p. Therefore,

Dϕ(p
A || qA)− c‖pA − q

A‖21 = F (q) ≥ F (p) = 0,

and inequality (32) follows.

If we assume ϕ−1(x) = log(x), then expression (31) results in c = 1/2, which is the constant in Pinsker’s inequality for the

KL divergence. For the Tsallis exponential, an easy computation shows that c = q/2 in equation (31) with ϕ−1(x) = lnq(x).
This result is in accordance to the work of Gilardoni [13], which investigated the Pinsker’s inequality for f -divergences.

Gilardoni showed that the f -divergence Df (p || q) =
∑n

i=1 pif
(

qi
pi

)

satisfies the inequality Df (p || q) ≥ f ′′(1)
2 ‖p − q‖21,

supposing that f is convex and three times differentiable at x = 1 with f ′′(1) > 0. Tsallis relative entropy is an f -divergence

with f(x) = − lnq(x). In this case, we have f ′′(1) = q.

IV. CONCLUSIONS

In this work, we found necessary and sufficient conditions for the generalized divergence Dϕ(· || ·) to satisfy the partition

inequality. We also showed a condition that implies the joint convexity of Dϕ(· || ·). It was proved that, for the generalized

divergence Dϕ(· || ·) to coincide with the Tsallis relative entropy Dq(· || ·), it is necessary and sufficient that Dϕ(· || ·) satisfy

the partition inequality, and be jointly convex. As an application of partition inequality, a criterion for the Pinsker’s inequality

was found. We also constructed a family of probability distributions associated with the generalized divergence.

This work can be extended in many aspects. The data processing inequality was not proved. Comparisons between generalized

divergences, as investigated in [19] for f -divergences, have the potential of being a prosperous topic of research. In [20], a

generalization of Rényi divergence was defined in terms of a deformed exponential. As future work, we aim to investigate the

properties of this generalized Rényi divergence.
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