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Abstract

A distributed binary hypothesis testing (HT) problem involving two parties, one referred to as the observer and

the other as the detector is studied. The observer observes a discrete memoryless source (DMS) and communicates

its observations to the detector over a discrete memoryless channel (DMC). The detector observes another DMS

correlated with that at the observer, and performs a binary HT on the joint distribution of the two DMS’s using its

own observed data and the information received from the observer. The trade-off between the type I error probability

and the type II error-exponent of the HT is explored. Single-letter lower bounds on the optimal type II error-exponent

are obtained by using two different coding schemes, a separate HT and channel coding scheme and a joint HT and

channel coding scheme based on hybrid coding for the matched bandwidth case. Exact single-letter characterization

of the same is established for the special case of testing against conditional independence, and it is shown to be

achieved by the separate HT and channel coding scheme. An example is provided where the joint scheme achieves

a strictly better performance than the separation based scheme.

I. INTRODUCTION

Given data samples, statistical hypothesis testing (HT) deals with the problem of ascertaining the true assumption,

that is, the true hypothesis, about the data from among a set of hypotheses. In modern communication networks

(like in sensor networks, cloud computing and Internet of things (IoT)), data is gathered at multiple remote nodes,

referred to as observers, and transmitted over noisy links to another node for further processing. Often, there is

some prior statistical knowledge available about the data, for example, that the joint probability distribution of the

data belongs to a certain prescribed set. In such scenarios, it is of interest to identify the true underlying probability

distribution, and this naturally leads to the problem of distributed HT over noisy channels. The simplest case of such

a scenario is depicted in Fig. 1, where there is a single observer and two possibilities for the joint distribution of the

data. The observer observes k independent and identically distributed (i.i.d) data samples Uk, and communicates its

observation to the detector by n uses of the DMC, characterized by the conditional distribution PY |X . The detector

performs a binary hypothesis test on the joint distribution of the data (Uk, V k) to decide between them, based on
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Fig. 1: Distributed HT over a DMC.

the channel outputs Y n as well as its own observations V k. The null and the alternate hypothesis of the hypothesis

test are given by

H0 : (Uk, V k) ∼
k∏
i=1

PUV , (1a)

and

H1 : (Uk, V k) ∼
k∏
i=1

QUV , (1b)

respectively. Our goal is to characterize the optimal exponential rate of decay of the type II error probability

asymptotically, known as the type II error-exponent (henceforth, also referred to as error-exponent) for a prescribed

constraint on the type I error probability for the above hypothesis test.

In the centralized scenario, in which the detector performs a binary hypothesis test on the probability distribution

of the data it observes directly, the optimal error-exponent is characterized by the well-known lemma of Stein

[1] (see also [2]). The study of distributed statistical inference under communication constraints was conceived by

Berger in [3]. In [3], and in the follow up literature summarized below, communication from the observers to the

detector are assumed to be over rate-limited error-free channel. Some of the fundamental results in this setting for

the case of a single observer was established by Ahlswede and Csiszár in [4]. They obtained a tight single-letter

characterization of the optimal error-exponent for a special case of HT known as testing against independence (TAI),

in which, QUV = PU ×PV . Furthermore, the authors established a lower bound on the optimal error-exponent for

the general HT case, and proved a strong converse result, which states that the optimal achievable error-exponent is

independent of the constraint on the type I error probability. A tighter lower bound for the general HT problem is

established by Han [5], which recovers the corresponding lower bound in [4]. Han also considered complete data

compression in a related setting where either U , or V , or both (also referred to as two-sided compression setting)

are compressed and communicated to the detector using a message set of size two. It is shown that, asymptotically,

the optimal error-exponent achieved in these three settings are equal. In contrast, a single-letter characterization of

the optimal error-exponent for even the TAI with two-sided compression and general rate constraints remains open

till date. Shalaby et al. [6] extended the complete data compression result of Han to show that the optimal error-

exponent is not improved even if the rate constraint is relaxed to that of zero-rate compression (sub-exponential

message set with respect to blocklength k). Shimokawa et al. [7] obtained a tighter lower bound on the optimal

error-exponent for general HT by considering quantization and binning at the encoder along with a minimum

empirical-entropy decoder. Rahman and Wagner [8] studied the setting with multiple observers, in which, they
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showed that for the case of a single-observer, the quantize-bin-test scheme achieves the optimal error-exponent for

testing against conditional independence (TACI), in which, V = (E,Z) and QUEZ = PUZPE|Z . Extensions of the

distributed HT problem has also been considered in several other interesting scenarios involving multiple detectors

[9], multiple observers [10], interactive HT [11], [12], collaborative HT [13], HT with lossy source reconstruction

[14], HT over a multi-hop relay network [16], etc., in which, the authors obtain a single-letter characterization of

the optimal error-exponent in some special cases.

While the works mentioned above have studied the unsymmetric case of focusing on the error-exponent for a

constraint on the type I error probability, other works have analyzed the trade-off between the type I and type II

error probabilities in the exponential sense. In this direction, the optimal trade-off between the type I and type II

error-exponents in the centralized scenario is obtained in [17]. The distributed version of this problem is first studied

in [18], where inner bounds on the above trade-off are established. This problem has also been explored from an

information-geometric perspective for the zero-rate compression scenario in [19] and [20], which provide further

insights into the geometric properties of the optimal trade-off between the two exponents. A Neyman-Pearson like

test in the zero-rate compression scenario is proposed in [21], which, in addition to achieving the optimal trade-off

between the two exponents, also achieves the optimal second order asymptotic performance among all symmetric

(type-based) encoding schemes. However, the optimal trade-off between the type I and type II error-exponents for

the general distributed HT problem remains open. Recently, an inner bound for this trade-off is obtained in [22],

by using the reliability function of the optimal channel detection codes.

In contrast, HT in distributed settings that involve communication over noisy channels has not been considered

until now. In noiseless rate-limited settings, the encoder can reliably communicate its observation subject to a rate

constraint. However, this is no longer the case in noisy settings, which complicates the study of error-exponents

in HT. Since the capacity of the channel PY |X , denoted by C(PY |X), quantifies the maximum rate of reliable

communication over the channel, it is reasonable to expect that it plays a role in the characterization of the

optimal error-exponent similar to the rate-constraint R in the noiseless setting. Another measure of the noisiness

of the channel is the so-called reliability function E(R,PY |X) [23], which is defined as the maximum achievable

exponential decay rate of the probability of error (asymptotically) with respect to the blocklength for message rate

of R. It appears natural that the reliability function plays a role in the characterization of the achievable error-

exponent for distributed HT over a noisy channel. Indeed, in Theorem 2 given below, we provide a lower bound

on the optimal error-exponent that depends on the expurgated exponent at rate R, Ex(R,PY |X), which is a lower

bound on E(R,PY |X) [24]. However, surprisingly, it will turn out that the reliability function does not play a role

in the characterization of the error-exponent for TACI in the regime of vanishing type I error probability constraint.

The goal of this paper is to study the best attainable error-exponent for distributed HT over a DMC with a single

observer and obtain a computable characterization of the same. Although a complete solution is not to be expected

for this problem (since even the corresponding noiseless case is still open), the aim is to provide an achievable

scheme for the general problem, and to identify special cases in which a tight characterization can be obtained. In

the sequel, we first introduce a separation based scheme that performs independent hypothesis testing and channel

coding, which we refer to as the separate hypothesis testing and channel coding (SHTCC) scheme. This scheme
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combines the Shimokawa-Han-Amari scheme [7], which is the best known coding scheme till date for distributed

HT over a rate-limited noiseless channel, with the channel coding scheme that achieves the expurgated exponent

[24] [23] of the channel along with the best channel coding error-exponent for a single special message. The channel

coding scheme is based on the Borade-Nakiboğlu-Zheng unequal error-protection scheme [25]. As we show later,

the SHTCC scheme achieves the optimal error-exponent for TACI.

Although the SHTCC scheme is attractive due to its modular design, joint source channel coding (JSCC) schemes

are known to outperform separation based schemes in several different contexts, for example, the error exponent

for reliable transmission of a source over a DMC [26], reliable transmission of correlated sources over a multiple-

access channel [27], etc., to name a few. While in separation based schemes coding is usually performed by first

quantizing the observed source sequence to an index, and transmitting the channel codeword corresponding to that

index (independent of the source sequence), JSCC schemes allow the channel codeword to be dependent on the

source sequence, in addition to the quantization index. Motivated by this, we propose a second scheme, referred to

as the joint HT and channel coding (JHTCC) scheme, based on hybrid coding [28] for the communication between

the observer and the detector.

Our main contributions can be summarized as follows.

(i) We propose two different coding schemes (namely, SHTCC and JHTCC) for distributed HT over a DMC, and

analyze the error-exponents achieved by these schemes.

(ii) We obtain an exact single-letter characterization of the optimal error-exponent for the special case of TACI

with a vanishing type I error probability constraint, and show that it is achievable by the SHTCC scheme.

(iii) We provide an example where the JHTCC scheme achieves a strictly better error-exponent than the SHTCC

scheme.

The rest of the paper is organized as follows. In Section II, we introduce the notations, detailed system model

and definitions. Following this, we introduce the main results in Section III and IV. The achievable schemes are

presented in Section III and the optimality results for special cases are discussed in Section IV. Finally, Section V

concludes the paper.

II. PRELIMINARIES

A. Notations

Random variables (r.v.’s) are denoted by capital letters (e.g., X), their realizations by the corresponding lower

case letters (e.g., x), and their support by calligraphic letters (e.g., X ). The cardinality of a finite set X is denoted

by |X |. The set of all probability distributions on alphabet X is denoted by PX . Similar notations apply for set of

conditional probability distributions, e.g., PY|X . X − Y − Z denotes that X, Y and Z form a Markov chain. For

m ∈ Z+, Xm denotes the sequence X1, . . . , Xm. Following the notation in [23], for a probability distribution PX

on r.v. X , TmPX and Tm[PX ]δ
(or Tm[X]δ

) denote the set of sequences xm ∈ Xm of type PX and the set of PX -typical

sequences, respectively. The set of all possible types of sequences of length m with alphabet X is denoted by T mX ,

and ∪m∈Z+T mX is denoted by TX . Similar notations apply for pair’s and other larger combinations of r.v.’s, e.g.,

TmPXY T
m
[PXY ]δ

, T mXY , TXY , etc.. The standard information theoretic quantities like Kullback-Leibler (KL) divergence
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between distributions PX and QX , the entropy of X with distribution PX , the conditional entropy of X given Y

and the mutual information between X and Y with joint distribution PXY , are denoted by D(PX ||QX), HPX (X),

HPXY (X|Y ) and IPXY (X;Y ), respectively. When the distribution of the r.v.’s involved are clear from the context,

the last three quantities are denoted simply by H(X), H(X|Y ) and I(X;Y ), respectively. Given realizations

Xm = xm and Y m = ym, He(x
m|ym) denotes the conditional empirical entropy defined as

He(x
m|ym) := HPX̃Ỹ

(X̃|Ỹ ), (2)

where PX̃Ỹ denote the joint type of (xm, ym), and := represents equality by definition (throughout this paper). For

a ∈ R+, [a] denotes the set of integers {1, 2, . . . , dae}. All logarithms considered in this paper are with respect

to the base e unless specified otherwise. For any set G, Gc denotes the set complement. ak
(k)−−→ b represents

limk→∞ ak = b. Similar notations are used for inequalities that hold asymptotically, e.g., , ak
(k)

≥ bk denotes

limk→∞ ak ≥ b. P(E) denotes the probability of event E . For functions f1 : A → B and f2 : B → C, f2 ◦ f1

denotes function composition. Finally, 1(·) denotes the indicator function, and O(·) and o(·) denote the standard

asymptotic notation.

B. Problem formulation

All the r.v.’s considered henceforth are discrete with finite support. Unless specified otherwise, we will denote

the probability distribution of a r.v. Z under the null and alternate hypothesis by PZ and QZ , respectively. Let

k, n ∈ Z+ be arbitrary. The encoder (at the observer) observes Uk, and transmits codeword Xn = f (k,n)(Uk),

where f (k,n) : Uk → Xn represents the encoding function (possibly stochastic). Let τ := n
k denote the bandwidth

ratio. The channel output Y n is given by the probability law

PY n|Xn(yn|xn) =

n∏
j=1

PY |X(yj |xj), (3)

i.e., the channels between the observers and the detector are independent of each other and memoryless. Depending

on the received symbols Y n and its own observations V k, the detector makes a decision between the two hypotheses

H0 and H1 given in (1). Let H ∈ {0, 1} denote the actual hypothesis and Ĥ ∈ {0, 1} denote the output of the

hypothesis test, where 0 and 1 denote H0 and H1, respectively, and A(k,n) ⊆ Yn×Vk denote the acceptance region

for H0. Then, the decision rule g(k,n) : Yn × Vk → {0, 1} is given by

g(k,n)
(
yn, vk

)
= 1− 1

((
yn, vk

)
∈ A(k,n)

)
.

Let

α
(
k, n, f (k,n), g(k,n)

)
:= 1− PY nV k

(
A(k,n)

)
,

and β
(
k, n, f (k,n), g(k,n)

)
:= QY nV k

(
A(k,n)

)
,

denote the type I and type II error probabilities for the encoding function f (k,n) and decision rule g(k,n), respectively.
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Definition 1. An error-exponent κ is (τ, ε) achievable if there exists a sequence of integers k, corresponding

sequences of encoding function f (k,nk) and decision rules g(k,nk) such that nk ≤ τk, ∀ k,

lim inf
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk), g(k,nk)
))
≥ κ, (4a)

and lim sup
k→∞

α
(
k, nk, f

(k,nk), g(k,nk)
)
≤ ε. (4b)

For (τ, ε) ∈ R+ × [0, 1], let

κ(τ, ε) := sup{κ′ : κ′ is (τ, ε) achievable}. (5)

We are interested in obtaining a computable characterization of κ(τ, ε).

It is well known that the Neyman-Pearson test [29] gives the optimal trade-off between the type I and type II

error probabilities, and hence, also between the error-exponents in HT. It follows that the optimal error-exponent

for distributed HT over a DMC is achieved when the channel-input Xn is generated correlated with Uk according

to some optimal conditional distribution PXn|Uk , and the optimal Neyman-Pearson test is performed on the data

available (both received and observed) at the detector. It can be shown, similarly to [4, Theorem 1], that the optimal

error-exponent for vanishing type I error probability constraint is characterized by the multi-letter expression (see

[30]) given by

lim
ε→0

κ(τ, ε) = sup
P
Xn|Uk∈ PXn|Uk ,
k,n ∈ Z+, n≤τk

1

k
D (PY nV k ||QY nV k) . (6)

However, the above expression does not single-letterize in general, and hence, is intractable as it involves optimiza-

tion over large dimensional probability simplexes when k and n are large. Moreover, the encoder and the detector

of a scheme achieving the error-exponent given in (6) would be computationally complex to implement from a

practical viewpoint. Consequently, we establish two computable single-letter lower bounds on κ(τ, ε) in the next

section by using the SHTCC and JHTCC schemes.

III. ACHIEVABLE SCHEMES

In [7], Shimokawa et al. obtained a lower bound on the optimal error-exponent for distributed HT over a rate-

limited noiseless channel by using a coding scheme that involves quantization and binning at the encoder. In this

scheme, the type1 of the observed sequence Uk = uk is transmitted by the encoder to the detector, which is useful

to improve the performance of the hypothesis test. In fact, in order to achieve the error-exponent proposed in [7],

it is sufficient to send a message indicating whether Uk is typical or not, rather than sending the exact type of Uk.

Although it is not possible to get perfect reliability for messages transmitted over a noisy channel, intuitively, it is

desirable to protect the typicality information about the observed sequence as reliably as possible. Based on this

intuition, we next propose the SHTCC scheme that performs independent HT and channel coding and protects the

message indicating whether Uk is typical or not, as reliably as possible.

1Since the number of types is polynomial in the blocklength, these can be communicated error-free at asymptotically zero-rate.
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A. SHTCC Scheme:

In the SHTCC scheme, the encoding and decoding functions are restricted to be of the form f (k,n) = f
(k,n)
c ◦f (k)

s

and g(k,n) = g
(k)
s ◦ g(k,n)

c , respectively. The source encoder f (k)
s : Uk → M = {0, 1, · · · , dekRe} generates an

index M = f
(k)
s (Uk) and the channel encoder f (k,n)

c : M → C̃ = {Xn(j), j ∈ [0 : dekRe]} generates the

channel-input codeword Xn = f
(k,n)
c (M). Note that the rate of this coding scheme is kR

n = R
τ bits per channel

use. The channel decoder g(k,n)
c : Yn → M maps the channel-output Y n into an index M̂ = g

(k,n)
c (Y n), and

g
(k)
s :M×Vk → {0, 1} outputs the result of the HT as Ĥ = g

(k)
s (M̂, V k). Note that f (k,n)

c depends on Uk only

through the output of f (k)
s (Uk) and g(k,n)

c depends on V k only through Y n. Hence, the scheme is modular in the

sense that (f
(k,n)
c , g

(k,n)
c ) can be designed independent of (f

(k)
s , g

(k)
s ). In other words, any good channel coding

scheme may be used in conjunction with a good compression scheme. If Uk is not typical according to PU , f (k)
s

outputs a special message, referred to as the error message, denoted by M = 0, to inform the detector to declare

Ĥ = 1. There is obviously a trade-off between the reliability of the error message and the other messages in channel

coding. The best known reliability for protecting a single special message when the other messages M ∈ [enR]

of rate R, referred to as ordinary messages, are required to be communicated reliably is given by the red-alert

exponent in [25]. The red-alert exponent is defined as

Em(R,PY |X) := max
PSX : S=X ,
I(X;Y |S)=R,
S−X−Y

∑
s∈S

PS(s) D
(
PY |S=s||PY |X=s

)
. (7)

Borade et al.’s scheme uses an appropriately generated codebook along with a two-stage decoding procedure. The

first stage is a joint-typicality decoder to decide whether Xn(0) is transmitted, while the second stage is a maximum-

likelihood decoder to decode the ordinary message if the output of the first stage is not zero, i.e., M̂ 6= 0. On

the other hand, it is well-known that if the rate of the messages is R, a channel coding error-exponent equal to

Ex(R,PY |X) is achievable, where

Ex(R,PY |X) := max
PX

max
ρ≥1

−ρ R− ρ log

∑
x,x̃

PX(x)PX(x̃)

(∑
y

√
PY |X(y|x)PY |X(y|x̃)

) 1
ρ

 , (8)

is the expurgated exponent at rate R [24] [23]. Let

Em(PSX , PY |X) :=
∑
s∈S

PS(s) D
(
PY |S=s||PY |X=s

)
, (9)

where, S = X and S −X − Y , and

Ex(R,PSX , PY |X)

:= max
ρ≥1

−ρ R− ρ log

∑
s,x,x̃

PS(s)PX|S(x|s)PX|S(x̃|s)

(∑
y

√
PY |X(y|x)PY |X(y|x̃)

) 1
ρ

 .

Although Borade et al.’s scheme is concerned only with the reliability of the special message, it is not hard to see

using the technique of random-coding that for a fixed distribution PSX , there exists a codebook C̃, and encoder and
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decoder as in Borade et al.’s scheme, such that the rate is 0 ≤ R ≤ I(X;Y |S) and the special message achieves a

reliability equal to Em(PSX , PY |X), while the ordinary messages achieve a reliability equal to Ex(R,PSX , PY |X).

Note that Em(PSX , PY |X) and Ex(R,PSX , PY |X) denote Borade et al.’s red-alert exponent and the expurgated

exponent with fixed distribution PSX , respectively, and that both are inter-dependent through PSX . Thus, varying

PSX provides a trade-off between the reliability for the ordinary messages and the special message. We will use

Borade et al.’s scheme for channel coding in the SHTCC scheme, such that the error message and the other messages

correspond to the special and ordinary messages, respectively. The SHTCC scheme will be described in detail in

Appendix A. We next state a lower bound on κ(τ, ε) that is achieved by the SHTCC scheme. For brevity, we will use

the shorter notations C, Em(PSX) and Ex(R,PSX) instead of C(PY |X), Em(PSX , PY |X) and Ex(R,PSX , PY |X),

respectively.

Theorem 2. For τ ≥ 0, κ(τ, ε) ≥ κs(τ), ∀ ε ∈ (0, 1], where

κs(τ)

:= sup
(PW |U ,PSX ,R)

∈ B(τ,PY |X)

min
{
E1(PW |U ), E2(PW |U , PSX , τ), E3(PW |U , PSX , τ), E4(PW |U , PSX , τ)

}
, (10)

where

B
(
τ, PY |X

)
:=


(PW |U , PSX , R) : S = X , PUVWSXY (PW |U , PSX) := PUV PW |UPSXPY |X ,

IP (U ;W |V ) ≤ R < τIP (X;Y |S)

 , (11)

E1(PW |U ) := min
PŨṼ W̃∈T1(PUW ,PVW )

D(PŨṼ W̃ ||QUVW ), (12)

E2(PW |U , PSX , R)

:=


min

PŨṼ W̃∈T2(PUW ,PV ) D(PŨṼ W̃ ||QUVW ) +R− IP (U ;W |V ), if IP (U ;W ) > R,

∞, otherwise,
(13)

E3(PW |U , PSX , R, τ)

:=


min

PŨṼ W̃∈T3(PUW ,PV ) D(PŨṼ W̃ ||QUVW ) +R− IP (U ;W |V ) + τEx
(
R
τ , PSX

)
, if IP (U ;W ) > R,

min
PŨṼ W̃∈T3(PUW ,PV ) D(PŨṼ W̃ ||QUVW ) + IP (V ;W ) + τEx

(
R
τ , PSX

)
, otherwise,

(14)

E4(PW |U , PSX , R, τ) :=

D(PV ||QV ) +R− IP (U ;W |V ) + τEm (PSX) , if IP (U ;W ) > R,

D(PV ||QV ) + IP (V ;W ) + τEm (PSX) , otherwise,
(15)

QUVW := QUV PW |U ,

T1(PUW , PVW ) := {PŨṼ W̃ ∈ TUVW : PŨW̃ = PUW , PṼ W̃ = PVW },
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T2(PUW , PV ) := {PŨṼ W̃ ∈ TUVW : PŨW̃ = PUW , PṼ = PV , H(W̃ |Ṽ ) ≥ HP (W |V )},

T3(PUW , PV ) := {PŨṼ W̃ ∈ TUVW : PŨW̃ = PUW , PṼ = PV }.

The proof of Theorem 2 is given in Appendix A. Although the expression κs(τ) in Theorem 2 appears com-

plicated, the terms E1(PW |U ) to E4(PW |U , PSX , R, τ) can be understood to correspond to distinct events that

can possibly lead to a type II error. Note that E1(PW |U ) and E2(PW |U , PSX , R) are the same terms appearing

in the error-exponent achieved by the Shimokawa et al.’s scheme [7] for the noiseless channel setting, while

E3(PW |U , PSX , R, τ) and E4(PW |U , PSX , R, τ) are additional terms introduced due to the noisiness of the chan-

nel. E3(PW |U , PSX , R, τ) corresponds to the event when M 6= 0, M̂ 6= M and g
(k)
s (M̂, V k) = 0, whereas

E4(PW |U , PSX , R, τ) is due to the event when M = 0, M̂ 6= M and g
(k)
s (M̂, V k) = 0. Note that, in general,

Em(PSX) can take the value of ∞ and when this happens, the term τEm (PSX) becomes undefined for τ = 0. In

this case, we define τEm (PSX) := 0.

Remark 3. In the SHTCC scheme, although we use Borade et al.’s scheme for channel coding, that is concerned

specifically with the protection of a special message when the ordinary message rate is R, any other channel

coding scheme with the same rate can be employed. For instance, the ordinary message can be transmitted with

an error-exponent equal to the reliability function E(R,PY |X) [23] of the channel PY |X at rate R, while the

special message achieves the maximum reliability possible subject to this constraint. However, it should be noted

that a computable characterization of neither E(R,PY |X) (for all values of R) nor the associated best reliability

achievable for a single message is known in general.

Remark 4. Similarly to the zero-rate compression scenario considered in [5] for the case of a rate-limited noiseless

channel, it is possible to achieve an error-exponent of κ0(τ) in general by using a one-bit communication scheme

(see [30]), where

κ0(τ) :=

 D(PV ||QV ) , if τ = 0,

min {β0, τEc +D(PV ||QV )} , otherwise.
(16)

Here,

β0 := β0(PU , PV , QUV ) := min
PŨṼ :

PŨ=PU , PṼ =PV

D(PŨṼ ||QUV ), (17)

and Ec := Ec(PY |X) := D(PY |X=a||PY |X=b), (18)

where a and b denote channel input symbols that satisfy

(a, b) = arg max
(x,x′)∈X×X

D(PY |X=x||PY |X=x′). (19)

Note that β0 denotes the optimal error-exponent for distributed HT over a noiseless channel, when the communi-

cation rate-constraint is zero [5] [6].

In [30], it is shown that the one-bit communication scheme mentioned in Remark 4 achieves the optimal error-
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exponent for HT over a DMC, i.e., when the detector has no side-information. Moreover, it is also proved that

optimal error-exponent is not improved if the type I error probability constraint is relaxed; and hence, strong converse

holds. In the limiting case of zero channel capacity, i.e., C(PY |X) = 0, it is intuitive to expect that communication

from the observer to the detector does not improve the achievable error-exponent for distributed HT. In Appendix

C below, we show that this is indeed the case in a strong converse sense, i.e., the optimal error-exponent depends

only on the side-information V k, and is given by D(PV ||QV ), for any constraint ε ∈ (0, 1) on the type I error

probability. This is in contrast to the zero-rate compression case considered in [5], where one bit of communication

between the observer and detector can achieve a strictly positive error-exponent, in general.

The SHTCC schemes introduced above performs independent HT and channel coding, i.e., the channel encoder

f
(k,n)
c neglects Uk given the output M of source encoder f (k)

s , and g(k)
s neglects Y n given the output of the channel

decoder g(k,n)
c . The following scheme ameliorates these restrictions and uses hybrid coding to perform joint HT

and channel coding.

B. JHTCC Scheme

Hybrid coding is a form of JSCC introduced in [28] for the lossy transmission of sources over noisy networks.

As the name suggests, hybrid coding is a combination of the digital and analog (uncoded) transmission schemes.

For simplicity2, we assume the matched-bandwidth scenario, i.e., k = n (τ = 1). In hybrid coding, the source Un

is first mapped to one of the codewords W̄n within a compression codebook. Then, a symbol-by-symbol function

(deterministic) of the W̄n and Un is transmitted as the channel codeword Xn. This procedure is reversed at the

decoder, in which, the decoder first attempts to obtain an estimate ˆ̄Wn of W̄n using the channel output Y n and

its own correlated side information V n. Then, the reconstruction Ûn of the source is obtained as a symbol-by-

symbol function of the reconstructed codeword, Y n and V n. In this subsection, we propose a lower bound on the

optimal error-exponent that is achieved by a scheme that utilizes hybrid coding for the communication between the

observer and the detector, which we refer to as the JHTCC scheme. Post estimation of ˆ̄Wn, the detector performs

the hypothesis test using ˆ̄Wn, Y n and V n, instead of estimating Ûn as is done in JSCC problems. We will in

fact consider a slightly generalized form of hybrid coding in that the encoder and detector is allowed to perform

“time-sharing” according to a sequence Sn that is known a priori to both parties. Also, the input Xn is allowed

to be generated according to an arbitrary memoryless stochastic function instead of a deterministic function. The

JHTCC scheme will be described in detail in Appendix B. Next, we state a lower bound on κ(τ, ε) that is achieved

by the JHTCC scheme.

2For the case τ 6= 1, as mentioned in [28], we can consider hybrid coding over super symbols Uk∗ and Xn∗ , where k∗ and n∗ are some
integers satisfying the constraint n∗ ≤ τk∗. This amounts to enlarging the source and side-information r.v.’s alphabets, and thus results in a
harder optimization problem over the conditional probability distributions PW̄ |Uk∗S and PXn

∗ |Uk∗SW̄ given in Theorem 5. However, we
omit its description since the technique is standard and only adds notational clutter.
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Theorem 5. κ(1, ε) ≥ κh, ∀ ε ∈ (0, 1], where

κh := sup
b ∈ Bh

min
{
E′1(PS , PW̄ |US , PX|USW̄ ), E′2(PS , PW̄ |US , PX|USW̄ ),

E′3(PS , PW̄ |US , PX′|US , PX|USW̄ )
}
, (20)

Bh :=


b =

(
PS , PW̄ |US , PX′|US , PX|USW̄

)
: IP̂ (U ; W̄ |S) < IP̂ (W̄ ;Y, V |S), X ′ = X ,

P̂UV SW̄X′XY

(
PS , PW̄ |US , PX′|US , PX|USW̄

)
:= PUV PSPW̄ |USPX′|USPX|USW̄PY |X

 ,

E′1
(
PS , PW̄ |US , PX|USW̄

)
:= min

PŨṼ S̃W̃ Ỹ ∈T ′1(P̂USW̄ ,P̂V SW̄Y )
D
(
PŨṼ S̃W̃ Ỹ ||Q̂UV SW̄Y

)
, (21)

E′2
(
PS , PW̄ |US , PX|USW̄

)
:= min

PŨṼ S̃W̃ Ỹ ∈T ′2(P̂USW̄ ,P̂V SW̄Y )
D
(
PŨṼ S̃W̃ Ỹ ||Q̂UV SW̄Y

)
+ IP̂ (W̄ ;V, Y |S)− IP̂ (U ; W̄ |S), (22)

E′3
(
PS , PW̄ |US , PX′|US , PX|USW̄

)
:= D(P̂V SY ||Q̌V SY ) + IP̂ (W̄ ;V, Y |S)− IP̂ (U ; W̄ |S), (23)

Q̂UV SW̄X′XY (PS , PW̄ |US , PX′|US , PX|USW̄ ) := QUV PSPW̄ |USPX′|USPX|USW̄PY |X , (24)

Q̌UV SX′XY (PS , PX′|US) := QUV PSPX′|US1(X = X ′)PY |X , (25)

T ′1 (P̂USW̄ , P̂V SW̄Y ) := {PŨṼ S̃W̃ Ỹ ∈ TUVSWY : PŨS̃W̃ = P̂USW̄ , PṼ S̃W̃ Ỹ = P̂V SW̄Y },

T ′2 (P̂USW̄ , P̂V SW̄Y ) := {PŨṼ S̃W̃ Ỹ ∈ TUVSWY : PŨS̃W̃ = P̂USW̄ , PṼ S̃Ỹ = P̂V SY ,

H(W̃ |Ṽ, S̃, Ỹ ) ≥ HP̂ (W̄ |V, S, Y )}.

The proof of Theorem 5 is given in Appendix B. The different factors inside the minimum in (20) can be intuitively

understood to be related to the various events that could possibly lead to a type 2 error. More specifically, let the

event that the encoder is unsuccessful in finding a codeword W̄n in the quantization codebook that is typical

with Un be referred to as the encoding error, and the event that a wrong codeword ˆ̄Wn (unintended by the

encoder) is reconstructed at the detector be referred to as the decoding error. Then, E′1(PS , PW̄ |US , PX|USW̄ ) is

related to the event that neither the encoding nor the decoding error occurs, while E′2(PS , PW̄ |US , PX|USW̄ ) and

E′3(PS , PW̄ |US , PX′|US , PX|USW̄ ) are related to the events that only the decoding error and both the encoding and

decoding errors occur, respectively. From Theorem 2 and Theorem 5, we have the following corollary.

Corollary 6.

κ(1, ε) ≥ max {κh, κs(1)} , ∀ε ∈ (0, 1]. (26)

It is well-known that in the context of JSCC, hybrid coding recovers separate source-channel coding as a special

case [28]. It is also known that hybrid coding, of which uncoded transmission is a special case, strictly outperforms

separation based schemes in certain multi-terminal settings [27]. Below, we provide an example where the error-

exponent achieved by the JHTCC scheme is strictly better than that achieved by the SHTCC scheme, i.e., κh > κs(1).
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Example 1. Let U = V = X = Y = {0, 1} and PU = QU = [0.5 0.5]. Let

PV |U =

1− p0 p0

p0 1− p0

 , QV |U =

1− p1 p1

p1 1− p1

 , and PY |X =

1− q q

q 1− q

 ,
where q = 0.2, p0 = 0.8 and p1 = 0.25. For this example, we have κh ≥ 0.3244 > 0.161 ≥ κs(1).

Proof: Note that PV = QV = [0.5 0.5], and

HQ(V |W ) ≥ HP (V̄ |W ) = HP (V |W ), V̄ = V ⊕ 1, (27)

for any W that satisfies V − U −W , since

PV̄ |U =

1− p̄0 p̄0

p̄0 1− p̄0


with p̄0 = 0.2 < p1. Then, the lower bound κs(1) simplifies as

κs(1) = sup
(PW |U ,PSX ,R)

∈ B(1,PY |X)

min{E1(PW |U ), E2(PW |U , PSX , R), E3(PW |U , PSX , R, 1)}. (28)

To see this, consider an arbitrary (PW |U , PSX , R) ∈ B(1, PY |X). We have

E1(PW |U ) := min
PŨṼ W̃∈T1(PUW ,PVW )

D(PŨṼ W̃ ||QUVW ), (29)

E2(PW |U , PSX , R) =

R− IP (U ;W |V ), if IP (U ;W ) > R,

∞, otherwise,
(30)

E3(PW |U , PSX , R, 1) :=

R− IP (U ;W |V ) + Ex (R,PSX) , if IP (U ;W ) > R,

IP (V ;W ) + Ex (R,PSX) , otherwise,
(31)

since QUVW ∈ T2(PUW , PV ) ∩ T3(PUW , PV ), which follows from (27), PUW = QUW and PV = QV . This in

turn implies that

min
PŨṼ W̃∈T2(PUW ,PV ) D(PŨṼ W̃ ||QUVW ) = min

PŨṼ W̃∈T3(PUW ,PV ) D(PŨṼ W̃ ||QUVW ) = 0. (32)

Also, we have

E4(PW |U , PSX , R, 1) :=

R− IP (U ;W |V ) + Em (PSX) , if IP (U ;W ) > R,

IP (V ;W ) + Em (PSX) , otherwise,
(33)

≥ E3(PW |U , PSX , R, 1), (34)

since Em(PSX) ≥ Ex (R,PSX) (the reliability of a special message in Borade et al.’s scheme is at least as

good as that of an ordinary message), which implies (28). Given that (28) holds, |S| can be taken to be equal
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to 1, and PX can be chosen to be the capacity achieving channel input distribution (PX(0) = PX(1) = 0.5)

which maximizes Ex (R,PSX) (for any R) (see [24] and [23, Exercise 10.26]) without loss of generality. Hence,

IP (X;Y ) = C(PY |X) = 1− hb(q).

Let r := h−1
b (HP (U |W )) = h−1

b (HQ(U |W )), where h−1
b : [0, 1] 7→ [0, 0.5] is the inverse of the binary entropy

function given by hb(r) := −r log2(r)− (1− r) log2(1− r). First, consider

PW |U ∈ B̃ := {PW |U : IP (U ;W ) < IP (X;Y ) = 1− hb(q)}. (35)

Note that if R ≥ IP (U ;W ), then E2(PW |U , PSX , R) =∞, and E3(PW |U , PSX , R, 1) = IP (V ;W )+Ex(R,PSX).

Hence,

min{E2(PW |U , PSX , R), E3(PW |U , PSX , R, 1)} = IP (V ;W ) + Ex(R,PSX)

≤ IP (V ;W ) + Ex(I(U ;W ), PSX), (36)

where (36) follows since Ex(R,PSX) is a decreasing function of R. On the other hand, if R < IP (U ;W ), then

E2(PW |U , PSX , R) = R − IP (U ;W |V ) and E3(PW |U , PSX , R, 1) = R − IP (U ;W |V ) + Ex(R,PSX) yielding

that

min{E2(PW |U , PSX , R), E3(PW |U , PSX , R, 1)} = R− IP (U ;W |V ) ≤ IP (V ;W ). (37)

Hence, from (36) and (37), we have

sup
(PW |U ,PSX ,R)∈ B(1,PY |X):

PW |U∈B̃

min{E2(PW |U , PSX , R), E3(PW |U , PSX , R, 1)} ≤ IP (V ;W ) + Ex(I(U ;W ), PSX).

Also, note that (35) implies hb(r) ≥ hb(q); and hence, r ∈ [q, 0.5]. Thus, we can write

IP (V ;W ) + Ex(I(U ;W ), PSX) = 1−HP (V |W ) + Ex(I(U ;W ), PSX)

≤ 1− hb(h−1
b (H(U |W )) ∗ p0) + Ex(I(U ;W ), PSX) (38)

= 1− hb(r ∗ p0) + Ex(1− hb(r), PSX) := f ′(r), (39)

where p ∗ q := (1− p)q + p(1− q), and (38) follows by an application of Mrs. Gerber’s Lemma [31]. The plot of

f ′(r) as a function of r ∈ [q, 0.5] is shown in Fig. 2 below, which uses the expression for Ex(R,PSX) given in

[23, Exercise 10.26]. As is evident from the plot, the maximum value of f ′(r) is attained at r = 0.5, and equals

f ′(0.5) = Ex(0) = −0.5 ∗ 0.5 ∗ log2(4q(1− q)) = 0.161. It follows that

sup
(PW |U ,PSX ,R)∈ B(1,PY |X):

PW |U∈B̃

min{E2(PW |U , PSX , R), E3(PW |U , PSX , R, 1)} ≤ 0.161. (40)

Next, consider that

PW |U ∈ B̃c := {PW |U : IP (W ;U) ≥ 1− hb(q) and IP (U ;W |V ) ≤ 1− hb(q)}. (41)
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Fig. 2: Plot of f ′(r) in the range r ∈ [0.2, 0.5].

Note that the first and second inequalities in (41) imply, respectively, that r ∈ [0, q], and

1− hb(r)− (1− hb(r ∗ p0)) ≤ 1− hb(q). (42)

Also, since R < 1− hb(q) holds for any (PW |U , PSX , R) ∈ B(1, PY |X), we have IP (U ;W ) > R, and hence,

sup
(PW |U ,PSX ,R)∈ B(1,PY |X):

PW |U∈B̃c

min{E2(PW |U , PSX , R), E3(PW |U , PSX , R, 1)}

≤ sup
(PW |U ,PSX ,R)∈ B(1,PY |X):

PW |U∈B̃c

R− IP (U ;W |V )

< 1− hb(q)− (hb(r ∗ p0)− hb(r)) (43)

≤ 1− hb(q ∗ p0) = 0.0956, (44)

where (43) follows again from Mrs. Gerber’s lemma, and (44) follows since the R.H.S. of (43) is an increasing

function of r and hence the maximum is attained at r = q in the range [0, q]. Thus, from (40) and (44), it follows

that κs(1) ≤ 0.161.

Finally, we show that the JHTCC scheme can achieve a strictly larger error-exponent, i.e., κh > 0.161. In fact,

uncoded transmission which is a special case of the JHTCC scheme with X = X ′ = U , W = S = constant,

achieves an error-exponent of

D(PV Y ||QV Y ) = Db(q ∗ p0||q ∗ p1) = Db(0.68||0.35) = 0.3244, (45)

where, Db denotes the binary KL divergence defined as Db(p||q) = p log2

(
p
q

)
+ (1 − p) log2

(
1−p
1−q

)
. Thus, we

have shown that the error-exponent achieved by the JHTCC scheme is strictly greater than that achieved by the

SHTCC scheme.
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Thus far, we obtained lower bounds on the optimal error-exponent for distributed HT over a DMC, and showed

via an example that the joint scheme strictly outperforms the separation based scheme in some cases. In order to get

an exact characterization of the optimal error-exponent, a matching upper bound is required. However, obtaining a

tight computable upper bound remains a challenging open problem in the general hypothesis testing case even when

the channel is noiseless, and consequently, an exact computable characterization of the optimal error-exponent is

unknown. However, as we show in the next section, the problem does admit single-letter characterization for TACI.

IV. OPTIMALITY RESULT FOR TACI

Recall that for TACI, V = (E,Z) and QUEZ = PUZPE|Z . Let

κ(τ) = lim
ε→0

κ(τ, ε). (46)

We will drop the subscript P from information theoretic quantities like mutual information, entropy, etc., as there is

no ambiguity on the joint distribution involved, e.g., IP (U ;W ) will be denoted by I(U ;W ). The following result

holds.

Proposition 7. For TACI over a DMC PY |X ,

κ(τ) = sup


I(E;W |Z) : ∃ W s.t. I(U ;W |Z) ≤ τC(PY |X),

(Z,E)− U −W, |W| ≤ |U|+ 1.

 , τ ≥ 0. (47)

Proof: For the proof of achievability, we will show that κs(τ) when specialized to TACI recovers (47). Let

µ > 0 be a arbitrarily small positive number, and

B′
(
τ, PY |X

)
:=


(PW |U , PSX , Rm) : S = X , PUEZWSXY (PW |U , PSX) := PUEZPW |UPSXPY |X ,

I(U ;W |Z) ≤ Rm := τI(X;Y |S)− µ < τI(X;Y |S)

 . (48)

Note that B′(τ, PY |X) ⊆ B(τ, PY |X) since I(U ;W |E,Z) ≤ I(U ;W |Z), which holds due to the Markov chain

(Z,E)− U −W . Now, consider (PW |U , PSX , Rm) ∈ B′(τ, PY |X). Then, we have

E1(PW |U ) = min
PŨẼZ̃W̃∈T1(PUW ,PEZW )

D(PŨẼZ̃W̃ ||PZPU |ZPE|ZPW |U )

≥ min
PŨẼZ̃W̃∈T1(PUW ,PEZW )

D(PẼZ̃W̃ ||PZPE|ZPW |Z) (49)

= I(E;W |Z),

where (49) follows from the log-sum inequality [23]. Also,

E2

(
PW |U , PSX , Rm

)
≥ Rm − I(U ;W |E,Z) ≥ I(U ;W |Z)− I(U ;W |E,Z) = I(E;W |Z),

min
PŨẼZ̃W̃∈T3(PUW ,PEZ) D(PŨẼZ̃W̃ ||PZPU |ZPE|ZPW |U ) +Rm − I(U ;W |E,Z) + τEx

(
Rm
τ
, PSX

)
≥ I(U ;W |Z)− I(U ;W |E,Z) = I(E;W |Z), (50)
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min
PŨẼZ̃W̃∈T3(PUW ,PEZ) D(PŨẼZ̃W̃ ||PZPU |ZPE|ZPW |U ) + I(E,Z;W ) + τEx

(
Rm
τ
, PSX

)
≥ I(E;W |Z), (51)

D(PEZ ||PEZ) +Rm − I(U ;W |E,Z) + τEm (PSX) ≥ I(U ;W |Z)− I(U ;W |E,Z) = I(E;W |Z), (52)

D(PEZ ||PEZ) + I(E,Z;W ) + τEm (PSX) ≥ I(E;W |Z), (53)

where in (50)-(53), we used the non-negativity of KL-divergence, Ex(·, ·) and Em(·). Thus, from (50)-(53), it

follows that

E3(PW |U , PSX , Rm, τ) ≥ I(E;W |Z), (54)

and E4(PW |U , PSX , Rm, τ) ≥ I(E;W |Z). (55)

Denoting B(τ, PY |X) and B′(τ, PY |X) by B and B′, respectively, we obtain

κ(τ, ε)

≥ sup
(PW |U ,PSX ,Rm)∈B

min
(
E1(PW |U ), E2(PW |U , PSX , Rm), E3(PW |U , PSX , Rm, τ), E4(PW |U , PSX , Rm, τ)

)
≥ sup

(PW |U ,PSX ,Rm)∈B
I(E;W |Z)

≥ sup
(PW |U ,PSX ,Rm)∈B′

I(E;W |Z) (56)

= sup
PW |U :I(W ;U |Z)≤τC(PY |X)−µ

I(E;W |Z), (57)

where (56) follows from the fact that B′ ⊆ B; and (57) follows by maximizing over all PSX and noting that

sup
PXS

I(X;Y |S) = C(PY |X). The proof of achievability is complete by noting that µ > 0 is arbitrary and I(E;W |Z)

and I(U ;W |Z) are continuous functions of PW |U .

Converse: For any sequence of encoding functions f (k,nk), acceptance regions A(k,nk) for H0 such that nk ≤ τk

and

lim sup
k→∞

α
(
k, nk, f

(k,nk), g(k,nk)
)

= 0, (58)

we have similar to [4, Theorem 1 (b)], that

lim sup
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk), g(k,nk)
))
≤ lim sup

k→∞

1

k
D (PY nkEkZk ||QY nkEkZk) (59)

= lim sup
n→∞

1

k
I(Y nk ;Ek|Zk) (60)

= H(E|Z)− lim inf
k→∞

1

k
H(Ek|Y nk , Zk), (61)

where (60) follows since QY nkEkZk = PY nkZkPEk|Zk . Now, let T be a r.v. uniformly distributed over [k] and

independent of all the other r.v.’s (Uk, Ek, Zk, Xnk , Y nk). Define an auxiliary r.v. W := (WT , T ), where Wi :=
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(Y nk , Ei−1, Zi−1, Zki+1), i ∈ [k]. Then, the last term can be single-letterized as follows.

H(Ek|Y nk , Zk) =
∑k

i=1
H(Ei|Ei−1, Y nk , Zk)

=
∑k

i=1
H(Ei|Zi,Wi)

= kH(ET |ZT ,WT , T )

= kH(E|Z,W ). (62)

Substituting (62) in (61), we obtain

lim sup
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk)
1 , g(k,nk)

))
≤ I(E;W |Z). (63)

Next, note that the data processing inequality applied to the Markov chain (Zk, Ek) − Uk − Xn − Y n yields

I(Uk;Y nk) ≤ I(Xnk ;Y nk) which implies that

I(Uk;Y nk)− I(Uk;Zk) ≤ I(Xnk ;Y nk). (64)

The R.H.S. of (64) can be upper bounded due to the memoryless nature of the channel as

I(Xnk ;Y nk) ≤ nk max
PX

I(X;Y ) = nkC(PY |X), (65)

while the left hand side (L.H.S.) can be simplified as follows.

I(Uk;Y nk)− I(Uk;Zk) = I(Uk;Y nk |Zk) (66)

=
∑k

i=1
I(Y nk ;Ui|U i−1, Zk)

=
∑k

i=1
I(Y nk , U i−1, Zi−1, Zki+1;Ui|Zi) (67)

=
∑k

i=1
I(Y nk , U i−1, Zi−1, Zki+1, E

i−1;Ui|Zi) (68)

≥
∑k

i=1
I(Y nk , Zi−1, Zki+1, E

i−1;Ui|Zi)

=
∑k

i=1
I(Wi;Ui|Zi) = kI(WT ;UT |ZT , T )

= kI(WT , T ;UT |ZT ) (69)

= kI(W ;U |Z).

Here, (66) follows due to Zk−Uk−Y nk ; (67) follows since the sequences (Uk, Zk) are memoryless; (68) follows

since Ei−1− (Y nk , U i−1, Zi−1, Zki+1)−Ui ; (69) follows from the fact that T is independent of all the other r.v.’s.

Finally, note that (E,Z)−U −W holds and that the cardinality bound on W follows by standard arguments based

on Caratheodory’s theorem. This completes the proof of the converse, and hence of the proposition.

As the above result shows, TACI is an instance of distributed HT over a DMC, in which, the optimal error-

exponent is equal to that achieved over a noiseless channel of the same capacity. Hence, a noisy channel does not

always degrade the achievable error-exponent. Also, notice that a separation based coding scheme that performs
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independent HT and channel coding is sufficient to achieve the optimal error-exponent for TACI. The investigation

of a single-letter characterization of the optimal error-exponent for TACI over a DMC is inspired from an analogous

result for TACI over a noiseless channel. It would be interesting to explore whether the noisiness of the channel

enables obtaining computable characterizations of the error-exponent for some other special cases of the problem.

V. CONCLUDING REMARKS

In this paper, we have studied the error-exponent achievable for distributed HT problem over a DMC with side

information available at the detector. We obtained single-letter lower bounds on the optimal error-exponent for

general HT, and exact single-letter characterization for TACI. It is interesting to note from our results that the

reliability function of the channel does not play a role in the characterization of the optimal error-exponent for

TACI, and only the channel capacity matters. We also showed via an example that the lower bound on the error-

exponent obtained using our joint hypothesis testing and channel coding scheme is strictly better than that obtained

using our separation based scheme. Although this does not imply that “separation does not hold” for distributed

HT over a DMC, it points to the possibility that joint HT and channel coding schemes outperform separation based

schemes, in general, and it is worthwhile investigating this aspect in greater detail. While a strong converse holds

for distributed HT over a rate-limited noiseless channel [4], it remains an open question whether this property holds

for noisy channels. As a first step, it is shown in [30] that this is indeed the case for HT over a DMC with no

side-information. While we did not discuss the complexity of the schemes considered in this paper, it is an important

factor that needs to be taken into account in any practical implementation of these schemes. In this regard, it is

evident that the SHTCC and JHTCC schemes are in increasing order of complexity.

APPENDIX A

PROOF OF THEOREM 2

The proof outline is as follows. We first describe the encoding and decoding operations of the SHTCC scheme.

The random coding method is used to analyze the type I and type II error probabilities achieved by this scheme,

averaged over the ensemble of randomly generated codebooks. By the standard expurgation technique [24] (e.g.,

removing “worst” codebooks in the ensemble with the highest type I error probability such that the total probability

of the removed codebooks lies in the interval (0.5, 1)), this guarantees the existence of at least one deterministic

codebook that achieves type I and type II error probabilities of the same order, i.e., within a constant multiplicative

factor. Since, in our scheme below, the type I error probability averaged over the random code ensemble vanishes

asymptotically with the the number of samples k, the same holds for the codebook obtained after expurgation.

Moreover, the error-exponent is not affected by a constant multiplicative factor on the type II error probability, and

thus, this codebook asymptotically achieves the same type I error probability and error-exponent as the average.

For brevity, in the proof below, we denote the information theoretic quantities like IP (U ;W ), T k[PUW ]δ
, etc., that

are computed with respect to joint distribution PUVWSXY given in (70) below by I(U ;W ), T k[UW ]δ
, etc.



19

Codebook Generation: Let k ∈ Z+ and n = bτkc. Fix a finite alphabet W , a positive number (small) δ > 0, and

distributions PW |U and PSX . Let δ′ := δ
2 , δ̂ := |U|δ, δ̃ := 2δ, δ̄ := δ′

|V| , δ̌ := |W|δ̃ and

PUVWSXY (PW |U , PSX) := PUV PW |UPSXPY |X . (70)

Let µ = O(δ) (subject to constraints that will be specified below) and R be such that

I(U ;W |V ) + 2µ ≤ R ≤ τI(X;Y |S)− µ. (71)

Denoting M ′k := ek(I(U :W )+µ), the source codebook C used by the source encoder f (k)
s is obtained by generating

M ′k sequences wk(j), j ∈ [M ′k], independently at random according to the distribution
∏k
i=1 PW (wi), where

PW (w) =
∑
u∈U

PW |U (w|u)PU (u),∀ w ∈ W.

The channel codebook C̃ used by f (k,n)
c is obtained as follows. The codeword length n is divided into |S| = |X |

blocks, where the length of the first block is dPS(s1)ne, the second block is dPS(s2)ne, so on so forth, and the

length of the last block is chosen such that the total length is n. The codeword xn(0) = sn corresponding to M = 0

is obtained by repeating the letter si in block i. The remaining
⌈
ekR
⌉

ordinary codewords xn(m), m ∈
[
ekR
]
, are

obtained by blockwise i.i.d. random coding, i.e., the symbols in the ith block of each codeword are generated i.i.d.

according to PX|S=si . The sequence sn is revealed to the detector.

Encoding: If I(U ;W ) + µ > R, i.e., the number of codewords in the source codebook is larger than the

number of codewords in the channel codebook, the encoder performs uniform random binning on the sequences

wk(i), i ∈ [M ′k] in C, i.e., for each codeword in C, it selects an index uniformly at random from the set [ekR]. Denote

the bin index selected for wk(i) by fB(i). If the observed sequence Uk = uk is typical, i.e., uk ∈ T k[U ]δ′
, the source

encoder f (k)
s first looks for a sequence wk(j) in C such that (uk, wk(j)) ∈ T k[UW ]δ

. If there exist multiple such

codewords, it chooses an index j among them uniformly at random, and outputs the bin-index M = m = fB(j),

m ∈ [ekR] or M = m = j depending on whether I(U ;W ) + µ > R, or otherwise. If uk /∈ T k[U ]δ′
or such an

index j does not exist, f (k)
s outputs the error message M = 0. The channel encoder f (k,n)

c transmits the codeword

xn(m) from codebook C̃.

Decoding: At the decoder, g(k,n)
c outputs M̂ = 0 if for some 1 ≤ i ≤ |S|, the channel outputs corresponding

to the ith block does not belong to Tn[PY |S=si
]δ

. Otherwise, M̂ is set as the index of the codeword corresponding

to the maximum-likelihood candidate among the ordinary codewords. If M̂ = 0, H1 is declared. Else, given the

side information sequence V k = vk and estimated bin-index M̂ = m̂, g(k,n)
s searches for a typical sequence

ŵk = wk(ĵ) ∈ T k[W ]δ̂
, in codebook C such that

ĵ = arg min
l: fB(l)=m̂,

wk(l)∈Tk[W ]
δ̂

He(w
k(l)|vk), if I(U ;W ) + µ > R,

ĵ = m̂, otherwise.
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The decoder declares Ĥ = 0 if (ŵk, vk) ∈ T k[WV ]δ̃
. Else, Ĥ = 1 is declared.

We next analyze the type I and type II error probabilities achieved by the above scheme.

Analysis of Type I error: A type I error occurs only if one of the following events happen.

ETE =
{

(Uk, V k) /∈ T k[UV ]δ̄

}
EEE =

{
@ j ∈ [M ′k] : (Uk,W k(j)) ∈ T k[UW ]δ

}
EME =

{
(V k,W k(J)) /∈ T k[VW ]δ̃

}
EDE =

{
∃ l ∈ [M ′k] , l 6= J : fB(l) = fB(J), W k(l) ∈ T k[W ]δ̂

, He(W
k(l)|V k) ≤ He(W

k(J)|V k)

}

ECD =
{
g(k,n)
c (Y n) 6= M

}
P(ETE |H = 0) tends to 0 asymptotically by the weak law of large numbers. Conditioned on EcTE , Uk ∈ T[U ]δ′

and

by the covering lemma [23, Lemma 9.1], it is well known that for µ = O(δ) chosen appropriately, P(EEE |EcTE)

tends to 0 doubly exponentially with k. Given EcEE∩EcTE holds, it follows from the Markov chain relation V −U−W

and the Markov lemma [31], that P(EME |EcTE ∩EcEE) tends to zero as k →∞. Next, we consider P(EDE). Given

that EcME ∩ EcEE ∩ EcTE holds, note that for k sufficiently large, He(W
k(J)|V k) ≤ H(W |V ) + O(δ). Thus, we

have (for sufficiently large k)

P(EDE | V k = vk,W k(J) = wk, EcME ∩ EcEE ∩ EcTE)

≤
M ′k∑
l=1,
l 6=J

∑
w̃k∈Tk[W ]

δ̂
:

He(w̃
k|vk)

≤He(wk|vk)

P
(
fB(l) = fB(J), W k(l) = w̃k| V k = vk,W k(J) = wk, EcME ∩ EcEE ∩ EcTE

)

=

M ′k∑
l=1,
l 6=J

∑
w̃k∈Tk[W ]

δ̂
:

He(w̃
k|vk)≤He(wk|vk)

P(W k(l) = w̃k| V k = vk,W k(J) = wk, EcME ∩ EcEE ∩ EcTE)
1

ekR

≤
M ′k∑
l=1,
l 6=J

∑
w̃k∈Tk[W ]

δ̂
:

He(w̃
k|vk)≤He(wk|vk)

2 · e−kRe−k(H(W )−O(δ)) (72)

≤
M ′k∑
l=1,
l 6=J

(k + 1)|V||W| ek(H(W |V )+O(δ)) · 2 · e−kRe−k(H(W )−O(δ)) (73)

≤ e−k(R−I(U ;W |V )−δ(k)
1 ), (74)

where

δ
(k)
1 = µ+O(δ) +

1

k
|V||W| log(k + 1) +

log(2)

k
.
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To obtain (72), we used the fact that

P(W k(l) = w̃k| EcME ∩ EcEE ∩ EcTE ,W k(J) = wk, V k = vk) ≤ 2 · P(W k(l) = w̃k). (75)

This follows similarly to (96), which is discussed in the type II error analysis section below. In order to obtain

the expression in (73), we first summed over the types PW̃ of sequences within the typical set T k[W ]δ
that have

empirical entropy less than He(w
k|vk); and used the facts that the number of sequences within such a type is upper

bounded by ek(H(W |V )+γ1(k)), and the total number of types is upper bounded by (k + 1)|V||W| [23]. Summing

over all (wk, vk) ∈ T k[VW ]δ̃
, we obtain (for sufficiently large k) that

P(EDE |EcME ∩ EcEE ∩ EcTE)

≤
∑

(wk,vk)∈Tk
[WV ]

δ̃

P(W k(J) = wk, V k = vk|EcME ∩ EcEE ∩ EcTE) e−k(R−I(U ;W |V )−δ(k)
1 )

≤ e−k(R−I(U ;W |V )−δ(k)
1 ) ≤ e−k

µ
2 , (76)

where, (76) follows from (71) by choosing µ = O(δ) appropriately.

Finally, we consider the event ECD. Denoting by ECT , the event that the channel outputs corresponding to the

ith block does not belong to Tn[PY |S=si
]δ

for some 1 ≤ i ≤ |S|, it follows from the weak law of large numbers and

the union bound, that

P(ECT |EcEE)
(k)−−→ 0. (77)

Also, it follows from [23, Exercise 10.18, 10.24] that for sufficiently large n (depending on µ, τ, |X | and |Y|),

P (ECD|EcEE ∩ EcCT ) ≤ e−nEx(Rτ + µ
2τ ,PSX). (78)

This implies that the probability that an error occurs at the channel decoder g(k,n)
c tends to 0 as n → ∞ since

Ex(Rτ + µ
2τ , PSX) > 0 for R ≤ τI(X;Y |S) − µ. Thus, since I(U ;W |V ) + µ ≤ R ≤ τI(X;Y |S) − µ, the

probability of the events causing type I error tends to zero asymptotically.

Analysis of Type II error: First, note that a type II error occurs only if V k ∈ T k[V ]δ̌
, and hence, we can restrict

the type II error analysis to only such V k. Denote the event that a type II error happens by D0. Let

E0 =
{
Uk /∈ T k[U ]δ′

}
. (79)

Then, the type II error probability can be written as

β
(
k, n, f (k,n), g(k,n)

)
=

∑
(uk,vk)∈Uk×Vk

P(Uk = uk, V k = vk|H = 1) P(D0|Uk = uk, V k = vk). (80)

Let ENE := EcEE ∩ Ec0 . The last term in (80) can be upper bounded as follows.
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P(D0|Uk = uk, V k = vk)

= P(ENE |Uk = uk, V k = vk) P(D0|Uk = uk, V k = vk, ENE)

+ P(EcNE |Uk = uk, V k = vk) P(D0|Uk = uk, V k = vk, EcNE)

≤ P(D0|Uk = uk, V k = vk, ENE) + P(D0|Uk = uk, V k = vk, EcNE).

Thus, we have

β
(
k, n, f (k,n), g(k,n)

)
≤

∑
(uk,vk)

∈ Uk×Vk

P(Uk = uk, V k = vk|H = 1)
[
P(D0|Uk = uk, V k = vk, ENE)

+ P(D0|Uk = uk, V k = vk, EcNE)
]
. (81)

First, we assume that ENE holds. Then,

P(D0| Uk = uk, V k = vk, ENE) =

M ′k∑
j=1

ekR∑
m=1

P(J = j, fB(J) = m| Uk = uk, V k = vk, ENE)

P(D0|Uk = uk, V k = vk, J = j, fB(J) = m, ENE). (82)

By the symmetry of the codebook generation, encoding and decoding procedure, the term P(D0|Uk = uk, V k =

vk, J = j, fB(J) = m, ENE) in (82) is independent of the value of J and fB(J). Hence, w.l.o.g. assuming J = 1

and fB(J) = 1, we can write

P(D0| Uk = uk, V k = vk, ENE)

=

M ′k∑
j=1

ekR∑
m=1

P(J = j, fB(J) = m| Uk = uk, V k = vk, ENE)P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

= P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

=
∑

wk∈Wk

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE). (83)

Given ENE holds, D0 may occur in three possible ways: (i) when M̂ 6= 0, i.e., EcCT occurs, the channel decoder

makes an error and the codeword retrieved from the bin is jointly typical with V k; (ii) when an unintended wrong

codeword is retrieved from the correct bin that is jointly typical with V k; and (iii) when there is no error at the

channel decoder and the correct codeword is retrieved from the bin, that is also jointly typical with V k. We refer

to the event in case (i) as the channel error event ECE , and the one in case (ii) as the binning error event EBE .
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More specifically,

ECE = {EcCT and M̂ = g(k,n)
c (Y n) 6= M}, (84)

and EBE =
{
∃ l ∈ [M ′k] , l 6= J, fB(l) = M̂, W k(l)) ∈ T k[W ]δ̂

, (V k,W k(l)) ∈ T k[VW ]δ̃

}
. (85)

Define the following events

F = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE}, (86)

F1 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE , ECE}, (87)

F2 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE , EcCE}, (88)

F21 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE , EcCE , EBE}, (89)

F22 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE , EcCE , EcBE}. (90)

The last term in (83) can be expressed as follows.

P(D0|F) = P(ECE |F) P(D0|F1) + P(EcCE |F) P(D0|F2),

where

P(D0|F2) = P(EBE |F2) P(D0|F21) + P(EcBE |F2) P(D0|F22). (91)

It follows from (78) that for sufficiently large k,

P(ECE |F) ≤ e−nEx(Rτ + µ
2τ ,PSX) = e−kτEx(Rτ + µ

2τ ,PSX). (92)

Next, consider the type II error event that happens when an error occurs at the channel decoder. We need to consider

two separate cases: I(U ;W ) + µ > R and I(U ;W ) + µ ≤ R. Note that in the former case, binning is performed

and type II error happens at the decoder only if a sequence W k(l) exists in the wrong bin M̂ 6= M = fB(J)

such that (V k,W k(l)) ∈ T k[VW ]δ̃
. As noted in [28], the calculation of the probability of this event does not follow

from the standard random coding argument usually encountered in achievability proofs due to the fact that the

chosen codeword W k(J) depends on the entire codebook. Following steps similar to those in [28], we analyze the

probability of this event (averaged over codebooks C and random binning) as follows. We first consider the case

when I(U ;W ) + µ > R.

P(D0|F1) ≤ P( ∃ W k(l) : fB(l) = M̂ 6= 1, (W k(l), vk) ∈ T k[WV ]δ̃
|F1)

≤
M ′k∑
l=2

∑
m̂6=1

P(M̂ = m̂|F1) P((W k(l), vk) ∈ T k[WV ]δ̃
: fB(l) = m̂|F1)

=

M ′k∑
l=2

∑
m̂ 6=1

P(M̂ = m̂|F1)
∑
w̃k:

(w̃k,vk)∈Tk[WV ]
δ̃

P(W k(l) = w̃k : fB(l) = m̂|F1)
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=

M ′k∑
l=2

∑
m̂ 6=1

P(M̂ = m̂|F1)
∑
w̃k:

(w̃k,vk)∈Tk[WV ]
δ̃

P(W k(l) = w̃k|F1)
1

ekR

=

M ′k∑
l=2

∑
w̃k:

(w̃k,vk)∈Tk[WV ]
δ̃

P(W k(l) = w̃k|F1)
1

ekR
. (93)

Let C−1,l = C\{W k(1),W k(l)}. Then,

P(W k(l) = w̃k|F1) =
∑
C−1,l=c

P(C−1,l = c|F1)P(W k(l) = w̃k|F1, C−1,l = c). (94)

The term in (94) can be upper bounded as follows:

P(W k(l) = w̃k|F1, C−1,l = c)

= P(W k(l) = w̃k|Uk = uk, V k = vk, C−1,l = c)
P(W k(1) = wk|W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

P(W k(1) = wk|Uk = uk, V k = vk, C−1,l = c)

P(J = 1|W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−1,l = c)
(95)

P(fB(J) = 1|J = 1,W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

P(fB(J) = 1|J = 1,W k(1) = wk, Uk = uk, V k = vk, C−1,l = c)

P(ENE , ECE |fB(J) = 1, J = 1,W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

P(ENE , ECE |fB(J) = 1, J = 1,W k(1) = wk, Uk = uk, V k = vk, C−1,l = c)
.

Since the codewords are generated independently of each other and the binning operation is independent of the

codebook generation, we have

P(W k(1) = wk|W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c) = P(W k(1) = wk|Uk = uk, V k = vk, C−1,l = c),

and

P(fB(J) = 1|J = 1,W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

= P(fB(J) = 1|J = 1,W k(1) = wk, Uk = uk, V k = vk, C−1,l = c).

Also, note that

P(ENE , ECE |fB(J) = 1, J = 1,W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

= P(ENE , ECE |fB(J) = 1, J = 1,W k(1) = wk, Uk = uk, V k = vk, C−1,l = c).

Next, consider the term in (95). Let N(uk, C−1,l) = |{wk(l′) ∈ C−1,l : l′ 6= 1, l′ 6= l, (wk(l′), uk) ∈ T k[WU ]δ
}|.

Recall that if there are multiple sequences in codebook C that are jointly typical with the observed sequence Uk,

then the encoder selects one of them uniformly at random. Also, note that given F1, (wk, uk) ∈ T k[WU ]δ
. Thus, if

(w̃k, uk) ∈ T k[WU ]δ
, then
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P(J = 1|W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, ENE , ECE , C−1,l = c)

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−1,l = c)

=

[
1

N(uk, C−1,l) + 2

]
1

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−1,l = c)

≤
N(uk, C−1,l) + 2

N(uk, C−1,l) + 2
= 1.

If (w̃k, uk) /∈ T k[WU ]δ
, then

P(J = 1|W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−1,l = c)

=

[
1

N(uk, C−1,l) + 1

]
1

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−1,l = c)

≤
N(uk, C−1,l) + 2

N(uk, C−1,l) + 1
≤ 2.

Hence, the term in (94) can be upper bounded as

P(W k(l) = w̃k|F1)

≤
∑
C−1,l=c

P(C−1,l = c|F1) 2 P(W k(l) = w̃k|Uk = uk, V k = vk, C−1,l = c)

= 2 P(W k(l) = w̃k|Uk = uk, V k = vk) = 2 P(W k(l) = w̃k). (96)

Substituting (96) in (93), we obtain

P(D0|F1) ≤
M ′k∑
l=1

∑
w̃k:

(w̃k,vk)∈Tk[WV ]
δ̃

2 P(W k(l) = w̃k)
1

ekR

=

M ′k∑
l=1

∑
w̃k:

(w̃k,vk)∈Tk[WV ]
δ̃

2 · e−k(H(W )−O(δ̂)) 1

ekR

= 2 M ′k e
k(H(W |V )+δ) e−k(H(W )−O(δ̂)) 1

ekR

≤ e−k(R−I(U ;W |V )−δ(k)
2 ), (97)

where δ(k)
2 := O(δ) + log(2)

k . For the case I(U ;W ) +µ ≤ R (when binning is not done), the terms can be bounded

similarly using (96) as follows.

P(D0|F1) =
∑
m̂ 6=1

P(M̂ = m̂|F1) P((W k(m̂), vk) ∈ T k[WV ]δ̃
|F1)
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≤
∑
m̂ 6=1

P(M̂ = m̂|F1)
∑
w̃k:

(w̃k,vk)∈Tk[WV ]
δ̃

2 P(W k(m̂) = w̃k)

≤ e−k(I(V ;W )−δ(k)
2 ). (98)

Next, consider the event when there are no encoding or channel errors, i.e., ENE ∩ EcCE . For the case I(U ;W )+

µ > R, the binning error event denoted by EBE happens when a wrong codeword W k(l), l 6= J , is retrieved from

the bin with index M by the empirical entropy decoder such that (W k(l), V k) ∈ T k[WV ]δ
. Let PŨṼ W̃ denote

the type of PUkV kWk(J). Note that PŨW̃ ∈ T k[UW ]δ
when ENE holds. If H(W̃ |Ṽ ) < H(W |V ), then in the bin

with index M , there exists a codeword with empirical entropy strictly less than H(W |V ). Hence, the decoded

codeword Ŵ k is such that (Ŵ k, V k) /∈ T k[WV ]δ̃
(asymptotically) since (Ŵ k, V k) ∈ T k[WV ]δ̃

necessarily implies that

He(Ŵ
k|V k) ≥ H(W |V ) − O(δ) (for δ small enough). Consequently, a type II error can happen under the event

EBE only when H(W̃ |Ṽ ) ≥ H(W |V )−O(δ). The probability of the event EBE can be upper bounded under this

condition as follows:

P(EBE |F2)

≤ P
(
∃ l 6= 1, l ∈ [M ′k] : fB(l) = 1 and (W k(l), vk) ∈ T k[WV ]δ̃

|F2

)
≤

M ′k∑
l=2

P
(

(W k(l), vk) ∈ T k[WV ]δ̃
|F2

)
P
(
fB(l) = 1|F2, (W

k(l), vk) ∈ T k[WV ]δ̃

)

=

M ′k∑
l=2

P
(

(W k(l), vk) ∈ T k[WV ]δ̃
|F2

)
e−kR

≤
M ′k∑
l=2

∑
w̃k:

(w̃k,vk)∈Tk[WV ]
δ̃

2 P(W k(l) = w̃k) e−kR (99)

= e−k(R−I(U ;W |V )−δ(k)
2 ). (100)

In (99), we used the fact that

P
(
W k(l) = w̃k|F2

)
≤ 2 P(W k(l) = w̃k), (101)

which follows in a similar way as (96). Also, note that, by definition, P(D0|F21) = 1.

We proceed to analyze the R.H.S of (81) which upper bounds the type II error probability. Towards this end, we

first focus on the the case when ENE holds. From (83), it follows that∑
(uk,vk)∈Uk×Vk

P(Uk = uk, V k = vk|H = 1) P(D0|Uk = uk, V k = vk, ENE) (102)

=
∑

(uk,vk)∈Uk×Vk
P(Uk = uk, V k = vk|H = 1) P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE). (103)
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Rewriting the summation in (103) as the sum over the types and sequences within a type, we obtain

P(D0| ENE , H = 1)

=
∑
PŨṼ W̃
∈T kUVW

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H = 1) P(D0|F)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]
. (104)

We also have

P(Uk = uk, V k = vk|H = 1) P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

=

[
k∏
i=1

QUV (ui, vi)

]
P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

≤

[
k∏
i=1

QUV (ui, vi)

]
1

|TPW̃ |Ũ |
≤ e−k(H(ŨṼ )+D(PŨṼ ||QUV )+H(W̃ |Ũ)− 1

k |U||W| log(k+1)), (105)

where PŨṼ W̃ denotes the type of the sequence (uk, vk, wk).

With (92), (97), (98), (100) and (105), we have the necessary machinery to analyze (104). First, consider that

the event ENE ∩ EcCE ∩ EcBE holds. In this case,

P(D0|F22) = P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE , EcCE , EcBE)

=

1, if Pukwk ∈ T k[UW ]δ
and Pvkwk ∈ T k[VW ]δ̃

,

0, otherwise.
(106)

Thus, the following terms in (104) can be simplified (for sufficiently large k) as follows:∑
PŨṼ W̃
∈T kUVW

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H = 1) P(EcCE |F) P(EcBE |F2) P(D0|F22)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤
∑
PŨṼ W̃
∈T kUVW

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H = 1) P(D0|F22)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤ (k + 1)|U||V||W| max
PŨṼ W̃∈

T̂ (k)
1 (PUW ,PVW )

ekH(ŨṼ W̃ )e−k(H(ŨṼ )+D(PŨṼ ||QUV )+H(W̃ |Ũ)− 1
k |U||W| log(k+1))

= e−kẼ1k , (107)

where,

T̂ (k)
1 (PUW , PVW ) := {PŨṼ W̃ : PŨW̃ ∈ T

k
[UW ]δ

and PṼ W̃ ∈ T
k
[VW ]δ̃

}, (108)
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and Ẽ1k := min
PŨṼ W̃ ∈

T̂ (k)
1 (PUW ,PVW )

H(Ũ Ṽ ) +D(PŨṼ ||QUV ) +H(W̃ |Ũ)−H(Ũ Ṽ W̃ )− 1

k
|U||V||W| log(k + 1)

− 1

k
|U||W| log(k + 1). (109)

To obtain (107), we used (105) and (106). Note that for δ small enough,

Ẽ1k

(k)

≥ min
PŨṼ W̃ ∈

T1(PUW ,PVW )

∑
PŨṼ W̃ log

(
PŨṼ
QUV

1

PŨṼ

PŨ
PŨW̃

PŨṼ W̃

)
−O(δ)

= min
PŨṼ W̃ ∈

T1(PUW ,PVW )

D(PŨṼ W̃ ||QUVW )−O(δ) = E1(PW |U )−O(δ), (110)

Next, consider the terms corresponding to the event ENE ∩ EcCE ∩ EBE in (104). Note that given the event

F21 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE , EcCE , EBE} occurs, Pukwk ∈ T k[UW ]δ
. Also,

D0 can happen only if He(w
k|vk) ≥ H(W |V ) − O(δ̃), and Pvk ∈ T k[V ]δ̌

. Using these facts to simplify the terms

corresponding to the event ENE ∩ EcCE ∩ EBE in (104), we obtain∑
PŨṼ W̃
∈T kUVW

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H = 1) P(EcCE |F) P(EBE |F2) P(D0|F21)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤
∑
PŨṼ W̃
∈T kUVW

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H = 1) P(EBE |F2) P(D0|F21)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤ max
PŨṼ W̃∈

T̂ (k)
2 (PUW ,PV )

ekH(ŨṼ W̃ )e−k(H(ŨṼ )+D(PŨṼ ||QUV )+H(W̃ |Ũ)+R−I(U ;W |V )−O(δ))

e(|U||V||W| log(k+1)+|U||W| log(k+1))

= e−kẼ2k , (111)

where,

T̂ (k)
2 (PUW , PV ) := {PŨṼ W̃ : PŨW̃ ∈ T

k
[UW ]δ

, PṼ ∈ T
k
[V ]δ̌

and H(W̃ |Ṽ ) ≥ H(W |V )−O(δ)}, (112)

and

Ẽ2k := min
PŨṼ W̃∈

T2(PUW ,PV )

H(Ũ Ṽ ) +D(PŨṼ ||QUV ) +H(W̃ |Ũ) +R− I(U ;W |V )− 1

k
|U||V||W| log(k + 1)

− 1

k
|U||W| log(k + 1)−O(δ)

(k)

≥ E2(PW |U , PSX , R)−O(δ). (113)
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Also, note that EBE occurs only when I(U ;W ) + µ > R.

Next, consider that the event ENE ∩ ECE holds. As in the case above, note that given F1 = {Uk = uk, V k =

vk, J = 1, fB(J) = 1,W k(1) = wk, ENE , ECE}, Pukwk ∈ T k[UW ]δ
and D0 occurs only if Pvk ∈ T k[V ]δ̌

. Using

these facts and eqns. (97), (98) and (92), it can be shown that the terms corresponding to this event in (104) results

in the factor E3(PW |U , PSX , R, τ)−O(δ) in the error-exponent.

Finally, we analyze the case when the event EcNE occurs. Since the encoder declares H1 if M̂ = 0, it is clear

that D0 occurs only when the channel error event ECE happens. Thus, we have

P(D0| Uk = uk, V k = vk, EcNE) =P(ECE | Uk = uk, V k = vk, EcNE)

P(D0| Uk = uk, V k = vk, EcNE ∩ ECE). (114)

It follows from Borade et al.’s coding scheme [25] that asymptotically,

P(ECE | Uk = uk, V k = vk, EcNE) ≤ e−n(Em(PSX)−O(δ)) = e−kτ(Em(PSX)−O(δ)). (115)

When binning is performed at the encoder, D0 occurs only if there exists a sequence Ŵ k in the bin M̂ 6= 0 such

that (Ŵ k, V k) ∈ T k[WV ]δ̃
. Also, recalling that the encoder sends the error message M = 0 independent of the

source codebook C, it can be shown using standard arguments that for such vk ∈ T k[V ]δ̌
,

P(D0| Uk = uk, V k = vk, EcNE ∩ ECE) ≤ e−k(R−I(U ;W |V )−O(δ)). (116)

Thus, from (114), (115) and (116), we obtain (asymptotically) that,∑
uk,vk

P(Uk = uk, V k = vk|H = 1) P(D0| Uk = uk, V k = vk, EcNE ∩ ECE)

≤ e−k(R−I(U ;W |V )+D(PV ||QV )+τEm(PSX)−O(δ)). (117)

On the other hand, when binning is not performed, D0 occurs only if (W k(M̂), V k) ∈ T k[WV ]δ̃
and in this case,

we obtain (asymptotically) that,∑
uk,vk

P(Uk = uk, V k = vk|H = 1) P(D0| Uk = uk, V k = vk, EcNE ∩ ECE)

≤ e−k(I(V ;W )+D(PV ||QV )+τEm(PSX)−O(δ)). (118)

This results in the factor E4(PW |U , PSX , R, τ) − O(δ) in the error-exponent. Since the error-exponent is lower

bounded by the minimal value of the exponent due to the various type II error events, the proof of the theorem is

complete by noting that δ > 0 is arbitrary.

APPENDIX B

PROOF OF THEOREM 5

We only give a sketch of the proof as the intermediate steps follow similarly to those in the proof of Theorem

2. We will use the random coding method combined with the expurgation technique as explained in the proof
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of Theorem 2, to guarantee the existence of at least one deterministic codebook that achieves the type I error

probability and error-exponent claimed in Theorem 5. For brevity, we will denote information theoretic quantities

like IP̂ (U, S; W̄ ), Tn
[P̂USW̄ ]δ

, etc., that are computed with respect to joint distribution P̂UV SW̄X′XY given below in

(119) by I(U, S; W̄ ), Tn
[USW̄ ]δ

, etc.

Fix distributions (PS , PW̄ |US , PX′|US , PX|USW̄ ) ∈ Bh and a positive number δ > 0. Let µ = O(δ) subject to

constraints that will be specified below. Let δ̂ := |W̄|δ, δ′ := δ
2 , δ̄ := δ′

|V| , δ̃ := 2δ, and

P̂UV SW̄X′XY (PS , PW̄ |US , PX′|S , PX|USW̄ ) := PUV PSPW̄ |USPX′|USPX|USW̄PY |X . (119)

Generate a sequence Sn i.i.d. according to
∏n
i=1 PS(si). The realization Sn = sn is revealed to both the encoder

and detector. Generate the quantization codebook C = {w̄n(j), j ∈ [en(I(U,S;W̄ )+µ)]}, where each codeword w̄n(j)

is generated independently according to the distribution
∏n
i=1 P̂W̄ , where

P̂W̄ =
∑

(u,s)∈U×S

PU (u)PS(s)PW̄ |US(w̄|u, s).

Encoding: If (un, sn) is typical, i.e., (un, sn) ∈ Tn[US]δ′
, the encoder first looks for a sequence w̄n(j) such

that (un, sn, w̄n(j)) ∈ Tn[USW ]δ
. If there exists multiple such codewords, it chooses one among them uniformly at

random. The encoder transmits Xn = xn over the channel, where Xn is generated according to the distribution∏n
i=1 PX|USW̄ (xi|ui, si, w̄i(j)). If (un, sn) /∈ T k[US]δ′

or such an index j does not exist, the encoder generates the

channel input X ′n = x′n randomly according to
∏n
i=1 PX′|US(x′i|ui, si).

Decoding: Given the side information sequence V n = vn, received sequence Y n = yn and sn, the detector

first checks if (vn, sn, yn) ∈ Tn[V SY ]δ̃
, δ̃ > δ. If the check is unsuccessful, Ĥ = 1. Else, it searches for a typical

sequence ˆ̄wn = w̄n(ĵ) ∈ T k
[W̄ ]δ̂

, in the codebook such that

ĵ = arg min
l:w̄n(l)∈Tn

[W̄ ]
δ̂

He(w̄
n(l)|vn, sn, yn).

If (vn, sn, yn, ˆ̄wn) ∈ Tn
[V SY W̄ ]δ̃

, Ĥ = 0. Else, Ĥ = 1.

Analysis of Type I error:

A type I error occurs only if one of the following events happen.

ẼTE =
{

(Un, V n, Sn) /∈ Tn[UV S]δ̄

}
ẼEE =

{
@ j ∈

[
en(I(U,S;W̄ )+µ)

]
: (Un, Sn, W̄n(j)) ∈ Tn[USW̄ ]δ

}
ẼME =

{
(V n, Sn, W̄n(J)) /∈ Tn[V SW̄ ]δ̃

}
ẼCE =

{
(V n, Sn, W̄n(J), Y n) /∈ Tn[V SW̄Y ]δ̃

}
ẼDE =

{
∃ l ∈

[
en(I(U,S;W̄ )+µ)

]
, l 6= J, W̄n(l)) ∈ Tn[W̄ ]δ̂

, He(W̄
n(l)|V n, Sn, Y n) ≤ He(W̄

n(J)|V n, Sn, Y n)

}

By the weak law of large numbers, ẼTE tends to 0 asymptotically with n. The covering lemma guarantees that

ẼEE ∩ẼcTE tends to 0 doubly exponentially if µ = O(δ) is chosen appropriately. Given ẼcEE ∩ẼcTE holds, it follows
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from the Markov lemma and the weak law of large numbers, respectively, that P(ẼME) and P(ẼCE) tends to zero

asymptotically. Next, we consider the probability of the event ẼDE . Given that ẼcCE ∩ ẼcME ∩ ẼcEE ∩ ẼcTE holds,

note that He(W̄
n(J)|V n, Sn, Y n)

(n)

≥ H(W̄ |V, S, Y ) − O(δ). Hence, similarly to (74) in Appendix A, it can be

shown that

P(ẼDE |ẼcCE ∩ ẼcME ∩ ẼcEE ∩ ẼcTE) ≤ e−n(IP̂ (W̄ ;V,S,Y )−IP̂ (U,S;W̄ )−δ(n)
3 ).

where δ(n)
3

(n)−−→ O(δ). Hence, for δ > 0 small enough, the probability of the events causing type I error tends to

zero asymptotically since I(U ; W̄ |S) < I(W̄ ;Y, V |S).

Analysis of Type II error: The analysis of the error-exponent is very similar to that of the SHTCC scheme

given in Appendix A. Hence, only a sketch of the proof is provided, with the differences from the proof of the

SHTCC scheme highlighted.

Let

Ē0 := {(Un, Sn) /∈ Tn[US]δ′
}. (120)

Then, the type 2 error probability can be written as

β
(
n, n, f (n,n), g(n,n)

)
≤

∑
(un,vn)∈Un×Vn

P(Un = un, V n = vn|H = 1)
[
P(ẼEE ∩ Ēc0 |Un = un, V n = vn)

+ P(D0|Un = un, V n = vn, ẼNE) + P(D0|Un = un, V n = vn, Ē0)
]
, (121)

where, ẼNE := ẼcEE ∩ Ēc0 . It is sufficient to restrict the analysis to the events ẼNE and Ē0 that dominate the type

2 error. Define the events

ẼT2 =
{
∃ l ∈

[
en(I(U,S;W̄ )+µ)

]
, l 6= J, W̄n(l) ∈ Tn[W̄ ]δ̂

, (V n, W̄n(l), Sn, Y n) ∈ Tn[V SW̄Y ]δ̃

}
, (122)

F̃ = {Un = un, V n = vn, J = 1, W̄n(1) = w̄n, Sn = sn, Y n = yn, ẼNE}, (123)

F̃1 = {Un = un, V n = vn, J = 1, W̄n(1) = w̄n, Sn = sn, Y n = yn, ẼNE , ẼcT2}, (124)

F̃2 = {Un = un, V n = vn, J = 1, W̄n(1) = w̄n, Sn = sn, Y n = yn, ẼNE , ẼT2}. (125)

By the symmetry of the codebook generation, encoding and decoding procedure, the term P(D0|Un = un, V n =

vn, J = j, ẼNE) is independent of the value of J . Hence, w.l.o.g. assuming J = 1, we can write

P(D0| Un = un, V n = vn, ẼNE)

=

en(I(U,S;W̄ )+µ)∑
j=1

P(J = j| Un = un, V n = vn, ẼNE) P(D0|Un = un, V n = vn, J = 1, ẼNE)

= P(D0|Un = un, V n = vn, J = 1, ẼNE)
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=
∑

(w̄n,sn,yn)
∈ W̄n×Sn×Yn

P(W̄n(1) = w̄n, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)

P(D0|Un = un, V n = vn, J = 1, W̄n(1) = w̄n, Sn = sn, Y n = yn, ẼNE)

=
∑

(w̄n,sn,yn)
∈ W̄n×Sn×Yn

P(W̄n(1) = w̄n, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE) P(D0| F̃). (126)

The last term in (126) can be upper bounded using the events in (123)-(125) as follows.

P(D0| F̃) ≤ P(D0| F̃1) + P(ẼT2| F̃) P(D0| F̃2).

We next analyze the R.H.S of (121), which upper bounds the type 2 error probability. We can write,

P(D0|F̃1) =

1, if Punsnw̄n ∈ Tn[USW̄ ]δ
and Pvnw̄nsnyn ∈ T k[V SW̄Y ]δ̃

,

0, otherwise.
(127)

Hence, the terms corresponding to the event F̃1 in (121) can be upper bounded (in the limit δ, δ̃ → 0) as∑
(un,vn,w̄n,sn,yn)

∈ Un×Vn×W̄n×Sn×Yn

[
P(Un = un, V n = vn|H = 1) P(D0|F̃1)

P(W̄n(1) = w̄n, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)
]

≤
∑

PŨṼ S̃W̃ Ỹ
∈T nUVW̄SY

∑
(un,vn,w̄n,sn,yn)
∈TP

ŨṼ S̃W̃ Ỹ

[
P(Un = un, V n = vn|H = 1) P(D0|F̃1)

P(Sn = sn, W̄n(1) = w̄n|Un = un, J = 1, ẼNE)

P(Y n = yn|Un = un, Sn = sn, J = 1, W̄n(1) = w̄n, ẼNE)
]

≤
∑

PŨṼ S̃W̃ Ỹ
∈T nUVW̄SY

∑
(un,vn,w̄n,sn,yn)
∈TP

ŨṼ S̃W̃ Ỹ

[
P(D0|F̃1) e−n(H(ŨṼ )+D(PŨṼ ||QUV ))

e−n(H(S̃W̃ |Ũ)− 1
n |U||W̄||S| log(n+1)) e−n(H(Ỹ |ŨS̃W̃ )+D(PỸ |ŨS̃W̃ ||P̂Y |USW̄ |PŨS̃W̃ ))

]
≤ max

PŨṼ S̃W̃ Ỹ ∈
T ′(n)

1 (P̂USW̄ ,P̂V SW̄Y )

[
e−n(H(ŨṼ )+D(PŨṼ ||QUV )) e−n(H(S̃W̃ |Ũ)− 1

n |U||W̄||S| log(n+1))

e−n(H(Ỹ |ŨS̃W̃ )+D(PỸ |ŨS̃W̃ ||P̂Y |USW̄ |PŨS̃W̃ ))en(H(ŨṼ S̃W̃ Ỹ )− 1
n ||U||V||W̄||S||Y| log(n+1))

]
= e−nE

∗
1n , (128)

where

T ′(n)
1 (P̂USW̄ , P̂V SW̄Y ) := {PŨṼ S̃W̃ Ỹ ∈ TUVSWY : PŨS̃W̃ ∈ T

n
[USW̄ ]δ

, PṼ S̃W̃ Ỹ ∈ T
n
[V SW̄Y ]δ̃

},
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and

E∗1n := min
PŨṼ S̃W̃ Ỹ ∈

T ′1 (P̂USW̄ ,P̂V SW̄Y )

[
H(Ũ Ṽ ) +D(PŨṼ ||QUV ) +H(S̃W̃ |Ũ) +H(Ỹ |Ũ S̃W̃ )−H(Ũ Ṽ W̃ S̃Ỹ )

+D(PỸ |ŨS̃W̃ ||P̂Y |USW̄ |PŨS̃W̃ )− 1

n
(|U||W̄|+ |U||V||W̄||S||Y|) log(n+ 1)

]
(n)

≥ min
PŨṼ S̃W̃ Ỹ ∈

T ′1 (P̂USW̄ ,P̂V SW̄Y )

[ ∑
ŨṼ S̃W̃ Ỹ

PŨṼ S̃W̃ Ỹ log

(
1

PŨṼ

PŨṼ
QUV

PŨ
PŨS̃W̃

1

PỸ |ŨS̃W̃

PỸ |ŨS̃W̃

P̂Y |USW̄
PŨṼ S̃W̃ Ỹ

)
−O(δ)

]

= min
PŨṼ S̃W̃ Ỹ ∈

T ′1 (P̂USW̄ ,P̂V SW̄Y )

[
D(PŨṼ S̃W̃ Ỹ |QUV PS̃W̃ |Ũ P̂Y |USW̄ )−O(δ)

]

= E′1(PS , PW̄ |US , PX|USW̄ )−O(δ). (129)

Here, (129) follows from the fact that PS̃W̃ |Ũ → PSW̄ |U given ẼNE , as δ → 0.

Next, consider the terms corresponding to the event F̃2 in (121). Given F̃2, PŨS̃W̃ ∈ Tn[USW̄ ]δ
and D0 occurs

only if (V n, Sn, Y n) ∈ Tn[V SY ]δ′′
, δ′′ = |W̄|δ̃, and H(W̃ |Ṽ, S̃, Ỹ ) ≥ H(W̄ |V, S, Y )−O(δ̃). Thus, we have,∑

(un,vn,w̄n,sn,yn)
∈ Un×Vn×W̄n×Sn×Yn

[
P(Un = un, V n = vn|H = 1) P(D0|F̃2) P(ẼT2|F̃)

P(W̄n(1) = w̄n, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)
]

≤
∑

PŨṼ S̃W̃ Ỹ ∈
T n(U×V×W̄×S×Y)

∑
(un,vn,w̄n,sn,yn)
∈TP

ŨṼ S̃W̃ Ỹ

[
P(Un = un, V n = vn|H = 1) P(D0|F̃2) P(ẼT2|F̃)

P(Sn = sn, W̄n(1) = w̄n|Un = un, J = 1, ẼNE) P(Y n = yn|Un = un, Sn = sn, J = 1, W̄n(1) = w̄n, ẼNE)
]

≤
∑

PŨṼ S̃W̃ Ỹ ∈
T n(U×V×W̄×S×Y)

∑
(un,vn,w̄n,sn,yn)
∈TP

ŨṼ S̃W̃ Ỹ

[
e−n(H(ŨṼ )+D(PŨṼ ||QUV ))P(D0|F̃2) · 2 · e−n(I(W̄ ;V,S,Y )−I(U,S;W̄ )−O(δ))

e−n(H(S̃W̃ |Ũ)− 1
n |U||W̄||S| log(n+1)) e−n(H(Ỹ |ŨS̃W̃ )+D(PỸ |ŨS̃W̃ ||P̂Y |USW̄ |PŨS̃W̃ ))

]
(130)

≤ max
PŨṼ S̃W̃ Ỹ ∈

T ′(n)
2 (P̂UW ,P̂V SWY )

[
e−n(H(ŨṼ )+D(PŨṼ ||QUV )) e−n(H(S̃W̃ |Ũ)− 1

n |U||W̄||S| log(n+1))

e−n(I(W̄ ;V,S,Y )−I(U,S;W̄ )−O(δ)− 1
n ) e−n(H(Ỹ |ŨS̃W̃ )+D(PỸ |ŨS̃W̃ ||P̂Y |USW̄ |PŨS̃W̃ ))

en(H(ŨṼ S̃W̃ Ỹ )− 1
n ||U||V||W̄||S||Y| log(n+1))

]
= e−nE

∗
2n , (131)

where,

T ′(n)
2 (P̂USW̄ , P̂V SW̄Y ) := {PŨṼ S̃W̃ Ỹ ∈ TUVSWY : PŨS̃W̃ ∈ T

n
[USW̄ ]δ

, PṼ S̃W̃ Ỹ ∈ T
n
[V SW̄Y ]δ̃

and H(W̃ |Ṽ, S̃, Ỹ ) ≥ H(W̄ |V, S, Y )−O(δ)},
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and

E∗2n
(n)

≥ min
PŨṼ S̃W̃ Ỹ ∈

T ′2 (P̂USW̄ ,P̂V SW̄Y )

[
D(PŨṼ S̃W̃ Ỹ |QUV PS̃W̃ |Ũ P̂Y |USW̄ ) + I(W̄ ;V, Y |S)− I(U ; W̄ |S)−O(δ)

]

= E′2(PS , PW̄ |US , PX|USW̄ )−O(δ). (132)

In (130), we used the fact that

P(ẼT2|F̃) ≤ 2 · e−n(I(W̄ ;V,Y |S)−I(U ;W̄ |S)−O(δ)),

which follows from

P
(
W̄n(l) = w̃n|F̃

)
≤ 2 P(W̄n(l) = w̃n). (133)

Eqn. (133) can be proved similarly to (96).

Finally, we consider the case when Ē0 holds.∑
un,vn

P(Un = un, V n = vn|H = 1) P(D0| Un = un, V n = vn, Ē0)

=
∑
un,vn

P(Un = un, V n = vn|H = 1)
∑
sn,yn

P(Sn = sn, Y n = yn,D0| Un = un, V n = vn, Ē0)

=
∑
un,vn

P(Un = un, V n = vn|H = 1)
[ ∑
sn,yn

P(Sn = sn, Y n = yn| Un = un, V n = vn, Ē0)

P(D0| Un = un, V n = vn, Sn = sn, Y n = yn, Ē0)
]

=
∑
un,vn

P(Un = un, V n = vn|H = 1)
[ ∑
sn,yn

P(Sn = sn, Y n = yn| Un = un, Ē0)

P(D0| Un = un, V n = vn, Sn = sn, Y n = yn, Ē0)
]

(134)

The eventD0 occurs only if there exists a sequence (W̄n(l), V n, Sn, Y n) ∈ Tn
[W̄V SY ]δ̃

for some l ∈ [en(I(U,S;W̄ )+µ)].

Noting that the quantization codebook is independent of the (V n, Sn, Y n) given that Ē0 holds, it can be shown

using standard arguments that

P(D0| Un = un, V n = vn, Sn = sn, Y n = yn, Ē0) ≤ e−n(I(W̄ ;V,Y |S)−I(U ;W̄ |S)−O(δ)). (135)

Also,

P(Sn = sn, Y n = yn| Un = un, Ē0) ≤ e−n(H(S̃Ỹ |Ũ)+D(PS̃Ỹ |Ũ ||Q̌SY |U |PŨ )). (136)

Hence, using (135) and (136) in (134), we obtain∑
un,vn

P(Un = un, V n = vn|H = 1) P(D0| Un = un, V n = vn, Ē0)
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≤ (n+ 1)|U||V||S||Y| max
PŨṼ S̃Ỹ :

PṼ S̃Ỹ =P̂V SY

enH(ŨṼ S̃Ỹ ) e−n(H(ŨṼ )+D(PŨṼ ||QUV )) e−n(H(S̃Ỹ |Ũ)+D(PS̃Ỹ |Ũ ||Q̌SY |U |PŨ ))

e−n(I(W̄ ;V,Y |S)−I(U ;W̄ |S)−O(δ))

= e−nE
∗
3n ,

where,

E∗3n = min
PṼ S̃Ỹ =P̂V SY

D(PṼ S̃Ỹ ||Q̌V SY ) + I(W̄ ;V, Y |S)− I(U ; W̄ |S)− |U||V||S||Y| log(n+ 1)−O(δ)

(n)−−→ E′3
(
PS , PW̄ |US , PX′|US , PX|USW̄

)
−O(δ).

Since the error-exponent is lower bounded by the minimal value of the exponent due to the various type 2 error

events, this completes the proof of the theorem.

APPENDIX C

OPTIMAL SINGLE-LETTER CHARACTERIZATION OF ERROR-EXPONENT WHEN C(PY |X) = 0

The proof of achievability follows from the one-bit scheme mentioned in Remark 4 which states that for τ ≥ 0,

κ(τ, ε) ≥ κ0(τ), ∀ ε ∈ (0, 1]. Now, it is well-known (see [23]) that C(PY |X) = 0 only if

P ∗Y := PY |X=x = PY |X=x′ , ∀ x, x′ ∈ X . (137)

From (137), it follows that Ec(PY |X) = 0. Also,

β0 ≥ D(PV ||QV ) + min
PŨṼ :

PŨ=PU , PṼ =PV

D(PŨ |Ṽ ||QU |V
∣∣PṼ )

≥ D(PV ||QV ),

which implies that κ0(τ) ≥ D(PV ||QV ).

Converse: We first show the weak converse, i.e., κ(τ) ≤ D(PV ||QV ), where κ(τ) is as defined in (46). For any

sequence of encoding functions f (k,nk) and acceptance regions A(k,nk) for H0 that satisfy nk ≤ τk and (58), it

follows similarly to (59), that

lim sup
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk), g(k,nk)
))
≤ lim sup

k→∞

1

k
D (PY nkV k ||QY nkV k) . (138)

The terms in the R.H.S. of (138) can be expanded as

1

k
D (PY nkV k ||QY nkV k)

= D(PV ||QV ) +
1

k

∑
(vk,ynk )

∈Vk×Ynk

PV kY nk (vk, ynk) log

(
PY nk |V k(ynk |vk)

QY nk |V k(ynk |vk)

)
. (139)

Next, note that
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PY nk |V k(ynk |vk) =
∑

(uk,xnk )

∈ Uk×Xnk

PUk|V k(uk|vk)PXnk |Uk(xnk |uk)PY nk |Xnk (ynk |xnk)

=

(
nk∏
i=1

P ∗Y (yi)

) ∑
(uk,xnk )

∈ Uk×Xnk

PUk|V k(uk|vk)PXnk |Uk(xnk |uk) (140)

=

nk∏
i=1

P ∗Y (yi), (141)

where, (140) follows from (3) and (137). Similarly, it follows that

QY nk |V k(ynk |vk) =

nk∏
i=1

P ∗Y (yi). (142)

From (138), (139), (141) and (142), we obtain that

lim sup
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk), g(k,nk)
))
≤ D(PV ||QV ).

This completes the proof of the weak converse.

Next, we proceed to show that D(PV ||QV ) is the optimal error-exponent for every ε ∈ (0, 1). For any fixed

ε ∈ (0, 1), let f (k,nk) and A(k,nk) denote any encoding function and acceptance region for H0, respectively, such

that nk ≤ τk and

lim sup
k→∞

α
(
k, nk, f

(k,nk), g(k,nk)
)
≤ ε. (143)

The joint distribution of (V k, Y nk) under the null and alternate hypothesis is given by

PV kY nk (vk, ynk) =

(
k∏
i=1

PV (vi)

) nk∏
j=1

P ∗Y (yj)

 , (144)

and QV kY nk (vk, ynk) =

(
k∏
i=1

QV (vi)

) nk∏
j=1

P ∗Y (yj)

 , (145)

respectively. By the weak law of large numbers, for any δ > 0, (144) implies that

lim
k→∞

PV kY nk
(
T k[PV ]δ

× Tnk[P∗Y ]δ

)
= 1. (146)

Also, from (143), we have

lim inf
k→∞

PV kY nk
(
A(k,nk)

)
≥ (1− ε). (147)

From (146) and (147), it follows that

PV kY nk
(
A(k,nk) ∩ T k[PV ]δ

× Tnk[P∗Y ]δ

)
≥ 1− ε′, (148)
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for any ε′ > ε and k sufficiently large (k ≥ k0(δ, |V|, |Y|)). Let

A(vk, δ) :=
{
ynk : (vk, ynk) ∈ A(k,nk) ∩ T k[PV ]δ

× Tnk[P∗Y ]δ

}
, (149)

and D(η, δ) :=
{
vk ∈ T k[PV ]δ

: PY nk (A(vk, δ)) ≥ η
}
. (150)

Fix 0 < η′ < 1− ε′. Then, we have from (148) that for any δ > 0 and sufficiently large k,

PV k (D(η′, δ)) ≥ 1− ε′ − η′

1− η′
. (151)

From [23, Lemma 2.14], (151) implies that D(η′, δ) should contain atleast 1−ε′−η′
1−η′ fraction (approx.) of sequences

in T k[PV ]δ
and for each vk ∈ D(η′, δ), (150) implies that A(vk, δ) should contain atleast η′ fraction (approx.) of

sequences in Tnk[P∗Y ]δ
, asymptotically. Hence, for sufficiently large k, we have

QV kY nk
(
A(k,nk)

)
≥

∑
vk∈D(η′,δ)

QV k(vk)
∑

ynk∈A(vk,δ)

PY n(ynk) (152)

≥ e
−k

D(PV ||QV )−
log

(
1−ε′−η′

1−η′

)
k − log(η′)

k −O(δ)


. (153)

Here, (153) follows from [23, Lemma 2.6].

Let A′(k,nk) := T k[PV ]δ
× Tnk[P∗Y ]δ

. Then, for sufficiently large k,

PV kY nk
(
A′(k,nk)

)
(k)−−→ 1, (154)

and QV kY nk
(
A′(k,nk)

)
≤ e−k(D(PV ||QV )−O(δ)), (155)

where, (154) and (155) follows from weak law of large numbers and [23, Lemma 2.6], respectively. Together (153),

(154) and (155) implies that

|κ(τ, ε)− κ(τ)| ≤ O(δ),

and the proposition is proved since δ > 0 is arbitrary.
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