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Adaptive Linear Programming Decoding of
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Abstract—In this work, we consider adaptive linear program-
ming (ALP) decoding of linear codes over prime fields, i.e., the
finite fields Fp of size p where p is a prime, when used over a p-ary
input memoryless channel. In particular, we provide a general
construction of valid inequalities (using no auxiliary variables)
for the codeword polytope (or the convex hull) of the so-called
constant-weight embedding of a single parity-check (SPC) code
over any prime field. The construction is based on sets of vectors,
called building block classes, that are assembled to form the left-
hand side of an inequality according to several rules. In the
case of almost doubly-symmetric valid classes we prove that the
resulting inequalities are all facet-defining, while we conjecture
this to be true if and only if the class is valid and symmetric.
Valid symmetric classes impose certain symmetry conditions on
the elements of the vectors from the class, while valid doubly-
symmetric classes impose further technical symmetry conditions.
For p=3, there is only a single valid symmetric class and
we prove that the resulting inequalities together with the so-
called simplex constraints give a complete and irredundant
description of the codeword polytope of the embedded SPC
code. For p> 5, we show that there are additional facets beyond
those from the proposed construction. As an example, for p=7,
we provide additional inequalities that all define facets of the
embedded codeword polytope. The resulting overall set of linear
(in)equalities is conjectured to be irredundant and complete. Such
sets of linear (in)equalities have not appeared in the literature
before, have a strong theoretical interest, and we use them to
develop an efficient (relaxed) ALP decoder for general (non-
SPC) linear codes over prime fields. The key ingredient is an
efficient separation algorithm based on the principle of dynamic
programming. Furthermore, we construct a decoder for linear
codes over arbitrary fields Fq with q= p

m and m> 1 by a factor
graph representation that reduces to several instances of the case
m=1, which results, in general, in a relaxation of the original
decoding polytope. Finally, we present an efficient cut-generating
algorithm to search for redundant parity-checks to further im-
prove the performance towards maximum-likelihood decoding for
short-to-medium block lengths. Numerical experiments confirm
that our new decoder is very efficient compared to a static LP
decoder for various field sizes, check-node degrees, and block
lengths.
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I. INTRODUCTION

Linear programming (LP) decoding was introduced by

Feldman et al. in 2005 [1] as an efficient, but (compared

to maximum-likelihood (ML) decoding) suboptimal decoding

approach for binary linear codes. Since then, LP decoding of

low-density parity-check (LDPC) codes has been extensively

studied by various authors, and, in particular, several low-

complexity approaches have been proposed. See, for instance,

[2]–[6]. The approach was later extended to nonbinary linear

codes by Flanagan et al. [7], and several low-complexity

approaches were proposed in [8]–[11]. Nonbinary LDPC codes

are especially appealing because they in general exhibit a

better performance than binary codes in the important finite-

length regime.

The underlying structure of LP decoding are the codeword

polytopes (or convex hulls) whose vertices correspond to the

codewords of a binary image of a (nonbinary) single parity-

check (SPC) code. By intersecting all those polytopes defined

by the rows of a specific parity-check matrix of a linear code,

one obtains the so-called fundamental polytope, the domain of

optimization of an LP decoder. While an explicit description

for binary codes is well known (second formulation in [1]), all

LP formulations for nonbinary codes known so far generalize

the first formulation in [1] and thus depend on auxiliary

variables (one for each feasible configuration) [7].

As recent results have shown [6], [12], LP decoding based

on the alternating direction method of multipliers (ADMM) for

convex optimization problems [13] is able to outperform (in

terms of decoding complexity) other LP decoding approaches.

The efficiency of the algorithm relies on an efficient algorithm

to do Euclidean projection onto the codeword polytope of

a binary SPC code. In the binary case, the so-called “two-

slice” lemma is the main result that enables efficient Euclidean

projections in time O(d log d) for a binary SPC code of

length d. More recently, more efficient projection algorithms

have been proposed in [14] and [15]. While initial work has

been done to apply ADMM to the nonbinary case [11], it is

currently not known how this framework can be applied to

codes over nonbinary fields with characteristic greater than

two, one difficulty being that little is known about codeword

polytopes of nonbinary codes over such fields which one

would need to project on.

In this work, we present several results on the codeword

polytope and the fundamental polytope of a general nonbi-

nary code over any finite field Fq . We provide an explicit

construction for valid (facet-defining) inequalities for the so-

called constant-weight embedding of a nonbinary SPC code

http://arxiv.org/abs/1708.06959v2
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over any prime field Fp without relying on auxiliary variables.

The construction is based on what we call classes of building

blocks. A building block is simply a vector of length p,

while a class of building blocks is a set of such vectors. The

vectors within a class are used to build an inequality in a

block-wise manner (thus the name building block) where each

block corresponds to a code coordinate. We develop rules

for combining these blocks in such a way that they yield

the coefficient vector of a valid inequality, whose right-hand

side is also computed by a specific rule. In particular, all but

one of the blocks can be freely chosen (the last block is a

function of the other blocks), and the right-hand side of the

inequality is found by imposing that the inequality is tight

for a specially designed embedded codeword (the so-called

canonical codeword). The detailed construction can be found

in Construction 1 in Section V-B. In the case of almost doubly-

symmetric valid classes we prove that the resulting inequalities

are all facet-defining, while we conjecture this to be true if

and only if the class is valid and symmetric. Valid symmetric

classes impose certain symmetry conditions on the elements

of the vectors from the class (see Definition 10), while valid

doubly-symmetric classes impose further technical symmetry

conditions (see Definition 11).

For the ternary case, we prove that the constructed facet-

defining inequalities together with the so-called simplex con-

straints give a complete and irredundant description of the

embedded SPC codeword polytope. It also extends the explicit

formulation of the fundamental cone by Skachek [16] in

the sense that the latter describes the convex hull at one

single (namely, the all-zero) vertex. For the quinary case, we

conjecture that the constructed inequalities together with the

simplex constraints indeed give a complete and irredundant

description of the embedded codeword polytope, while for

larger q we show that this is not the case.

Such facet-defining inequalities for the nonbinary case have,

to the best of our knowledge, not appeared in the literature

before, have a strong theoretical interest, and their explicit

construction without the need for auxiliary variables has

immediate practical consequences to LP decoding: as we show

in this work, these inequalities can efficiently be separated,

which allows for efficient adaptive LP (ALP) decoding of

general (non-SPC) linear codes over any prime field, thus

extending the well-known ALP decoder by Taghavi and Siegel

[3] to general nonbinary linear codes over prime fields when

used over a discrete-input (with alphabet size equal to the field

size) memoryless channel. Besides its computational gain over

“static” (non-adaptive) LP decoding, ALP decoding is also

a key component of methods for improving error-correction

performance [17], [18]. While not a topic of this paper,

our polyhedral results might also facilitate the development

of a projection algorithm for ADMM decoding of general

nonbinary codes.

Linear codes (or, in particular, linear LDPC codes) over

prime fields have several application areas. For instance, such

codes are a key ingredient in the construction of low-density

integer lattices using the so-called Construction A [19]. Such

lattices are referred to as LDA lattices and they perform close

to capacity on the Gaussian channel, in addition to being

conceptually simpler than previously proposed lattices based

on multiple nested binary codes. In particular, in [19], several

integer LDA lattices, all based on a particular (2, 5)-regular

LDPC code over the prime field of size 11, were proposed.

For dimension 5000, the lattice attains a symbol error rate

(under low-complexity iterative decoding) of less than 10−6

at 1 dB from capacity. Also, ternary linear codes have recently

attracted some attention in the context of polar codes [20] and

array-based spatially-coupled LDPC codes [21].

The remainder of this paper is organized as follows. In

Section II, we establish notation and give a short overview

of some background material. We fully characterize the rela-

tionship between the two Euclidean embeddings of finite field

elements used throughout this work in Section III. Section IV

establishes general polyhedral properties (dimension, affine

hull, and box inequalities) of the codeword polytope of a non-

binary linear code and studies its symmetries by introducing

rotation. Then, in Section V, we present a construction method

for valid inequalities for the convex hull of the constant-

weight embedding of an SPC code defined over the prime

field Fp for general p. In Section VI, we tailor the general

framework developed before for p∈{3, 5, 7}. In particular, we

prove that for p=3, the framework provides a complete and

irredundant description of the embedded codeword polytope

of a ternary SPC code under the constant-weight embedding.

A separation algorithm based on the principle of dynamic

programming (DP) for efficient (relaxed) ALP decoding of

general (non-SPC) nonbinary codes over any prime field is

presented in Section VII; Section VII-A describes an efficient

implementation of this algorithm for the special case of p=3.

In Section VIII, we outline an efficient method to search for

cut-inducing redundant parity-check (RPC) equations using

Gaussian elimination, generalizing the Adaptive Cut Gener-

ation (ACG) algorithm from [17]. In Section IX, we briefly

consider the case of nonbinary codes over the general field

Fq of size q= pm, where m> 1 is integer. In particular,

we adapt the relaxation method proposed in [11], [22] for

fields of characteristic p=2 to any characteristic p> 2 by

representing a parity-check constraint over the finite field Fpm

by a set of pm−1 p-ary parity-check constraints. In particular,

the convex hull of a parity-check constraint over Fpm is

relaxed by considering the intersection of the convex hulls

of the pm − 1 corresponding p-ary parity-check constraints.

Numerical results for both LDPC and high-density parity-

check (HDPC) codes for various field sizes and block lengths

are presented in Section X. The results show that our proposed

ALP decoder outperforms (in terms of decoding complexity)

the decoder from [7] (using both the plain and the cascaded

LP formulation). Also, using an appropriately generalized

ACG-ALP decoding algorithm, as described in Section VIII,

near-ML decoding performance can be achieved for short

block lengths. For comparison purposes we also show the

performance of sum-product (SP) decoding [23]. Finally, we

draw some conclusions and give an outline of some future

work in Section XI.
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II. NOTATION AND BACKGROUND

This section establishes some basic definitions and results

needed for the rest of the paper.

A. General Notation

If x ∈ S and A ⊂ S, where S is a set, we denote

x+A := {x+ a : a ∈ A}
(and analogously x · A, x − A, etc.). For a map f : A → B
and a set S ⊆ A, f(S) = {f(s) : s ∈ S} is the set of images

of S under f . The set of integers is denoted by Z, while the

set of positive integers is denoted by N. For a positive integer

L ∈ N, JLK = {1, 2, . . . , L}. The binomial coefficient of a
over b, a, b ∈ {0} ∪ N, is denoted by

(

a
b

)

where
(

a
b

)

= 0 if

a < b.
A multiset S is a set in which an item can occur re-

peatedly. The size of a multiset, denoted by |S|, is the

number of items counted with multiplicity. For example,

S = {1, 2, 2, 3, 6, 6} ⊂ Z is a multiset with |S| = 6.

B. Finite Fields and Integers

The contrast between codes, as objects living in spaces over

finite fields, and polytopes in Euclidean space is a key feature

of LP decoding. For the sake of mathematical rigor, we strictly

separate between these two spaces. Because of the need to

frequently map from one into the other, especially in indices,

this section introduces succinct notation for these maps.

For any prime p and integer m ≥ 1, let Fq with q = pm

denote the finite field with q elements. If m = 1 (which is

assumed for most of this work), the set Fp = Fq consists of

p congruence classes of Z/pZ = {[a]p : a ∈ Z}, where

[·]p : Z→ Fp

a 7→ a+ pZ = {a+ kp : k ∈ Z} (1)

maps an integer to its congruence class modulo p. The

“inverse” of (1) that maps a congruence class ζ ∈ Fp to its

unique integer representative from {0, 1, . . . , p−1} is denoted

by [·]Z:
[·]Z : Fp → Z

ζ = [a]p 7→ a mod p.

In general, literal numbers are used to denote elements of

both Fp and Z, depending on the context, but nonetheless

designate different items; e.g., Z ∋ 3 6= 3 ∈ F7 (we may

explicitly use the explicit form [3]7 if there is risk of ambiguity

or confusion). Note also that operators like “+” are defined

for both Z and Fp, such that 3+5 = 8 in Z, but 3+5 = 1 in

F7. If a, b ∈ Z, the expression a ≡ b (mod p) is an alternative

notation for [a]p = [b]p, which we use especially if a and b
are compound expressions. For a ∈ Z, [[a]p]Z = a mod p.

In the general case m ≥ 1, each element ζ ∈ Fq = Fpm

can be represented by a polynomial ζ(x) =
∑m

i=1 pix
i−1,

where pi ∈ Fp, and we will use the integer representation

ζ(p) =
∑m

i=1[pi]Zp
i−1 for representing ζ. Furthermore, let

p(ζ) = (p1, . . . , pm) be the p-ary vector representation of ζ.

For any finite set A = {ζ1, . . . , ζ|A|}, ζi ∈ Fq , i ∈ J|A|K,

we use the short-hand notation
∑A =

∑

a∈A a for the sum

(in Fq) of the elements in A.

C. Linear Codes Over Finite Fields

Let C denote a linear code of length n and dimension k over

the finite field Fq with q elements. The code C can be defined

by an r×n parity-check matrix H = (hj,i), where r ≥ n−k
and each matrix entry hj,i ∈ Fq , i ∈ I and j ∈ J , where

I = JnK and J = JrK are the column and row index sets,

respectively, of H . Then, C = C(H) = {c = (c1, . . . , cn)
T ∈

F
n
q : Hc = 0}, where (·)T denotes the transpose of its vector

argument. When represented by a factor (or Tanner) graph [7],

I is also the variable node index set and J is the check node

index set. In the following, let Nv(i) (resp. Nc(j)) denote the

set of neighboring nodes of variable node i (resp. check node

j). Finally, call C an (n, k, d) code if d denotes the minimum

Hamming weight of its codewords. The Hamming distance

between two codewords c, c′ ∈ C is denoted by dH(c, c
′).

In the original work by Feldman et al. [1], the ML decoding

problem was stated as an integer linear program in the real

space by using (yet not explicitly discussing) the above-defined

[·]2 as the embedding of F2 into R, where R denotes the

real numbers, and then relaxed into a linear program using

vectors that live in [0, 1]n. In the nonbinary case, one might

be tempted to embed ζ ∈ Fq into the reals by using its integer

representation ζ(p) ∈ Z, which however does not work out for

several reasons. Instead, the following mapping f(·) (see [11],

[22], [24]) embeds elements of Fq into the Euclidean space of

dimension q by using unit vectors of length q.

Definition 1 (Constant-Weight Embedding): Let

f : Fq → {0, 1}q ⊆ R
q

ζ 7→ x = (x0, . . . , xq−1)

where xδ = 1 if δ = ζ(p) is the integer representation of ζ and

xδ = 0 otherwise, and further the constant-weight embedding

of vectors from Fn
q as

Fv : F
n
q → {0, 1}nq

ζ = (ζ1, . . . , ζn)
T 7→ (f(ζ1) | . . . | f(ζn))T

where (v1 | . . . | vn) denotes the concatenation of row vectors

v1, . . . ,vn.

Remark 1: Motivated by the definition of f, we identify,

for any ground set A (above, A = R), Aq with AFq ,

i.e., use elements from Fq and their integer representation

interchangeably for indexing such vectors. As a consequence,

the index starts at 0 when its integer representation is used, as

opposed to normal vectors which we index starting from 1.

More generally, a space Anq which is related to n embedded

elements of Fq (such as Rnq in the above definition of Fv)

is identified with
(

AFq
)n

, which is why we usually employ

double-indexing to emphasize on the q-blocks vi of a vector

v ∈ Anq , as in

v = (v1, . . . ,vn)
T = (v1,0, . . . , v1,q−1, . . . , vn,0, . . . , vn,q−1)

T

where vi ∈ Aq = AFq .

Observe that f defined in Definition 1 maps the elements of

Fq to the vertices of the full-dimensional standard (q − 1)-
simplex embedded in Rq , Sq−1 := conv({ei}qi=1), where

conv(·) denotes the convex hull in the real space of its

argument and ei is the i-th unit vector in Rq . Hence, Fv maps
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Fn
q onto the vertices of Sn

q−1 = Sq−1 × · · · × Sq−1 (n times).

With some abuse of notation, in the rest of the paper, we will

use the same notation ei for the i-th unit vector in different

vector spaces. It will be clear from the context in which vector

space ei lies. Moreover, the entries of Sn
q−1 are represented

as column vectors, while the entries of Sq−1 are row vectors.

Flanagan et al. [7] have proposed the following, slightly

more compact embedding.

Definition 2 (Flanagan’s Embedding): Let

f′ : Fq → {0, 1}q−1 ⊆ R
q−1

ζ 7→ x = (x1, . . . , xq−1)

where xδ = 1 if δ = ζ(p) and xδ = 0 otherwise, with the

analog vector-embedding F′
v.

Flanagan’s embedding has the advantage of using one

less dimension per entry of Fq, but exhibits less symmetry

since the zero element is distinguished: ‖f′(0)‖1 = 0 while

‖f′(ζ)‖1 = 1 for ζ 6= 0, where ‖ · ‖1 denotes the standard

ℓ1-norm of a vector. Because of the latter, f turned out to be

better suitable for presenting the results of this paper, while f′

is advantageous in some proofs. In Section III, we characterize

the close relationship between f and f′ and, in particular, show

how any result stated using f can be transformed into its

respective form under f′.

D. LP Decoding of Nonbinary Codes

In this subsection, we review the LP decoding formulation

proposed by Flanagan et al. in [7], where in contrast to [7]

we use constant-weight embedding. Let Fq and Σ, respectively,

denote the input and output alphabets of a memoryless channel

with input X and output Y , and define for each y ∈ Σ and

δ ∈ Fq the value γδ = log
(

Pr(Y=y|X=0)
Pr(Y=y|X=δ)

)

. Then, the function

λ : Σ 7→ (R ∪ {±∞})q is defined as

λ(y) = γ = (γ0, . . . , γq−1) .

Furthermore, we define Λ(y) = (λ(y1) | . . . | λ(yn))T for y =
(y1, . . . , yn)

T . Now, the ML decoding problem can be written

as [7]

ĉML = argmin
c∈C

n
∑

i=1

log

(

Pr (Y = yi | X = 0)

Pr (Y = yi | X = ci)

)

= argmin
c∈C

n
∑

i=1

λ(yi)f(ci)
T

= argmin
c∈C

Λ(y)TFv(c)

(2)

where y1, . . . , yn are the channel outputs. The problem in (2)

can be relaxed into a linear program using the embedding from

Definition 1 as follows [7]:

x̂LP = argmin Λ(y)Tx

s. t. x(j) = Pjx ∈ conv(Fv(Cj)), ∀j ∈ J
(3)

where x(j) = (x
(j)
1 , . . . ,x

(j)
|Nc(j)|

)T , x
(j)
i = (x

(j)
i,0 , . . . , x

(j)
i,q−1)

for all i ∈ J|Nc(j)|K, and Pj is a binary indicator matrix that

selects the variables from x that participate in the j-th check

node. In (3), Cj represents the SPC code defined by the j-th

check node, and conv(Fv(Cj)) is the convex hull of Fv(Cj) in

R
|Nc(j)|·q.

LP decoding, i.e., using the LP relaxation (3) as a decoder

(which is defined to output a decoding failure if the optimal

solution x̂LP does not happen to be integral) has several desir-

able properties. Most importantly, the so-called ML certificate

property [1], [7] assures that, if x̂LP is a codeword, then

x̂LP = ĉML, where ĉML is the ML decoded codeword.

Note that the ML certificate property remains to hold if

conv(Fv(Cj)) is replaced by a relaxation Qj ⊇ conv(Fv(Cj)).
We will use the term LP decoding also when such a further

relaxation is used, which is the case because (except for q ∈
{2, 3}) the inequalities constructed in this paper may describe

only a superset of conv(Fv(Cj)).
As noted in [7], the performance of LP decoding is indepen-

dent of the transmitted codeword only under a certain channel

symmetry condition. For details, we refer the interested reader

to [7, Thm. 5.1]. See also [25, Def. 1] where a very similar

symmetry condition which guarantees codeword-independent

performance under ML decoding was introduced.

E. Background on Polyhedra

The convex hull of a finite number of points in Rn is called a

polytope. It can be alternatively characterized as the (bounded)

intersection of a finite number of halfspaces, i.e., the solution

space of a finite number of linear inequalities.

Let P ⊆ Rn be a polytope. An inequality θTx ≤ κ with

θ ∈ Rn and κ ∈ R is valid if it holds for any x ∈ P . Every

valid inequality defines a face F = {x ∈ P : θTx = κ} of

P , which is itself a polytope. For notational convenience, we

will identify a face F with its defining inequality θTx ≤ κ
as long as there is no risk of ambiguity.

The dimension of a face (or polytope) F is defined as the

dimension of its affine hull aff(F ), which is calculated as

one less than the maximum number of affinely independent

vectors in F . Recall that a set of k vectors {v1, . . . ,vk} ⊆
Rn is affinely independent if and only if the vectors {v2 −
v1, . . . ,vk − v1} are linearly independent.

A face F with dim(F ) = dim(P) − 1 is called a facet,

while a zero-dimensional face is a vertex of P . It is a basic

result of polyhedral theory that a face F of dimension dim(F )
actually contains dim(F ) affinely independent vertices of P .

Conversely, a face F is uniquely determined by dim(F )
affinely independent vertices of P that are contained in F .

Facets are important because every “minimal” representa-

tion of a polytope P is of the form

P = {x ∈ R
n : Ax = b,Cx ≤ d}

where A is an r×n matrix of rank r = n−dim(P) such that

aff(P) = {x : Ax = b}, and C is an s× n matrix such that

the rows of Cx ≤ d are in one-to-one correspondence with

the s facets of P . For a more rigorous treatment of this topic,

see, e.g., [26].

F. Some Final Remarks

We list two intermediate results (Lemmas 16 and 17)

in Appendix A. To have a more modular presentation and
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TABLE I
A SUMMARY OF BASIC NOTATION AND TERMS INTRODUCED IN

SECTION II AND USED THROUGHOUT THE PAPER.

p Prime number
Z The set of integers
R The set of real numbers
JLK The set of integers {1, 2, . . . , L}
Fq Finite field with q elements
[·]p The mapping of an integer to its congruence class modulo

p
[·]Z The “reverse” mapping of [·]p
ζ(p) The integer representation of ζ ∈ Fpm in the reals
p(ζ) The p-ary vector representation of ζ
C A linear code over Fq

f , Fv Constant-weight embedding from Definition 1
f ′, F′

v Flanagan’s embedding from Definition 2
Σ The output alphabet of the channel
Sq−1 The full-dimensional standard (q − 1)-simplex in Rq

ei The i-th unit vector in some vector space
conv(·) The convex hull of its argument
P The convex hull of a finite number of points in Rn (poly-

tope)

θTx ≤ κ An inequality defining a (potential) face of a polytope
F A face of a polytope P
aff(F ) The affine hull of a face (or polytope) F
dim(·) The dimension of its argument (face or polytope)
Facet A face F of P of maximum dimension (dim(F ) =

dim(P) − 1)
Vertex A zero-dimensional face

since these two lemmas are used only in the proofs in the

appendices, they are only presented there.

Finally, in Table I we present a summary of the most

important terms and notation introduced in Section II and used

throughout the paper.

III. COMPARISON OF EMBEDDINGS OF Fq

In this section, we establish a close relationship between

the convex hull of a nonbinary code under the embeddings

Fv (Definition 1) and F′
v (Definition 2), respectively, of Fn

q

into the Euclidean space. Note that, while Fv maps Fn
q to the

vertices of Sn
q−1 ⊆ Rnq , the embedding F′

v maps to the vertices

of Ŝn
q−1 ⊆ R

(q−1)n, where

Ŝq−1 = conv({0} ∪ {ei}q−1
i=1 ) ⊂ R

q−1

is the full-dimensional embedding of the (q − 1)-simplex.

Again, as for Sn
q−1, the entries of Ŝn

q−1 are represented as

column vectors, while the entries of Ŝq−1 are row vectors.

Geometrically, Sn
q−1 exhibits a higher symmetry (cf. Fig. 1).

For this reason, we found the constant-weight embedding more

helpful for grasping the geometry of nonbinary linear codes. In

addition, several formulas turned out more compact under this

embedding. On the other hand, the following results show that

the choice of the embedding does not affect the key polyhedral

properties. Note that these results hold for arbitrary finite fields

Fq = Fpm .

Lemma 1: Let

P : Sn
q−1 → Ŝn

q−1

(P(x))i,j = xi,j for i ∈ JnK, j ∈ Fq \ {0}

f(1)

f(2)

f(0)

S2 Ŝ2

f′(0)

f′(1)

f′(2)

Fig. 1. Constant-weight embedding f (left) and Flanagan’s embedding f ′

(right) of F3 into R3 and R2, respectively. Note that S2 is an equilateral

triangle, while Ŝ2 is not.

be the map that “projects out” the entries xi,0, and let

L : Ŝn
q−1 → Sn

q−1

(L(x′))i,j =

{

1−∑q−1
k=1 x

′
i,k if j = 0,

x′i,j otherwise
(for i ∈ JnK)

“lift” Ŝn
q−1 onto Sn

q−1. Then, P = L−1 and L = P−1. In

particular, both maps are bijective. Furthermore, P(Fv(ξ)) =
F′
v(ξ) and L(F′

v(ξ)) = Fv(ξ) for any ξ ∈ Fn
q .

Proof: The statements can be easily verified by run-

ning through the cases. For example, L(P(x))i,0 = 1 −
∑

k 6=0 P(xi,k) = 1 −∑

k 6=0 xi,k = xi,0, where the last step

holds because xi ∈ Sq−1 and hence
∑

k∈Fq
xi,k = 1.

Example 1: Let q = 3, n = 3, and

x = (x1,0, x1,1, x1,2, x2,0, x2,1, x2,2, x3,0, x3,1, x3,2)
T

= (1/2, 1/3, 1/6, 1/10, 8/10, 1/10, 1, 0, 0)T ∈ S3
2 .

Then, x′ = P(x) = (1/3, 1/6, 8/10, 1/10, 0, 0)T ∈ Ŝ3
2 (the

map P(·) “projects out” the entries xi,0, i ∈ J3K), while

L(x′) = P−1(x′)

= (1− (1/3 + 1/6), 1/3, 1/6,

1− (8/10 + 1/10), 8/10, 1/10, 1− 0− 0, 0, 0)T

= (1/2, 1/3, 1/6, 1/10, 8/10, 1/10, 1, 0, 0)T = x.

Let C be a linear code of length n defined over the finite field

Fq, q = pm, with p prime and m ≥ 1. Let P = conv(Fv(C))
and P ′ = conv(F′

v(C)). From the above lemma, it follows

immediately that P ′ = P(P) and P = L(P ′). Because P and

L are affine linear and bijective, we also get the following.

Lemma 2: The vectors x1, . . . ,xk ∈ Sn
q−1 are affinely

independent if and only if P(x1), . . . ,P(xk) ∈ Ŝn
q−1 are

affinely independent.

Corollary 1: F is a face of P with dim(F ) = δ if and only

if P(F ) is a face of P ′ also with dim(P(F )) = δ. In particular,

dim(P) = dim(P ′), and the facets of both polytopes are in

one-to-one correspondence.

The particular form of P allows to immediately convert a

description of P by means of linear (in)equalities into such a

description of P ′. In Appendix B, we present the construction

and give additional remarks.

IV. DIMENSION OF P AND ROTATIONAL SYMMETRY

A. Simplex Constraints and Dimension of P
In this subsection, we determine the dimension of P =

conv(Fv(C)), where C is an “all-ones” SPC code (i.e., its
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parity-check matrix contains only ones) of length d defined

over the field Fp, p prime, which is crucial for proving that

inequalities are facets of P (cf. Section II-E). We then show

that the linear equations and inequalities describing Sd
p−1

define the affine hull and are facets, respectively, of P .

Definition 3: For the finite field Fp and d ≥ 1, let ∆d
p denote

the set of p×d inequalities and d equations in Rdp that define

Sd
p−1, i.e., the inequalities

xi,j ≥ 0 for i ∈ JdK and j ∈ Fp (4a)

and
∑

j∈Fp

xi,j = 1 for i ∈ JdK; (4b)

we call the (in)equalities in ∆d
p simplex constraints.

Proposition 1: Let C be a length-d “all-ones” SPC code over

the finite field Fp and P = conv(Fv(C)). For d ≥ 3 (if p = 2,

for d ≥ 4),

1) dim(P) = d(p− 1),
2) the affine hull of P is aff(P) = {x : (4b) holds for i ∈

JdK}, and

3) (4a) defines a facet of P for i ∈ JdK and j ∈ Fp.

Proof: The results for p = 2 are already known; see, e.g.,

[27, Thm. III.2]. The proof for p 6= 2 is given in Appendix C.

The simplex constraints ∆d
p can be interpreted as general-

ized box constraints that restrict, for i ∈ JdK, the p variables

representing f(ci) to the simplex Sp−1, where (c1, . . . , cd)
T

denotes a codeword of the SPC code. As they are independent

of H , an arbitrary code C of length n thus has only n(p+1)
simplex constraints (n equations and pn inequalities) in total.

These will be denoted by ∆C
p .

B. Symmetries of P and General SPC Codes

In this subsection, we develop a notion of rotating the

simplex Sq−1 = conv(f(Fq)) according to a permutation of

the elements of Fq . This allows both to reduce the study of

general SPC codes to “all-ones” SPC codes and to derive many

valid inequalities from a single one by using automorphisms

of the code.

Rotation is based on a work by Liu and Draper (see [11,

Sec. IV.C]). The results in this section hold for an arbitrary

finite field Fq = Fpm and reduce to the ones from [11,

Sec. IV.C] for p = 2 (only fields of characteristic two are

considered in [11]).

Definition 4: Let Sq denote the group of permutations of

the numbers {0, . . . , q−1}, which we will identify, via integer

representation, with the permutations of Fq . For each π ∈ Sq,

the rotation operation rotπ on R
q is defined as

rotπ(a = (a0, . . . , aq−1)) = (aπ(0), . . . , aπ(q−1)).

Note that rotπ is a simple coordinate permutation and hence

a vector-space automorphism of Rq that, in particular, maps

the simplex Sq−1 ⊂ Rq onto itself.

We now extend the above definitions to vectors in Fl
q and

Rlq , respectively.

Definition 5: Let π = (π1, . . . , πl) ∈ Sl
q be a vector of l

permutations and ζ = (ζ1, . . . , ζl)
T ∈ Fl

q. Define

π(ζ) = (π1(ζ1), . . . , πl(ζl))
T

and the corresponding rotation of Rlq as

rotπ : R
lq → R

lq

(a1, . . . ,al)
T 7→ (rotπ1(a1), . . . , rotπl

(al))
T

by applying the l individual rotations of Sq−1 component-wise

to the ai.

The following lemma shows how π and rotπ relate.

Lemma 3: Let π = (π1, . . . , πl) ∈ Sl
q and ζ =

(ζ1, . . . , ζl)
T ∈ F

l
q. Then, rotπ(Fv(ζ)) = Fv(π

−1(ζ)), where

π−1 = (π−1
1 , . . . , π−1

l ).

Proof: We show for i ∈ JlK that rotπi
(f(ζi)) =

f(π−1
i (ζi)). Choose i ∈ JlK and let πi ∈ Sq and ζi ∈ Fq,

and denote xi = f(ζi) ∈ Rq . By Definition 1, xi,πi(j) =
1 ⇔ ζi(p) = πi(j) ⇔ π−1

i (ζi(p)) = j ⇔ (π−1
i (ζi))(p) = j.

Hence, the j-th component of f(π−1
i (ζi)) is equal to 1 if and

only if xi,πi(j) = 1, i.e., if and only if the πi(j)-th component

of rotπi
(f(ζi)) is equal to 1, which shows the claim and

hence (by component-wise application) immediately proves

the vector case of the lemma.

In the rest of the paper, we will write permutations using

one-line notation as π = (π(0), . . . , π(q − 1)), i.e., 0 is

permuted to π(0), 1 to π(1), etc.

Example 2: Let q = 3, l = 3, π1 = (0, 2, 1), π2 = (0, 1, 2),
π3 = (2, 1, 0), and ζ = (2, 2, 1)T . Then,

π(ζ) = (π1(2), π2(2), π3(1))
T = (1, 2, 1)T ,

Fv(ζ) = (0, 0, 1, 0, 0, 1, 0, 1, 0)T .

Furthermore,

π−1 = (π−1
1 , π−1

2 , π−1
3 ) = ((0, 2, 1), (0, 1, 2), (2, 1, 0)),

π−1(ζ) = (1, 2, 1)T , and

Fv(π
−1(ζ)) = Fv((1, 2, 1)

T ) = (0, 1, 0, 0, 0, 1, 0, 1, 0)T .

Finally,

rotπ(Fv(ζ)) = (rotπ1(0, 0, 1), rotπ2(0, 0, 1), rotπ3(0, 1, 0))
T

= (0, 1, 0, 0, 0, 1, 0, 1, 0)T

= Fv(π
−1(ζ)).

Theorem 1: For any set S ⊆ Fl
q and any π ∈ Sl

q, let P =

conv(Fv(S)) and P̃ = conv(Fv(π(S))). Then,

1) for x ∈ R
lq , x ∈ P if and only if rot−1

π (x) ∈ P̃ .

2) The inequality aTx ≤ b with a ∈ Rlq , b ∈ R is

valid for P and defines the face F of P , if and only

if rot−1
π (a)Tx ≤ b is valid for P̃ and defines the face

rot−1
π (F ) of P̃ . In particular, both F and rot−1

π (F ) have

the same dimension.

In other words, from a description of P , as the embedding of

S, descriptions of the embeddings of arbitrary rotations of S
can be derived.

To prove Theorem 1, we need an auxiliary result.

Lemma 4: If a, b ∈ Rlq and π ∈ Sl
q , then

1) rotπ(a)
T rotπ(b) = a

Tb, and

2) rotπ(a)
Tb = aT rot−1

π (b).
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Proof: The first claim is obvious because both

sums contain the same elements, only in a different or-

der. To show 2), apply 1) with rot−1
π : rotπ(a)

T b =
rot−1

π (rotπ(a))
T rot−1

π (b) = aT rot−1
π (b).

Proof of Theorem 1:

Part 1): For ζ = (ζ1, . . . , ζl)
T ∈ S,

Fv(ζ) ∈ P ⇔ Fv(π(ζ)) = rot−1
π (Fv(ζ)) ∈ P̃

(where the equality is by Lemma 3), which shows the claim

for all vertices of P and P̃ . But since rot−1
π is linear, the result

extends to convex combinations, which proves the first part.

Part 2): It holds that

aTx ≤ b for all x ∈ P
⇔ aT rotπ(x̃) ≤ b for all x̃ ∈ P̃

because, by Part 1, x equals rotπ(x̃) for some x̃ ∈ P̃ ,

⇔ rot−1
π (a)Tx ≤ b for all x ∈ P̃ (by Lemma 4)

which shows the first claim of Part 2). If now F = {x : aTx =
b and x ∈ P}, then

rot−1
π (F ) = {rot−1

π (x) : aTx = b and x ∈ P}
= {rot−1

π (x) : aTx = b and rot−1
π (x) ∈ P̃}

= {rot−1
π (x) : rot−1

π (a)T rot−1
π (x) = b and

rot−1
π (x) ∈ P̃}

= {x̃ : rot−1
π (a)T x̃ = b and x̃ ∈ P̃}

where we have again used Part 1 and Lemma 4. The last line

is the definition of the face of P̃ induced by rot−1
π (a)Tx ≤ b.

Because rot−1
π does not influence affine independence, both

F and rot−1
π (F ) have the same dimension.

In the following, Theorem 1 is applied to special cases to

derive important results for the remainder of this work.

Definition 6: For 0 6= h ∈ Fq, define ϕh ∈ Sq by ϕh(ζ) =
h · ζ for ζ ∈ Fq (note again the identification of Sq and the

bijections on Fq), and denote by GL(Fq) = {ϕh : 0 6= h ∈ Fq}
the general linear group of Fq (as a 1-dimensional vector space

over Fq).

For h = (h1, . . . , hd) ∈ (Fq \ {0})d, the corresponding

map from GL(Fq)
d is named ϕh = (ϕh1 , . . . , ϕhd

). For

convenience, we will abbreviate rotϕh
as roth. In the event

that h1 = · · · = hd = h, we abbreviate ϕh = ϕh and

roth = roth.

Corollary 2: Let C be an “all-ones” SPC code of length d,

and C(h) an arbitrary SPC code defined by the parity-check

vector h = (h1, . . . , hd) with hi 6= 0 for i ∈ JdK. Further, let

P = conv(Fv(C)) and P(h) = conv(Fv(C(h)). Then,

1) P(h) = roth(P) and P = rot−1
h (P(h)), and

2) aTx ≤ b is valid for P if and only if roth(a)
Tx ≤ b

is valid for P(h).
Proof: Follows from Theorem 1 with S = C and π =

ϕ−1
h because C(h) = ϕ−1

h (C) by definition.

Example 3: Let C denote a ternary “all-ones” SPC code of

length d = 3, and let h = (1, 2, 2). It follows that

C = {(0, 0, 0)T , (0, 1, 2)T , (1, 0, 2)T , (1, 1, 1)T , (0, 2, 1)T ,
(2, 0, 1)T , (1, 2, 0)T , (2, 1, 0)T , (2, 2, 2)T},

C(h) = {(0, 0, 0)T , (0, 1, 2)T , (1, 0, 1)T , (1, 1, 0)T , (0, 2, 1)T ,
(2, 0, 2)T , (1, 2, 2)T , (2, 1, 1)T , (2, 2, 0)T}.

Furthermore,

Fv(C) = {(1, 0, 0, 1, 0, 0, 1, 0, 0)T , (1, 0, 0, 0, 1, 0, 0, 0, 1)T ,
(0, 1, 0, 1, 0, 0, 0, 0, 1)T , (0, 1, 0, 0, 1, 0, 0, 1, 0)T ,

(1, 0, 0, 0, 0, 1, 0, 1, 0)T , (0, 0, 1, 1, 0, 0, 0, 1, 0)T ,

(0, 1, 0, 0, 0, 1, 1, 0, 0)T , (0, 0, 1, 0, 1, 0, 1, 0, 0)T ,

(0, 0, 1, 0, 0, 1, 0, 0, 1)T}
and

Fv(C(h)) = {(1, 0, 0, 1, 0, 0, 1, 0, 0)T , (1, 0, 0, 0, 1, 0, 0, 0, 1)T ,
(0, 1, 0, 1, 0, 0, 0, 1, 0)T , (0, 1, 0, 0, 1, 0, 1, 0, 0)T ,

(1, 0, 0, 0, 0, 1, 0, 1, 0)T , (0, 0, 1, 1, 0, 0, 0, 0, 1)T ,

(0, 1, 0, 0, 0, 1, 0, 0, 1)T , (0, 0, 1, 0, 1, 0, 0, 1, 0)T ,

(0, 0, 1, 0, 0, 1, 1, 0, 0)T}.
Also,

roth = (rotϕ1 , rotϕ2 , rotϕ2) = ((0, 1, 2), (0, 2, 1), (0, 2, 1)),

rot−1
h = (rotϕ1 , rotϕ2 , rotϕ2) = ((0, 1, 2), (0, 2, 1), (0, 2, 1)),

from which it follows that roth(Fv(C)) =
{(1, 0, 0, 1, 0, 0, 1, 0, 0)T , (1, 0, 0, 0, 0, 1, 0, 1, 0)T ,
(0, 1, 0, 1, 0, 0, 0, 1, 0)T , (0, 1, 0, 0, 0, 1, 0, 0, 1)T ,

(1, 0, 0, 0, 1, 0, 0, 0, 1)T , (0, 0, 1, 1, 0, 0, 0, 0, 1)T ,

(0, 1, 0, 0, 1, 0, 1, 0, 0)T , (0, 0, 1, 0, 0, 1, 1, 0, 0)T ,

(0, 0, 1, 0, 1, 0, 0, 1, 0)T} = Fv(C(h))
and rot−1

h (Fv(C(h))) =
{(1, 0, 0, 1, 0, 0, 1, 0, 0)T , (1, 0, 0, 0, 0, 1, 0, 1, 0)T ,
(0, 1, 0, 1, 0, 0, 0, 0, 1)T , (0, 1, 0, 0, 0, 1, 1, 0, 0)T ,

(1, 0, 0, 0, 1, 0, 0, 0, 1)T , (0, 0, 1, 1, 0, 0, 0, 1, 0)T ,

(0, 1, 0, 0, 1, 0, 0, 1, 0)T , (0, 0, 1, 0, 0, 1, 0, 0, 1)T ,

(0, 0, 1, 0, 1, 0, 1, 0, 0)T} = Fv(C).
The corollary shows that P and P(h) are equivalent up

to an index permutation; in particular, they coincide in most

interesting structural properties such as dimension, number of

facets, volume, etc. By the second part, a description (or a

relaxation) of P by means of linear (in)equalities immediately

leads to a description (or an equally tight relaxation) of P(h).
Another special case of Theorem 1 reveals symmetries

within the SPC codeword polytope P(h). First, we need

another subclass of the permutations of Sq .

Definition 7: By Aut (Fq,+) we denote the set of automor-

phisms of the additive group (Fq,+), i.e., bijections ϕ on Fq

that satisfy ϕ(ζ + η) = ϕ(ζ) + ϕ(η) for all ζ, η ∈ Fq (note

that this implies that ϕ(0) = 0).
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TABLE II
A SUMMARY OF NOTATION INTRODUCED IN SECTIONS III AND IV.

Ŝq−1 The convex hull of {0} ∪ {ei}q−1
i=1 in Rq−1

P Mapping from Sn
q−1 to Ŝn

q−1 “projecting out” xi,0

L The “inverse” of P that “lifts” Ŝn
q−1 onto Sn

q−1

∆d
p, ∆C

p Simplex constraints (see Definition 3)

Sq The permutation group of {0, . . . , q − 1} (see Defini-
tion 4)

rotπ Rotation operator on Rq for π ∈ Sq (see Definition 4)
rotπ Vector version of rotπ (see Definition 5)
ϕh Permutation in Sq defined by ϕh(ζ) = h ·ζ for ζ ∈ Fq

GL(Fq) The general linear group of Fq (see Definition 6)
roth, roth Short-hand notation for rotation operator (see Defini-

tion 6)
Aut (Fq ,+) The set of automorphisms of the additive group (Fq ,+)

(see Definition 7)

Corollary 3: Let C, P , C(h), and P(h) as above, ϕ ∈
Aut (Fq,+), and let ϕ = (ϕ, . . . , ϕ) (d times). Then,

1) aTx ≤ b valid for P ⇔ rotϕ(a)
Tx ≤ b valid for P ,

and

2) aTx ≤ b valid for P(h) ⇔ rotϕh◦ϕ◦ϕ−1
h
(a)Tx ≤ b

valid for P(h).
Proof: For the first statement, we can apply Theorem 1

with S = C and π = ϕ−1 because C = ϕ−1(C): c ∈ C ⇔
∑d

i=1 ci = 0⇔ ϕ−1(
∑

i ci) = ϕ−1(0) = 0⇔∑

i ϕ
−1(ci) =

0 ⇔ ϕ−1(c) ∈ C. The second statement then follows by

applying Corollary 2 twice and the first statement in between:

aTx ≤ b valid for P(h)
⇔ rot−1

h (a)Tx ≤ b valid for P
⇔ rotϕ(rot

−1
h (a))Tx ≤ b valid for P

⇔ roth(rotϕ(rot
−1
h (a)))Tx ≤ b valid for P(h).

Remark 2: For q = p1 = p, Aut (Fp,+) = GL(Fp) equals

the set of multiplications with a nonzero constant as defined in

Definition 6. By the distributive law, this in particular implies

that Aut (Fp,+) is commutative, such that ϕh ◦ ϕ ◦ ϕ−1
h in

the above corollary reduces to ϕ.

In general, it can be shown that Aut (Fq,+) = GL(Fm
p )

(where the m-dimensional Fp-space Fm
p is, as a vector space,

isomorphic to Fq), which for m > 1 is a strict superset of

GL(Fq) and not commutative.

In Table II we present a summary of the most important

notation introduced in Sections III and IV.

V. CONSTRUCTION OF VALID INEQUALITIES FROM

BUILDING BLOCKS

In this section, we establish a construction of valid inequal-

ities for the polytope P = conv(Fv(C)), where C is an “all-

ones” SPC code of length d over the finite field Fp with p
prime; the symbols P , C, d, and Fp will be used, with the

above meaning, throughout the entire section. The construction

is based on classes of building blocks that are assembled to

form the left-hand side of an inequality according to several

rules developed in the following.

First, a set of building block classes is defined in Sec-

tion V-A, where a building block class is just a set of

vectors of length p. The method for constructing inequalities

from a building block class is described in Section V-B.

Based on these inequalities, we derive necessary and sufficient

conditions for a building block class to induce only valid

inequalities in Section V-C, and some necessary conditions

for inequalities to define facets in Section V-D. Section V-E

discusses the application of Corollary 3 in order to obtain

a set of additional inequalities from each of the previously

constructed ones. Finally, the issue of redundancy within the

set of valid inequalities constructed by the method of this

section is addressed in Section V-F.

In Table V we present a summary of the most important

terms and notation introduced in this section.

A. Building Block Construction

A basic building block class is defined by an integer vector

m = (m0,m1, . . . ,mp−1) ∈ {0, 1}p with m0 = 0. From the

vector m the individual blocks (or vectors) from the class can

be constructed as detailed in the following definition. Each

class contains p vectors.

Definition 8 (Basic Building Block Class): For any m =
(m0,m1, . . . ,mp−1) ∈ {0, 1}p with m0 = 0, define p vectors

{tmk }k∈Fp
⊂ Rp by

1) tm0,j = [j]Z +mjp for j ∈ Fp, and

2) tmk,j = tm0,j+k − tm0,k for k ∈ Fp \ {0} and j ∈ Fp.

Each tmk is called a basic building block, and the set T m =
{tmk }k∈Fp

of building blocks constructed in this way is called

the basic building block class induced by m.

In the sequel, we will sometimes omit the prefix “basic”

when it is clear from the context that we talk about a basic

building block class.

Note that Remark 1 applies to the above definition, such

that, e.g., tm0,j+k = tm0,[j+k]Z
, i.e., there is no need to take the

index modulo p because it is an element of Fp.

Example 4: Let p = 3 and m = (0, 1, 1). Then, the class

T m consists of tm0 = (0, 4, 5), tm1 = (0, 1,−4), and tm2 =
(0,−5,−1).

Example 5: Let p = 7 and m = (0, 1, 1, 0, 0, 1, 0). Then,

tm0 = (0, 8, 9, 3, 4, 12, 6),

tm1 = (0, 1,−5,−4, 4,−2,−8),
tm2 = (0,−6,−5, 3,−3,−9,−1),
tm3 = (0, 1, 9, 3,−3, 5, 6),
tm4 = (0, 8, 2,−4, 4, 5,−1),
tm5 = (0,−6,−12,−4,−3,−9,−8),
tm6 = (0,−6, 2, 3,−3,−2, 6).

When m is fixed in the respective context, we will fre-

quently omit the superscript, i.e., write tk instead of tmk .

The remainder of this subsection establishes several tech-

nical properties of T m which are used later to construct

inequalities and show that these are valid for P .

Lemma 5:

1) For any k, j ∈ Fp, [tk,j ]p = j (i.e., tk,j mod p = [j]Z).

2) tk,0 = 0 for all k ∈ Fp.

3) For k ∈ Fp, let set(tk) = {tk,j : j ∈ Fp} be the

unordered set of entries of tk. Then,

set(tk) = set(t0)− t0,k = {i− t0,k : i ∈ set(t0)}. (5)
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tk,0 = 0tk,0 = 0 [tk,3]5 = 3

t0 = ( 0 6 2 3 4 )

t1 = ( 0 −4 −3 −2 −6 )

t2 = ( 0 1 2 −2 4 )

t3 = ( 0 1 −3 3 −1 )

t4 = ( 0 −4 2 −2 −1 )

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

t0,0 t0,1t0,2 t0,3 t0,4

t1,0t1,1 t1,2 t1,3t1,4

t2,0 t2,1 t2,2t2,3 t2,4

t3,0 t3,1t3,2 t3,3t3,4

t4,0t4,1 t4,2t4,3 t4,4

−t0,1 = −6

−t0,2 = −2

−t0,3 = −3

−t0,4 = −4

t0,4 − t0,2 = 2

t0,4 − t0,2 = 2

t1,4−1 − t1,2−1 = 2

t1,4−1 − t1,2−1 = 2

t2,4−2 − t2,2−2 = 2

t2,4−2 − t2,2−2 = 2

t3,4−3 − t3,2−3 = 2
t3,4−3 − t3,2−3 = 2

Fig. 2. Example of the statements of Lemma 5 for p = 5 and m = (0, 1, 0, 0, 0). The five building blocks in T m are shown on the left. On the right, the
entries of each block are placed according to their respective value. Property 1 is shown on the left for j = 3. Property 2 is apparent in both figures. The
statement of Property 3 becomes obvious on the right, while Property 4 is again shown in both figures (for k = 0, i = 4, and j = 2).

Hence, the entries (regardless of order) of different

building blocks within each basic class differ only by

a constant.

4) For all k, i, j, l ∈ Fp holds

tk,i − tk,j = tk+l,i−l − tk+l,j−l

i.e., the relative placement of entries i and j of the

building block tk is the same as that of entries i − l
and j − l of tk+l.

Proof: For k = 0, the first three statements are immediate

for all j ∈ Fp by definition. For general k ∈ Fp:

1) We have [tk,j ]p = [t0,j+k − t0,k]p = j + k − k = j.
2) tk,0 = t0,k − t0,k = 0.

3) By definition of tk,j ,

set(tk) = {tk,j}j∈Fp
= {t0,j+k}j∈Fp

− t0,k
= {t0,j}j∈Fp

− t0,k = set(t0)− t0,k

where we have used that {j + k}j∈Fp
= {j}j∈Fp

.

Finally, Property 4 holds because

tk+l,i−l − tk+l,j−l = t0,k+i − t0,k+l − (t0,k+j − t0,k+l)

= t0,k+i − t0,k+j

= t0,k+i − t0,k − (t0,k+j − t0,k)
= tk,i − tk,j

where both the first and last step are by definition of tk,j .

Example 6: For p=5 and m=(0, 1, 0, 0, 0), the statements

of Lemma 5 are shown in Fig. 2 for some example values.

Definition 9: For any basic building block class T m and

k ∈ Fp, define

tk,↑ = argmax
ζ∈Fp

tk,ζ ∈ Fp

and tk,↓ = argmin
ζ∈Fp

tk,ζ ∈ Fp

which is the (congruence class of the) index of the largest and

smallest entry, respectively, of tk. Further define, for given

ζ ∈ Fp, the inverses of the above expressions as

t↑,ζ ∈ Fp (with t↑,ζ = k ⇔ ζ = tk,↑)

and t↓,ζ ∈ Fp (with t↓,ζ = k ⇔ ζ = tk,↓)

that tell, for given ζ, in which block the ζ-th entry is the

maximizer (resp. minimizer) of set(tk). Finally,

σ = σm = t0,↑ = argmax
j∈Fp

t0,j = argmax
j∈Fp

([j]Z +mjp) 6= 0

which is a constant in Fp for m fixed.

Lemma 6: The definitions from Definition 9 are indeed

well-defined, i.e., every building block has a unique largest

and smallest entry and these are at different positions for the

different building blocks within a class, and further admit the

following explicit formulas for k, ζ ∈ Fp (hence subtraction

is in Fp):

tk,↑ = σ − k, (6)

tk,↓ = −k, (7)

t↑,ζ = σ − ζ, (8)

t↓,ζ = −ζ. (9)

In addition, the largest and smallest value, respectively, within

the building block tk are explicitly given by

max(tk) = max(set(tk)) = t0,σ − t0,k (10)

and min(tk) = min(set(tk)) = −t0,k (11)

where t0,σ = max(t0) by definition of σ.

Proof: We consider the “max”-cases ((6), (8), and (10))

only. By (5),

max(tk) = max(t0)− t0,k = t0,σ − t0,k
which shows (10). Applying Property 1 of Lemma 5 to

the above equation shows that [max(tk)]p = σ − k, hence

(by another application of that property) the maximizer is

unique and must equal σ − k, i.e., (6) is correct. As this
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value is different for distinct values of k ∈ Fp, the map

Fp ∋ k 7→ tk,↑ ∈ Fp is bijective and hence admits an inverse.

By resolving the expression for k, that inverse is seen to be

t↑,ζ = σ − ζ, which proves (8).

The proofs for (7), (9), and (11) are completely analogous

(note that the constant t0,↓ (which is the analog of σ) is zero

and hence does not appear in the formulas).

Example 7: Let p = 5 and m = (0, 1, 0, 0, 0), then σ = 1
and t0,σ = 6 is the largest entry of t0. For e.g. k = 3, we have

tk,↑ = [1]5 − [3]5 = [3]5 by (6) and max(t3) = t3,(t3,↑) =
6 − 3 = 3 by (10), while tk,↓ = −[3]5 = [2]5 by (7) and

min(t3) = t3,(t3,↓) = −3 by (11). These statements can be

easily verified using the left-hand side of Fig. 2.

Definition 10: A basic building block class T m is called

symmetric if set(t0) = t0,σ − set(t0), i.e., if

i ∈ set(t0)⇔ t0,σ − i ∈ set(t0). (12)

The building block classes from Examples 5 and 6 are

symmetric (the latter becomes obvious on the right of Fig. 2),

while the one from Example 4 is not: here, set(t0) = {0, 4, 5},
4 ∈ set(t0), but t0,σ − 4 = 5− 4 = 1 is not.

Lemma 7: Let T m be a basic building block class for a

prime p. The following are equivalent:

1) T m is symmetric.

2) tσ,j = −t0,−j for all j ∈ Fp.

3) If p > 2, either m = 0 = (0, . . . , 0), or [σ]Z is odd and

mi +mσ−i = 1 for [i]Z ≤ [σ]Z.

Proof: By Property 1 of Lemma 5, (12) is equivalent to

the condition that, for i ∈ Fp,

t0,σ − t0,i = t0,σ−i. (13)

By Definition 8, the left-hand side equals −tσ,i−σ, which

shows the equivalence of 1) and 2) (using j = i− σ).

To show that 1) implies 3), let p ≥ 3 and m 6= 0, hence

mσ = 1. Assume first that [σ]Z = 2s is even, hence t0,σ =
[σ]Z +pmσ = [σ]Z +p = 2s+p. Because this number is odd,

a 6= t0,σ−a for all a ∈ set(t0), so that (12) partitions set(t0)
into disjoint pairs, which contradicts |set(t0)| = p being odd.

Now, expand (13) by Definition 8 to obtain

[σ]Z + pmσ − [i]Z − pmi = [σ − i]Z + pmσ−i

⇔ [σ]Z − [i]Z − [σ − i]Z + p(mσ −mi −mσ−i) = 0

⇔ mσ −mi −mσ−i −
{

1 if [σ]Z < [i]Z
0 otherwise

}

= 0, (14)

hence mi +mσ−i = mσ for [i]Z ≤ [σ]Z, which shows 3).

3)⇒1): For m = 0, [σ]Z = p − 1, such that the braced

expression in (14) is 0 for all i ∈ Fp, hence (14) holds for

all i and the class is symmetric. For p = 2, there is only one

additional basic class defined by m = (0, 1), which implies

set(t0) = {0, 2} and hence fulfills Definition 10. Thus assume

that [σ]Z is odd and mi +mσ−i = 1 for [i]Z ≤ [σ]Z.

For [i]Z ≤ [σ]Z, then, (14) holds by assumption. On the

other hand, [i]Z > [σ]Z implies [σ − i]Z > [σ]Z, such that

mi = mσ−i = 0 by definition of σ, and (14) holds as well,

which concludes the proof.

Corollary 4: For p ≥ 3, there are 2(p−1)/2 symmetric

building block classes.

Proof: Besides T 0 which is always symmetric, the first

statement of Property 3 of the above lemma implies that

symmetric classes exist only for [σ]Z = 2s + 1 with 0 ≤
s ≤ (p − 3)/2. By the second part, only half of the mi

for [0]Z < [i]Z < [σ]Z are free to choose, which gives

2s = 2([σ]Z−1)/2 symmetric classes for a single σ. In total

(and including T 0) this results in 1+
∑(p−3)/2

s=0 2s = 2(p−1)/2

classes.

We now define almost doubly-symmetric classes which

will become important in Section V-D. These classes possess

certain technical symmetry properties that makes it possible

to prove that the resulting inequalities are facet-defining.

Definition 11: A symmetric basic building block class T m

for p ≥ 3 is called almost doubly-symmetric if its “projec-

tion” onto the “interior” entries, i.e., the building block class

obtained by removing both the smallest and largest entries

from each building block of the class, has the property that

there exists a subset T̃ proj
0 ⊂ T proj

0 such that
∣

∣

∣
T̃ proj
0

∣

∣

∣
≥ (p− 3)/2, (15a)

max
(

T̃ proj
0

)

≤ ⌊s-max(t0)/2⌋ , (15b)

and i ∈ T̃ proj
0 ⇒ s-max(t0)− i ∈ T proj

0 (15c)

where T proj
0 = set(t0)\{0, t0,σ} (i.e., the projection of set(t0)

onto the interior entries) and s-max(tk) is the second-largest

entry of tk, i.e.,

s-max(tk) = max(set(tk) \ {max(tk)}).

Example 8: The building block class from Example 6

is almost doubly-symmetric: here, set(t0) = {0, 2, 3, 4, 6},
T proj
0 = {2, 3, 4}, and s-max(t0) = 4. It is easy to check

that T̃ proj
0 = {2} fulfills (15). In contrast, the class from

Example 5 is not almost doubly-symmetric: here, set(t0) =
{0, 3, 4, 6, 8, 9, 12}, T proj

0 = {3, 4, 6, 8, 9}, and the largest sub-

set T̃ proj
0 ⊂ T proj

0 that satisfies (15b) and (15c) is T̃ proj
0 = {3}

which does not satisfy (15a).

B. Deriving Inequalities From Building Blocks

In this section, we present a construction of inequalities

derived from a given basic building block class T m; these

inequalities will later be shown to be valid or even facet-

defining for P , given that certain conditions on T m are

satisfied.

For each such inequality θTx ≤ κ, θ ∈ Rdp is of the

form θ = (tk1 | . . . | tkd
)T , where each tki

∈ T m for

some fixed m. In particular, tk1 , . . . , tkd−1
can be arbitrarily

chosen, while tkd
is a function of tk1 , . . . , tkd−1

. The right-

hand side κ of the inequality is found by imposing that the

inequality is tight for a specially designed embedded codeword

Fv(c) (the so-called canonical codeword). For any codeword

c = (c1, . . . , cd)
T ∈ C, the left-hand side of θTFv(c) ≤ κ is

d
∑

i=1

tki
f(ci)

T =
d

∑

i=1

tki,ci (16)

because f(ci) is the ci-th unit vector in Rp by Definition 1.
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Construction 1: Choose and fix k1, . . . , kd−1 arbitrarily

from Fp, which define the first d− 1 parts of θ in the above

form. Then, the canonical codeword c for k1, . . . , kd−1 is

defined as follows. The first d − 1 entries of c are chosen

to maximize tki,ci , i.e.,

ci = tki,↑ = σ − ki (17a)

(and hence ki = t↑,ci = σ − ci) (17b)

for i ∈ Jd − 1K. The condition c ∈ C then uniquely specifies

the last entry cd of the codeword. Now, kd is chosen such that

tkd,cd is minimized, i.e.,

kd = t↓,cd = −cd (18a)

(and hence cd = tkd,↓ = −kd) (18b)

by which θ = (tk1 | . . . | tkd
)T is completely specified.

Finally, the right-hand side κ is defined as θTFv(c) =
∑d

i=1 tki,ci which ensures that Fv(c) is tight for the resulting

inequality θTx ≤ κ.

Remark 3: The choice of d in the above construction is

arbitrary; using any other position i ∈ JdK to define the last

entry ci of c and the last building block ti leads to a different

mapping of inequalities to canonical codewords, but the set of

inequalities constructed in total remains the same.

Corollary 5: For any inequality θTx ≤ κ obtained from

Construction 1, [κ]p = 0.

Proof: By construction, [κ]p =
∑d

i=1[tki,ci ]p =
∑d

i=1 ci
by Property 1 of Lemma 5, and

∑

ci = 0 because c ∈ C.

Example 9: Let p = 5 and m = (0, 1, 0, 0, 0) as before,

d = 6, and choose (k1, . . . , k5) = (0, 1, 2, 3, 4). Then, the first

5 entries of the canonical codeword c are (t0,↑, . . . , t4,↑) =

(1, 0, 4, 3, 2) by (6). As
∑d−1

i=1 tki,↑ = 0, this implies c6 = 0,

such that c = (1, 0, 4, 3, 2, 0)T ∈ C, and we set k6 = t↓,c6 = 0
by (7), hence θ = (tm0 | tm1 | tm2 | tm3 | tm4 | tm0 )T . Finally,

we can compute κ = θTFv(c) = t0,1 + t1,0 + t2,4 + t3,3 +
t4,2+t0,0 = 6+0+4+3+2+0 = 15 and obtain the inequality

(tm0 | tm1 | tm2 | tm3 | tm4 | tm0 )x ≤ 15.

Note that by Construction 1, a total of pd−1 inequalities

can be constructed per class T m. We denote the set of

these inequalities by Θm. The following lemma states two

alternative characterizations of the elements of Θm.

Lemma 8: An inequality θTx ≤ κ with θ = (tk1 | . . . |
tkd

)T is in Θm if and only if

d
∑

i=1

ki = [d− 1]p · σ (19a)

and κ = (d− 1)t0,σ −
d

∑

i=1

t0,ki
(19b)

which is in turn equivalent to the condition that
∑

k∈Fp

[∣

∣V θ
k

∣

∣

]

p
(σ − k) = σ (20a)

and κ =
∑

k∈Fp

∣

∣V θ
k

∣

∣max(tk)−max(t0) (20b)

where, for k ∈ Fp, V θ
k = {i ∈ JdK : ki = k} denotes the index

set of entries in θ that equal tk .

Proof: See Appendix D.

Remark 4: Note that no two inequalities constructed by

Construction 1 from distinct (k11 , . . . , k
1
d−1) 6= (k21 , . . . , k

2
d−1)

for the same class T m are equivalent, in the sense that none is

a positive scalar multiple of another. Assume for the contrary

that (θ1 = (tk1
1
| . . . | tk1

d
)T , κ1) and (θ2 = (tk2

1
|

. . . | tk2
d
)T , κ2) are constructed from Construction 1 with

θ1 = aθ2, κ1 = aκ2, and a ≥ 0. If a = 1, then k1i = k2i
for i ∈ Jd− 1K. Otherwise, tk1

1
= atk2

1
with a 6= 1, which is a

contradiction: since by Property 3 of Lemma 5, the difference

between the largest and smallest element of a building block

is constant among a fixed class, no building block can be a

proper scalar multiple of another.

C. Valid and Invalid Building Block Classes

In this subsection, we show that in a class Θm of inequal-

ities, either all inequalities are valid or all are invalid for

P , and that this distinction depends only on m, not on the

code’s length d. The key argument is given by the following

lemma. The proofs of all results of this subsection (except

Proposition 2) are given in Appendix E.

Lemma 9: Let θTx ≤ κ with θ = (tk1 | . . . | tkd
)T be an

inequality in Θm and let c ∈ C be the corresponding canonical

codeword (cf. Construction 1). Then, for any ξ ∈ F
d
p,

θTFv(c+ ξ)− κ =

d−1
∑

i=1

tσ,ξi + t0,ξd . (21)

In particular, the change to the left-hand side of the inequality

θTFv(c) ≤ κ induced by adding ξ to the canonical codeword

only depends on ξ; it is independent of θ, κ, and c, i.e.,

independent of which inequality was chosen.

Corollary 6: Let T m = {tmk }k∈Fp
be a basic building block

class.

1) If, for all c ∈ C,

d−1
∑

i=1

tσ,ci + t0,cd ≤ 0, (22)

then all inequalities in Θm are valid for P .

2) Conversely, if there is a codeword c ∈ C such that
∑d−1

i=1 tσ,ci + t0,cd > 0, then no inequality in Θm is

valid for P .

In the following, we establish a simpler condition for all

inequalities in Θ
m being valid.

Definition 12: The basic building block class T m =
{tmk }k∈Fp

is called valid if the equation

∑

i∈I

nitσ,i + [r]Z = 0 (23)

with I = {i ∈ Fp : 0 > tσ,i ≥ −[σ]Z}, nonnegative integer

variables ni, and r = −∑

i∈I [ni]p ·i has no solution for which

mr = 1.

Theorem 2: If the class T m is valid, then all inequalities in

Θm are valid for P (independently of d). If T m is not valid,

there is a d0 ≤ [σ]Z + 1 such that all inequalities in Θm are

invalid for P if d ≥ d0.
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TABLE III
NUMBER OF VALID BASIC BUILDING BLOCK CLASSES FOR DIFFERENT

VALUES OF p. ALSO, THE NUMBERS OF UNIQUE (CF. SECTION V-F),
UNIQUE SYMMETRIC, ALMOST DOUBLY-SYMMETRIC, AND

FACET-DEFINING VALID CLASSES ARE GIVEN.

p: 2 3 5 7 11 13 17 19

valid classes: 2 3 7 17 109 261 1621 4085
unique valid: 1 2 6 16 108 260 1620 4084
of which are . . .
- symmetric: 1 1 2 4 10 16 31 46
- almost doubly-

symmetric: 0 1 2 3 5 6 8 9
- facet-defining: 1 1 2 4 10 16 31 46

Example 10: Let p = 3 and m = (0, 1, 1). Then,

tm0 = (0, 4, 5), tm1 = (0, 1,−4), and tm2 = (0,−5,−1).
Thus, σ = t0,↑ = 2 and tmσ = (0,−5,−1). Now, I = {2},
and with n2 = 2, we obtain r = −[2]p · [2]p = [2]p,

which satisfies both mr = m2 = 1 and (23) because

n2 · t2,2 + [r]Z = 2 · (−1) + 2 = 0. Hence, Definition 12

and Theorem 2 tell us that this class is invalid for d ≥ 3.

Indeed, for d = 3 and the canonical codeword 0 ∈ C,

we obtain θ = (0,−5,−1, 0,−5,−1, 0, 4, 5)T and κ = 0.

However, the resulting inequality is violated by the codeword

c = (2, 2, 2)T ∈ C, as θTFv(c) = −1+(−1)+5 = 3 > 0 = κ.

Remark 5: The condition that mr = 1 in Definition 12

implies that [r]Z ≤ [σ]Z in (23). Since also tσ,i < 0 for i ∈ I ,

the number of potential solutions to (23) is relatively small.

We have verified that a simple enumeration runs in negligible

time for all p of reasonable size. The first row of Table III lists

the number of classes that pass the test for all primes p ≤ 19.

For symmetric classes, the conditions can be further sim-

plified.

Lemma 10: If T m is symmetric, then T m is valid if and

only if the equation
∑

j∈J

νj · [j]Z = [ρ]Z

with J = {j ∈ Fp : mj = 0 and 0 < [j]Z < [σ]Z},
nonnegative integer variables νj , and ρ = −∑

j∈J [νj ]p · j
has no solution for which mρ = 1.

Remark 6: The conditions of Lemma 10 depend on σ and

m0, . . . ,mσ only; in particular, they are independent of p.

Hence, once such an m-vector prefix has been determined

to be valid, a valid symmetric class is obtained for any prime

p > σ by appending an appropriate number of zeros. Table IV

lists the valid prefixes for σ ≤ 17.

Proposition 2: For any p, let m be of the form

(0, 1, . . . , 0, 1, 0, . . . , 0), i.e., consisting of s copies of (0, 1),
for an arbitrary 0 ≤ s ≤ ⌈(p − 1)/2⌉, followed by zeros

(note that this includes the all-zero m-vector). Then, T m is

a valid symmetric class, which additionally is almost doubly-

symmetric for p ≥ 3.1

Proof: Assume p ≥ 3. Every class of the above form

is symmetric by Item 3 of Lemma 7, such that Lemma 10

1Note that a similar result with an upper bound of (p−1)/2 on s (without
the ceiling operator) was stated in [28, Prop. 2]. That result is slightly weaker
since it does not include s = 1 for p = 2. However, the resulting class turns
out to be redundant (see Section V-F below).

TABLE IV
PREFIXES OF m-VECTORS FOR WHICH THE CORRESPONDING BUILDING

BLOCK CLASS T m IS SYMMETRIC AND VALID FOR ANY PRIME p. FOR

p ≤ 19, THESE ARE EXACTLY THE PREFIXES THAT LEAD TO VALID

FACET-DEFINING CLASSES. THE ENTRIES CORRESPONDING TO

PROPOSITION 2 ARE PRINTED IN BOLD.

σ valid m prefixes σ valid m prefixes

1 01 3 0101
5 010101, 011001 7 01010101, 01101001,

01110001
9 0101010101, 0111010001, 0111100001

11 010101010101, 011011001001, 011100110001,
011101010001, 011110100001, 011111000001

13 01010101010101, 01101101001001, 01110101010001,
01110110010001, 01111001100001, 01111010100001,
01111101000001, 01111110000001

15 0101010101010101, 0111010101010001,
0111011100010001, 0111110011000001,
0111110101000001, 0111111010000001,
0111111100000001

17 010101010101010101, 011011011001001001,
011101010101010001, 011101100110010001,
011101110100010001, 011110110100100001,
011110111000100001, 011111000111000001,
011111001011000001, 011111010101000001,
011111011001000001, 011111100110000001,
011111101010000001, 011111110100000001,
011111111000000001

p− 1 0 (all-zero m-vector)

can be applied. Assume T m is invalid. The condition mρ = 1
implies that s 6= 0, hence [σ]Z is odd, while J contains entries

with even integer representations only; hence
∑

j∈J νj · [j]Z
is even and the condition in Lemma 10 is not satisfiable. For

p = 2, m = (0, 0) or m = (0, 1). In both cases, T m is

symmetric since (12) of Definition 10 is satisfied, and we can

apply Lemma 10. For m = (0, 1), the same argument above

shows that T (0,1) is valid. Form = (0, 0), the conditionmρ =
1 of Lemma 10 cannot be fulfilled, and thus it follows that

T (0,0) is valid as well.

For p ≥ 3 and 0 6=m of the above form, let T̃ proj
0 consist of

the smallest (p− 3)/2 elements of set(t0) \ {0}. By the form

of m, this implies T̃
proj
0 ⊆ {t0,i : mi = 0}, and one can show

(details omitted) that this set fulfills (15b) and (15c), hence

T m is almost doubly-symmetric.

For p≥ 3 and m= 0, T
proj
0 = {1, . . . , p − 2},

and we let T̃
proj
0 = {1, . . . , (p − 3)/2}. Since

⌊s-max(t0)/2⌋= ⌊(p− 2)/2⌋=(p− 3)/2=max
(

T̃ proj
0

)

and
{

s-max(t0)− i : i∈ T̃ proj
0

}

= {(p − 1)/2, . . . , p − 3}⊂T proj
0 ,

it follows that both (15b) and (15c) are fulfilled, hence T m

is almost doubly-symmetric, which concludes the proof.

The following lemma provides counting formulas for the

number of embeddings of vectors that are not codewords of an

“all-ones” SPC code C cut by any inequality from a valid basic

building block class and also for the number of embedded

codewords of C for which the inequality is tight.

Lemma 11: Let C be an “all-ones” SPC code over Fp of

length d ≥ 2, and let T m be a basic valid building block

class. Define

I>c,J =

{

1 if t0,c +
∑

j∈J tσ,j > 0,

0 otherwise
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where c ∈ Fp and J is a multiset of Fp \ {0} (including the

empty set). Furthermore, let

I=c,J =











1 if c+ ‖J‖1 = 0

and t0,c +
∑

j∈J tσ,j = 0,

0 otherwise

where ‖J‖1 denotes the sum (in Fp) of the entries of J . Now,

any inequality θTx ≤ κ from Θm

1) cuts the embeddings of

∑

c∈Fp, J multiset of Fp\{0},
|J|≤d−1

I>c,J

(

d− 1

|J |

) |J |!
nJ
1 ! · · ·nJ

kJ !
(24)

elements ζ ∈ Fd
p \ C, where kJ is the number of types

(number of different elements) of the multiset J with

repetition numbers nJ
1 , . . . , n

J
kJ , and

2) is tight for the embeddings of exactly

∑

c∈Fp, J multiset of Fp\{0},
|J|≤d−1

I=c,J

(

d− 1

|J |

) |J |!
nJ
1 ! · · ·nJ

kJ !
(25)

codewords of C.

Example 11: Let C be an “all-ones” SPC code

over F3 of length d = 3. In this case, T 0 =
{(0, 1, 2), (0, 1,−1), (0,−2,−1)}, σ = 2, and the possible

mulitsets J are

{}, {1}, {2}, {1, 1}, {1, 2}, {2, 2}.

It follows that

I>0,{ } = 0, I>1,{ } = 1, I>2,{ } = 1,

I>0,{1} = 0, I>1,{1} = 0, I>2,{1} = 0,

I>0,{2} = 0, I>1,{2} = 0, I>2,{2} = 1,

and

I>c,{1,1} = I>c,{1,2} = I>c,{2,2} = 0, ∀c ∈ F3.

Applying the counting formula in (24), we get that any

inequality θTx ≤ κ from Θm cuts the embeddings of

2 + (d− 1) = d+ 1 = 4

elements ζ ∈ F3
3 \ C. Similarly, we get

I=0,{} = I=1,{2} = I=2,{1} = I=2,{2,2} = 1

while all other I=c,J are zero. Hence, from (25), any inequality

θTx ≤ κ from Θm is tight for the embeddings of exactly

1 + 2(d− 1) +

(

d− 1

2

)

=
d(d+ 1)

2
= 6

codewords of C.

D. Facet-Defining Valid Building Block Classes

In this subsection, we state several results regarding the

dimension of the face defined by an inequality from Θm when

T m is a valid symmetric building block class. Recall from

Section II-E that facets, i.e., faces of dimension dim(P) − 1
(where dim(P) = d(p − 1) by Proposition 1), are of most

interest.

Lemma 12: Let T m denote a valid symmetric basic building

block class. Then, any inequality from Θm defines a face of

P of dimension at least d(p− 1)− 1− 1
2 (p− 3), when d ≥ 3

and p ≥ 3.

Proof: See Appendix F.

Conjecture 1: A valid building block class T m is facet-

defining if and only if it is symmetric.

The “if”-part of the conjecture was verified numerically

(cf. Remark 14 in Appendix F) for all primes p ≤ 19; see

Table III and also Table IV from which the corresponding

m-vectors can be derived. The “only if”-part is supported by

complementary numerical experiments for all primes p ≤ 19;

see Appendix G.

While we are not able to prove Conjecture 1 for general p,

the following stronger result (compared to Lemma 12) holds

for valid almost doubly-symmetric building block classes.

Proposition 3: Let T m denote a valid almost doubly-

symmetric basic building block class. Then, any inequality

from Θm defines a facet of P for d ≥ 3 and for any prime

p ≥ 3. In particular, all inequalities derived from the building

block classes in Proposition 2 define facets of P for any prime

p ≥ 2.

Proof: For p ≥ 3, see Appendix H. The statement for

p = 2 (which is included by the “in particular”-part of

the proposition) has been shown previously in LP decoding

literature, as pointed out in Section VI-A.

Proposition 3 is an important result since it shows that

almost doubly-symmetric classes give rise to linear inequalities

that provably define facets of P for any prime p ≥ 3.

E. More Inequalities by Rotation

For a set Θm of inequalities and 0 6= h ∈ Fp, denote by

ϕh(Θ
m) the set of all inequalities derived by replacing each

θTx ≤ κ in Θm by roth(θ)
Tx ≤ κ, where h = (h, . . . , h).

By Corollary 3, the inequalities in ϕh(Θ
m) are valid for P if

and only if those in Θm are.

Concludingly, the set of all inequalities obtained from a

class T m is denoted by

Φ(Θm) =
⋃

06=h∈Fp

ϕh(Θ
m).

Remark 7: The uniqueness statement of Remark 4 remains

valid among Φ(Θm): if θ1Tx ≤ κ1 and θ2Tx ≤ κ2 are

from ϕh(Θ
m) and ϕh′(Θm), respectively, where θ1 = aθ2,

κ1 = aκ2, and h, h′ ∈ Fp \ {0}, then the same argument as

in Remark 4 shows that a 6= 1 is impossible. For a = 1,

Property 1 of Lemma 5 implies that h = h′, hence this case

reduces to Remark 4.

Remark 8: Since |Fp \ {0}| = p− 1, Φ(Θm) contains (p−
1)pd−1 unique inequalities.
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F. Redundant Inequalities

The procedure described so far leads to the set

Θ(d) = ∆d
p ∪

⋃

m valid

Φ(Θm) (26)

with ∆d
p as defined in Definition 3, of (in)equalities that are

valid for P ; i.e., they describe a relaxation of P and can thus

be used for (relaxed) LP decoding as described in Section II-D.

In general, however, some entries of Θ(d) might be redun-

dant: an inequality θTx ≤ κ in Θ(d) is redundant if it is a

linear combination of other (in)equalities in Θ(d), where the

coefficients of all inequalities are nonnegative:

θ =
N
∑

j=1

λjθ
j+

d
∑

i=1

µis
i and κ =

N
∑

j=1

λjκ
j+

d
∑

i=1

µi (27)

where {θjTx ≤ κj}Nj=1 are the remaining inequalities in

Θ(d), λj ≥ 0 for j ∈ JNK, and {siTx = 1}di=1 are the d
equations from (4b) that describe aff(P) (which are the only

equations in Θ(d) by construction).

Observation 1: If an inequality θTx ≤ κ of Θ(d) is

redundant for d ≥ 3, then all µi = 0 in (27), i.e., the

equations (4b) are not necessary in the above representation

of the inequality.

Proof: Assume θTx ≤ κ in Θ(d) is redundant and

satisfies (27) for {λj}Nj=1 and {µi}di=1, where µi∗ 6= 0 for

some i∗ ∈ JdK. By Property 2 of Lemma 5, θji,0 = 0 for

i ∈ JdK. On the other hand, sii,0 = 1 by (4b), while sik,0 = 0
for i 6= k, from which follows that θi∗,0 = µi∗ 6= 0. Again

by Property 2 of Lemma 5, this means that the redundant

inequality cannot be contained in Φ(Θm).
But then it must be in ∆d

p, i.e., one of (4a), say −xk,l ≤ 0
for some k ∈ JdK, l ∈ Fp. By Proposition 1, it is a facet, which

by basic polyhedral theory implies rank({θj : λj 6= 0}) = 1.

Hence, we can assume wlog. λj 6= 0 for only one j = i∗, i.e.,

θ = λi∗θ
i∗ +

∑

i µis
i. This is obviously impossible for both

the case that the corresponding inequality θi
∗Tx ≤ κi∗ is also

of type (4a) or obtained from Construction 1.

Hence, for the study of redundancy within Θ(d) we can

reduce (27) to the condition that

θ =

N
∑

j=1

λjθ
j and κ =

N
∑

j=1

λjκ
j , all λj ≥ 0. (28)

Geometrically, (28) implies that the face θTx ≤ κ is the

intersection of all faces θjTx ≤ κj for which λj > 0. In

particular, if θTx ≤ κ induces a facet, i.e., a “maximal”

nontrivial face, then all (θj , κj) for which λj > 0 must be

positive scalar multiples of (θ, κ). By Remark 7, this requires

all involved inequalities to originate from different building

block classes.

The following proposition shows that this is possible only

for one specific pair of building block classes.

Proposition 4 (Equivalent Inequalities): Let the inequalities

θTx ≤ κ and θ′Tx ≤ κ′ be contained in ϕ(Θm) and

ϕ′(Θm′

), respectively, where T m 6= T m′

and ϕ, ϕ′ ∈
GL(Fp). Assume that θ = aθ′ and κ = aκ′ for some a ≥ 0,

where wlog. a ≤ 1 (swap m and m′ otherwise). Then,

TABLE V
A SUMMARY OF NOTATION AND TERMS INTRODUCED IN SECTION V.

m Integer vector in {0, 1}p inducing a building block class
d Length of an “all-ones” SPC code
tm
k

Basic building block induced by m (see Definition 8)
T m Basic building block class induced by m (see Defini-

tion 8)
set(tk) The set of unordered entries of tk
tk,↑ , tk,↓ The index of the largest and smallest entry, respectively,

of tk (see Definition 9)
t↑,ζ , t↓,ζ The block for which the ζ-th entry is the maximizer (resp.

minimizer) of set(tk) (see Definition 9)
σm The index of the largest entry of tm0 (see Definition 9)

T
proj
0 The projection of set(t0) onto the interior entries, i.e.,

set(t0) \ {0, t0,σ}
Sym. T m See Definition 10
Almost
doubly-sym.
T m

See Definition 11

s-max(tk) The second-largest entry of tk
V θ

k
The index set of entries in θ that equal tk

Valid T m See Definition 12

I>
c,J

, I=
c,J

See Lemma 11 (counting formulas)

Φ(Θm) The set of all inequalities obtained from a class T m

Θ(d) Set of valid (in)equalities for P (see (26))

m = (0, . . . , 0), m′ = (0, 1, 0, 1, . . . ), and a = 1/3 (for

p = 2) or a = 1/2 (for p > 2).

Conversely, Φ(Θ(0,...,0)) and Φ(Θ(0,1,0,1,... )) are equivalent:

θTx ≤ κ ∈ Φ(Θ(0,1,0,1,... ))⇔ aθTx ≤ aκ ∈ Φ(Θ(0,...,0))

with a as above.

Proof: See Appendix I.

Corollary 7: Except for T m with m = (0, 1, . . . ), each

building block class that was shown to induce facets in

Section V-D gives rise to, by Remark 8, (p − 1)pd−1 unique

irredandant facets of P , i.e., inequalities that are necessary in

the polyhedral description of P .

In particular, using ⌈(p− 1)/2⌉ building block classes ex-

plicitly constructed in Proposition 2 for s < ⌈(p− 1)/2⌉ and

together with Proposition 1, we are able to explicitly construct

a total of
⌈

(p− 1)2/2
⌉

pd−1 + dp unique facets of P , for any

p ≥ 3 and d ≥ 3, and 2d−1 + 2d unique facets for p = 2 and

d ≥ 4.

G. Valid Inequalities for General SPC Codes

This section has so far focused on “all-ones” SPC codes. As

noted in Corollary 2, however, each of the facets constructed

in this section can be translated into a facet of the codeword

polytope of a general SPC code by applying the appropriate

rotation operation to the respective θ-vector. For an SPC code

C(h) with parity-check matrix h and ϕr ∈ GL(Fp), we denote

the respective equivalent of ϕr (Θ
m) by

ϕh,r(Θ
m) = {(roth ◦ rotr)(θ)Tx ≤ κ) : (θTx ≤ κ) ∈ Θm}.

VI. EXPLICIT BUILDING BLOCK CLASSES FOR SMALL

VALUES OF p

In this section, we present explicit building block classes

for p = 3, 5, and 7 obtained from the general construction

of the previous section. For p = 3 (resp. 5) we prove
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−x1,1 − 2x1,2 + x2,1 + 2x2,2 − 2x3,1 − x3,2 ≤ 0, −2x1,1 − x1,2 + 2x2,1 + x2,2 − x3,1 − 2x3,2 ≤ 0,
−x1,1 − 2x1,2 + x2,1 − x2,2 + x3,1 − x3,2 ≤ 0, −2x1,1 − x1,2 − x2,1 + x2,2 − x3,1 + x3,2 ≤ 0,
−x1,1 − 2x1,2 − 2x2,1 − x2,2 + x3,1 + 2x3,2 ≤ 0, −2x1,1 − x1,2 − x2,1 − 2x2,2 + 2x3,1 + x3,2 ≤ 0,
−x1,1 + x1,2 + x2,1 − x2,2 − 2x3,1 − x3,2 ≤ 0, x1,1 − x1,2 − x2,1 + x2,2 − x3,1 − 2x3,2 ≤ 0,
−x1,1 + x1,2 − 2x2,1 − x2,2 + x3,1 − x3,2 ≤ 0, x1,1 − x1,2 − x2,1 − 2x2,2 − x3,1 + x3,2 ≤ 0,
2x1,1 + x1,2 − 2x2,1 − x2,2 − 2x3,1 − x3,2 ≤ 0, x1,1 + 2x1,2 − x2,1 − 2x2,2 − x3,1 − 2x3,2 ≤ 0,
−x1,1 + x1,2 + x2,1 + 2x2,2 + x3,1 + 2x3,2 ≤ 3, x1,1 − x1,2 + 2x2,1 + x2,2 + 2x3,1 + x3,2 ≤ 3,
2x1,1 + x1,2 + x2,1 − x2,2 + x3,1 + 2x3,2 ≤ 3, x1,1 + 2x1,2 − x2,1 + x2,2 + 2x3,1 + x3,2 ≤ 3,
2x1,1 + x1,2 + x2,1 + 2x2,2 + x3,1 − x3,2 ≤ 3, x1,1 + 2x1,2 + 2x2,1 + x2,2 − x3,1 + x3,2 ≤ 3.

(resp. conjecture) that these classes together with ∆d
p give a

complete and irredundant set of linear (in)equalities describing

the convex hull of an embedded SPC code of length d.

However, for p = 7, this is not the case, and we present two

(up to additive automorphisms) additional nonbasic classes.

Based on numerical experiments, we conjecture that these

classes (basic and nonbasic) together with ∆d
7 give a complete

and irredundant set of linear (in)equalities describing the

convex hull of an embedded length-d SPC code over F7. For

completeness, we also consider the binary case p = 2.

A. The Case p = 2

For p = 2, there is only a single vector m = (0, 0) that

gives a valid basic building block class (the alternative, m′ =
(0, 1), is redundant by Proposition 4). In particular, tm0 =
(0, 1) and tm1 = (0,−1), with [σ]Z = t0,σ = 1. Thus, the

conditions from (20) state that the inequalities obtained from

Construction 1 are exactly those for which
[∣

∣V θ
0

∣

∣

]

2
= [1]2,

i.e.,
∣

∣V θ
0

∣

∣ is odd, and κ =
∣

∣V θ
0

∣

∣− 1.

As GL(F2) = {ϕ1} consists of only the identity, there is

a single class of facets plus ∆d
2 which describes Sd

1 , where

S1 = conv{(1, 0), (0, 1)}.
Note that the existing literature on binary LP decoding

uses Flanagan’s embedding instead of constant-weight em-

bedding. Using the procedure from Appendix B, we obtain

corresponding building blocks t′0 = (1) and t′1 = (−1), which

exactly leads to the so-called “forbidden-set” or “Feldman”

inequalities [1] which date back to an earlier work of Jeroslow

[29]. Furthermore, the procedure replaces the simplex con-

straints ∆d
2 by the usual box constraints xi,1 ≥ 0 (by (44d))

and xi,1 ≤ 1 (by (44c)), which shows that the inequalities

constructed in this paper are indeed a generalization of the

well-known binary case.

B. The Case p = 3

For p = 3, there is also only a single vector m = (0, 0, 0)
that gives a valid, irredundant facet-defining basic building

block class (see Table IV). In particular, tm0 = (0, 1, 2),
tm1 = (0, 1,−1), and tm2 = (0,−2,−1). In the following,

the explicit dependence of m = (0, 0, 0) will be omitted to

simplify notation.

The building blocks tk and values from Definition 9 and

Lemma 6 are presented in Table VI.

Proposition 5: Every inequality θTx ≤ κ in Θm defines a

facet of P , d ≥ 3. Moreover,

TABLE VI
STRUCTURAL PROPERTIES OF THE BUILDING BLOCKS tm0 , tm1 , AND tm2
FOR p = 3 AND m = (0, 0, 0). FOR THIS m, σ = 2 (CF. DEFINITION 9).

k 0 1 2 expression

tk (0, 1, 2) (0, 1,−1) (0,−2,−1)
tk,↑ 2 1 0 2− k
tk,↓ 0 2 1 −k

max (tk) 2 1 0 2− [k]Z
min (tk) 0 −1 −2 −[k]Z

1) there are d+ 1 elements ζ ∈ Fd
3 \ C whose embeddings

are cut by the inequality, i.e., θTFv(ζ) > κ.

2) The inequality is tight for the embeddings of exactly
1
2d(d+ 1) codewords of C.

Proof: The class T m is almost doubly-symmetric (see

Proposition 2) and then it follows from Proposition 3 that any

inequality from Θm defines a facet of P for d ≥ 3. The

remaining counting formulas are special cases of the general

counting formulas of Lemma 11 (details omitted for brevity).

See also Example 11.

Theorem 3: Let C be the ternary “all-ones” SPC code of

length d ≥ 3 and P = conv(Fv(C)). Then, Θ(d) = Θm ∪
ϕ2(Θ

m) ∪∆d
3 = ∆d

3 ∪ Φ(Θm) with |Θ(d)| = 2 · 3d−1 + 4d
gives a complete and irredundant description of P (note that

ϕ2 is the only entry of GL(F3) besides the identity).

Proof: See Appendix J.

Example 12: Consider a ternary SPC code C of length

d = 3, defined by the parity-check matrix H = (1, 2, 2).
In the ternary case, the constant-weight embedding (from

Definition 1) is as follows: 0 7→ (1, 0, 0), 1 7→ (0, 1, 0),
and 2 7→ (0, 0, 1). The image Fv(C) (which is a nonlinear

binary code) has length 3d = 9 and contains nine codewords

as follows:

{(100100100)T , (100010001)T , (100001010)T ,
(010100010)T , (010010100)T , (010001001)T ,

(001100001)T , (001010010)T , (001001100)T}.
By Theorem 3, the linear (in)equalities obtained from Sec-

tion V-G and ∆d
3 give a complete and irredundant description

of the convex hull P = conv(Fv(C)). These inequalities

(except for the ones from ∆d
3) are shown at the top of the

page.

C. The Case p = 5

For p = 5, there are two vectors m = (0, 0, 0, 0, 0) and

m′ = (0, 1, 0, 0, 0) that give valid, irredundant facet-defining
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TABLE VII
STRUCTURAL PROPERTIES FOR p = 5 OF THE BASIC BUILDING BLOCK CLASSES T m=(0,0,0,0,0) AND T m

′=(0,1,0,0,0) WITH σm = 4 AND σm
′
= 1.

k 0 1 2 3 4

tm
k

(0, 1, 2, 3, 4) (0, 1, 2, 3,−1) (0, 1, 2,−2,−1) (0, 1,−3,−2,−1) (0,−4,−3,−2,−1)

tm
k,↑

4 3 2 1 0

tm
k,↓

0 4 3 2 1

max
(

tm
k

)

4 3 2 1 0
min

(

tm
k

)

0 −1 −2 −3 −4

tm
′

k
(0, 6, 2, 3, 4) (0,−4,−3,−2,−6) (0, 1, 2,−2, 4) (0, 1,−3, 3,−1) (0,−4, 2,−2,−1)

tm
′

k,↑
1 0 4 3 2

tm
′

k,↓
0 4 3 2 1

max
(

tm
′

k

)

6 0 4 3 2

min
(

tm
′

k

)

0 −6 −2 −3 −4

basic building block classes (see Table IV). The five building

blocks and some properties of each class are tabulated in

Table VII.

Example 13: Using Lemma 8, we find that an inequality

θTx ≤ κ with θ = (tmk1
| . . . | tmkd

)T and κ ∈ R is in Θm if

and only if
[

4
∣

∣V θ
0

∣

∣+ 3
∣

∣V θ
1

∣

∣+ 2
∣

∣V θ
2

∣

∣+
∣

∣V θ
3

∣

∣

]

5
= [4]5

and κ = 4
∣

∣V θ
0

∣

∣+ 3
∣

∣V θ
1

∣

∣+ 2
∣

∣V θ
2

∣

∣+
∣

∣V θ
3

∣

∣− 4

while an inequality θ′Tx ≤ κ′ with θ′ = (tm
′

k1
| . . . | tm′

kd
)T

and κ′ ∈ R is in Θm′

if and only if
[∣

∣

∣V θ′

0

∣

∣

∣+ 4
∣

∣

∣V θ′

2

∣

∣

∣+ 3
∣

∣

∣V θ′

3

∣

∣

∣+ 2
∣

∣

∣V θ′

1

∣

∣

∣

]

5
= [1]p

and κ′ = 6
∣

∣

∣V θ′

0

∣

∣

∣+ 4
∣

∣

∣V θ′

2

∣

∣

∣+ 3
∣

∣

∣V θ′

3

∣

∣

∣+ 2
∣

∣

∣V θ′

4

∣

∣

∣− 6.

The following proposition is an adapted version of Propo-

sition 5 for the case p = 5.

Proposition 6: Every inequality θTx ≤ κ in Θm ∪ Θm′

defines a facet of P , d ≥ 3. Moreover,

1) there are
{

4 + 6(d− 1) + 4
(

d−1
2

)

+
(

d−1
3

)

for Θm,

4 + 6(d− 1) + 3
(

d−1
2

)

for Θm′

elements ζ ∈ Fd
5 \ C whose embeddings are cut by the

inequality, i.e., θTFv(ζ) > κ.

2) The inequality is tight for the embeddings of exactly
{

1 + 4(d− 1) + 6
(

d−1
2

)

+ 4
(

d−1
3

)

+
(

d−1
4

)

for Θm,

1 + 4(d− 1) + 4
(

d−1
2

)

+
(

d−1
3

)

for Θm′

codewords of C.

Proof: Both classes T m and T m′

are almost doubly-

symmetric (see Proposition 2) and then it follows from Propo-

sition 3 that any inequality from Θm or Θm′

defines a facet

of P for d ≥ 3. The remaining counting formulas are special

cases of the general counting formulas of Lemma 11 (details

omitted for brevity).

Now, for each of the three nontrivial automorphisms

ϕ2, ϕ3, ϕ4 ∈ GL(F5) we obtain additional inequalities (as

described in Section V-E) if we apply the corresponding

permutation to each building block tk in an inequality.

Example 14: By applying the automorphism ϕ4 to the

building blocks from of T m′

(see Table VII), we get the

building blocks

ϕ4(t
m′

0 ) = (0, 4, 3, 2, 6),

ϕ4(t
m′

1 ) = (0,−6,−2,−3,−4),
ϕ4(t

m′

2 ) = (0, 4,−2, 2, 1),
ϕ4(t

m′

3 ) = (0,−1, 3,−3, 1),
ϕ4(t

m′

4 ) = (0,−1,−2, 2,−4).

Conjecture 2: Let C be the quinary “all-ones” SPC code of

length d ≥ 3 and P = conv(Fv(C)). Then,

Θ(d) = Φ(Θm) ∪ Φ(Θm′

) ∪∆d
5

with |Θ(d)| = 8 · 5d−1 +6d gives a complete and irredundant

description of P .

We have verified numerically that the conjecture is true for

d = 3, 4, and 5.

D. The Case p = 7

For p = 7, there are four vectors m = (0, 0, 0, 0, 0, 0, 0),
m = (0, 1, 0, 1, 0, 0, 0), m = (0, 1, 0, 0, 0, 0, 0), and m =
(0, 1, 1, 0, 0, 1, 0) that give valid, irredundant facet-defining

basic building block classes (see Table IV). The elements

of the resulting basic building block classes, denoted by T1
through T4, are summarized in the first four rows of Table VIII.

The corresponding sets of inequalities are denoted by Θ1

through Θ4.

Furthermore, there is a set Θ5 of “hybrid” facet-defining in-

equalities built from two basic building block classes, namely

the (valid) class T (0010000) and the (invalid) basic class

T (0110000), both of which are not symmetric; we will describe

below how to construct inequalities in Θ5 using a modification

of Construction 1.

Finally, there is a sixth structurally distinct set Θ6 of facet-

defining inequalities that are built from three different classes

of building blocks, which however are not conforming to

Definition 8 but instead are of a completely different form.

Still, the construction of Θ6, which is outlined below, shares

several aspects with the one developed in Section V.



17

TABLE VIII
COLLECTION OF CLASSES (UP TO ROTATIONAL SYMMETRY) OF BUILDING BLOCKS FOR THE CASE p = 7. T1 TO T4 ARE BASIC CLASSES IN THE SENSE

OF DEFINITION 8. T b
5 AND T nb

5 ARE USED TO CONSTRUCT Θ5 , WHILE T b
6 , T lo

6 , AND T hi
6 ARE THE BUILDING BLOCKS OF INEQUALITIES IN Θ6 .

T1 (0, 1, 2, 3, 4, 5, 6) (0, 1, 2, 3, 4, 5,−1) (0, 1, 2, 3, 4,−2,−1) (0, 1, 2, 3,−3,−2,−1)
(0, 1, 2,−4,−3,−2,−1) (0, 1,−5,−4,−3,−2,−1) (0,−6,−5,−4,−3,−2,−1)

T2 (0, 8, 2, 10, 4, 5, 6) (0,−6, 2,−4,−3,−2,−8) (0, 8, 2, 3, 4,−2, 6) (0,−6,−5,−4,−10,−2,−8)
(0, 1, 2,−4, 4,−2, 6) (0, 1,−5, 3,−3, 5,−1) (0,−6, 2,−4, 4,−2,−1)

T3 (0, 8, 2, 3, 4, 5, 6) (0,−6,−5,−4,−3,−2,−8) (0, 1, 2, 3, 4,−2, 6) (0, 1, 2, 3,−3, 5,−1)
(0, 1, 2,−4, 4,−2,−1) (0, 1,−5, 3,−3,−2,−1) (0,−6, 2,−4,−3,−2,−1)

T4 (0, 8, 9, 3, 4, 12, 6) (0, 1,−5,−4, 4,−2,−8) (0,−6,−5, 3,−3,−9,−1) (0, 1, 9, 3,−3, 5, 6)
(0, 8, 2,−4, 4, 5,−1) (0,−6,−12,−4,−3,−9,−8) (0,−6, 2, 3,−3,−2, 6)

T b
5 (0,1,9,3,4, 5,6) (0,8,2,3,4,5,−1) (0,−6,−5,−4,−3,−9,−8) (0,1,2,3,−3,−2, 6)

(0,1,2,−4,−3,5,−1) (0,1,−5,−4,4,−2,−1) (0,−6,−5, 3,−3,−2,−1)
T nb
5 (0, 8, 9, 3, 4, 5, 6) (0, 1,−5,−4,−3,−2,−8) (0,−6,−5,−4,−3,−9,−1) (0, 1, 2, 3,−3, 5, 6)

(0, 1, 2,−4, 4, 5,−1) (0, 1,−5, 3, 4,−2,−1) (0,−6, 2, 3,−3,−2,−1)

T b
6 (0,−1,−1,−1,−1,−1,−1) (0,0,0,0,0,0,1) (0,0,0,0,0,1,0) (0,0,0,0,1,0,0)

(0,0,0,1,0, 0,0) (0,0,1,0,0,0,0) (0,1,0,0,0,0,0)
T hi
6 (0, 0, 0,−1, 0,−1,−1) (0, 0,−1, 0,−1,−1, 0) (0,−1, 0,−1,−1, 0, 0) (0, 1, 0, 0, 1, 1, 1)

(0,−1,−1, 0, 0, 0,−1) (0, 0, 1, 1, 1, 0, 1) (0, 1, 1, 1, 0, 1, 0)
T lo
6 (0 , 1 , 1 , 0 , 1 , 0 , 0 ) (0 , 0 ,−1 , 0 ,−1 ,−1 ,−1 ) (0 ,−1 , 0 ,−1 ,−1 ,−1 , 0 ) (0 , 1 , 0 , 0 , 0 , 1 , 1 )

(0 ,−1 ,−1 ,−1 , 0 , 0 ,−1 ) (0 , 0 , 0 , 1 , 1 , 0 , 1 ) (0 , 0 , 1 , 1 , 0 , 1 , 0 )

The following proposition is an adapted version of Propo-

sition 5 for the case p = 7.

Proposition 7: Every inequality θTx ≤ κ in Θ1 ∪ · · · ∪Θ4

defines a facet of P , d ≥ 3. Moreover,

1) there are
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7 \ C whose embeddings are cut by the

inequality, i.e., θTFv(ζ) > κ.

2) The inequality is tight for the embeddings of exactly
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codewords of C.

Proof: By Proposition 2, T1 through T3 are almost

doubly-symmetric and hence facet-defining by Proposition 3.

The class T4 is not almost doubly-symmetric (see Example 8),

but it is symmetric, and it can be easily verified that the
1
2 (p − 3) = 2 length-3 vectors (1, 4, 2)T and (3, 3, 1)T ∈ F3

7

satisfy the conditions in Remark 14 in Appendix F, which

proves that T4 is facet-defining.

The remaining counting formulas are special cases of the

general counting formulas of Lemma 11 (details omitted for

brevity).

We now construct the inequalities in Θ5. To that end, let

T b
5 = T (0010000) and T nb

5 = T (0110000) which correspond to

the bold (resp. nonbold) entries in Table VIII.

Construction 2 (Construction of Θ5): Choose an index inb ∈
JdK. For i ∈ JdK \ {inb}, choose ki ∈ F7 arbitrarily. This

choice results in a canonical codeword c ∈ C by defining,

for i 6= inb, ci = tbki,↑
, and the condition c ∈ C specifies the

remaining entry cinb . Now, set kinb = tnb↓,c
inb

.

The resulting inequality is θTx ≤ κ with θi = tbki
for

i 6= inb, θinb = tnbk
inb

, and κ = θTFv(c), and the set of all

inequalities obtained by this construction is denoted by Θ5.

Remark 9: The above construction differs from Construc-

tion 1 in two points. First, here one building block is cho-

sen from T nb
5 , while all others are from T b

5 . Secondly, in

Construction 2, inb is the index that is not free to choose

(instead of d in Construction 1), i.e., Remark 3 has been

incorporated. The latter is necessary because each choice

of inb leads to a different set of inequalities; consequently,

|Θ5| = d · 7d−1 = d · |Θr| for r ∈ {1, 2, 3, 4}.
Lemma 8 (and its proof) can straightforwardly be adapted

to Construction 2, which leads to:

Lemma 13: An inequality θTx ≤ κ with θinb = tnbk
inb

for

some inb ∈ JdK and θi = t
b
ki

for i 6= inb is in Θ5 if and only

if

d
∑

i=1

ki = [d− 1]7 · σb (29a)

and κ = (d− 1)tb0,σb −
∑

i6=inb

tb0,ki
− tnb0,k

inb
(29b)

where σb = 2 and tb0,σ = 9 by definition.

Proposition 8: All inequalities from Θ5 are valid and facet-

defining for P = conv(Fv(C)), where C is an “all-ones”

septenary SPC code of length d ≥ 3.

Proof: The result follows because the relevant results

from Sections V-C and V-D can be easily generalized to the

situation of Construction 2, i.e., that one building block within

θ is chosen from a different class. See Appendix K for an

outline.
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We remark that, because the class T nb
5 is invalid, the

presence of more than one building block from T nb
5 in an

invalid inequality does not result in a valid inequality. In other

words, it is crucial for Θ5 that exactly one entry of θ is picked

from T nb
5 .

For Θ6, there are three classes of building blocks named

T b
6 , T lo

6 , and T hi
6 , which are listed in Table VIII. To construct

inequalities, Construction 2 is further extended, as shown

shortly. Since the structure of the building blocks (which do

not satisfy Definition 8) results in the “argmax” expressions

in Definition 9 not being well-defined, we need the following

definitions to choose specific maximizers.

Definition 13: For k ∈ F7, let tbk,↑ = −k, thik,↑ = −k, and

tlo↓,k = −k. Further, define σb = σhi = 0.

Construction 3 (Construction of Θ6): Choose ihi, ilo ∈ JdK
with ilo 6= ihi. For notational purposes, we introduce the label

li =











lo if i = ilo,

hi if i = ihi,

b otherwise.

For i ∈ JdK \ {ilo}, choose ki ∈ F7 arbitrarily and define the

canonical codeword c ∈ C by ci = tliki,↑
= −ki; this specifies

cilo . Now, set kilo = tlo↓,c
ilo

= −cilo .

The resulting inequality is θTx ≤ κ with θi = tliki
for

i ∈ JdK, and κ = θTFv(c), and the set of all inequalities

obtained by this construction is denoted by Θ6.

Lemma 14: For fixed ihi, ilo ∈ JdK with ihi 6= ilo, the

inequality θTx ≤ κ with θi = tliki
is in Θ6 if and only if

d
∑

i=1

ki = 0 (30a)

and κ = −
d

∑

i=1

tli0,ki
. (30b)

Proof: We again argue similar to the proof of Lemma 8.

Let θTx ≤ κ be constructed from Construction 3 with

canonical codeword c. For (30a),

c ∈ C ⇔ 0 =
d

∑

i=1

ci =
∑

li 6=lo

tliki,↑
+−kilo = −

d
∑

i=1

ki

where the last step is due to Definition 13. Now, (30b) holds

because

κ =
d

∑

i=1

tliki,ci
=

∑

li 6=lo

max(tliki
) + min(tlok

ilo
) = −

d
∑

i=1

tli0,ki

where the last step can be verified by inspection of the building

blocks of T li
6 , li = b, hi, lo. Finally, it is easily seen (as in

the proof of Lemma 8) that the above arguments work in both

directions, which concludes the proof.

Example 15: Let d = 3 and choose ihi = 1 and ilo =
3. Then, choose k2 = 1 (corresponding to the building

block θ2 = tb1 = (0,0,0,0,0,0,1) ∈ T b
6 ) and k1 = 5

(corresponding to θ1 = thi5 = (0, 0, 1, 1, 1, 0, 1) ∈ T hi
6 ).

This results in c1 = [−5]7 = [2]7, c2 = [−1]7 = [6]7,

hence c3 = [6]7 and thus k3 = [−6]7 = [1]7, such that

θ3 = tlo1 = (0, 0,−1, 0,−1,−1,−1) ∈ T lo
6 .

Proposition 9: All inequalities from Θ6 are valid and facet-

defining for P = conv(Fv(C)), where C is an “all-ones”

septenary SPC code of length d ≥ 3.

Proof: See Appendix L.

Conjecture 3: Let C be the septenary “all-ones” SPC code

of length d ≥ 3 and P = conv(Fv(C)). Then,

Θ(d) =
(

∪ϕ∈GL(F7)ϕ
(

∪6i=1Θi

))

∪∆d
7

with |Θ(d)| =
(

4
(

d
2

)

+ 24 + 6d
)

·7d−1+8d gives a complete

and irredundant description of P .

We remark that when applying the 6 distinct elements

of GL(F7) to Θ6, only two distinct classes of inequalities

occur, i.e.,
∣

∣∪ϕ∈GL(F7)ϕ (Θ6)
∣

∣ = 2 · |Θ6|, which explains the

multiplication by 4 in the expression for |Θ(d)|.
We have verified numerically that the conjecture is true for

d = 3 and 4.

Remark 10: Note that for p > 7, several “hybrid” classes

of inequalities of the same form as Θ5 will exist. To identify

these classes, one can loop through all possible choices for a

bold building block class (there are 2p−1 possible choices,

not considering the all-zero m-vector). The corresponding

nonbold class can be identified be generalizing the results and

arguments of Appendix K for p = 7 to the general case. This

procedure can identify 21, 60, 405, and 967 additional (some

of which may be redundant) valid facet-defining classes for

p = 11, 13, 17, and 19, respectively. Note that the procedure

will also identifiy the valid facet-defining basic classes, which

are considered degenerated cases (the bold class and the

nonbold class are the same) here. The numbers above refer

to nondegenerated cases.

VII. ADAPTIVE LINEAR PROGRAMMING DECODING

While the (in)equalities in Θ(d) constructed in Section V

could in theory be subsumed in one large LP for (relaxed)

LP decoding as described in Section II-D, this approach is

pratically infeasible because |Θ(d)| is exponential in d.

In this section, we show how to overcome that issue by

means of an efficient separation algorithm, which allows for

efficient relaxed ALP decoding of general codes over Fp. It

thus generalizes the well-known Adaptive LP Decoder for

binary codes [3]. Throughout the section, let C denote a

general p-ary code defined by the parity-check matrix H , the

j-th row of which is denoted by hj .

The main loop of our ALP decoder (Algorithm 1) is similar

to [3, Alg. 2], except that the n(p + 1) simplex constraints

∆C
p are present from start. Denote by M the set of vectors

m corresponding to valid irredundant facet-defining classes

Θm. Note that valid m-vectors can be found by a simple

enumeration based on Corollary 6 and Definition 12 that

runs in negligible time for all p of reasonable size (see also

Remarks 5 and 6). In Table IV, we have listed valid m-

vector prefixes for p ≤ 19. Furthermore, Proposition 2 gives

a construction for valid m-vectors for any value of p.

The main issue that needs to be addressed is that of efficient

separation (line 5 of Algorithm 1) of the sets of inequalities
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Algorithm 1 ALP Decoder for p-Ary Codes

Input: p-ary code C of length n, channel output Λ(y)
Output: Solution x of (3)

1: Initialize a linear program with variables x ∈ Rnp,

constraints from ∆C
p , and objective function min Λ(y)Tx

2: while True do

3: xLP ← optimal LP solution

4: for all j ∈ J , m ∈ M, and r ∈ Fp \ {0} do

5: (θ, κ)← SEPARATE(m, r,hj, Pjx
LP)

6: if (θ, κ) 6= Null then

7: insert θTx ≤ κ into the LP model

8: if no cut was added in the above loop then

9: return xLP

ϕh,r(Θ
m), for some ϕr ∈GL(Fp), valid m∈M, and an

SPC code with parity-check vector h=(h1, . . . , hd), i.e., to

develop an efficient cut-search algorithm that finds, for given

x∈R
dp, an inequality in ϕh,r(Θ

m) that is violated by y or

concludes that no such inequality exists.

At first, we reduce separation to the case of h = (1, . . . , 1)
(i.e., Cj is an “all-ones” SPC code) and r = 1 (i.e., ϕr

is the identity). This reduction, which is implemented by

Algorithm 2, is based on the following corollary of Theorem 1.

Corollary 8: Let h, P , and P(h) be defined as in Corol-

lary 2 and y ∈ Rdq . Then, the inequality (roth ◦ rotr)(θ)Tx ≤
κ from ϕh,r(Θ

m) separates y from P(h) if and only if the

inequality θTx ≤ κ from Θm separates (rot−1
r ◦ rot−1

h )(y)
from P .

Proof: Starting from the second statement, it holds that

θTx ≤ κ separates (rot−1
r ◦ rot−1

h )(y) from P
⇔ θTx ≤ κ for x ∈ P and θT (rot−1

r ◦ rot−1
h )(y) > κ

⇔ rotr(θ)
Tx ≤ κ for x ∈ P and rotr(θ)

T rot−1
h (y) > κ

⇔ (roth ◦ rotr)(θ)Tx ≤ κ for x ∈ P(h)
and (roth ◦ rotr)(θ)Ty > κ

where we have used, on the left side, Corollaries 2 and 3

and Lemma 4 on the right. Now, the last line exactly states

that (roth ◦ rotr)(θ)Tx ≤ κ separates y from P(h), which

concludes the proof.

From now, hence, h = (1, . . . , 1) and r = 1 are assumed.

Algorithm 2 SEPARATE(m, r, h, x)

Input: m ∈M, r ∈ Fp \{0}, h = (h1, . . . , hd) with nonzero

entries, and current (projected) LP solution x

Output: Inequality in ϕh,r(Θ
m) violated by x, if such exists;

Null otherwise

1: x̃← (rot−1
r ◦ rot−1

h )(x)
2: θ ← SEPARATE(m, x̃)

3: if θ 6= Null then

4: Compute κ from (19b)

5: return ((roth ◦ rotr)(θ), κ)
6: else

7: return Null

We now describe the separation of inequalities in Θm, for

some m ∈M. Any such inequality θTx ≤ κ with θ = (tmk1
|

. . . | tmkd
)T can be rewritten (using (19b)) as

Ψ(θ,x) =
d

∑

i=1

vki(xi) ≥ tm0,σ (31)

where x = (x1, . . . ,xd)
T , xi = (xi,0, . . . , xi,p−1) for all

i ∈ JdK, and vk(xi) = tm0,σ− tm0,k−tmk xT
i . Thus, Θm contains

a cut for x (for some j ∈ J ) if and only if Ψ(θ,x) < tm0,σ for

some θ from Θm, i.e., if and only if the optimization problem

(in d variables k1, . . . , kd ∈ Fp)

ψ∗ = min Ψ(θ,x) (32a)

s.t. θ = (tmk1
| . . . | tmkd

)T (32b)

d
∑

i=1

ki = [d− 1]pσ (32c)

where the condition (32c) is due to (19a), has an optimal

solution that satisfies ψ∗ < tm0,σ.

We now describe how to solve (32) using a DP approach

with linear running time in d. For s ∈ JdK and ζ ∈ Fp, define

ψ(x, s, ζ) =

min

{

s
∑

i=1

vki(xi) : ki ∈ Fp for i ∈ JsK and

s
∑

i=1

ki = ζ

}

.

It holds that ψ∗ = ψ(x, d, [d−1]pσ) and the obvious recursion

ψ(x, s, ζ) = min
β∈Fp

{

vβ(xs) + ψ(x, s− 1, ζ − β)
}

(33)

for s ≥ 2 and ζ ∈ Fp allows us to compute a d× Fp table T

with entries T[s, ζ] = ψ(x, s, ζ): initialize the first row of T

with T[1, ζ] = ψ(x, 1, ζ) = vζ(x1) for ζ ∈ Fp. Then, use (33)

to proceed from top to bottom until reaching row d, where only

the entry T[d, [d− 1]pσ] is needed. Because the expression in

(33) can be calculated in time O(p), the overall time needed

to obtain ψ∗ is O(dp2), which is linear for fixed p. Observe

that the actual solution θ∗ of (32) can be obtained within

the same asymptotic running time by storing the minimizing

β’s from (33) in a second d × Fp table S. The complete

algorithm is outlined in Algorithm 3 (note that, in an actual

implementation, one has to use the integer representations of

field elements everywhere, and insert “mod p” statements in

the appropriate places).

For the binary case, the well-known separation algorithm

[17, Alg. 1] is more efficient than the above general approach:

there, problem (32) is first solved without the constraint (32c)

by setting k∗i = 0 ⇔ xi,1 > 1/2. If this solution does not

happen to fulfill (32c), the constraint is restored by altering a

single k∗i with minimal corresponding |xi,1 − 1/2| (see [17,

Alg. 1] for details).

For p = 3 a more efficient algorithm can be derived as we

will show below in Section VII-A. However, as the number of

possible combinations for restoring (32c) grows rapidly with

increasing p, the DP approach is preferable in the general case.

Remark 11: Algorithm 3 can be tweaked in several ways:

• In the d-th row of T, only the single value T[d, [d−1]pσ]
has to be computed.
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Algorithm 3 SEPARATE(m,x)

Input: m ∈M and x = (x1, . . . ,xd)
T ∈ Rdp

Output: Solution θ∗ of (32), if ψ∗ < tm0,σ; Null otherwise

1: Let T, v, and S be d×Fp arrays, and let k be a length-d
array

2: for ζ ∈ Fp do

3: for i ∈ JdK do

4: v[i, ζ]← tm0,σ − tm0,ζ − tmζ xT
i ⊲ initialize v

5: T[1, ζ]← v[1, ζ] ⊲ initialize T[1, :]
6: S[1, ζ]← ζ ⊲ initialize S[1, :]

7: for i = 2, . . . , d do

8: for ζ ∈ Fp do

9: S[i, ζ]← −1
10: T[i, ζ]←∞
11: for β ∈ Fp do ⊲ find min. from (33)

12: val← v[i, β] + T[i − 1, ζ − β]
13: if val < T[i, ζ] then

14: T[i, ζ]← val

15: S[i, ζ]← β

16: if T[d, [d− 1]pσ] < tm0,σ then

17: k[d]← S[d, [d− 1]pσ]
18: next← [d− 1]pσ − k[d]
19: for i = d− 1, . . . , 1 do

20: k[i]← S[i,next]
21: next← next− k[i]
22: return (tk[1] | . . . | tk[d])T
23: return Null

• If d and/or p are large, one could first minimize Ψ(θ,x)
without the constraint (32c) (which is possible in time

O(dp)). If the result satisfies (32c) (optimum found) or

fulfills ψ∗ ≥ tm0,σ (no cut can be included), we are done.

• Because vk(xi) ≥ 0 for all k ∈ Fp and i ∈ JdK,

ψ∗ ≥ minζ∈Fp
ψ(x, i, ζ) holds for any i ∈ JdK. Hence,

the search can be stopped as soon as all entries in a single

row of T are larger than or equal to tm0,σ .

A. Efficient Implementation for p = 3

In this subsection, we explicitly develop an optimized

version of Algorithm 3 for the case of p = 3. Note that there

is only one relevant class T m=(0,0,0) (cf. Section VI-B), such

that the “m”-parameter is omitted in the sequel.

The optimization problem in (32) simplifies to the following

form for p = 3:

ψ∗ = min Ψ(θ,x) (34a)

s. t. θ = (tk1 | . . . | tkd
)T (34b)

d
∑

i=1

ki = [2(d− 1)]3. (34c)

To solve (34), we first ignore (34c), i.e., find θ̂ that

unconditionally minimizes Ψ(θ,x) by computing, for i ∈ JdK,

k̂i = argmin
k∈F3

vk(xi),

breaking ties arbitrarily.

If Ψ(θ̂,x) ≥ 2, then Θ does not contain a cut. If otherwise

θ̂ happens to fulfill (34c), it is the optimal solution of (34)

and hence leads to a cut; in both cases we are done.

In the remaining case, η =
∑

ki − [2(d − 1)]3 6= [0]3.

Let I ⊆ JdK be the set of positions in which the unconstrained

optimal solution (k̂1, . . . , k̂d) differs from the optimal solution

(k∗1 , . . . , k
∗
d) of (34), which we now need to find. By definition

of the k̂i, we can assume that no subset of I ′ ⊆ I satisfies
∑

i∈I′ k̂i − k∗i = [0]3; otherwise, one could replace k∗i by

k̂i for i ∈ I ′ while maintaining (34c) without increasing the

objective value (34a). In particular, this shows that |I| ≤ 2.

Let

ψ1
i = vk̂i+[1]3(xi)− vk̂i(xi)

and ψ2
i = vk̂i+[2]3(xi)− vk̂i(xi)

denote the increase of (34a) incurred by replacing k̂i with

k̂i+[1]3 and k̂i+[2]3, respectively. Furthermore, define i1 6= j1

and i2 6= j2 ∈ JdK such that

ψ1
i1 ≤ ψ1

j1 ≤ ψ1
l for all l /∈ {i1, j1} (35a)

and ψ2
i2 ≤ ψ2

j2 ≤ ψ2
l for all l /∈ {i2, j2} (35b)

i.e., ψζ
iζ

and ψζ
jζ

correspond to the two optimal positions in

which to add ζ to k̂i.
Lemma 15: Let θ1 = (tk1

1
| . . . | tk1

d
)T and θ2 = (tk2

1
|

. . . | tk2
d
)T be defined by

k1i =

{

k̂i − η if i = i−η,

k̂i otherwise

and k2i =

{

k̂i + η if i ∈ {iη, jη},
k̂i otherwise.

If ψ−η
i−η < ψη

iη + ψη
jη , then θ1 is the optimal solution of (34),

otherwise θ2.

Proof: By the above discussion, θ1 minimizes Ψ(θ,x)
among all possibilities that differ in only one entry from

(k̂1, . . . , k̂d), while θ2 is optimal for two different positions.

As |I| ≤ 2, one of both is the optimal solution of (34), which

concludes the proof.

This completes the description of SEPARATE(x) for ternary

codes; the pseudocode is shown in Algorithm 4.

B. Implementation for p = 7

As shown in Section VI-D (the case p = 7), there are two

nonbasic classes Θ5 and Θ6 of inequalities. The similarity of

Lemmas 13 and 14 with Lemma 8 allows to use the same

separation algorithm as above for these classes.

An inequality in Θ5 admits the form (31) (with tm0,σ replaced

by tb0,σb = 9) when one defines vk(xi) = 9 − tb0,k − tbkxT
i

for i 6= inb and vk(xinb) = 9− tnb0,k − tnbk xT
inb , and hence the

same optimization problem (32) (with (32c) replaced by (29a))

can be used for separation and solved with the DP approach

described by Algorithm 3.

Analogously, (31) holds for Θ6 (with the right-hand side

tm0,σ replaced by 0) when we define vk(xi) = −tli0,k − tlik xT
i

(with li ∈ {b, hi, lo} as defined in Section VI-D).
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Algorithm 4 SEPARATE(x) for p = 3

Input: Current LP solution x ∈ R3d

Output: Solution θ∗ of (34), if ψ∗ < t0,σ = 2; Null

otherwise

1: Initialize arrays k, a, b, ψ1, ψ2 of length d each

2: Ψ← 0, η ← [−2(d− 1)]3
3: for i ∈ JdK do

4: Compute v0(xi), v
1(xi), and v2(xi)

5: if v0(xi) ≤ v1(xi) and v0(xi) ≤ v2(xi) then

6: ki ← 0
7: else if v1(xi) ≤ v0(xi) and v1(xi) ≤ v2(xi) then

8: ki ← 1
9: else

10: ki ← 2

11: η ← η + ki
12: Ψ← Ψ+ vki(xi)

13: if Ψ < 2 and η = [0]3 then

14: return (tk1 | . . . | tkd
)T

15: else if Ψ < 2 then

16: compute ψ1
i and ψ2

i for i ∈ JdK, and

17: compute i−η, iη, jη defined in (35)

18: if ψ−η
i−η < ψη

iη + ψη
jη then

19: ki−η ← ki−η − η
20: Ψ← Ψ+ ψ−η

i−η

21: else

22: kiη ← kiη + η
23: kjη ← kjη + η
24: Ψ← Ψ+ ψη

iη + ψη
jη

25: if Ψ < 2 then

26: return (tk1 | . . . | tkd
)T

27: return Null

In both cases, the “special” indices inb (for Θ5) and ihi /

ilo (for Θ6) are assumed to be fixed in advance, which can be

implemented by one (Θ5) or two (Θ6) extra for-loops around

the actual separation algorithm.

VIII. REDUNDANT PARITY-CHECK CUTS

In this section, we outline an efficient algorithm to improve

the error-correcting performance of the ALP decoder from

Section VII by considering RPC constraints of the code.

Assume that ALP decoding of a p-ary linear code C
of length n (using Algorithm 1) has returned a fractional

pseudocodeword p = (p1, . . . ,pn)
T , i.e., the ALP decoding

algorithm (in Algorithm 1) has returned p = xLP with some

fractional entries. Due to the generalized box constraints (from

the individual constituent codes), pi,0 + · · ·+ pi,p−1 = 1, for

all i ∈ JnK. Now, let

Fp = {i ∈ JnK : pi,0, . . . , pi,p−2, or pi,p−1 is fractional}

denote the set of fractional positions in p. We can prove the

following theorem which generalizes [17, Thm. 3] and [30,

Thm. 3.3] to the p-ary case.

Theorem 4: Let h = (h1, . . . , hn) denote a valid (redundant)

parity-check constraint for a p-ary linear code C of length n, let

I = {i ∈ JnK : hi 6= 0} and assume that I∩Fp = 1 for a given

pseudocodeword p. Then, the inequalities constructed in Sec-

tion V contain a cut that separates p from P = conv(Fv(C)).
Proof: As the entries hj and pj for j /∈ I are not relevant,

we can assume that I = JnK. Furthermore, by Corollary 8

and because rotating p does not change Fp, we can assume

without loss of generality that h = (1, . . . , 1). Now, note that

when pi is not fractional, then pi ∈ {e1, . . . , ep} (due to

the generalized box constraints), where, for i ∈ JpK, ei =
(0, . . . , 0, 1, 0, . . . , 0) is the i-th unit vector in Rp.

We show that T m=(0,...,0), which is a valid class for

any prime p (see Proposition 2), leads to a cut for p. The

corresponding building blocks are

tm0 = (0, 1, . . . , p− 3, p− 2, p− 1),

tm1 = (0, 1, . . . , p− 3, p− 2,−1),
tm2 = (0, 1, . . . , p− 3,−2,−1),
...

...

tmp−2 = (0, 1,−p+ 2, . . . ,−2,−1),
tmp−1 = (0,−p+ 1,−p+ 2, . . . ,−2,−1).

(36)

In the optimization problem in (32), vk(pi) = tm0,σ − tm0,k −
tmk p

T
i = p− 1− [k]

Z
− tmk pTi , k ∈ Fp and tmk is one of the

p possible building blocks of (36). When pi is not fractional,

v0(pi) ∈ {p− 1, p− 2, p− 3, . . . , 2, 1, 0},
v1(pi) ∈ {p− 2, p− 3, p− 4, . . . , 1, 0, p− 1},
v2(pi) ∈ {p− 3, p− 4, p− 5, . . . , 0, p− 1, p− 2},

...
...

vp−2(pi) ∈ {1, 0, p− 1, . . . , 4, 3, 2},
vp−1(pi) ∈ {0, p− 1, p− 2, . . . , 3, 2, 1}

where the ordering of elements is according to e1, . . . , ep.

Furthermore, it can easily be verified that when pi is fractional,

i.e., pi = (pi,0, . . . , pi,p−1) where 0 ≤ pi,j ≤ 1, j =
0, . . . , p − 1,

∑p−1
j=0 pi,j = 1, and pi,0, . . . , pi,p−1 are not all

integers, then vk(pi) < p− 1, for k ∈ Fp, i.e., strictly smaller

than p−1. Now, we build a valid inequality from Θm=(0,...,0)

in the following way, assuming that n is the fractional position.

If pi = ej , j ∈ JpK, choose ki = − [j]p, where i ∈ Jn − 1K.

Otherwise, i.e., pi = 0, choose ki arbitrarily. This will give an

overall contribution of zero to the objective function Ψ(θ,x)
in the optimization problem in (32). Finally, we need to choose

kn such that the constraint in (32c) is fulfilled. However, since

pn is fractional (by assumption), the contribution to Ψ(θ,x)
is strictly less than p − 1 (independent of the choice for kn)

and it follows that in the optimization problem in (32) the

optimal objective value is indeed strictly less than p − 1,

while tm0,σ = p − 1, and thus Θm=(0,...,0) indeed contains

a cut (the one that we constructed) for the pseudocodeword

p. More formally, all vk(pi) are linear maps of the simplex

onto the interval [0, p − 1], and we know that the images of

the extreme points e1, . . . , ep of the simplex under that map

are {0, . . . , p− 1}. By linearity, the image of a fractional pi,

which is a nontrivial convex combination (at least two nonzero

coefficients) of those extreme points, equals the corresponding
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convex combination (with at least two nonzero coefficients) of

the images {0, . . . , p− 1}, and is thus strictly less than p− 1.

As in the binary case, cut-inducing RPC equations can

be found, for instance, by reducing the parity-check matrix

H using Gaussian elimination to reduced row echelon form,

where columns are processed in the order of “fractionality”

(or closeness to ( 1p , . . . ,
1
p )) of the corresponding coordinate

of p. For instance, since pi, i ∈ JnK, is a probability vector,

the entropy can be computed and compared to the entropy

of the uniform distribution ( 1p , . . . ,
1
p ). Although Theorem 4

guarantees a cut only for rows h̃ of π−1(H̃), where H̃ denotes

the reduced row echelon form of π(H) and π is a permutation

(of length n) which reorders the columns of H in order of

closeness (or entropy) to ( 1p , . . . ,
1
p ), such that h̃Fp

(containing

the coordinates of h̃ indexed by Fp) has weight one, rows

of larger weight may also provide a cut. Thus, in a practical

decoding situation all rows h̃ of π−1(H̃) should be processed,

using the separation algorithm described in Section VIII, in

order to locate redundant cut-inducing parity-check equations.

In [17], this is called adaptive cut generation or ACG and can

be combined with ALP decoding as outlined in [17, Alg. 2].

In Section X, we provide simulation results for the decoding

algorithm obtained by appropriately generalizing, as outlined

above, the ACG-ALP procedure described in [17, Alg. 2]

(without considering removal of constraints) to nonbinary

linear codes, showing that near-ML decoding performance can

be obtained for a ternary Reed-Muller (RM) code.

IX. THE CASE q = pm

In this section, we consider the problem of efficient LP

decoding of linear codes over the field Fq = Fpm , where m >
1 is a positive integer and p is any prime.

For any nonzero h ∈ Fpm , ∅ 6= K ⊆ JmK, and γ ∈ (Fp \
{0})|K|, let

B(β)(K,γ, h) =
{

ζ ∈ Fpm :
∑

k∈K

γk · p(hζ)k = β

}

for β ∈ Fp, where (·)k denotes the k-th entry of its vector

argument (note that summation and multiplication (except for

the hζ term) above are in Fp). Now, let C denote a nonbinary

SPC code over Fpm of length d defined by a parity-check

vector h = (h1, . . . , hd). Furthermore, for any vector

f = (f1, . . . ,fd)
T ∈ R

dq

define

g
(K,γ,f)
j =

∑

β∈Fp\{0}

∑

i∈B(β)(K,γ,hj)

[β]Z · fj,i

where ∅ 6= K ⊆ JmK, γ ∈ (Fp \ {0})|K|, and j ∈ JdK, and

where the summation is in the real space.

We have the following proposition, which generalizes [11,

Lem. 12] to any field (only p = 2 was considered in [11])

under the constant-weight embedding.2

2Note that a weaker version of the proposition appeared in [31] (proof
omitted) in which γ was constrained to (1, . . . , 1) which results in a
potentially weaker relaxation. Also, Flanagan’s embedding from Remark 2
was considered in [31].

Proposition 10: Let C be the SPC code over the field Fpm

defined by the parity-check vector h = (h1, . . . , hd). Then,

Fv(C) is equal to the set of vectors f ∈ Rdq that satisfy the

following three conditions (and will be denoted by E in the

sequel):

1) fj,i ∈ {0, 1} for j ∈ JdK and i ∈ Fq,

2)
∑

i∈Fq
fj,i = 1 for j ∈ JdK, and

3) for any ∅ 6= K ⊆ JmK and γ ∈ (Fp \ {0})|K| holds
∑d

j=1

[

g
(K,γ,f)
j

]

p
= [0]p.

Proof: See Appendix M.

Now, we can write g
(K,γ,f)
j as

g
(K,γ,f)
j = 1 ·

∑

i∈B(1)(K,γ,hj)

fj,i + · · ·+

(p− 1) ·
∑

i∈B(p−1)(K,γ,hj)

fj,i

=

pm−1

∑

s=1

∑

β∈Fp\{0}

[β]
Z
· fj,is,β

where is,β is the s-th element (under some arbitrary or-

dering) of B(β)(K,γ, hj). The last equality follows since

|B(0)(K,γ, hj)| = · · · = |B(p−1)(K,γ, hj)| = pm−1 (details

omitted for brevity). It follows (from the third condition of

Proposition 10) that

d
∑

j=1

[

g
(K,γ,f)
j

]

p
=

d
∑

j=1

pm−1

∑

s=1

∑

β∈Fp\{0}

β ·
[

fj,is,β
]

p
= [0]p .

(37)

The constraint in (37) can be written as the p-ary parity-check

constraint
d

∑

j=1

pm−1

∑

s=1

f̃j,s =

d
∑

j=1

f̃j = [0]p (38)

where f̃j,s =
∑

β∈Fp\{0}
β ·

[

fj,is,β
]

p
∈ Fp and f̃j =

∑pm−1

s=1 f̃j,s ∈ Fp.

Thus, in summary, a length-d parity-check constraint over

the finite field Fpm can be written as a set of pm − 1 length-

d p-ary parity-check constraints (pm − 1 is the number of

combinations of possible nonempty subsets of JmK and vectors

γ). As pointed out in [11] (for the case p = 2) some of

these constrains are redundant, and it is sufficient to consider

K ∈ {{1}, . . . , {m}} and γ = (1, . . . , 1). Now, each of

these parity-check equations (including the redundant ones)

can be considered separately in Algorithm 1, which results

in an efficient relaxed ALP decoding algorithm for nonbinary

codes over Fpm . The following lemma is a key ingredient of

the proposed relaxation.

Proposition 11: Let θTx ≤ κ be a valid facet-defining

inequality for conv(Fv(C)) where C is a nonbinary SPC

code over Fp of length d > 0, where p is any prime,

θ = (tk1 | . . . | tkd
)T , ki ∈ Fp, and tk = (tk,0, . . . , tk,p−1)

for all k ∈ Fp. Then, the inequality
(

θ̃(K,γ)
)T

x ≤ κ where

θ̃(K,γ) =
(

t̃
(K,γ)
k1

| . . . | t̃(K,γ)
kd

)T

and t̃
(K,γ)
k,η = tk,β for all

η ∈ B(β)(K,γ,h) and β ∈ Fp (each entry of tk is repeated
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P(K,γ) = conv











(f1,0, . . . , f1,q−1, . . . , fd,0, . . . , fd,q−1)
T ∈ {0, 1}dq :

d
∑

j=1

f̃j = [0]p and

q−1
∑

i=0

fj,i = 1, j ∈ JdK









 (39)

pm−1 times in t̃
(K,γ)
k ) is valid for the convex hull P(K,γ),

described in (39) at the top of the page, for all ∅ 6= K ∈ JmK

and γ ∈ (Fp \ {0})|K|
.

Proof: Because of the first two conditions of Proposi-

tion 10 and since B(β1)(K,γ, hj) ∩ B(β2)(K,γ, hj) = ∅, for

any β1 6= β2, β1, β2 ∈ Fp \ {0}, (fj,is,1 , . . . , fj,is,p−1) can

only take values in the set

{(0, 0, 0, . . . , 0, 0),
(1, 0, 0, . . . , 0, 0), (0, 1, 0, . . . , 0, 0), . . . , (0, 0, 0, . . . , 0, 1)}.

Hence, f̃j,s is either equal to [0]p or to a single fj,is,β times

β (for some β ∈ Fp \ {0}). Furthermore, since at most one

f̃j,s, s ∈ Jpm−1K, is nonzero, f̃j is either equal to [0]p or to a

single fj,is,β times β (for some β ∈ Fp\{0} and s ∈ Jpm−1K).

From this observation and the fact that t̃
(K,γ)
k,η = tk,β for all η ∈

B(β)(K,γ,h) and β ∈ Fp, it can readily be seen that for any

binary vector f = (f1,0, . . . , f1,q−1, . . . , fd,0, . . . , fd,q−1)
T ∈

P(K,γ),
(

θ̃(K,γ)
)T

f = tk1,f̃1
+ · · ·+tkd,f̃d

. Since
∑d

j=1 f̃j =

[0]p, tk1,f̃1
+ · · ·+tkd,f̃d

≤ κ, and it follows that the inequality
(

θ̃(K,γ)
)T

x ≤ κ is valid for any binary vector from P(K,γ)

and hence valid for P(K,γ).

Remark 12: According to Proposition 11, for a given

valid facet-defining inequality θTx ≤ κ, we can derive a

valid inequality for P(K,γ) using the interleaving scheme

of Proposition 11. Note that varying ∅ 6= K ∈ JmK and

γ ∈ (Fp \ {0})|K|
corresponds to permuting the building block

entries of the building blocks for a given ∅ 6= K ∈ JmK and

γ ∈ (Fp \ {0})|K|
. This corresponds exactly to applying all

permutations from GL(Fpm) to the entries of the building

blocks.

From Propositions 10 and 11, and (37) and (38), it follows

that

conv(Fv(C)) ⊆
⋂

∅6=K∈JmK,γ∈Fp\{0}

P(K,γ) (40)

where C is a nonbinary SPC code of length d > 0 over

Fpm where p is any prime and m is a positive integer. The

relaxation from (40) can be used for (relaxed) ALP decoding

of general nonbinary codes over Fpm .

Example 16: Consider a nonbinary SPC code of length d =
3 over F32 = {0, 1, 2, α, 1 + α, 2 + α, 2α, 1 + 2α, 2 + 2α},
where α is a primitive element in F32 , defined by the parity-

check vector h = (1, 1, 1). In this case, the constant-weight

embedding (from Definition 1) is as follows:

f(0) = (1, 0, 0, 0, 0, 0, 0, 0, 0),

f(1) = (0, 1, 0, 0, 0, 0, 0, 0, 0),

f(2) = (0, 0, 1, 0, 0, 0, 0, 0, 0),

f(α) = (0, 0, 0, 1, 0, 0, 0, 0, 0),

f(1 + α) = (0, 0, 0, 0, 1, 0, 0, 0, 0),

f(2 + α) = (0, 0, 0, 0, 0, 1, 0, 0, 0),

f(2α) = (0, 0, 0, 0, 0, 0, 1, 0, 0),

f(1 + 2α) = (0, 0, 0, 0, 0, 0, 0, 1, 0),

f(2 + 2α) = (0, 0, 0, 0, 0, 0, 0, 0, 1).

Furthermore, we have

B(1)({1}, 1, 1) = {1, 1 + α, 1 + 2α},
B(2)({1}, 1, 1) = {2, 2 + α, 2 + 2α},
B(1)({1}, 2, 1) = {2, 2 + α, 2 + 2α} = B(2)({1}, 1, 1),
B(2)({1}, 2, 1) = {1, 1 + α, 1 + 2α} = B(1)({1}, 1, 1),
B(1)({2}, 1, 1) = {α, 1 + α, 2 + α},
B(2)({2}, 1, 1) = {2α, 1 + 2α, 2 + 2α},
B(1)({2}, 2, 1) = {2α, 1 + 2α, 2 + 2α} = B(2)({2}, 1, 1),
B(2)({2}, 2, 1) = {α, 1 + α, 2 + α} = B(1)({2}, 1, 1),
B(1)({1, 2}, (1, 1), 1) = {1, α, 2 + 2α},
B(2)({1, 2}, (1, 1), 1) = {2, 1 + α, 2α},
B(1)({1, 2}, (1, 2), 1) = {1, 2 + α, 2α},
B(2)({1, 2}, (1, 2), 1) = {2, α, 1 + 2α},
B(1)({1, 2}, (2, 1), 1) = {2, α, 1 + 2α}

= B(2)({1, 2}, (1, 2), 1),
B(2)({1, 2}, (2, 1), 1) = {1, 2 + α, 2α}

= B(1)({1, 2}, (1, 2), 1),
B(1)({1, 2}, (2, 2), 1) = {2, 1 + α, 2α}

= B(2)({1, 2}, (1, 1), 1),
B(2)({1, 2}, (2, 2), 1) = {1, α, 2 + 2α}

= B(1)({1, 2}, (1, 1), 1).

As an example, we can write out the constraint
∑3

j=1

[

g
(K,γ,f)
j

]

3
= [0]3 for K = {1, 2} = J2K and

γ = (2, 1) as follows:

3
∑

j=1

[fj,2 + fj,α + fj,1+2α]3 + 2 [fj,1 + fj,2+α + fj,2α]3

=

3
∑

j=1

(

f̃j,1 + f̃j,2 + f̃j,3

)

= f̃1 + f̃2 + f̃3 = [0]3



24

where

f̃j,1 = [fj,2 + 2fj,1]3 ,

f̃j,2 = [fj,α + 2fj,2+α]3 ,

f̃j,3 = [fj,1+2α + 2fj,2α]3

and where f̃j = f̃j,1 + f̃j,2 + f̃j,3 ∈ F3.

Example 17: For p = 3, there is a single vector m =
(0, 0, 0) that gives a valid, irredundant basic building block

class (see Section VI-B). In particular, tm0 = (0, 1, 2),
tm1 = (0, 1,−1), and tm2 = (0,−2,−1). From the con-

struction of Proposition 11 (and Example 16), t̃
({1,2},(2,1))
k =

(tk,0, tk,2, tk,1, tk,1, tk,0, tk,2, tk,2, tk,1, tk,0) for all k ∈ F3.

From Construction 1 and Proposition 2, the inequality

(0, 1, 2, 0, 1, 2, 0, 1,−1)x ≤ 3 is valid and facet-defining for

an “all-ones” SPC code of length 3 over F3. Thus, according

to Proposition 11, the inequality

(0, 2, 1, 1, 0, 2, 2, 1, 0, 0, 2, 1, 1, 0, 2, 2, 1, 0,

0,−1, 1, 1, 0,−1,−1, 1, 0)x ≤ 3

is valid for P({1,2},(2,1)).

Example 18: For the case p = 2 and m = 2, the number

of facets (and the corresponding sets of inequalities) can

be computed numerically (using, for instance, the software

package Polymake [32]) for d = 3, 4, 5, and 6. The number

of facets is 24, 40, 68, and 120, respectively, and the sets

of inequalities match perfectly with the sets derived using the

relaxation method presented above. Note that in [11, Conj. 62],

it was conjectured that the relaxation is indeed tight. Also,

in [22], the same observation was made, but no proof was

given. If we increase m to 3, the number of facets is 2740
and 35928 for d = 3 and 4, respectively, while the number

of inequalities using the relaxation method presented above is

only 7 · 2d−1 + 8 · d, which is equal to 52 and 88 for d = 3
and 4, respectively, and the relaxation is not tight.

Example 19: For the case p = 3 and m = 2, the number

of facets (and the corresponding sets of inequalities) can be

computed numerically for d = 3. The number of facets is

73323, while the number of inequalities using the relaxation

method presented above is only 8 · 2 · 33−1 + 9 · 3 =
144 + 27 = 171, and the relaxation is not tight. Note that

using the weaker Proposition 2 from [31] (or, equivalently,

Proposition 10 constrained with γ = (1, . . . , 1)), we only get

3 · 2 · 33−1 + 9 · 3 = 54 + 27 = 81 inequalities.

X. NUMERICAL RESULTS

In this section, we compare the proposed ALP decoding

algorithm from Section VII and the version augmented by

RPC cuts (named RPC in the following) from Section VIII

with both the plain and cascaded “static” (nonadaptive) ap-

proaches from [7] (named PLP and CLP, respectively). We

present frame error-rate (FER) performance results for vari-

ous codes over additive white Gaussian noise channels with

different signal-to-noise ratios (SNRs), using p-phase-shift

keying modulation (for codes over Fp). The code symbols

ζ ∈Fp are mapped to constellation points according to ζ 7→
exp(
√
−1(2[ζ]Z +1)π/p). In addition to the decoding perfor-

mance, we present several performance figures (for selected
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Fig. 3. FER performance of the ternary RM codes C
(3)
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(solid lines) and

C
(3)
RM(2)

(dashed lines) as a function of Es/N0.

combinations of code and SNR value) in Table IX: the average

CPU time, the average number of iterations of the simplex

algorithm that is used to solve the LPs, and, for ALP and RPC,

the average number of cuts added (i.e., number of constraints

in the final linear program) and the average number of LPs

solved (i.e., iterations of the main loop of Algorithm 1).

For p=3, simulations were performed using a (27, 10, 9)

and an (81, 31, 18) ternary RM code (C(3)RM(1) and C
(3)
RM(2),

respectively). Note that the respective parity-check matrices

are rather dense, with a nonzeros ratio of 0.23 and 0.14,

respectively.

In view of Theorem 3, it is clear that ALP, CLP, and

PLP show the same error-correction performance for p=3.

As shown in Fig. 3, the RPC cut-search algorithm drastically

improves decoding performance for the dense codes and, for

C(3)RM(1), nearly achieves ML performance. Note that this is

in line with the well-known observation that, in the binary

case, LP decoding without RPC search performs poorly for

dense codes (see, e.g., [30]). The ML curve in Fig. 3 was

computed using an integer programming formulation (and the

commercial Gurobi solver [33]) of the nonbinary ML decoding

problem that is based on the compact binary IPD formulation

first presented in [30]. Except for the small RM code, the

complexity of this approach however is intractable for all

codes considered in this section.

To study the effect of increasing p on the ALP algorithm,

we employ the (3, 5)-regular (155, 64) Tanner code [34] over

the fields Fp, p∈{3, 5, 7, 11} (denoted by C(p)Tan, respectively).

To construct the codes, we have replaced the 5 ones in

each row of the binary H by the patterns (1, 2, 2, 1, 1),

(1, 2, 4, 3, 1), (1, 2, 4, 6, 1), and (1, 2, 6, 10, 1), for C(3)Tan to

C(11)Tan , respectively. The results are shown in Fig. 4. Because

of Theorem 3 and the numerical verification of Conjecture 2

for d≤ 5, the ALP and PLP/CLP curves are identical for

p∈{3, 5}, and the fact that they also are for p=7 supports

Conjecture 3. Interestingly, the class Φ(Θ0) (the pink +-

marked curve) is sufficient for achieving close-to-exact LP

decoding performance for small p (especially for p=5; for

p=3, this is the only class, as detailed in Section VI-B). This

can only mean that the facets induced by the other classes
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Fig. 4. FER performance of C
(3)
Tan , C

(5)
Tan , C

(7)
Tan , and C

(11)
Tan (left to right) as a function of Es/N0. For p = 3, ∆d

p ∪Φ(Θ0) gives a complete and irredundant
description of P (see Theorem 3); thus only three curves are displayed in addition to the SP FER decoding curve.

somehow cut off only “smaller” parts of the polytope. This

can be explained by the counting formulas in Lemma 11. For

instance, for p=7, Proposition 7 shows that the number of

codewords that each inequality is tight for decreases strictly

from Θ1 to Θ4. This proves that the Θ1-facets are “larger” than

the others. For p=11, we observe an increasing gap between

ALP and PLP/CLP which shows that the inequalities proposed

in this paper specify only a strict relaxation of the LP decoder

as in (3) for p≥ 11.

In contrast to the binary case (see [17, Fig. 3]) and the dense

codes above, RPCs lead to a noteworthy improvement only for

p=3 for the Tanner codes. In Table IX, one can observe that

again ALP decoding is much more efficient than both PLP

and CLP.

As a remark, no single cut from the special class Φ(Θ6)
for p=7 (see Section VI-D) was found during all of our

simulations, hence they appear not to influence decoding

performance in practice. On the other hand the complexity

of the cut-search algorithm is d2 times higher for Θ6 than for

the basic classes due to the additional loop that sets ilo and

ihi. Especially in conjunction with RPC search (where RPCs

are generally dense even with LDPC codes), it may not be

worthwhile to search for Θ6 inequalities at all.

For comparison, the FER performance of the SP decoder

[23] with a maximum of 100 iterations for all four Tanner

codes is also depicted in Fig. 4. From the figure we observe

that SP decoding exhibits an “error floor” (in the sense that

the FER decays more slowly with the SNR) for all codes,

except possibly for C(5)Tan (there might be a crossing also for

this code but at a lower error rate). For C(11)Tan (and also for

C(3)Tan at high SNRs), ALP decoding shows a clear advantage

over SP decoding. For C(5)Tan and C(7)Tan there is a performance

loss with ALP decoding compared to SP decoding for low

SNRs. However, the performance gap diminishes as the SNR

increases, and for C(7)Tan we observe a crossing at low error

rates.

In order to examine the scalability of the proposed algo-

rithm, we present numerical results for two sets of larger

LDPC codes. The first one is based on MacKay’s random
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Fig. 5. FER performance of the length-999 MacKay 999.111.3.5543 code

C
(3)
MacKay (left) and C

(5)
MacKay (right).

(3, 27)-regular (999, 888) code 999.111.3.5543 from [35],

from which we derive a ternary (C(3)MacKay) and a quinary

(C(5)MacKay) code, respectively, by iteratively replacing the nonze-

ros in each row of the parity-check matrix by the pattern

1, 2, . . . , p − 1, 1, 2, . . . . The error-rate results are shown in

Fig. 5. Because of the large row-weight of this code, both PLP

and CLP are intractable to run in practice. As before, it can

be observed that the RPC approach as stated in Section VIII

is helpful only for p=3. For p=5, the decoding results for

ALP and PLP coincide exactly, providing strong evidence that

Conjecture 2 holds also for larger d, because here each row

code has length d=27. For comparison, we also plot the

FER performance of the SP decoder with a maximum of 100
iterations for both codes. From the figure we observe that ALP

decoding performs almost as good as SP decoding, especially

for C(3)MacKay, at low-to-medium SNRs. For both C(3)MacKay and

C(5)MacKay we observe a crossing of the ALP and RPC curves

with the SP curve at low error rates.

The second class is constructed with the same pattern

based on a random (3, 6)-regular (1000, 500) LDPC code;

the resulting nonbinary codes are denoted C(3)3,6 (for p=3),
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TABLE IX
NUMERICAL COMPARISON OF THE PROPOSED ALGORITHMS ALP AND RPC (ALP WITH RPC SEARCH) WITH STATIC LP DECODING. CPU TIMES ARE

SPECIFIED IN SECONDS×10−2. MISSING ENTRIES HAVE BEEN SKIPPED BECAUSE OF INTRACTABLE COMPLEXITY.

p code dimensions SNR CPU time (s× 10−2) simplex iterations # cuts # LPs
(N,K) (dB) ALP RPC CLP PLP ALP RPC CLP PLP ALP RPC ALP RPC

3 C
(3)
RM(1)

(27, 10) 3 .19 1.3 2.3 7.9 34.7 142 447 1043 64 165 5.3 12.3

7 .11 .13 1.2 5.6 8.6 9.9 236 694 25 27.3 2.9 2.98

3 C
(3)
RM(2)

(81, 31) 8 .37 .43 39 − 27.8 29.8 2009 − 99.4 103 3.8 3.8

10.5 .1 .14 11 − 14.1 14.1 1171 − 12.9 12.9 1.66 1.65

3 C
(3)
Tan (155, 64) 5 .5 .8 16 14 66 70 1035 1962 138 140 3.5 3.6

5 C
(5)
Tan (155, 64) 7.5 2.4 3.5 114 144 155 155 4178 7105 792 792 3.3 3.3

7 C
(7)
Tan (155, 64) 9 20 25 561 1726 377 377 11399 16037 3188 3188 3.3 3.3

11 C
(11)
Tan (155, 64) 11.5 115 169 3508 − 864 864 35299 − 17358 17363 3.6 3.6

3 C
(3)
MacKay (999, 888) 6 .14 .42 341 − 73 83 1207 − 133 135 3.5 3.7

5 C
(5)
MacKay

(999, 888) 8.5 19 31 12509 − 391 392 53457 − 1226 1226 4.3 4.4

3 C
(3)
(3,6)

(1000, 500) 4 39 122 2685 − 1439 1581 14206 − 1337 1372 5.7 7.7

5 C
(5)
(3,6)

(1000, 500) 6.5 655 744 39155 − 5279 5284 88432 − 7668 7669 4.7 4.7

7 C
(7)
(3,6)

(1000, 500) 8.5 2382 − − − 8334 − − − 24077 − 4.1 −
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Fig. 6. FER performance of C
(3)
(3,6)

(left), C
(5)
(3,6)

(center), and C
(7)
(3,6)

(right).

C(5)3,6 (for p=5), and C(7)3,6 (for p=7), with results shown in

Fig. 6. This code has a much smaller check-node degree,

hence PLP/CLP decoding is possible but extremely slow (see

Table IX). Interestingly, for this code the RPC algorithm

only improves decoding performance for fairly low error rates

for p=3. As for the codes above, we also plot the FER

performance of the SP decoder with a maximum of 100

iterations. Somewhat surprisingly, for C(3)(3,6), ALP decoding

significantly outperforms SP decoding for high SNRs due a

quite high error floor. This also seems to be the case for C(5)(3,6),

but for a much lower error rate, while for low SNRs there is

some performance loss compared to SP decoding. For C(7)(3,6)
there is no visible error floor with SP decoding.

Table IX shows that the proposed algorithms are clearly

favorable in terms of decoding complexity compared with both

CLP and PLP; in particular, they scale well with both block

length and check node degree. The complexity of the static

LP decoders in contrast explodes with increasing check node

degree and quickly becomes intractable.

Note that, for ALP and p fixed, the number of inequalities

depends on the check node degrees only, such that it scales

especially well for sparse codes. Examining the different LP

formulations and the results from Table IX, one can name

various reasons for this performance gain. First, the number

np (using constant-weight embedding) of variables in ALP

is much smaller even compared with PLP. Secondly, the

number of constraints in the final linear program is virtually

negligible as opposed to both static LP formulations. These

two observations imply that the cost of a single simplex

iteration is much lower in ALP than in PLP or CLP; the effect

of this saving increases due to the much smaller number of

simplex iterations observed for ALP. Finally, these advantages

entirely outweigh the overhead introduced by solving several

LP problems instead of one, as this number stays very small

even for large codes.

XI. CONCLUSION AND FUTURE WORK

In this work, we presented an explicit construction of valid

inequalities (using no auxiliary variables) for the codeword

polytope (or the convex hull) of the so-called constant-weight

embedding of an SPC code over any prime field. The inequal-

ities are assembled from classes of building blocks and can

be proved to be facet-defining under some conditions. We

observed numerically, for all primes p ≤ 19, that a valid class

gives facet-defining inequalities if and only if it is symmetric,

and we conjectured this to be true in general. For ternary codes

we proved that the inequalities from the construction together

with the simplex constraints give a complete and irredundant

description of the embedded codeword polytope. For quinary

codes, based on extensive numerical evidence, we conjectured
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this to be the case as well. For p > 5, there exist other

types of facet-defining inequalities besides the ones that can

be constructed from basic classes. A complete characterization

of such inequalities is left as future work; the similarities

of Lemmas 13 and 14 with Lemma 8 suggest that it might

be possible to subsume all three types by a more general

unifying form. Our initial numerical results however show that

these are not required for achieving close-to-exact LP decoding

performance, at least for small p.

Building on the explicit form of the inequalities, we pre-

sented an efficient (relaxed) ALP decoder for general linear

codes over any prime field, in which efficient separation of

the underlying inequalities describing the decoding polytope

was done through DP. An explicit efficient implementation

was also provided for ternary linear codes. Next, an ACG-

ALP decoder was presented, generalizing the corresponding

decoding algorithm for binary codes, and we briefly showed

how the results can be generalized to fields of size pm where

m > 1 by introducing a relaxation. Numerical results for

both LDPC and HDPC codes showed that our proposed ALP

decoder outperforms (in terms of decoding complexity) a

static decoder (using both the plain and the cascaded LP

formulation).

We believe that many of the results in this paper generalize

to nonprime fields. In particular, the concept of building blocks

and building block classes appears to be universal. In particu-

lar, facet-defining inequalities for the codeword polytope of

an embedded SPC code over F8 can be constructed using

this principle as shown in [36]. In fact, the same structure

(or, equivalently, the same types of building block classes)

as for codes over F7 can be observed. An important open

problem would be to completely understand how to construct

such building blocks and classes in the general case, with

the ultimate goal of constructing an efficient algorithm to

perform Euclidean projections onto the codeword polytope

of an embedded SPC code in order to construct an efficient

decoder using the ADMM framework. We believe that the

characterization of the facet-defining inequalities (using no

auxiliary variables) of the codeword polytope of an embedded

nonbinary SPC code is a first step towards this goal.

APPENDIX A

TWO TECHNICAL LEMMAS

In addition to Lemma 2, the following lemma will become

important in several proofs later on in the appendices.

Lemma 16: Let q = pm ≥ 3, m ≥ 1, and assume c and

c0, c1, . . . , ck ∈ Fn
q . The following are equivalent:

1) Fv(c
0), . . . ,Fv(c

k) are affinely independent.

2) Fv(c + c
0), . . . ,Fv(c + c

k) are affinely independent.

3) F′
v(c

1 − c0), . . . ,F′
v(c

k − c0) are linearly independent.

Proof: By definition of Fv and f, adding a fixed vector c

to each cj results in a fixed permutation of the entries in each

q-block of Fv(c
j). As this permutation has no effect on the

affine independence, the equivalence of 1) and 2) follows.

Assume 1) holds, then by 2) with c = −c0 also Fv(c
0 −

c0 = 0), . . . ,Fv(c
k − c0) are affinely independent, hence by

Lemma 2 the vectors

F′
v(0),F

′
v(c

1 − c0), . . . ,F′
v(c

k − c0)
are affinely independent, which by definition of affine inde-

pendence is equivalent to

F′
v(c

1 − c0)− F′
v(0), . . . ,F

′
v(c

k − c0)− F′
v(0)

being linearly independent. But F′
v(0) = 0, which concludes

the proof.

The following result will be used in various proofs in the

appendices.

Lemma 17: For a building block class T m and any k, i ∈
Fp,

tk,(tk,↑+i) − tk,tk,↑
= tk,σ−k+i − tk,σ−k = tσ,i (41)

and tk,(tk,↓+i) − tk,tk,↓
= tk,−k+i − tk,−k = t0,i. (42)

In particular, both expressions are independent of k.

Proof: The left-hand equations are by (6) and (7), respec-

tively, while the right-hand equations follow by Property 4 of

Lemma 5 with l = σ − k and l = −k for (41) and (42),

respectively.

APPENDIX B

HOW TO SWITCH BETWEEN EMBEDDINGS Fv AND F′
v

Let C be a nonbinary code of length d over the field Fq , for

some prime power q, and define P = conv(Fv(C)). Assume

aνTx ≤ αν for ν ∈ JNK, (43a)

bµTx = βµ for µ ∈ JMK, (43b)
∑

j∈Fq

xi,j = 1 for i ∈ JdK, (43c)

xi,j ≥ 0 for i ∈ JdK, j ∈ Fq (43d)

is a description of P by means of N+dq linear inequalities and

M+d linear equations (for some natural numbers N and M ).

Note that the existence of (43c) and (43d) in this description

can be assumed without loss of generality, because that part

exactly specifies Sd
q−1, and P ⊆ Sd

q−1 by definition of Fv.

By adding, for i ∈ JdK, −aνi,0 times (43c) to each inequality

aνTx ≤ αν of (43a), we may further assume that aνi,0 = 0 for

i ∈ JdK, and likewise that bµi,0 = 0 for all equations of (43b).

For j = 0, the corresponding step turns (43d) into

−
∑

j 6=0

xi,j ≥ −1 or equivalently
∑

j 6=0

xi,j ≤ 1.

Now, for each aν , ν ∈ JNK (and bµ and x analogously), we

define a′ν ∈ Rd(q−1) by removing all entries aνi,0, i ∈ JdK

(if we extend the definition of P to points outside of Sd
q−1,

this can be written as a′ν = P(aν)), and define the polytope

P̃ ⊆ Rd(q−1) by

a′νTx′ ≤ αν for ν ∈ JNK, (44a)

b′µTx′ = βν for µ ∈ JMK, (44b)
∑

j 6=0

xi,j ≤ 1 for i ∈ JdK, (44c)

xi,j ≥ 0 for i ∈ JdK, j ∈ Fq \ {0} (44d)
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which is obtained from (43) by removing the equations (43c)

and all coefficients belonging to field element ζ = 0, after

they have been set to 0 as described above.

Proposition 12: P̃ = P ′, where P ′ = conv(F′
v(C)).

Proof: Let x ∈ P . By construction of a′ν and b′µ,

a′νTP(x) = aνTx ≤ κ and b′µTP(x) = bµTx, thus P(x)
fulfills (44a) and (44b). Furthermore, (44d) and (44c) are

obviously satisfied by P(x), which shows that P(x) ∈ P̃ .

Since P(P) = P ′ by Lemma 1, we have established P ′ ⊆ P̃ .

Conversely, let x′ ∈ P̃ ⊆ Ŝd
q−1. Again by construction of

a′ν and b′ν , aνTL(x′) ≤ αν and bµT L(x′) = βµ, and because

further L(x′) ∈ Sd
q−1, we see that L(x′) satisfies all constraints

of (43), hence L(x′) ∈ P . Using again Lemma 1, this implies

that P(L(x′)) = x′ ∈ P ′, i.e., P̃ ⊆ P ′.

The following explicit version of Corollary 1 is a by-product

of the above proof.

Corollary 9: If aνTx ≤ αν induces the face F of P with

dim(F ) = δ, then a′νTx′ ≤ αν induces P(F ) (which by

Corollary 1 also has dimension δ). This holds in particular if

F is a facet.

Remark 13:

1) If C is an SPC code with d ≥ 3, (43c) already specifies

the affine hull of P by Proposition 1. Hence, no further

equations are necessary, i.e., M = 0.

2) By Property 2 of Lemma 5, aνi,0 = 0 already holds for

all inequalities constructed in Section V. There is no

need to add multiples of (43c) to those inequalities to

establish this assumption.

3) While the above results show that P and P ′ are

practically equivalent with respect to most polyhedral

properties, they are geometrically different because the

underlying embeddings f and f′ are. For example, when

p = 3, ‖f(1) − f(0)‖2 = ‖f(2) − f(1)‖2, where ‖ · ‖2
denotes the Euclidean norm of its argument, while the

two distances are different when replacing f by f′. This

has consequences when using nonlinear solvers, such as

the penalized ADMM decoder (cf. [10, Sec. VI], [11]).

4) At a first glance, using P ′ instead of P appears to be

computationally preferable because (44) exhibits less

variables than (43). However, when solved with the

simplex method, the inequalities (44c) will be inter-

nally expanded to the form (43c) by introducing slack

variables; hence, internally, the algorithm will perform

exactly the same steps no matter which embedding is

used.

APPENDIX C

PROOF OF PROPOSITION 1

Assume p ≥ 3 and let A = {x ∈ R
dp : (4b) holds for i ∈

JdK} be the affine hull of Sd
p−1. Because P ⊆ Sd

p−1 ⊆ A
by definition and further dim(A) = d(p − 1) (as follows

immediately from the structure of (4b)), we obtain

dim(P) ≤ dim(Sd
p−1) = dim(A) = d(p− 1) (45)

and aff(P) ⊆ A. (46)

Part 1): By (45) it suffices to show that dim(P) ≥ d(p− 1),
i.e., find d(p− 1) + 1 affinely independent elements of P .

Define the set S = {c0, . . . , cd(p−1)} ⊆ C of d(p− 1) + 1
codewords of C as follows. First, c0 = (0, . . . , 0)T . Then, for

0 ≤ i < d − 1 and 1 ≤ l < p, ci(p−1)+l is a codeword with

two nonzeros only, defined by

c
i(p−1)+l
j =











[l]p if j = i+ 1,

−[l]p if j = d,

0 otherwise.

Finally, there are p−1 codewords with three nonzeros, namely

c(d−1)(p−1)+l = (0, . . . , 0, [l]p, [l]p, [−2l]p)T , 1 ≤ l < p (note

that here we need p 6= 2, because [−2]2 = [0]2).

We now show that the d(p− 1) vectors

F′
v(c

1), . . . ,F′
v(c

d(p−1))

are linearly independent, from which the claim follows by

Lemma 16 since c0 = 0. Let M be the real square 0/1
matrix with rows F′

v(c
1)T , . . . ,F′

v(c
d(p−1))T . Then, M can

be written as a d × d block matrix with blocks of size

(p− 1)× (p− 1) having the form

M =

















Ip−1 Īp−1

. . .
...

. . .
...

Ip−1 Īp−1

Ip−1 Ip−1 C

















∈ R
d(p−1)×d(p−1)

where Ip−1 ∈ R(p−1)×(p−1) is the identity matrix,

Īp−1 =







1

. .
.

1






∈ R

(p−1)×(p−1)

is the “reverse” identity, and C is a permutation matrix with a

single one at column index [−2l]p (because p is prime, these

values are distinct for all l ∈ Jp−1K) for row index l, 1 ≤ l <
p. Thus, M is almost upper triangular except for the lower

right 3× 3 block-submatrix, which we now show to have full

rank. By elementary row operations,

det





Ip−1 Īp−1

Ip−1 Īp−1

Ip−1 Ip−1 C



 = det
(

2Īp−1 −C
)

;

it hence suffices to show that the latter matrix is nonsingular.

To that end, note that, for j ∈ Jp− 1K, the j-th row of 2Īp−1

has an entry 2 in column [−j]p, while the j-th row of C has an

entry 1 in column [−2j]p (all other entries are 0). Because p is

prime, [−j]p 6= [−2j]p for j ∈ Jp−1K. Hence, when reversing

the rows of 2Īp−1 − C , the result is a strictly diagonally

dominant matrix, which by the Levy-Desplanques theorem

(see, e.g., [37, Cor. 5.6.17]) implies that it is nonsingular. This

concludes the proof.

Part 2): We have just shown that dim(aff(P)) = dim(P) =
dim(A). Since both are affine spaces and by (46) one is

contained in the other, they must indeed be equal.

Part 3): Assume wlog. that i = d (the rest follows from

symmetry), and consider j = 0 first. In the proof of part 1, we

have shown that the d(p− 1) points F′
v(c

1), . . . ,F′
v(c

d(p−1))
are linearly and hence also affinely independent, such that, by
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Lemma 2, Fv(c
1), . . . ,Fv(c

d(p−1)) are affinely independent,

too. By construction cid 6= 0 and thus (Fv(c
i))d,0 = 0 for all of

them, thus (4a) is satisfied with equality for d(p− 1) affinely

independent elements of P , such that (4a) defines a facet of

P for j = 0.

For j 6= 0, let c = (0, . . . , 0,−j, j)T ∈ C. By the above

and Lemma 16, Fv(c + c
1), . . . ,Fv(c + c

d(p−1)) are affinely

independent. By linearity, all c+ ci ∈ C, and because cd = j
and cid 6= 0 for all i ∈ Jd(p−1)K, it follows that (c+ci)d 6= j
for i ∈ Jd(p − 1)K. Hence, for j 6= 0, (4a) is satisfied with

equality by Fv(c + c1), . . . ,Fv(c + cd(p−1)), i.e., defines a

facet of P .

APPENDIX D

PROOF OF LEMMA 8

Let θTx ≤ κ with θ = (tk1 | . . . | tkd
)T be contained

in Θm, and denote by c ∈ C the canonical codeword

corresponding to θ. Then, (19a) follows from (17a) and (18b),

since c ∈ C

⇔
d

∑

i=1

ci =

d−1
∑

i=1

(σ − ki)− kd = 0⇔
d

∑

i=1

ki = [d− 1]pσ.

Likewise, by construction

κ = θTFv(c) =

d
∑

i=1

tki,ci by (16)

=

d−1
∑

i=1

max(tki
) + min(tkd

) by Construction 1

=

d−1
∑

i=1

(t0,σ − t0,ki
)− t0,kd

using (10) and (11)

= (d− 1)t0,σ −
d

∑

i=1

t0,ki

which is (19b). It is easy to see that the proof works in both

directions, i.e., if θ and κ fulfill (19), then they are covered

by Construction 1.

Finally, the equivalence of (19) and (20) follows immedi-

ately by using the equations
∑d

i=1 ki =
∑

k∈Fp
k
[∣

∣V θ
k

∣

∣

]

p
and

d =
∑

k∈Fp

∣

∣V θ
k

∣

∣ in (19a) and (19b), and by (5).

APPENDIX E

PROOFS FOR SECTION V-C

Proof of Lemma 9: By Construction 1, κ = θTFv(c).
Hence, θTFv(c+ ξ)− κ

= θT (Fv(c+ ξ)− Fv(c))

=

d
∑

i=1

(tki,ci+ξi − tki,ci) by (16)

=
d−1
∑

i=1

(tσ−ci,ci+ξi − tσ−ci,ci)

+ t−cd,cd+ξd − t−cd,cd by (17b) and (18a)

=
d−1
∑

i=1

tσ,ξi + t0,ξd by Lemma 17.

Proof of Corollary 6:

1) Let (θTx ≤ κ) ∈ Θm with canonical codeword cθ.

In order to show that the inequality is valid for P =
conv(Fv(C)), it suffices to prove it valid for all vertices

of P , which by definition of P are given by Fv(c) for

c ∈ C. To that end, let c ∈ C be chosen arbitrarily and

define c′ = c− cθ ∈ C. Then,

θTFv(c)− κ = θTFv(c
′ + cθ)− κ

=

d−1
∑

i=1

tσ,c′i + t0,c′
d
≤ 0

where the last two equations hold because of Lemma 9

and the assumption applied to c′, respectively.

2) Let θTx ≤ κ and cθ as above, and define c′ = cθ+c ∈
C. Then,

θTFv(c
′)− κ = θTFv(c+ c

θ)− κ

=

d−1
∑

i=1

tσ,ci + t0,cd > 0;

the inequality is violated by c′ ∈ C and hence invalid

for P .

Proof of Theorem 2: Let T m be a valid class and d > 0.

We show that (22) holds for all c ∈ C, which implies the first

statement by Corollary 6. Let c ∈ C, and denote the left side

of (22) by γ(c) =
∑d−1

i=1 tσ,ci + t0,cd . The following three

observations will be used:

1) By Property 1 of Lemma 5, [γ(c)]p =
∑d

i=1 ci = 0.

2) By Property 3 of Lemma 5, tσ,i ≤ 0 for all i ∈ Fp, i.e.,

the left term in (22) contains nonpositive entries only.

3) By definition of σ in (6), t0,cd ≤ max(t0) = t0,σ < 2p.

Assume now γ(c) > 0, i.e., (22) is violated. By 1), this implies

γ(c) ≥ p, while 2) and 3) imply that γ(c) ≤ t0,σ < 2p,

hence γ(c) = p. By 2), this shows that t0,cd ≥ p, hence

mcd = 1. Thus, the equation γ(c) = p can be written as
∑d−1

i=1 tσ,ci + p+ [cd]Z = p, i.e.,

d−1
∑

i=1

tσ,ci = −[cd]Z. (47)

Further, the result mcd = 1 rules out the case m = (0, . . . , 0),
hence mσ = 1 and thus [σ]Z ≥ [cd]Z by definition of σ.

In (47), all terms on the left are ≤ 0, hence tσ,ci ≥
−[cd]Z ≥ −[σ]Z for i ∈ Jd − 1K. But then with nj =
|{i ∈ Jd − 1K : ci = j}| for j ∈ J = {j ∈ Fp : 0 > tσ,j ≥
−[σ]Z} (observe that tσ,0 = 0 by Property 2) of Lemma 5),

d−1
∑

i=1

tσ,ci + [cd]Z =
∑

j∈J

njtσ,j + [cd]Z = 0

with mcd = 1 and cd = −∑

j∈J [nj ]p ·j, i.e., T m is not valid,

a contradiction.

For the second statement of the theorem, let {ni}i∈I and

r = −∑

i∈I [ni]p ·i be a solution to (23) with mr = 1. Choose

d ≥ d0 =
∑

i∈I ni + 1 and let c ∈ C be any codeword that
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has, for i ∈ I , ni i-entries among the first d−1 entries, cd = r,
and all other entries are zero (any such vector is a codeword

of C by the condition on r).

Analogously to above, we see that

d−1
∑

j=1

tσ,cj + t0,cd =
∑

i∈I

nitσ,i + [cd]Z + p = p > 0

such that, by the second part of Corollary 6, no inequality

in Θm is valid for P . Finally, (23) gives
∑

i∈I ni ≤ [r]Z
because all tσ,i ≤ −1 for i ∈ I by definition of I , such that

d0 =
∑

i∈I ni + 1 ≤ [r]Z + 1 ≤ [σ]Z + 1, which concludes

the proof.

Proof of Lemma 10: We show that the system in

Definition 12 is solvable if and only if the one from Lemma 10

is. For the “only if” part, let {ni}i∈I and r be a solution to

(23) with r = −∑

i∈I [ni]p · i and mr = 1.

By Item 2 of Lemma 7, I = {i ∈ Fp : 0 > tσ,i ≥ −[σ]Z} =
{i : 0 > −t0,−i ≥ −[σ]Z} = {i : 0 < t0,−i ≤ [σ]Z}.
Because [σ]Z < p, t0,−i ≤ [σ]Z implies m−i = 0 for

i ∈ I . Furthermore, mr = 1 implies mσ = 1, such that

t0,σ = p + [σ]Z and by Property 1 of Lemma 5 t0,k 6= [σ]Z
for any k ∈ Fp. Concludingly,

I = {i : m−i = 0 and 0 < t0,−i < [σ]Z}

and thus J = {−i : i ∈ I}. For j ∈ J , define νj = n−j and

let ρ = r. Then,

0 =
∑

i∈I

ni · tσ,i + [r]Z =
∑

j∈J

νjtσ,−j + [ρ]Z

= −
∑

j∈J

νjt0,j + [ρ]Z =
∑

j∈J

νj · [j]Z + [ρ]Z

which completes the proof of the “only if” direction. For the

“if” part, one can see analogously that I = {−j : j ∈ J} and

use ni = −νj and r = ρ to construct a solution for (23),

which completes the proof.

Proof of Lemma 11: By Lemma 9, a vector ζ = c + ξ
satisfies θTFv(ζ) > κ if and only if I>

ξd,Jξ = 1, where the

multiset Jξ contains the nonzero entries of ξ1, . . . , ξd−1 (with

multiplicity). The first claim follows because, for ξd fixed,

there are
(

d−1
|Jξ|

) |Jξ|!
nJ
1 !···n

J

kJ
!

different vectors ξ that result in the

same multiset Jξ, where the multinomial coefficient is due to

the number possible permutations of the multiset J .

The second part is analogous; note that ζ is a codeword if

and only if
∑d

i=1 ξi = ξd + ‖Jξ‖1 = 0, which accounts for

the additional condition in the definition for I=c,J .

APPENDIX F

PROOF OF LEMMA 12

Let θTx ≤ κ be an inequality from Θm. In order to prove

the claim, we construct a set S ⊂ C of codewords such that

θTFv(c) = κ for any c ∈ S, and at least 1+d(p−1)−1−(p−
3)/2 elements of S have affinely independent embeddings. Let

cθ be the canonical codeword from Construction 1 that is used

to generate the inequality and define, for s ∈ J(p−1)(d−1)K,

the vector ξs = ξi(p−1)+l ∈ F
d
p by

ξ
i(p−1)+l
j =











[l]p if j = i+ 1,

− [l]p if j = d,

0 otherwise

(48)

where 0 ≤ i < d− 1 and 1 ≤ l < p, and let cs = cθ + ξs for

s ∈ J(p − 1)(d − 1)K. By Lemma 9, θTFv(c
i(p−1)+l) − κ =

tσ,[l]p + t0,[−l]p = 0, where the second equation is due to

Part 2) of Lemma 7, such that the inequality is tight for the

embeddings of these (d− 1)(p− 1) codewords.

Now, we construct p − 2 additional codewords that differ

from cθ in the last three entries by adding, for each i ∈ Fp \
{0, σ}, the vector ζi ∈ Fd

p defined by

ζij =



















−i if j = d− 2,

i− σ if j = d− 1,

σ if j = d,

0 otherwise

to the canonical codeword cθ. Using again Lemma 9 we find

that, for i ∈ Fp \ {0, σ},
θTFv(c

θ + ζi)− κ
= tσ,−i + tσ,i−σ + t0,σ

= −t0,i − t0,σ−i + t0,σ

= −[i]Z − pmi − [σ − i]Z − pmσ−i + [σ]Z + pmσ.

For [i]Z ≤ [σ]Z, the above is zero because then −[i]Z − [σ −
i]Z + [σ]Z = 0 and mi +mσ−i = mσ by Part 3 of Lemma 7.

If [i]Z > [σ]Z then mi = 0 by definition, thus also mσ−i =
0. Also, this case implies σ 6= p − 1, hence mσ = 1, and

furthermore [σ − i]Z = [σ]Z − [i]Z + p, such that θTFv(c
θ +

ζi) = κ also for this case. Concludingly, we have constructed

a set S of (p−1)(d−1)+p−2 = (p−1)d−1 codewords of C,

the embeddings of which satisfy the inequality with equality.

We now switch to Flanagan’s embedding from Definition 2

and show that the span of F′
v(c

1−cθ), . . . ,F′
v(c

(p−1)d−1−cθ)
has rank d(p−1)−1−(p−3)/2, from which the claim follows

by Lemma 16. To that end, consider the real 0/1 matrix MF

whose rows are F′
v(c

1−cθ)T , . . . ,F′
v(c

(p−1)d−1−cθ)T . This

matrix is of the form

MF =



















Ip−1 0 0 Īp−1

0 Ip−1 0 Īp−1

. . .

Ip−1 0 Īp−1

0 Ip−1 Īp−1

D̄p−2 Dp−2 Ep−2



















(49)

where Ip−1 and Īp−1 are defined in Appendix C,

D̄p−2 =

(

0 Ī[σ]Z−1

Ī[−σ]Z−1 0

)

,

Dp−2 =

(

0 I[σ]Z−1

I[−σ]Z−1 0

)

(note that the [−σ]Z-th column (with [−σ]Z = p − [σ]Z) of

both Dp−2 and D̄p−2 is all-zero), and Ep−2 has 1-entries in
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the [σ]Z-th column and zeros elsewhere. Now, note that the

matrixMF is (similar to the one in the proof of Proposition 1)

almost upper triangular except for the lower right 3(p− 1)−
1 × 3(p− 1) block. After turning D̄p−2 and Dp−2 into zero

matrices by Gaussian elimination, the lower right Ep−2 turns

into the matrix

Ẽp−2 =

(

−X[σ]Z−1 1

1 −X[−σ]Z−1

)

where Xl is the l × l “X”-shaped 0/1 matrix for l ≥ 2 and

X1 = (2) (details omitted). Now, Ẽp−2 is easily verified to

have rank 1
2 (p − 1), such that the total rank of MF is (d −

1)(p−1)+ 1
2 (p−1) = d(p−1)−1− 1

2 (p−3), which concludes

the proof.

Remark 14: The above proof implies a simple numerical

procedure by which a specific valid symmetric basic building

block class T m can be verified to be facet-defining: find 1
2 (p−

3) additional nonzero vectors ξ ∈ F
3
p with

∑3
i=1 ξi = 0 that

satisfy tσ,ξ1 + tσ,ξ2 + t0,ξ3 = 0 such that their (Flanagan)

embeddings, together with the lower right 3(p−1)−1×3(p−1)
part of MF above, are linearly independent and thus complete

MF to a matrix of rank d(p− 1)− 1.

While passing this test is only a sufficient condition for

a valid class being facet-defining (in theory, there could be

classes that are facet-defining only for some d ≥ d0 > 3), we

conjecture it to be necessary as well, as we did not find any

counter-example in numerical experiments.

APPENDIX G

NUMERICAL PROCEDURE TO VERIFY THE “ONLY

IF”-PART OF CONJECTURE 1

In this appendix, for ease of notation, codewords are rep-

resented as row vectors as opposed to column vectors in the

rest of the paper. The procedure is based on the following key

lemma.

Lemma 18: Let T m be a valid basic building block class and

θTx ≤ κ any inequality from Θm, where cθd is the canonical

codeword according to Construction 1, for a given length d of

the SPC code. Denote by Md
F the matrix whose rows consist

of F′
v((c− cθd)T )T , where c 6= cθd runs over all codewords

for which the inequality is tight (as outlined in the proof

of Lemma 12 in Appendix F; see (49)). Note that Md
F is

independent of the chosen inequality. Let d0 be the smallest

d ≥ 3 such that the support of all codewords of Md0

F (before

being embedded) is at most d0 − 2. Then,

rank
(

Md+1
F

)

≤ rank
(

Md
F

)

+ p− 1

for all d ≥ d0.

Proof: First note that for any valid basic building block

class T m, d0 is finite, since t0,j ≥ 0 (see Definition 8) for all

j ∈ Fp and tσ,j < 0 for j ∈ Fp \{0} (follows from Property 3

of Lemma 5), and then the result follows from Lemma 9 (see

(21)). Furthermore, for Construction 1, we choose the first

coordinate as the constrained coordinate (it can be arbitrarily

chosen).

Now, let Md0 be the corresponding matrix before the

embedding. It follows that

Md0+1 =

(

Md0 0

A b

)

where 0 is an all-zero column vector over Fp, b is a column

vector in which all entries are different from [0]p, and A is

a matrix of partial codewords (one partial codeword per row)

such that the concantenation (A | b) contains all codewords

c − cθd0+1, c 6= cθd0+1, with a nonzero final entry and for

which c is tight for the inequality in Θm for d = d0 +1 with

canonical codeword cθd0+1. Note that the canonical codeword

cθd0+1 is arbitrary and that Md0+1 does not depend on the

specific corresponding inequality in Θm. Now, suppose that

there exist two distinct codewords (rows) in (A | b) in

which the final entry is the same, i.e., the two codewords

are of the form c1 − cθd0+1 = (z1, u, v, 0, 0, x) and c2 −
cθd0+1 = (z2, 0, 0, w, y, x), respectively, where x ∈ Fp \ {0},
u, v, w, y ∈ Fp, and z1 and z2 are vectors of length d0 − 4
over Fp. Here, without loss of generality, we have assumed,

disregarding the last coordinate with value x ∈ Fp \ {0}, that

the support of the first codeword is contained within the first

d0−2 coordinates, while the support of the second codeword is

contained within the first d0−4 coordinates, as well as within

the coordinates d0−1 and d0. This assumes d0 ≥ 4. If d0 = 3,

then the two codewords would overlap with a zero entry in at

least one coordinate. However, a similar argument to the one

below can be repeated to prove the lemma in this special case

as well. Now, since by assumption both codewords c1 and c2
are tight for the given inequality in Θm for d = d0+1, so are

(z1, u, v, 0, x, 0)+ c
θ
d0+1 and (z2, x, 0, w, y, 0)+ c

θ
d0+1, since

in general if c + cθd0+1, c 6= cθd0+1, is tight (for the given

inequality), where c denotes a codeword, then π(c) + cθd0+1,

π(c) 6= cθd0+1, is also tight, where π(·) denotes an arbi-

trary coordinate permutation not involving the constrained

coordinate of Construction 1 (see (21) of Lemma 9). Con-

sider the codewords (z2, x, y, w, 0, 0) and (z2, 0, y, w, x, 0).
Again, they are permutations (not involving the constrained

coordinate of Construction 1) of (z2, x, 0, w, y, 0), and thus

(z2, x, y, w, 0, 0) + c
θ
d0+1 and (z2, 0, y, w, x, 0) + cθd0+1 are

tight for the given inequality in Θm for d = d0 + 1. Taking

the real linear combination

F′
v

(

(z1, u, v, 0, x, 0)
T
)

− F′
v

(

(z2, x, 0, w, y, 0)
T
)

+ F′
v

(

(z2, x, y, w, 0, 0)
T
)

− F′
v

(

(z2, 0, y, w, x, 0)
T
)

= F′
v

(

(z1, u, v, 0, 0, x)
T
)

− F′
v

(

(z2, 0, 0, w, y, x)
T
)

shows that F′
v((z1, u, v, 0, 0, x)

T )T can be written as a real

linear combination of four rows from (Md0

F | 0) and the row

F′
v((z2, 0, 0, w, y, x)

T )T . Moreover, if the second codeword

c2− cθd0+1 overlaps with a single zero entry with c1− cθd0+1,

i.e., c2 − cθd0+1 = (z2, w, 0, 0, y, x), then it can be shown in

a similar manner that F′
v((z1, u, v, 0, 0, x)

T )T can be written

as a real linear combination of two rows from (Md0

F | 0)
and F′

v((z2, w, 0, 0, y, x)
T )T . Thus, the set of rows of (A | b)

can at most increase the rank by p− 1, and the result of the

lemma follows for d = d0. The result for d > d0 follows by

induction.

The procedure works in the following way and is repeated

for each valid basic building block class T m (indexed by m)

for a given prime p. Choose d = 3 and build the matrix Md
F .

If its rank is less than d(p − 1) − 1, then we know that the

class cannot be facet-defining for d = 3. If this is not the
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case, stop. Otherwise, compute the reduced row echelon form

of Md
F and remove the all-zero rows. The resulting matrix is

denoted by Md
F,red. Now, construct the matrix















Md
F,red 0

F′
v(a

T
1 )

T f′(1)
...

...
F′
v(a

T
p−1)

T f′(p− 1)
F′
m(A

T )T F′
m(b

T )T















(50)

where the matrix-embedding F′
m is analog to the vector-

embedding F′
v, applying the vector-embedding on each column

of the matrix individually. In (50), (ai | i), i ∈ Fp \ {0}, is

any (if any exist) codeword for length d + 1 with at least

two zero entries in ai such that (ai | i) + cθd+1 is tight

(for the inequality in Θm for length d + 1 with canonical

codeword cθd+1), and each row of the matrix (A | b) is a

codeword for length d + 1 with a nonzero final entry and at

most one zero entry among the first d coordinates such that

its sum with cθd+1 is tight. Then, it follows from the proof of

Lemma 18 that the rank of Md+1
F is equal to the rank of the

matrix in (50), since any additional codeword for length d+1
with at least two zero entries in the coordinates 1 through d
and such that its sum with cθd+1 is tight can be written as

a real linear combination of the rows of (Md
F,red | 0) and

the rows (F′
v(a

T
1 )

T | f′(1)), . . . , (F′
v(a

T
p−1)

T | f′(p − 1)).

The reduced row echelon form of Md+1
F (after removing

the all-zero rows) is equivalent to the reduced row echelon

form (again after removing the all-zero rows) of the matrix

in (50), and the procedure can be repeated for the next value

of d if the rank of the matrix in (50) is strictly smaller than

d(p − 1) − 1. Otherwise, the class would be facet-defining

for this particular value of d. The procedure is repeated until

d = d0, unless the rank at some point reaches d(p − 1) − 1.

Now, if rank
(

Md
F

)

< d(p− 1)− 1 for all 3 ≤ d ≤ d0
(and the procedure does not stop until d = d0), it follows

from Lemma 18 that the class cannot be facet-defining for

any d ≥ 3.

The complexity of the approach depends on the value

of d0, which again depends on the building block class,

and in particular on the number of rows of the matrix

(F′
m(A

T )T | F′
m(b

T )T ) for each value of d. The size of

the matrix (F′
m(AT )T | F′

m(b
T )T ) (for a given d) can be

determined from the principle behind the counting formula in

Lemma 11. Note that for some classes, d0 is as large as p+2.

To address the complexity of the approach, as an example, in

the worst case for p = 19 (when d0 = p+2 = 21), the number

of rows of (F′
m(A

T )T | F′
m(b

T )T ) for d = 3, . . . , 20 is

(908, 4464, 17400, 53886, 131826, 254652, 390302,

477511, 468383, 368507, 231336, 114444, 43656, 12393,

2466, 307, 18, 0).

APPENDIX H

PROOF OF PROPOSITION 3

We use Remark 14 to prove the proposition. The following

lemma yields the required ξ-vectors.

Lemma 19: Let T m be almost doubly-symmetric and de-

note by σ1 the index of the second-largest entry in t0, i.e.,

t0,σ1 = s-max(t0). Then, there are (p−3)/2 different elements

c1, . . . , c(p−3)/2 ∈ Fp such that, for k ∈ J(p− 3)/2K,

tσ,−ck + tσ,ck−σ1 + t0,σ1 = 0. (51)

Furthermore, ck 6= σ1 − cl for all k, l ∈ J(p − 3)/2K and all

ck, σ1 − cl /∈ {0, σ1, σ}.
Proof: Choose i ∈ T̃ proj

0 as in (15c). By there is a c ∈ Fp

such that i = t0,c = t0,σ − t0,σ−c (cf. (13) for the second

equality). By (15c), t0,σ1 − t0,c ∈ T proj
0 , so that again by

(13) and Definition 8 we conclude that t0,σ1 − t0,c = t0,σ −
t0,σ−σ1+c. Inserting the above expression for t0,c and using

Definition 8 results in

t0,σ1 + tσ,−c = −tσ,c−σ1

which shows (51) for this particular c. Now by (15b) all t0,ck ∈
T̃ proj
0 , while all t0,σ1−c ∈ T proj

0 \ T̃ proj
0 , which shows the

remaining claims.

Let now c1, . . . , c(p−3)/2 denote the (p− 3)/2 c-values ob-

tained from the above lemma, and define, for k ∈ J(p−3)/2K,

ξk = (0, . . . , 0,−ck, ck − σ1, σ1)T

which fulfills the conditions of Remark 14 by Lemma 19. The

(Flanagan) embeddings of the ξk lead to a (p−3)/2×3(p−1)
matrix of the form

(

G(p−3)/2 Ḡ(p−3)/2 E′
(p−3)/2

)

where G(p−3)/2 (of dimensions (p− 3)/2× (p− 1)) contains

a permutation matrix in the columns [−c1]Z, . . . , [−c(p−3)/2]Z
and zeros elsewhere, Ḡ(p−3)/2 (of dimensions (p −
3)/2 × (p − 1)) is a permutation matrix in columns

[c1 − σ1]Z, . . . , [c(p−3)/2 − σ1]Z with zeros elsewhere, and

E′
(p−3)/2 (of dimensions (p−3)/2×(p−1)) has 1-entries in the

[σ1]Z-th column and zeros elsewhere. Now, as in Appendix E

both G(p−3)/2 and Ḡ(p−3)/2 can trivially be eliminated, and

one can readily show that this operation turns E′
(p−3)/2 into a

matrix Ẽ′
(p−3)/2 that has zeros in the [σ]Z-th column, ones in

the [σ1]Z-th column, and two negated permutation matrices in

the remaining columns such that the conditions of Remark 14

are fulfilled, which completes the proof.

APPENDIX I

PROOF OF PROPOSITION 4

For p = 2, there are only two possible m-vectors (0, 0)
and (0, 1), so that the first part of the claim is trivial. Because

T (0,0) = {(0, 1), (0,−1)} and T (0,1) = {(0, 3), (0,−3)}, it is

obvious that Θ(0,1) is obtained by multiplying each inequality

in Θ(0,0) by 3, which concludes the proof for p = 2. Thus,

assume p > 2 in the following.

By Construction 1, θ1 = rotϕ(t
m
k1
) and θ′1 = rotϕ′(tm

′

k′
1
),

i.e., the first p-block of each inequality is a rotated building

block of T m and T m′

, respectively. Hence the assumption

implies rotϕ(t
m
k1
) = a rotϕ′(tm

′

k′
1
), and thus

set(tmk1
) = a·set(tm′

k′
1
)⇒ set(tm0 ) = a·set(tm′

0 )−atm′

0,k′
1
+tm0,k1
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by (5). But min(tm0 ) = 0 = min(tm
′

0 ), so that tm0,k1
−atm′

0,k′
1
=

0 must hold, i.e.,

set(tm0 ) = a · set(tm′

0 ). (52)

As both sets in (52) contain integer entries only, a must be

rational, i.e., a = r/s where r, s > 0 (a = 0 would imply

set(tm0 ) = {0}, contradicting Definition 8) with gcd(r, s) = 1.

Hence, s divides all p distinct nonnegative entries of tm
′

0 , thus

max(tm
′

0 ) ≥ s(p − 1), while by Definition 8, max(tm
′

0 ) ≤
2p − 1. Together, this implies s ≤ 2 + 1

p−1 . As s is integer

and we assume p > 2, this means s ∈ {1, 2}.
Case s = 1: Because 0 < a = r/s ≤ 1 by assumption, s = 1
implies a = 1, which by (52) implies set(tm0 ) = set(tm

′

0 ),
contradicting the assumption that m 6=m′.

Case s = 2: Because s divides all elements of set(tm
′

0 ), in

this case tm
′

0,ζ is even for all ζ ∈ Fp. But tm
′

0,ζ = [ζ]Z +m′
ζp

by definition, which implies (because p is odd) that m′
ζ = 1 if

and only if [ζ]Z is odd, i.e., m′ = (0, 1, 0, 1, . . . ) as claimed.

To see that m = (0, . . . , 0), note that s = 2 and 0 < r/s ≤
1 implies a = r/s = 1/2. From (52) follows that

max(tm0 ) =
1

2
max(tm

′

0 ) =
1

2
(2p− 2) = p− 1

by the structure of m′, which implies that m = (0, . . . , 0).

For the proof of the second claim, we use the following

lemma.

Lemma 20: For k ∈ {0, . . . , p − 1} and m, m′ as above,

2tmk = rot2(t
m′

ϕ2(k)
).

Proof: By definition of m, we have

(2tmk )j = 2tmk,j = 2(tm0,k+j− tm0,k) = 2([k+j]Z− [k]Z). (53)

On the other hand,

(rot2(t
m′

ϕ2(k)
))j = tm

′

2k,2j = tm
′

0,2(k+j) − tm
′

0,2k.

Now, the structure ofm′ implies that, for i ∈ Fp, tm
′

0,2i = 2[i]Z.

It follows that

tm
′

0,2(k+j) − tm
′

0,2k = 2[k + j]Z − 2[k]Z

which equals (53).

Now, let rotϕ(θ)
Tx ≤ κ be in ϕ(Θm), then by Corollary 3

also θTx ≤ κ is in Θm. Let θ = (tmk1
| . . . | tmkd

)T . We now

show that 2θTx ≤ 2κ is in ϕ2(Θ
m′

).
By Lemma 20,

2θ = (rot2(t
m′

ϕ2(k1)
) | . . . | rot2(tm

′

ϕ2(kd)
))T .

Using Corollary 3 again, the claim reduces to showing that

θ′Tx ≤ κ with θ′ = (tm
′

ϕ2(k1)
| . . . | tm′

ϕ2(kd)
)T and κ′ = 2κ is

contained in Θm′

. We show the latter by verifying (19) from

Lemma 8; namely, (19a) holds because

d
∑

i=1

ϕ2(ki) = [2]p

d
∑

i=1

ki (by def. of ϕ2)

= [2]p[d− 1]pσ
m ((19a) for θ)

= [d− 1]pσ
m′

where the last step follows because σm = [p − 1]p = [−1]p
and σm′

= [p− 2]p = [−2]p, whereas for (19b) we compute

κ′ = 2κ = 2(d− 1)tm0,σm − 2

d
∑

i=1

tm0,ki
((19b) for κ)

= 2(d− 1)(p− 1)−
d

∑

i=1

2[ki]Z (as m = 0)

= (d− 1)tm
′

0,σm′ −
d

∑

i=1

tm
′

0,ϕ2(ki)
(by Lemma 20)

which proves the claim. Hence, for every inequality in Φ(Θm)
there is an equivalent inequality in Φ(Θm′

). Furthermore, by

Remark 7 and because both sets are of the same size, the

converse must also hold, which concludes the proof.

APPENDIX J

PROOF OF THEOREM 3

We will need a technical lemma for this proof.

Lemma 21: Let a finite field Fq , d ≥ 1, and ξ =
(ξ1, . . . , ξd)

T ∈ Fd
q be given. Then, there is a permutation

matrix Pξ ∈ {0, 1}dq×dq with the property that

PξFv(η) = Fv(η − ξ) (54)

for any η ∈ Fd
q . In particular, the linear map defined by Pξ is

bijective and maps Sd
q−1 onto itself.

Proof: Define Pξ to be the block-diagonal matrix

Pξ =







Pξ1

. . .

Pξd







where, for ξi ∈ Fq , Pξi is the q×q permutation matrix defined

by

Pξi f(η)
T = f(η − ξi)T

for η ∈ Fq. Note that the above equation defines the image

of Pξi for all unit vectors in Rq, and the right-hand side runs

over all unit vectors as well, such that Pξi and hence also Pξ

is a permutation matrix.

Example 20: Let d = 1 and q = 3, and ξ1 = 2. Then,

Pξ1 =





0 0 1
1 0 0
0 1 0





and it is easily verified that Pξ1 f(η)
T = f(η − 2)T holds.

Let now Q denote the polytope defined by the inequalities

in Θ. From Proposition 5 follows that P ⊆ Q, so it remains

to show that Q ⊆ P . Suppose not. Then there exists f ∈
Q \ P . Since the facets in ∆d

3 by definition describe Sd
2 we

have Q ⊆ Sd
2 and hence f ∈ Sd

2 . Since f /∈ P , there must

be a facet F of P that cuts f and hence also some vertex

v of Sd
2 . We will show that F is contained in either Θm or

ϕ2(Θ
m), which contradicts the assumption that f ∈ Q and

hence shows P = Q.

Note that on the vertices of Sd
2 the inverse of Fv,

F−1
v : R2d → Fd

3 is defined. Let ξ = F−1
v (v) ∈ Fd

3. Then,

ξ /∈ C. Assume
∑d

i=1 ξi = [2]3; the case
∑d

i=1 ξi = [1]3 is
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completely symmetric. We will prove that F ∈ Θm∪ϕ2(Θ
m)

by going through several cases, distinguished by the Hamming

distance between ξ and the codewords for which F is tight.

For each case, we will derive a set of vertices of P for which

F could potentially be tight; then, we will show that there is

an inequality in Θm ∪ ϕ2(Θ
m) that is tight for all of those

vertices, hence that inequality must define F .

As F is a face of P , there are a′ ∈ R
2d and b ∈ R such

that

a′Tx ≥ b (55)

is valid for P and induces F , i.e., F = {x ∈ P : a′Tx = b}.
We use the permutation matrix of Lemma 21 to state (55) in a

more convenient form, where we use the short-hand notation

〈x〉ξ = Pξx for any x ∈ Rdq.

Define a = P−T
ξ a′. Then,

aT 〈x〉ξ ≥ b⇔
(

P−T
ξ a′

)T

Pξx = a′TP−1
ξ Pξx = a′Tx ≥ b (56)

i.e., (55) can be restated in terms of 〈x〉ξ instead of x. The

particular form of Pξ further allows us to assume that ai,0 = 0
for i ∈ JdK, by adding appropriate multiples of (4b) to the

inequality (cf. Appendix B).

Remark 15: The construction of 〈·〉ξ and the way it is used

above generalizes the definition and usage of the map [·] in

the proof of [38, Thm. 5.15].

As v is cut by F , we have b > aT 〈v〉ξ = aT 〈Fv(ξ)〉ξ =

aTFv(0) =
∑d

i=1 ai,0 = 0 by (54) and the above assumption.

Let ei denote the i-th unit (column) vector in Fd
3, i.e., eii = [1]3

and eij = [0]3 for j 6= i. Since
∑d

i=1 ξi = [2]3, ξ+ ei ∈ C for

i ∈ JdK. Because (56) is valid for P , b ≤ aT 〈Fv(ξ + e
i)〉ξ =

aTFv(e
i) = ai,1. Likewise ξ − ei − ej ∈ C for i 6= j, hence

b ≤ aT 〈Fv(ξ − ei − ej)〉ξ = aTFv(2e
i + 2ej) = ai,2 + aj,2

and finally from ξ + ei + ej − ek ∈ C for pairwise different

i, j, k ∈ JdK we conclude analogously that ai,1+aj,1+ak,2 ≥
b. To sum up, for arbitrary but different i, j, k ∈ JdK holds:

b > 0,

ai,1 ≥ b, (57)

ai,2 + aj,2 ≥ b, (58)

ai,1 + aj,1 + ak,2 ≥ b. (59)

Furthermore, (58) implies that ai,2 < b/2 can hold for at

most one i ∈ JdK, which allows the stronger statement that,

for I ⊆ JdK with |I| ≥ 2,
∑

i∈I

ai,2 ≥ |I| · b/2. (60)

Lemma 22: F contains Fv(c) for at least one codeword c

with dH(c, ξ) ≥ 3.

Proof: Assume the contrary. As F is a facet of the (by

Proposition 1) 2d-dimensional polytope P , there must be a set

F of 2d codewords of C such that {Fv(c) : c ∈ F} ⊆ F , this

set is affinely independent, and by assumption dH(ξ, c) ≤ 2
for c ∈ F . We now show that Θm contains an inequality

θTx ≤ κ that induces F .

Let cξ = ξ + ed ∈ C. Choose θ = (tmk1
| . . . | tmkd

)T

according to Construction 1 using cξ as canonical codeword.

Using σ = 2 and Lemma 6, this implies ki = t↑,cξi
= 2−cξi =

2 − ξi for i ∈ Jd − 1K, while also kd = t↓,cξ
d

= −(ξd + 1) =

2−ξd. By Proposition 5, θTx ≤ κ with κ = θTFv(c
ξ) defines

a facet G of P . We now show that θTFv(c) = κ for all c ∈ F .

If dH(c, ξ) = 1, then c = ξ + ei for some i ∈ JdK. By

Lemma 9,

θTFv(c)− κ = θTFv(c
ξ − ed + ei)− κ

=

{

0 if i = d,

tσ,1 + t0,2 = −2 + 2 = 0 otherwise

where the explicit values of tk can be looked up, e.g., in

Table VI. If on the other hand dH(c, ξ) = 2, then c =
ξ + 2ei + 2ej for i 6= j ∈ JdK. Using Lemma 9 again,

θTFv(c)− κ = θTFv(c
ξ − ed + 2ei + 2ej)− κ

=

{

tσ,2 + t0,1 = 0 if d ∈ {i, j},
tσ,2 + tσ,2 + t0,2 = 0 otherwise.

In conclusion, θTx ≤ κ is tight for the embeddings of all

codewords c with dH(c, ξ) ≤ 2, and in particular for all of

c ∈ F . Because the latter by assumption lead to 2d affinely

independent elements of F , which has dimension 2d−1, they

already uniquely specify the facet F , which hence must equal

G, i.e., F ∈ Θm.

Lemma 23: Let δ ∈ Fd
3. If dH(δ, ξ) ≥ 4, F does not contain

Fv(δ), i.e., aT 〈Fv(δ)〉ξ > b. In particular, F does not contain

any codeword c ∈ C with dH(c, ξ) > 3.

Proof: Let δ ∈ Fd
3 with dH(δ, ξ) = w ≥ 4. Then there

are disjoint index sets I1, I2 ⊆ JdK, |I1|+ |I2| = w such that

I1 = {i : δi−ξi = [1]3} and I2 = {i : δi−ξi = [2]3}. Assume

(56) is not strictly satisfied by δ, i.e.,

b ≥ aT 〈Fv(δ)〉ξ = aTFv(δ − ξ) =
∑

i∈I1

ai,1 +
∑

i∈I2

ai,2.

Now, (57) implies |I2| > 0, while (60) demands |I2| < 2, but

(59) forbids |I2| = 1. So the assumption must be false.

From the above two lemmas we conclude that there exists a

c3 ∈ C with dH(c
3, ξ) = 3 and Fv(c

3) ∈ F . As
∑d

i=1 ξi = 2,

this implies that c3 = ξ+ei+ej +2ek for pairwise different

i, j, k. Hence, b = aT 〈Fv(c
3)〉ξ = ai,1 + aj,1 + ak,2, thus

ak,2 ≤ −b by (57), so by (58) al,2 ≥ 2b for any l ∈ JdK with

l 6= k. This means that ak,2 is the unique negative entry of a,

so that all c′ ∈ C with dH(c
′, ξ) ∈ {2, 3} and aT 〈Fv(c

′)〉ξ = b
must have c′k = ck = ξk + 2.

As in the proof of Lemma 22, there is a set F ⊂ C, |F| =
2d, such that aTFv(c) = b for all c ∈ F and the embeddings

are affinely independent. From the above discussion, each c ∈
F is either of the form c = ξ + ei, c = ξ + 2ei + 2ek, or

c = ξ + ei + ej + 2ek for i, j 6= k and i 6= j.
We now assume wlog. (in view of Remark 3) that k = d

and use Construction 1 with the canonical codeword cξ =
ξ+ed to obtain an inequality θTx ≤ κ from ϕ2(Θ

m), where

θ = (ϕ2(tk1) | . . . | ϕ2(tkd
))T and ki = 2 − ξi, i 6= d, as in

the proof of Lemma 22. Analogously to above, one can check

that this inequality is tight for
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1) cξ itself,

2) cξ − ed + ei = ξ + ei for any i 6= d,

3) cξ + ed − ei = ξ + 2ei + 2ed for any i 6= d, and

4) cξ + ed + ei + ej = ξ+ ei + ej +2ed for i, j 6= d and

i 6= j,

i.e., is tight for all potential codewords for which (56) is tight,

which again shows that F = {x : θTx ≤ κ}, contradicting the

assumption that F /∈ Θm ∪ ϕ2(Θ
m).

As we have gone through all cases, this concludes the proof

that P = Q. Finally, the irredundancy statement follows from

Proposition 4.

APPENDIX K

PROOF OF PROPOSITION 8 (OUTLINE)

The analog of Lemma 9 leads to the result that

θTFv(c + ξ)− κ =
∑

i6=inb

tbσb,ξi
+ tnb0,ξ

inb

for any ξ ∈ Fd
7; the adaption of Corollary 6 shows that the

inequalities in Θ5 are valid for P if and only if the following

holds for all c ∈ C (in analogy to (22)):
∑

i6=inb

tbσb,ci
+ tnb0,c

inb
≤ 0.

Then, the proper generalization of Definition 12 and Theo-

rem 2 leads to the equivalent condition that Θ5 is valid if and

only if
∑

i∈I

nit
b
σb,i + [r]Z = 0

with I = {i ∈ F7 : 0 > tbσb,i ≥ −[σb]Z}, nonnegative integer

variables ni, and r = −∑

i∈I [ni]7 · i has no solution for

which mnb
r = 1. From σb = 2 follows that I = ∅, such that

the system has no solution and hence all inequalities in Θ5

are valid for P .

Let now θTx ≤ κ ∈ Θ5. In order to show that the inequality

defines a facet, we can partially recycle the proof of Lemma 12

in Appendix F. For the sake of consistency, assume that inb =
d, which is without loss of generality because the role of d is

arbitrary (cf. Remark 3).

For s ∈ J(p − 1)(d − 1)K, define ξs (and hence cs) as in

(48). Note that tbσb,[l]7
+ tnb0,[−l]7

= 0 holds (even though Part 2

of Lemma 7, which is used to show the same result in the

original proof, is not applicable here), such that θTFv(c
s) = κ

for s ∈ J(p− 1)(d− 1)K.

The construction of the next p − 2 codewords cannot be

copied from Appendix F because the condition tbσb,−i +

tbσb,i−σb + tnb0,σb = 0 does not hold. However, one can check

that the following p− 2 = 5 additional ξ-vectors

(0, . . . , 0, 3, 2, 2)T , (0, . . . , 0, 1, 4, 2)T , (0, . . . , 0, 4, 2, 1)T ,

(0, . . . , 0, 4, 4, 6)T , (0, . . . , 0, 3, 3, 1)T

satisfy
∑d−1

i=1 t
b
σb,ξi

+ tnb0,ξd = 0, such that the corresponding

codewords are tight for the inequality. Furthermore, the corre-

sponding embeddings are linearly independent, such that the

counterpart ofMF as defined in (49) has full rank d(p−1)−1,

hence the inequality indeed defines a facet.

APPENDIX L

PROOF OF PROPOSITION 9

For the first statement, we again follow the arguments of

Section V-C, but need to be careful not to rely on features of

basic building block classes.

First, observe that Lemma 17 generalizes to the current case;

in particular, (41) holds for T b
6 and T hi

6 , and (42) holds for

T lo
6 . This allows to generalize Lemma 9 (the proof of which

relies on Lemma 17), resulting in

θTFv(c+ ξ)− κ =
d

∑

i=1

tli0,ξi (61)

for ξ ∈ Fd
7. This immediately implies (cf. Corollary 6) that the

inequalities in Θ6 are valid if and only if all c ∈ C satisfy the

condition
∑d

i=1 t
li
0,ci
≤ 0 for all configurations of ilo 6= ihi.

Since tb0 and thi0 contain nonpositive entries only, this condition

can be violated only if tlo0,c
ilo

= 1, i.e., cilo ∈ {1, 2, 4} and

simultaneously tb0,ci = 0 (i.e., ci = 0) for li = b, and also

thi0,c
ihi

= 0, i.e., cihi ∈ {0, 1, 2, 4}. But then
∑

ci = cilo +
cihi 6= 0, which contradicts c ∈ C and hence concludes the

proof of the first claim.

It remains to show that each inequality from Θ6 defines a

facet of P . To that end, let θTx ≤ κ be such an inequality,

where we assume, for the sake of notation and without loss

of generality, that ihi = d − 1 and ilo = d, and assume that

c ∈ C is the canonical codeword. Analogously to the proof of

Lemma 12, we construct d(p−1)−1 = 6d−1 codewords ξs,

s ∈ J6d−1K, with the property that θTFv(c+ξ
s)−κ = 0 for

s ∈ J6d− 1K and such that the (Flanagan) embeddings F′
v(ξ

s)
are linearly independent.

For s ∈ J6(d − 2)K, define vectors ξs = ξ6i+l (where 1 ≤
l ≤ 6 and 0 ≤ i ≤ d− 3) by

ξ6i+l
j =































[l]7 if j = i+ 1,

[−l mod 3]7 if j = d− 1,

[4]7 if j = d and l ∈ {1, 2, 3},
[1]7 if j = d and l ∈ {4, 5, 6},
0 otherwise

each of which is a codeword and satisfies, by (61), that

θTFv(c + ξ
s) − κ =

∑d
j=1 t

lj
0,ξsj

= 0 because tb0,ξsi+1
= −1,

tlo0,ξs
d
= 1, and thi0,ξs

d−1
= 0 by construction. The matrix whose

rows are the embeddings F′
v(ξ

s), s ∈ J6(d− 2)K, then has the

form






I6 A B
. . .

...
...

I6 A B






(62)

with

A =





0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0



 and B =





0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
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and hence obviously full row rank 6(d − 2). The remaining

11 codewords ξs, 6(d− 2)+ 1 ≤ s ≤ 6d− 1, are zero except

for the last three entries, which are given by

(0, 1, 6), (0, 2, 5), (0, 3, 4), (0, 4, 3), (0, 5, 2), (0, 6, 1),

(1, 4, 2), (2, 4, 1), (3, 2, 2), (5, 0, 2), (6, 4, 4).

It can be checked by hand that the condition θTFv(c+ξ
s) = κ

holds for these codewords as well, and one can verify numeri-

cally (cf. Remark 14) that their Flanagan embeddings, together

with the last block-row of (62), are linearly independent, such

that they complete (62) to a matrix of rank 6d − 1, which

concludes the proof.

APPENDIX M

PROOF OF PROPOSITION 10

The proof is along the same lines as the proof of Lemmas 8

and 12 in [11], first showing that
∑

k∈K γk · p(hjcj)k = β if

and only if
[

g
(K,γ,f)
j

]

p
= β

for β ∈ Fp.

We first need a technical result.

Lemma 24: For any vector c ∈ Fd
q and its embedding f =

Fv(c),
[

g
(K,γ,f)
j

]

p
= β if and only if

∑

k∈K γk ·p(hjcj)k = β

for all ∅ 6= K ⊂ JmK, γ ∈ (Fp \ {0})|K|, and j ∈ JdK, where

β ∈ Fp.

Proof: Assume that β ∈ Fp and consider a fixed j ∈
JdK. If

∑

k∈K γk · p(hjcj)k = β, then cj ∈ B(β)(K,γ, hj) by

definition. Since fj,cj = 1 and fj,i = 0 for all cj 6= i ∈ Fq ,

g
(K,γ,f)
j =

∑

β∈Fp\{0}

∑

i∈B(β)(K,γ,hj)

[β]Z · fj,i

= [β]Z · fj,cj = [β]Z

since the sets B(β)(K,γ, hj) are disjoint. Thus,
[

g
(K,γ,f)
j

]

p
=

[[β]Z]p = β.

For the converse, assume that
[

g
(K,γ,f)
j

]

p
=

∑

η∈Fp\{0}

∑

i∈B(η)(K,γ,hj)

η · [fj,i]p = β

for β ∈ Fp. This implies that cj ∈ B(β)(K,γ, hj) and, by

definition,
∑

k∈K γk · p(hjcj)k = β.

Now, assume that f ∈ Fv(C). We will show that this

implies f ∈ E . By assumption there exists a codeword c ∈ C
such that f = Fv(c). Obviously, the two first conditions

of the proposition are satisfied due to the properties of the

constant-weight embedding from Definition 1 (all symbols

are embedded to weight-1 vectors of length q). Now, since

c is codeword, the syndrome s =
∑d

j=1 hjcj = [0]q.

Furthermore, p(s) = ([0]p, . . . , [0]p) (a vector of length m)

since we are working in the field Fq where q = pm. Hence,

p(s)k =
∑d

j=1 p(hjcj)k = [0]p and using Lemma 24, we get

d
∑

j=1

[

g
(K,γ,f)
j

]

p
=

d
∑

j=1

∑

k∈K

γk · p(hjcj)k

=
∑

k∈K

γk

d
∑

j=1

p(hjcj)k = [0]p

which implies that the third condition of the proposition is

indeed true.

Conversely, assume that f ∈ E fulfills all three conditions

of the proposition. From the first two conditions it follows

that there exists a unique vector c ∈ Fd
q such that f = Fv(c).

From the last condition of the proposition and Lemma 24 we

know that

d
∑

j=1

[

g
(K,γ,f)
j

]

p
=

d
∑

j=1

∑

k∈K

γk · p(hjcj)k

=
∑

k∈K

γk

d
∑

j=1

p(hjcj)k = [0]p.

Fixing K = {k} and γ = (1) for any fixed k ∈ JdK, we get

d
∑

j=1

p(hjcj)k = p





d
∑

j=1

hjcj





k

= [0]p

for all k ∈ JdK, which implies that
∑d

j=1 hjcj = [0]q and c is

indeed a valid codeword. Thus, f ∈ Fv(C).
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