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Several classes of minimal linear codes with few weights from
weakly regular plateaued functions

Sihem Mesnager* Ahmet Sinak’

Abstract

Minimal linear codes have significant applications in secret sharing schemes and
secure two-party computation. There are several methods to construct linear codes, one
of which is based on functions over finite fields. Recently, many construction methods of
linear codes based on functions have been proposed in the literature. In this paper, we
generalize the recent construction methods given by Tang et al. in [[EEE Transactions
on Information Theory, 62(3), 1166-1176, 2016] to weakly regular plateaued functions
over finite fields of odd characteristic. We first construct three weight linear codes
from weakly regular plateaued functions based on the second generic construction and
determine their weight distributions. We next give a subcode with two or three weights
of each constructed code as well as its parameter. We finally show that the constructed
codes in this paper are minimal, which confirms that the secret sharing schemes based
on their dual codes have the nice access structures.

Keywords Linear codes, minimal codes, weight distribution, weakly regular plateaued
functions, cyclotomic fields, secret sharing schemes.

1 Introduction

Linear codes have diverse applications in secret sharing schemes, authentication codes,
communication, data storage devices, consumer electronics, association schemes, strongly
regular graphs and secure two-party computation. Indeed, as a special class of linear codes,
minimal linear codes have significant applications in secret sharing schemes and secure
two-party computation. Constructing linear codes with perfect parameters, an interesting
research topic in cryptography and coding theory, has been widely studied in the literature.
There are several methods to construct linear codes, one of which is based on functions over
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finite fields (see e.g. [6l [7, 9, 15 20, 22]). Two generic constructions (say, first and second)
of linear codes from functions have been distinguished from the others in the literature.
Recently, several constructions of linear codes based on the second generic construction
have been proposed and many linear codes with perfect parameters have been constructed.
In fact, Ding has come up with an interesting survey [6] devoted to the construction of
binary linear codes from Boolean functions based on the second generic construction. Bent
functions (mostly, quadratic and weakly regular bent functions) have been extensively used
to construct linear codes with few weights. It was shown in a few papers (see e.g. [9, 20} 22])
that bent functions lead to the construction of interesting linear codes with few weights
based on the second generic construction. Indeed, Tang et al. (2016) have constructed in
[20] two or three weight linear codes from weakly regular bent functions over finite fields of
odd characteristic based on the second generic construction. This inspires us to construct
linear codes from weakly regular plateaued functions over finite fields of odd characteristic.
Within this framework, to construct new linear codes with few weights, we aim to make use
of weakly regular plateaued functions for the first time in the second generic construction.

The paper is structured as follows. Section [2]sets main notations and gives background
in finite field theory and coding theory. In Section B we present some results related to
weakly regular plateaued functions, which will be needed to construct linear codes. In
Section @l we construct two or three weight linear codes by using some weakly regular
plateaued functions over finite fields of odd characteristic based on the second generic
construction. We also determine the weight distributions of the constructed codes. Finally,
in Section [B] we analyze the minimality of the constructed codes and hence observe that
all nonzero codewords of the constructed codes are minimal for almost all cases.

2 Preliminaries

In this section, after setting basic notations, we mention the connection between linear
codes and secret sharing schemes. We end this section by recording some properties of
weakly regular plateaued functions.

2.1 Basic notations

Herein after, we fix the following notations unless otherwise stated.

e For any set E, #FE denotes the cardinality of £ and E* = E \ {0},

e 7 is the ring of integers and Q is the field of rational numbers,

|z| denotes the magnitude of z € C, where C is the field of complex numbers,

p is an odd prime and g = p™ is an n-th power of p with n being a positive integer,

IF, is the finite field with ¢ elements and F; = (() is a cyclic group with generator ¢,



n—1

The trace of o € F; over F), is defined by Tr" (o) = a + o + o 4ol

&p = e2mi/P ig the complex primitive p-th root of unity, where ¢ = v/—1 is the complex
primitive 4-th root of unity,

SQ and NSQ denote the set of all squares and non-squares in F}, respectively,

e 7 and 7 are the quadratic characters of Fy and Fy,

o p* =n(—1)p= (—1)%]9. Notice that p" = n(’)’(—l)\/p*%.

Cyclotomic field Q(§,). A cyclotomic field Q(§,) is obtained from the field Q by adjoining
{p- The ring of integers in Q(p) is defined as Og,) = Z(§,). An integral basis of
Oqe,) is the set {5;; : 1 < i < p—1}. The field extension Q(§,)/Q is Galois of degree
p — 1, and the Galois group Gal(Q(,)/Q) = {0, : a € Fy}, where the automorphism o,
of Q(&p) is defined by 04(§,) = £,. The cyclotomic field Q(§,) has a unique quadratic
subfield Q(v/p*). For a € Fy, we have 0,(/p*) = no(a)y/p*. Hence, the Galois group
Gal(Q(v/p*)/Q) = {1,0,}, where v € NSQ. For a € Fy and b € F,, we clearly have
0a(&5) = &8 and 04 (v/p™") = 1™ (a)/p™", which will be needed to prove our subsequent

P
results. The reader is referred to [I3] for further reading on cyclotomic fields.

2.2 Linear codes and Secret sharing schemes

A linear code C of length n and dimension & over F), is a k-dimensional linear subspace of an
n-dimensional vector space [y, which can be viewed as an extension field Fj». An element
of C is said to be codeword. The Hamming weight of a vector a = (ag,...,a,-1) € Fy,
denoted by wt(a), is the cardinality of its support defined as

supp(a) ={0<i<n-—1:a; #0}.

The minimum Hamming distance of C is the minimum Hamming weight of its nonzero
codewords. A linear code C of length n and dimension k over [F,, with minimum Hamming
distance d is denoted by [n, k, d] - Note that d detects the error correcting capability of C.
Let A,, denote the number of codewords with Hamming weight w in C of length n. Then,
(1, Aq,..., Ay) is the weight distribution of C and the polynomial 1+ Ay +---+ Apy™ is
called the weight enumerator of C. The code C is called a t-weight code if the number of
nonzero A, in the weight distribution is ¢.

We now state the covering problem of a linear code C. We say that a codeword a of
C covers another codeword b of C if supp(a) contains supp(b). A nonzero codeword a of
C is said to be minimal if a covers only the codeword ja for every j € IF,, but no other
nonzero codewords of C. A linear code C is said to be minimal if every nonzero codeword
of C is minimal. Determining the minimality of a linear code over finite fields has been an
attractive research topic in coding theory. The covering problem of a linear code C is to



find all minimal codewords of C. This problem is rather difficult for general linear codes,
but easy for a few special linear codes.

The following lemma says that all nonzero codewords of C are minimal if the Hamming
weights of the nonzero codewords of C are too close to each other. The reader also notices
that a necessary and sufficient condition on minimal linear codes over finite fields has been
presented in [I1, Theorem 11]. Indeed, it is worth noting that [II] provides an infinite
family of minimal linear codes violating the following sufficient condition.

Lemma 1. (Ashikhmin-Barg) [1] All nonzero codewords of a linear code C over F, are
minimal if

p wmax
where Win and Wmax denote the minimum and mazimum weights of nonzero codewords in
C, respectively.

p—1 < Wmin

)

In a secret sharing scheme, a set of participants who can recover the secret value s
from their shares is called an access set. The set of all access sets is said to be the access
structure of a secret sharing scheme. An access set is said to be a minimal access set if
any of its proper subsets cannot recover s from their shares. We take only an interest in
the set of all minimal access sets, which is said to be a nice access structure.

From [3, Lemma 16], there is a one-to-one correspondence between the set of minimal
access sets of the secret sharing scheme based on C and the set of minimal codewords of the
dual code C*. Hence, to find the minimal access sets of the secret sharing scheme based
on C, it is sufficient to find the minimal codewords of C whose first coordinate is 1.

The following proposition describes the access structure of the secret sharing scheme
based on a dual code of a minimal linear code.

Proposition 1. [3,[§] Let C be a minimal linear [n, k,d], code over IF,, with the generator
matriz G = [€0,81,...,8n_1]. We denote by d* the minimum Hamming distance of its
dual code C+. Then in the secret sharing scheme based on Ct, the number of participants
isn — 1, and there exist p"~1 minimal access sets.

o If d- =2, the access structure is given as follows. If g;, 1 <i <mn —1, is a multiple
of go, then participant P; must be in all minimal access sets. If g;, 1 <i<n-—1, is
not a multiple of g, then P; must be in (p — 1)p*=2 out of p*~1 minimal access sets.

o If d+ >3, for any fized 1 < t < min{k — 1,d*+ — 2}, every set of t participants is
involved in (p — 1) pF =D out of pF=1 minimal access sets.

In the following subsection, we introduce some results on weakly regular plateaued
functions.



2.3 Weakly regular plateaued functions
Let f : F, — I, be a p-ary function. The Walsh transform of f is given by:

f(}(ﬁ) _ Z Spf(x)—Tr”(Bx)7 BeF,.

z€lFy

A function f is said to be balanced over F), if f takes every value of I, the same number
of p"~! times, in other words, X7(0) = 0; otherwise, f is called unbalanced. Notice that f
can be recovered from x7 by the inverse Walsh transform:

T 1 = " (Bx
GO == X585 . (1)
p BERq

Bent functions, introduced first in characteristic 2 by Rothaus [19] in 1976, are the functions
whose Walsh coefficients satisfy |Y;(8)|> = p™. A bent function f is called regular bent if
for every B € Fy, p_%)/(}(ﬂ) = 5;:*(5) for some p-ary function f*:F, — IF,, and f is called
weakly regular bent if there exist a complex number u with |u| = 1 and a p-ary function
f* such that up_%)/(}(ﬂ) = &{*(B ) for all B € F,. Notice that f* is also a weakly regular
bent function. As an extension of bent functions, the notion of plateaued functions was
introduced first in characteristic 2 by Zheng and Zhang [2I] in 1999. A function f is said
to be p-ary s-plateaued if |Y;(8)|?> € {0,p" ™} for every B € F,, where s is an integer
with 0 < s < n. The Walsh support of plateaued f is defined by Supp(xy) = {8 € Fy :
IX7(B)|?> = p"™*}. The Parseval identity is given by >_pger, 1X7(B)|? = p*™. The absolute
Walsh distribution of plateaued functions follows from the Parseval identity.

Lemma 2. [17] Let f : F, — F, be an s-plateaued function. Then for 3 € Fy, |X7(8)[?
takes p"~° times the value p"** and p" — p"~*° times the value 0.

Definition 1. [18] Let f : F;, — F,, be a p-ary s-plateaued function, where s is an integer
with 0 < s < n. Then, f is called weakly reqular p-ary s-plateaued if there exists a complex
number v having unit magnitude (in fact, |u| = 1 and u does not depend on ) such that

X7 (B) € {O,UPHTH@%(B)}

for all 5 € F,, where g is a p-ary function over F, with g(3) = 0 for all 5 € F, \ Supp(x7);
otherwise, f is called non-weakly reqular p-ary s-plateaued. In particular, weakly regular f
is said to be regular if u = 1.

Lemma 3. [18] Let f : F; — F), be a weakly regular s-plateaued function. For all 5 €

Supp(x7), we have X7(B) = e\/p*nJrsé’zg,(ﬁ), where € = £1 is the sign of X5 and g is a p-ary
function over Supp(Xx7).



The following lemma can be derived from Lemma B

Lemma 4. Let f : F; — F, be a weakly regular s-plateaued function. Then for x € Fy,

SO g — ()T,

BeSupp(x7)

where € = £1 is the sign of Xy and g is a p-ary function over Fy with g(8) = 0 for all
B € Fy\ Supp(X7)-

Proof. By the inverse Walsh transform in (1), we have
n 1 n—+s n
Bqu BESupp(Xy)

where we used that x7(8) = 0 for all 3 € F, \ Supp(x7). Hence, we get

]. TL S
> U = —msa gl = el VPTG

BeSupp(X5)

where we used in the last equality that p"™ = ng(—l)\/p*zn.

The following lemma is a direct consequence of Lemmas 2] and [l

Lemma 5. Let f : F, — F), be a weakly reqular s-plateaued function with x7(8) =

e\/_nJrSﬁg for every 5 € Supp(xy), where ¢ = £1 is the sign of x5 and g is a p-
ary function over Fy with g(B8) = 0 for all § € Fy \ Supp(xy). Then, we get x4(0) =

pn _pn—s+€ng( )\/—n s f(O '
Remark 1. Notice that Lemma [B] confirms that g can not be balanced.

We now define the subset of the set of weakly regular plateaued functions, which is
going to be used to construct linear codes. Let f : F, — F, be a weakly regular p-ary
s-plateaued unbalanced function, where 0 < s < n, and we denote by W RP the set of such
functions satisfying the following two properties:

P1) f(0) =0, and

P2) there exists a positive even integer h with ged(h — 1,p — 1) = 1 such that f(az) =
a"f(z) for any a € F} and x € F,.

Lemma 6. Let f € WRP. Then for any 3 € Supp(xy) (resp., f € Fq \ Supp(xy)), we
have zf3 € Supp(Xy) (resp., 2B € Fy \ Supp(xy)) for every z € Fy.



Proof. For every z € F} and 3 € Fy, we have

l n
ng(w —Tr" (2Bz) fozm —2Tr"(Bz*x) przf 2'Tr Bw)

z€F, z€F, z€F,

where k is a positive odd integer such that k(h—1) =1 (mod p—1) and [ = k+ 1, and is

Z f T (Bz) | — 5, (i}(ﬂ)) = 0 1 ok, \ SUPP(ﬁ)v
z€F, ) N/ g(ﬁ), if 5 € Supp(Xy),

n—i-S( )

where we used in the last equality that 7 = 1. Hence, the proof is complete. O

Lemma [6] implies that there exists a subset Pg of the Walsh support of f € WRP
such that Supp(Xy) = FyPs = {28 : z € Fj and 8 € Pg}, where for each pair of distinct

elements (1, B2 € Pg we have % ¢ I
We now give a brief introduction to the quadratic functions (see e.g. [10]). Recall that
any quadratic function from F,» to F, having no linear term can be represented by

[n/2]
Z Tr" (a;z? +1 (2)

where |z ] denotes the largest integer less than or equal to z and a; € Fpn for 0 < ¢ < |n/2].
Let A be a corresponding n x n symmetric matrix with Q(z) = 27 Az defined in [10] and
L be a corresponding linearized polynomial over IF,» defined as

l

L(z) = Z(aiz”i + afniizpnf

1=0

7

).

The set of linear structures of quadratic function @ is the kernel of L, defined as

kerp, (L) = {z € Fpn : Q(z +y) = Q(2) + Q(y), Yy € Fyn}, (3)

which is an [F)-linear subspace of F,». Let the dimension of ker]Fp(L) be s with 0 < s <mn.
Notice that by [12, Proposition 2.1], the rank of A is equal to n — s. It was shown in [10]
that a quadratic function @ is bent if and only if s = 0; equivalently, A is nonsingular, i.e.,
has full rank. Hence, we have the following natural consequence (see e.g. [10, Proposition
2] and [17, Example 1]).

Proposition 2. Any quadratic function Q is s-plateaued if and only if the dimension of
the kernel of L defined in (3) is equal to s; equivalently, the rank of A isn — s.

Indeed, from [10, Proposition 1] and [4, Theorem 4.3] we have also the following rea-
sonable fact.



Proposition 3. The sign of Walsh transform of quadratic functions does not depend on
mputs which means that any quadratic function is weakly regular plateaued. Namely, there
18 no quadratic non-weakly reqular plateaued functions.

Remark 2. All quadratic unbalanced functions defined in (2]) are in the set WRP. Hence,
all of these functions can be used to construct linear codes in this paper.

Example 1. The function f : F31 — F3 defined as f(z) = Tr*((2'04- ¢z 4 ¢5822), where

F%, = (¢) with ¢* +2¢3 + 2 = 0, is the quadratic 2-plateaued unbalanced function in the
3

set WRP with

X7(8) € {0,end (~1)3°65 P} = {0, 27, —27€5, —27¢3}

for all B € Fg1, where e = 1, n9(—1) = —1 and g is an unbalanced 3-ary function with
9(0) = 0, g(¢?) = g(¢*) = g(¢*) = g(¢™) = 1 and g(¢°) = 9(¢°) = g(¢**) = g(¢*) =
2. Clearly, we have Supp(xy) = {0,¢*¢°,¢%¢%,¢*,¢*,¢*,¢™} and Ps = {0,¢* =
2C42 C5 — 2C45 CG — 2C46 C33 — 24’73}‘

We conclude this section by recording the following necessary results.

Lemma 7. [20] Let a;,b; € Z for every i € F), such that Zf:_ol a; = Zf:_ol b; mod 2 and

Z§:_01 a,{; = Z§:_01 bifli, mod 2. Then, a; = b; mod 2 for every i € IFp.

Lemma 8. [1]] For a € F}, we have > ek, SpTr"(axQ) = (=1)""n(a)y/p*". In particular

(in case of n =1), for a € Fy;, we have

Z ga:c2 — \/Fa ac SQa

p —/p*, a€ NSQ.
zelF,

Proposition 4. Let f € WRP, then g(0) = 0.

Proof. From Lemmas [7] and B the proof can be completed by using the same argument
used in the proof of [20, Proposition 4]. O

One can immediately observe the following proposition from the proof of Lemma [6l

Proposition 5. Let f € WRP, then there exists a positive even integer | with ged(l —
1,p — 1) = 1 such that g(afB) = alg(B) for any a € F and 3 € Supp(Xy)-

Lemma 9. [7]] We have
) Y mla) = 0,

i) Y aery m(@)éy = VP = { ;{/ﬁ]%, chfﬁ i ; Eigj i;:

i) Yaers &80 = —1 for any b € F}.

oo



3 Exponential sums from weakly regular plateaued func-
tions

In this section, we present some results on exponential sums related to weakly regular
plateaued functions, which are going to be needed in Section Ml to construct linear codes.
Actually, these results were given in [20] for weakly regular bent functions; however, for the
sake of completeness, we state them translated into our framework and give their proofs.

We begin this section with the following lemma, which will be used to find the length
of a linear code.

Lemma 10. Let f : F; — F, be an unbalanced function with X;(0) = e/p ", where
€ = £1 is the sign of 7. For j € Fp,, define N¢(j) = #{x € Fy: f(z) = j}. Then, ifn+s
1S even,

NGy = 4 P e = DV i =0,
! pnl— 6770(—1)\/]?"“_2, if j € F*
P if j =0,
if n+ s is odd, Np(j) = ¢ p" '+ e\/F"JFS_l, if j € SQ,
Toep T ifjeNSQ.

Proof. Clearly, we have Z Ny(j )§p = e/ "°; namely, ?;(1] Nf(j)g; — /P =0
If n + s is even, then for all j € Fy we have Ny(j) = a and Ny(0) = a + ev/p e for
some constant integer a since Zp _é 27 is the minimal polynomial of §p over Q. Hence,
since Z?;é N (j) = p", we get a + ey/p*° + (p — 1)a = p" from which we deduce that
a=p" ! — en((]n+s)/2(— Dp™+s=2/2 1f n + s is odd, then we get

p—1 p—1
N n+s—1 .
SNGE — e/ mo()E =
Jj=0 Jj=1
where we used the fact that Zp —1m0(J ){% = /p* by Lemma [J] (i7), equivalently,

)+ Z (Nf —eno(y )\/z?nﬁ_l) 51{ =0.

As in the even case, for all j € Fy we have Ny(j) = Ny (0) + eno(5)v/pm 57" and hence

PNF(0) + ey/p T 12] 1770( ) = p". Then we get N;(0) = p"~! by Lemma[dl (i). Thus,
the proof is ended. O

The following lemma has a crucial role in determining the weight distributions of a
linear code.



Lemma 11. Let f € WRP with x7(8) = e\/F"“gg(ﬁ’ for every B € Supp(xy). For
j € Fy, define Ny(j) = #{B € Supp(X7) : 9(8) = j}. Then, if n— s is even,

NGy = L P T e e - DV =0,
! P — et (=TT, if j € F},

P, if j =0,
ifn— s is odd, Ny(j) = § p" " e (D)o T, ifj €5Q,
P e (—)VPT T, ifj € NSQ.

Proof. By Lemma [, for z = 0, we have Z 55(5 ) = eng (—1) /p—*n—s7 equivalently,
BESupp(Xy)

p—1
N NG () — eni (1) =0
§=0

If n — s is even, then for all j € Fj we have Ny(5) = a and Ny(0) = a+ eni(—1)/p* " ° for
some constant integer a. Hence, since #Supp(xf) = p"~*, we get

p—1
S NG () = a+ e (VP + (p— 1)a = p" .
=0

If n — s is odd, with the same argument used in the proof of Lemma [I0, we get Ny(j) =
Ny (0) + eng‘(—l)no(j)\/]?"_s_l for all j € F; and hence

PNG(0) + enfi(=1)\/p* 123770

Then we conclude Ny (0) = p"~*~! from Lemma [ (i), which completes the proof. O

Lemma 12. Let f : F, — F,, be an unbalanced function with x7(0) = e\/ﬁnﬂ, where
€ = +1 is the sign of X5. Then,

Z Z yf(z) :{ _1)\/—11—1—37 if n+ s is even,

if n+ s is odd.
yeF; z€lfq f +

Proof. From the definition, one can immediately observe that

Z Z ggf(x) = Z Oy Z gI]:(x) = Z Oy (E\/ETH_S) = 6\/]?”4—8 Z 776L+S(y)

y€Fy z€lfq yeFy z€lFy yeFy yeFy

Hence, the assertion follows clearly from Lemma [ (7). O

10



Lemma 13. Let f € WRP. For § € Fy, define A=3", .cpx D er, gf(m)—ZTr"(ﬁw)‘ Then,

for every B € T \ Supp(X7), we have A =0, and for every 0 # € Supp(Xy), if n+ s is
even, then

Ao { elp— 1V, if g(B) =0,
—e(p— VP, if g(B) # 0,

A=
if n+ s is odd, then { eno(g(8)(p — DVt ifg(B) #0.

Proof. By Lemma [0, for every § € Supp(Xy), we have Xf(zf5) = e\/ﬁnﬂﬁg(zﬁ) for any
z € F5. Then for every 0 # 8 € Supp(x;), we have

A=Y oy [ D@ e = N o (77(28))

y,z2€F} z€Fy y,2€F}

— Z gy(e\/]?""’sgg(zﬁ))

y,ze]FZ*,

— Z O—y(e\/]?"*s ;’g(ﬁ)

y,2€F

=e(p— VP> it (y)er ),

yE]F]*J
where we used Proposition [ in the fourth equality and used the fact that 2! is a square in
[y, for any z € F} in the last equality. When n+sis even, A = ¢(p— 1)\/p*"+s ZyeF; gg(ﬁ),

which is e(p — 1)2/p*"* if g(8) = 0; otherwise, —e(p — 1)y/p*"° from Lemma [ (iii).
When n + s is odd, we clearly have A = 0 if g(8) = 0; otherwise, conclude that

A=clp— DV oy | S mwel | = en(e(8)e - DV

yeFy

where we used Lemma [ (ii). For every 8 € Fy; \ Supp(Xy), we immediately get A = 0.
Hence, the proof is complete. O

The following lemma has a significant role in finding the Hamming weights of the
codewords of a linear code.

Lemma 14. Let f € WRP with x7(0) = e/p . For B € Fy, define Ny g = #{x € Fy:
f(x) =0 and Tx"(Bz) = 0}. Then, for every 5 € Fy \ Supp(X7),

_ [P el - DV ifn+ s ds even,
1B P2, ifn+ s is odd,

11



and for every 0 # 5 € Supp(Xy), if n+ s is even, then
n 2 wn+s—2 ; —

N o — +eno(—=1)(p — 1)v/p* ,ifg(B) =0,

1o { P, if 9(B)

P2, if 9(B

if n+s is odd, then Nyg={ p"2+e(p—1)vp "% ifg(8) € 5Q,

PP —elp— V)V ifg(B

Proof. By the definition of Ny g, one can observe that

Nig =230 [ S er@ | [ S0 g

z€lFy \y€eF, z€lfy

—pr 2 S S @@ g 3N eui(o)—en (8,

y€Fy z€lfq y,2€F} x€fy
Hence, the proof is concluded from Lemmas 12 and I3l d

The following can be immediately observed as in Lemma

Lemma 15. Let f : F; — F, be an unbalanced function with X;(0) = e/p %, where
€ = £1 is the sign of X7. Then, we have

S Y =)V

yeFy z€lFq

Lemma 16. Let f € WRP. For 3 € F}, define A = Zy’zeﬂ;; Zmqu ng(x)_ZTrn(Bx). Then,
for every 8 € Ty \ Supp(X7), we have A =0, and for every 0 # € Supp(xs), we have

e(p—1)2p, if 9(8) =0,
A=q =DV (VF 1), ifg(B) € 5Q,
—e(p=DVP T (VPF 1), if 9(B) € NSQ.
Proof. As in the proof of Lemma [I3], we get A = Zy 2eF3 Ty (x7(2p)) for every B € Fy.
For every 3 € F \ Supp(x), we clearly have A = 0. For every 0 # /8 € Supp(Xy), we get

A= Z \/7 n+s g(zﬁ _ Z O_y2(€\/]?”+s ;lg(ﬁ)

%zeF %ZEF;
:e\/]?nﬁ Z 02
yzEF
— 6\/_ Z gy g(B
yeFy
— E\/E"“(p —1)Y e eV (p—
yeFy

12



where in the second equality we used Proposition [fl and in the fourth equality we used the
fact that y?z! runs through all squares in F; when y ranges over F) for any fixed z € F.
Hence the assertion follows from Lemma 8 O

The following lemma has a significant role in finding the Hamming weights of the
codewords of a linear code.

Lemma 17. Let f € WRP. For ( € Fy, define

Nogp =#{z €Fy: f(z) € SQ and Tr"(fx) = 0},
Nusqpg =#{x €Fy: f(z) € NSQ and Tx"(Sz) = 0}.

Then, for every B € Fs\Supp(Xy), if n+s is even, Nyg 3 = Nnsq,s = p%l <p"_2 - e\/p*n+s_4) ,
ifn+ s is odd,

i
L

_ -3
qu,ﬁ = 2 pn 2 + 67]0(_1) \Y p*n+s )
_ _ -3
Nosas =255 (0772 —eno(—1) /P *°

For every 0 # B € Supp(X7), if n+ s is even, then

Ny = 2L (pn=2 —eno(— 1)/ 72)  ifg(B) = 0 or g(B) € NSQ,
’ e (p 2+ eno(-D)VPT ) if g(B) € SQ,

Ny = et (072 —em(—DVET ) i g(8) = 0 or g(8) € SQ.
’ e (pr =2 eno(—1)VPT ), if g(B) € NSQ,

if n+ s is odd, then

e (=2 4 e ) ifg(B) =0,

Nus =2 (2= 7°), ifg(B) € SQ,
el (pn 2+ e/ ) ifg(B) € NSQ,

( e (p" 2 — ey )L ifg(B) =0,

Nusgs =1 B2 (P2 =y 7°), ifg(B) € SQ,
e (pn=2 4 ") if g(B) € NSQ.

Proof. In view of Lemmas [14] and [I6 the proof can be constructed with the same
argument used in the proof of [20, Lemma 14]. O

13



4 Linear codes with few weights from weakly regular plateaued
functions

In this section, we generalize the recent construction methods of linear codes proposed by
Ding et al. [5, 9] and Tang et al. [20] to weakly regular plateaued functions, based on the
second generic construction. We also record a subcode of any constructed code.

4.1 Two or three weight linear codes with their weight distributions

In this subsection, to construct new linear codes, we make use of weakly regular plateaued
functions in the construction method of linear codes proposed by Ding et al. [9]. Let f be
a p-ary function from I, to [F,. Define a set

Dy ={z € Fy: f(x) =0}. (4)

Assume m = #Dy and Dy = {d1,ds, ... ,dn}. The second generic construction of a linear
code from f is obtained from Dy and a linear code involving Dy is defined by

Cp, ={cg = (Tt"(Bdr), 1" (Bd2), ..., Tx"(Bd)) : B € Fy}. (5)

The set Dy is usually called the defining set of the code Cp,. The code Cp, has length
m and dimension at most n. This construction is generic in the sense that many classes
of known codes could be produced by selecting the defining set Dy C [F,. For a general
function f, determining the weight distribution of Cp, is little hard, but easy for some
special functions. For example, the weight distribution of Cp, was determined by Ding
et al. [9] for a quadratic function f(z) = Tr"(22), by Zhou et al. [22] for quadratic bent
functions and by Tang et al. [20] for some weakly regular bent functions. We now solve
this problem for some weakly regular plateaued functions.

The Hamming weights of the codewords of the code Cp, as well as its length are derived
from Lemmas [I0 and [4], and its weight distribution is determined by Lemmas Pl and 111

Theorem 1. Let n + s be an even integer and f € WRP. Then Cp, is the three-weight

linear code with parameters [p"‘l —1+4en(=1)(p— 1)\/p*"+8_2, n] , where e = +1 is the
P
sign of X7. The Hamming weights of the codewords and the weight distribution of Cp, are

as in Table[1l

Proof. Clearly, we get #Df = Np(0) —1=p" 1 — 1+ eno(—1)(p— 1)\/]?7”5_2 by Lemma
and wt(cg) = #Dy — Nyp + 1 for every § € F; by Lemma 4 Then, for every

B € F}\ Supp(X7), we have wit(cg) = (p— 1)(p" % + €(p — 1)v/p=" ™), and the number
of such codewords cg is p™ — p"~* by Lemma 2l For every 0 # € Supp(xy), we obtain

Heg) = (p—1p" 2, if g(8) =0,
CREIEL =) (pr R em(—DVETTTR) i g(8) # 0,

14



‘ Hamming weight w ‘ Multiplicity A,

0 1
(-1 (p’“2 +elp— 1)\/p*"+“"’4) pr—p"
(p—1p"~* A Gt V[V VY
-1 (" +em(-Dve" ) | -0 (T e OV

Table 1: The weight distribution of Cp, when n + s is even

and the number of such codewords cg follows from Lemmal[lIl Hence the proofis ended. [

Remark 3. In Theorem [ if ené"+s)/2(—1) = —1, then we need the condition 0 < s < n—4;
otherwise, 0 < s <n — 2.

Example 2. The function f : Fss — F3 defined as f(z) = Tr®(Cx?* + ¢81622), where
Fis = (¢) with 84+ 2¢5 4+ ¢*+2¢C% +2¢ +2 =0, is the quadratic 2-plateaued unbalanced
function in the set WRP with

X7(8) € {0, eng (~1)3%¢4 D} = {0,243, 243¢3, 243¢2}

for all 8 € Fas, where e = —1, n9(—1) = —1 and g is an unbalanced 3-ary function with
9(0) = 0. Then, Cp ; 18 the three-weight linear code with parameters [2348, 8, 1458]3, weight
enumerator 1 + 260y458 4+ 5832y1%66 1 4681620 and weight distribution (1,260, 5832, 468),
which is verified by MAGMA in [2]. This code is minimal by Lemma [

Theorem 2. Let f € WRP and n+ s be an odd integer with 0 < s <n — 3. Then, Cp,

is the three-weight linear code with parameters [p”_l —1,n,(p—1) (p"_2 — p(”+3_3)/2)]p.
The Hamming weights of the codewords and the weight distribution of Cp, are as in Table

[3, where e = £1 is the sign of X5.

‘ Hamming weight w ‘ Multiplicity A, ‘
0 1
(p _ 1)pn72 pn _"_pnfsfl _ pnfs —1

S

S

O (A o B I A e
) R ) D e ol G AN

Table 2: The weight distribution of Cp, when n + s is odd

Proof. The proof can be completed in a similar way to the even case in Theorem [Il O
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Example 3. The function f : F3s — Fg defined as f(z) = Tr*(2* + 22), where F}; = (¢)
with ¢3 +2¢ 4+ 1 = 0, is the quadratic bent function in the set WRP with

X7(B) € {i3V3,i3V/3&3,i3V365} = {6&5 + 3, —3&3 — 6, —3&3 + 3}

for all g € F33, where e = —1 and n9(—1) = —1. Then, CDg{ is the three-weight linear code
with parameters [8,3,4]3, weight enumerator 1 + 8y5 + 6¢° + 12y* and weight distribution
(1,8,6,12), which is verified by MAGMA in [2].

Since the Hamming weights of all nonzero codewords of Cp, have a common divisor
p — 1, we can obtain a shorter linear code from the code Cp,. Let f € WRP. For any
r € Fy, f(r) =0 if and only if f(az) = 0, for every a € Fj. Then one can choose a subset
Dy of the defining set Dy of Cp, defined by () such that UaE]F; aDy is a partition of Dy,
namely,

Df :F;Df = {ab ac F;,b S Df},

where for each pair of distinct elements by, by € D ¢ we have Z—; ¢ F7. This implies that the

linear code Cp ; can be punctured into a shorter linear code Cph e where D ¢ is its defining
set. Notice that for 3 € Fy,

#{z € Dy : f(z) =0 and Tx"(Bz) = 0} = (p — 1)#{x € Dy : f(x) =0 and Tv"(Bz) = 0}.

Hence, the following linear codes in Corollaries [I] and [2] are directly obtained from the
constructed ones in Theorems [Il and 2] respectively.

Corollary 1. The punctured version CDf of the code Cp, of Theorem [l is the three-weight

linear code with parameters [(p"‘l —1)/(p—1) + eno(=1) /=72, n] whose weight dis-
P
tribution is listed in Table[3.

‘ Hamming weight w ‘ Multiplicity A, ‘
0 1
P2 help— 1) T S
A P e (e - DYV -1
PP e~V TR | (p—1) (p’“*l - 6778“(—1)\/17”’H)

Table 3:  The weight distribution of Cp, when n + 5 is even

Example 4. The punctured version Cp ; of Cp, in Example 2] is the three-weight linear

code with parameters [1174,8,729]3, weight enumerator 1 + 260y72" 4- 5832y733 4- 4684310
and weight distribution (1,260, 5832,468). This code is minimal by Lemma [Il

16



Corollary 2. The punctured version CDf of the code Cp, of Theorem [2 is the three-

weight linear code with parameters [(p”_1 -1)/(p—1),n,p" 2%~ p(”+s_3)/2]p whose weight
distribution is listed in Table [4)

‘ Hamming weight w ‘

Multiplicity Ay, ‘

1

n—2

pn _|_pn7571 —p"75 -1

n—2

P — € p*nJrsfS

p—1

(e (v

pn72+6\/]?n+573

2
p—

L e oy

N

Table 4:  The weight distribution of Cp when n + s is odd

Example 5. The punctured version Cp ; of Cp, in Example[dis the three-weight linear code

with parameters [4, 3,2]3, weight enumerator 1+ 8y3 + 6y* + 12y? and weight distribution
(1,8,6,12), which is verified by MAGMA in [2]. This code is optimal owing to the Singleton
bound.

In particular, we can work on the Walsh support of a weakly regular plateaued function
f to define a subcode of each constructed code above. We consider a linear code involving
Dy defined by

Cp, = {cg = (Tx"(Bd1), k" (Bdz), ..., Tt"(Bdm)) : B € Supp(X7)}, (6)

which is the subcode of Cp, defined by ([B). Hence, the following codes in Corollaries [3] [4]
and [6] are the subcodes of the codes of Theorems[I] 2] and Corollaries [l 2, respectively.
Notice that their parameters are directly derived from that of corresponding codes.

Corollary 3. The subcode (fo of the code Cp, of Theorem [ is the two-weight linear code

with parameters [p"‘l —1+4eny(—1)(p — 1)\/p*n+s_2, n —s| whose weight distribution is
p

listed in Table [3.

‘ Hamming weight w ‘ Multiplicity A, ‘
0 1
(p—p" > P e T (D - Dy -1

R R o I ] (e A N

Table 5: The weight distribution of Cp ; when n + s is even
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Corollary 4. The subcode C_Df of the code Cp, of Theorem|2 is the three-weight linear code
with parameters [p"_l —1,n—s(p—1) (p"_2 — p(”+s_3)/2)]p whose weight distribution is
listed in Table [

‘ Hamming weight w ‘ Multiplicity A, ‘

0 1
(p—1)p"? p
pn72 _ E\/FnjLsf:s) qu
P+ 6\/17”“73) et (JD’H’1 —enp(—1)

—
bS]
|
—_
=

N

Table 6: The weight distribution of Cp ; when n + s is odd

Corollary 5. The subcode éDf of the code CDf of Corollary [l is the two-weight linear code

with parameters [(p"_1 -1)/(p—-1)+ 6770(—1)\/]7"“_2, n — s| whose weight distribution
P

is listed in Table[7.

‘ Hamming weight w ‘ Multiplicity A, ‘

0 1
n—2 pnfsfl 4 5”7(7)L+1(—1)(p _ 1)\/Z?n7572 _1
pn72 +6n0(_1)\/1?n+572 (p_ 1) (p"7371 _ 67761+1(_1)\/Fn7372)

Table 7: The weight distribution of Cp ; When n + s is even

Corollary 6. The subcode C_Df of the code CDf of Corollary(2 is the three-weight linear code
with parameters [(p”_1 ~1)/(p—1),n—s,p" 2~ p(”+s_3)/2]p whose weight distribution is

listed in Table [8.

‘ Hamming weight w ‘

Multiplicity A,

0 1
pr? phl
P e (e () )
pn72+6\/1?n+573 prl (pnfsfl _67’]8(_1)\/1?’”7371)

Table 8: The weight distribution of Cp ; When n + 5 is odd



Remark 4. When we assume only the quadratic bent-ness (resp., the weakly regular bent-
ness) in this subsection, we can obviously recover the linear codes obtained by Zhou et al.
[22] (resp., by Tang et al. [20]). Therefore, this subsection can be viewed as an extension
of [22] and [20] to the weakly regular plateaued unbalanced functions.

The following section, to construct new linear codes, pushes further the use of weakly
regular plateaued functions in the construction methods proposed by Tang et al. [20].

4.2 Two or three weight linear codes with their weight distributions
Let f:F, — F, be a p-ary function. Define the sets
Disq={z€Fy: f(z) € SQ} and Dy psg = {x € Fy: f(x) € NSQ}.

With the similar definition of the linear code Cp, defined by (Gl), we can define a linear
code involving Dy s, = {d},d5, ..., d;,}

Cp;., = {cg = (Tt"(Bdy), TY"(Bdy), ..., Tx"(Bdy,)) : B € By} (7)
and a linear code involving Dy ,sq = {d{,d5, ..., d/,}
CDypeg = {cg = (T"(BdY), Tx"(Bd3), ..., Tx" (Bd,,)) : B € Fy}. (8)

From Lemmas[I0land [[7 we find the Hamming weights of the codewords of the linear codes
Cp;.,, and Cp, . as well as their length, and we determine their weight distributions from

Lemmas 2] and [I11
Theorem 3. Let n+ s be an even integer and f € WRP. Then, Cp, . is the three-weight
linear code with parameters [p%l (p"_l - eno(—l)«/p*"+s_2) ,n}p, where € = +1 is the

sign of X7. The Hamming weights of the codewords and the weight distribution of CDj g
are as in Table[d.

‘ Hamming weight w ‘ Multiplicity Ay, ‘
0 1
@ (p"72 . Ex/l?n+sf4) pr—pn®
@pn72 prs—l g el =1 (pn s— 1+€nn+1( 1)\/1?717572) 1
(=) (550" 7 —em (V) (o e )V

Table 9: The weight distribution of Cp, , when n+ s is even
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Proof. We have #Dy g, = p—;l(p”_1 — eno(—=1)v/p" %) by Lemma [0 and wt(cg) =
#Dj 5q — Nsq p for every g € F; by Lemma [I7 Then, for every g € I} \ Supp(X7¥),

_1)2 nts—
wies) = 55 (p2 = ey ).

and the number of such codewords cg is equal to p" — p"~® by Lemma 2l For every
0 # f € Supp(Xy),

wt(cg) = (p—21>zpn_2’ if g(B) =0 or g(B) € NSQ,
’ L opn=2 —eno(=1)(p — VP, if g(B) € SQ,

and the number of such codewords cg follows from Lemmal[lTl Hence the proofis ended. [

Remark 5. In Theorem [3] if 677((]"+s)/ 2(—1) = 1 and p = 3, then we have the condition
0 <s<n—4; otherwise, 0 < s<n-—2andn > 3.

Example 6. The function f : Fy35s — F3 defined as f(z) = Tr’((2* + ¢?3822), where

s = (¢) with ¢®4+2¢+1 =0, is the quadratic 1-plateaued unbalanced function in the set

WRP with
X7(8) € {0, end(—1)33¢5P} = {0, 27, —27¢5, —27¢3}

for all g € Fgs, where € = 1, no(—1) = —1 and g is an unbalanced 3-ary function with
g(0) = 0. Then, Cp, . is the three-weight linear code with parameters [90, 5, 543, weight
enumerator 1 + 50y°* + 162y%° 4 30y™ and weight distribution (1,50, 162,30), which is
verified by MAGMA in [2]. This code is minimal by Lemma/ll

Recall that we have the following fact:

(—1) = 1 ifandonlyif p=1 (mod 4),
o | =1 ifand only if p=3 (mod 4),

which will be needed in Theorems [ and

Theorem 4. Let n+ s be an odd integer and f € WRP. Then, Cp, , s the three-weight
linear code with parameters [pT_l <p"_1 + e\/p*nJrs_l) ,n]p, where € = 1 1is the sign of

X7- The Hamming weights of the codewords and the weight distribution of Cp,.,, are as in
Table 1A and Table [[1] when p =1 (mod 4) and p =3 (mod 4), respectively.

Proof. The proof can be completed in a similar way to the even case in Theorem Bl O

Remark 6. In Theorem @] if p = 3 (mod 4) and 677(()"+s_1)/2(—1) =—lorp=1 (mod4)
and € = —1, then we have the condition 0 < s < n — 3; otherwise, 0 < s <n-—1and n > 2.
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‘ Hamming weight w ‘ Multiplicity A, ‘

0 1
@pnfz pret
PR ((p—Dp" P +elp+1)yp" 7 L (prs Tl et
% (pn72 +6\/I—)n+573) Pt 4 pT—l (pnfsfl — 6\/1—)”7571)

Table 10: The weight distribution of Cp,  when p =1 (mod 4) and n + s is odd

Hamming weight w ‘ Multiplicity A, ‘
0 1
ﬂ]0"72 Pl 1
R A (A e e G e R
b ((P —1p"? —e(p+ 1)\/;?”“*3) p=1 (pnfsfl — 6(_1)n\/1?n7571)

Table 11:  The weight distribution of Cp,  when p =3 (mod 4) and n + s is odd

‘ Hamming weight w ‘ Multiplicity A, ‘
0 1
e pt -1
% (pn72 _eﬁn+s—:s) ot —p S 4 pT—l (pnfsfl _‘_E\/ﬁnfsfl)
pT—l ((p — l)pn72 —e(p+ 1)\/1—7n+s—3) prl (pnfsfl — 5\/1_7”7571)

Table 12: The weight distribution of Cp, ., when p =1 (mod 4) and n + s is odd

‘ Hamming weight w ‘ Multiplicity A, ‘
0 1
e P -1
1 ((p —p" 4 elp+ 1)\/1?”“*3) et (p"*é'*1 + e(—1)"\/g?”*5*1)
[CEIV (p"’2 + e\/z?”“”) pr—p" T+ 2t (p""“"l - 6(—1)"\/17%871)

Table 13:  The weight distribution of Cp, ., when p =3 (mod 4) and n + s is odd
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Theorem 5. Let n+s be an odd integer and f € WRP. Then, Cp, . is the three-weight
linear code with parameters [pT_l <p"_1 - e\/F"Jrs_l) ,n]p, where € = %1 is the sign of
X7- The Hamming weights of the codewords and the weight distribution of Cp;,., are as
in Table[I2 and Table[I3 when p =1 (mod 4) and p =3 (mod 4), respectively.

Proof. Obviously, we get #Djneq = 7%1(]9”_1 — /771 by Lemma [0 and wt(cg) =
#Dj nsq — Nnsq,p for every g € F; by Lemma [I7 Then, for every 8 € F; \ Supp(Xy),

—1)2 n+s—
wi(eg) =L (pn2 = eno(—1) )

and the number of such codewords cg is equal to p" — p"~® by Lemma 2l For every
0 # B € Supp(Xy),

eL(p — 1)pt2, if g(8) = 0,
wi(es) =4 B (0= D" 2+ ep (1 -pY), i g(B) € SQ,
e ((p—Dp 2 — e 0" + 1)), if g(B) € NSQ,

and the number of such codewords cg follows from Lemmal[lTl Hence the proofis ended. [

Remark 7. In Theorem [l if p =3 (mod 4) and 677((]"+s_1)/2(—1) =lorp=1 (mod 4) and

€ = 1, then we have the condition 0 < s < n — 3; otherwise, 0 < s <n—1and n > 2.

Example 7. The function f : Fys — Fy defined as f(z) = Tr®(Cx?* + (?"2?), where
36 = (¢) with CO+2¢* + (%2 +2¢+2 =0, is the quadratic 1-plateaued unbalanced function
in the set WRP with

X7(B) € {0,i27V3,i27V/383,i27V3¢3} = {0, 54&3 + 27, —27€&3 — 54, —27&3 + 27}

for all 5 € Fgs, where € = —1, ng(—1) = —1 and g is an unbalanced 3-ary function with
g(0) = 0. Then, Cp,,,, is the three-weight linear code with parameters [216,6,126]3,
weight enumerator 1 + 72y'%?6 + 576y'4* + 80y'%? and weight distribution (1,72, 576, 80),
which is verified by MAGMA in [2]. This code is minimal by Lemma [Tl

Remark 8. Let n+ s be an even and f € WRP. Then, Cp, . is the three-weight linear
code with the same parameters and weight distribution of Cp, , in Theorem Bl

We now obtain a shorter linear code from the above each constructed code. Let f €
WRP. For any z € Fy, f(x) is a quadratic residue (resp., quadratic non-residue) in Fy
if and only if f(aw) is a quadratic residue (resp., quadratic non-residue) in [y for every
a € F}. Then one can choose a subset Dy g, of the defining set Dy 5, of Cp 1.sq SUCh that

Dﬁsq = F;Df’sq = {ab ac F;, be Dﬁsq},
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‘ Hamming weight w ‘ Multiplicity A, ‘

0 1
pgl (pn72 B 6\/177&374) P —
ol pn-2 prT T e (p” b eny (- 1)\/17"7372) -1
e — eno(—1) V7T ( meeT —eng T 1)%1?"7572)

Table 14:  The weight distribution of Cp  when n + s is even

and a subset Df nsq Of the defining set Dy .54 of CDf nsq Such that Dy yqq = {ab:a € F5,b €
D #nsq)- Hence, one can easily obtain the punctured versions Cp, and Cj Dy of Cp,,, and
CD; .eq» TeSPectively, whose parameters are derived directly from that of the orlgmal codes
Notice that Corollaries [7 [§ and [ follow directly from Theorems Bl [ and [Bl respectively.

Corollary 7. The punctured version CDf . of the code Cp, , of Theorem[3 is the three-
weight linear code with parameters |&(p"~1 — eno(—l)\/p*mrs_z),n] whose weight distri-

P
bution is listed in Table [1])

Example 8. The punctured version Cp foa of Cp, ,, in Example[@lis the three-weight linear

code with parameters [45, 5, 27]3, weight enumerator 1+ 50y27 4 162y3° + 30y3¢ and weight
distribution (1,50, 162,30). This code is minimal by Lemma[Iland is almost optimal owing
to the Griesmer bound.

Corollary 8. The punctured version CDf,Sq of the code Cp, ., of Theorem [{] is the three-
weight linear code with parameters [%(p"‘l + e\/]?m's_l), n} whose weight distribution is
listed in Table [13 and Table 16 when p =1 (mod 4) and p Ep3 (mod 4), respectively.

Corollary 9. The punctured version CDf,nsq of the code Cp;, ., of Theorem[3 is the three-
weight linear code with parameters [%(p”_l — e\/]?"ﬁ_l), nL whose weight distribution is

listed in Table[T7 and Table I8 when p =1 (mod 4) and p =3 (mod 4), respectively.

Example 9. The punctured version Cp fnsq of Cp;,,,, in Example [ is the three-weight

linear code with parameters [108,6,63]3, weight enumerator 1 + 7253 + 576y + 803!
and weight distribution (1,72,576,80). This code is minimal by Lemma [Il and is almost
optimal owing to the Griesmer bound.

With the similar definition of the subcode Cp ; defined by ([6)), we have a linear code
involving Dy s, defined by

Cp;., = {eg = (" (Bdy), " (Bdy), ..., Tx"(Bd,,)) : B € Supp(Xy)},
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Hamming weight w

Multiplicity A, ‘
0 1
p21pn 2 Pl
3 (0= 1p" " +elp+ D)yE" ) o

5 (pnfsfl_"_e\/ﬁnfsfl)

(p;l) (pn72+6\/1—)n+573)

n

p" —

pnfs + prl (pnfsfl _

6\/1—)”7571)

Table 15:  The weight distribution of Cp

, When p=1 (mod 4) and n + s is odd

Hamming weight w

Multiplicity A, ‘
0 1
p21pn 2 n—s—1 _ |
prl ( _ E\/Z?n+573) P —pn T 4 pT—l (pnfsfl —0—6(—1)”\/]?717571)
F(—0p ™ —co+ )V ) el (A R

Table 16:  The weight distribution of Cp,

., When p =3 (mod 4) and n + s is odd

Hamming weight w

Multiplicity A, ‘
0 1
@pn72 prsl
Y 0 W W e Y T i
F (o= 1p" —elp+ 1)yp ) B (e )

Table 17: The weight distribution of Cp,

, When p=1 (mod 4) and n + s is odd

Hamming weight w

Multiplicity A, ‘
0 1
1 ,n2 T
%((p—1)pn 2+E(p+1)\/p—*n+s—:s) ( — 1+E \/F’H’l)
el (pn72+6\/2?n+873) = ( — 6(_1)71\/]?717871)

Table 18:  The weight distribution of Cp,
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which is the subcode of Cp,  defined by (). Hence, the following codes in Corollaries
[IQ, @1, 12 and 3] are the subcodes of the codes of Theorems [Bl [ and Corollaries [7, []

respectively.
Corollary 10. The subcode C,nysq of the code Cp, ,, of Theorem[d is the two-weight linear

code with parameters [7’;21(]9”_1 — (=) ) 0 — slp whose weight distribution is
listed in Table [I9

‘ Hamming weight w ‘ Multiplicity A, ‘
0 1
(»—1Z n-2 n—s—1 n—s—1 n+1 Fn—s—2
5 P + 25 (p +eng T (=1)Vp* )—1
(p_ 1) (prlpn72 _ 6770(_1)\/]?’”“»572) ; ( n—s—1 6n61+1 1)\/1?717372)

Table 19: The weight distribution of Cp .sq When n + s is even

Corollary 11. The subcode Cin’Sq of the code Cp, . of Theorem[] is the three-weight linear

code with parameters [p—;l(p"_l + e\/p*nJrs_l),n — s] whose weight distribution is listed
p
in Table[20.

‘ Hamming weight w ‘ Multiplicity A, ‘
0 1
(P;l)zpn72 pnfsfl -1

S

L

1 ((p_1)pn72+6(p*+1)\/17n+573) prl (pnfsfl_‘_eng(_l)\/z?nfsfl)
! ((p —D)p" 2 4 e(p* — 1)\/1?"“’3) p1 (p”*S*1 — eng(—1)\/;?"*3*1)

P

l\-}|

Table 20: The weight distribution of C_Df,sq when n + s is odd

Corollary 12. The subcode C_Df . of the code CDf . of Corollary[7 is the two-weight linear

code with parameters [ (p" ! —eno(—l)\/p*"+s_2), n— s, whose weight distribution is listed

in Table [Z1l.
Corollary 13. The subcode C_Df » of the code CDf » of Corollary[8 is the three-weight linear

code with parameters [%(p”_l + e\/p*"JrS_l),n — s| whose weight distribution s listed in
p
Table 22

With the similar definition of the subcode Cp ; defined by ([6)), we have a linear code
involving Dy 54

CD; ey = L = (TY"(BdY), TY"(Bdy), ..., Tx"(Bd,,)) : B € Supp(X7)},
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Hamming weight w ‘ Multiplicity A, ‘

0 1
(Pgl)pn72 pnfs 1 2 (pn s—1 + E’I]nJrl( 1)\/17'”7372) 1
%pn72 _6770(_1)\/[?7L+572 ( n—s—1 _ n+1( 1)\/Z?n7572)

Table 21: The weight distribution of Cp 1.5 When n + s is even

‘ Hamming weight w ‘ Multiplicity A, ‘
0 1
@pnﬂ 1
((p —1)p" 7+ e(p” + 1)\/1?”“*3) et ( T eng (- 1)\/1?"*3*1)

((p 1P te(p” — 1)\/Fn+s—3) 1 (pnf.sfl — et (_1)\/1?7#571)

ol | 1=

Table 22: The weight distribution of Cp 1.5 When n + s is odd

which is the subcode of Cp, ., defined by (). Hence, the following codes in Corollaries [I4]
and [T5lare the subcodes of the constructed codes in Theorem[Bland Corollary [0l respectively.
Corollary 14. The subcode Cp, .. of the code Cp, .. of Theorem [J is the three-weight

linear code with parameters p—l( — ey 1) n— s] whose weight distribution is
P
listed in Table [23.

‘ Hamming weight w ‘ Multiplicity A, ‘

Table 23: The weight distribution of Cp fnsq When n+ s is odd

Corollary 15. The subcode C_Df of the code CDf of Corollary [9 is the three-weight

linear code with parameters [—( =l _ e /pr T 1) n — s} whose weight distribution is
P
listed in Table[24)

Remark 9. When we assume only the weakly regular bent-ness in this subsection, we can
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‘ Hamming weight w ‘ Multiplicity A, ‘

0 1
%(p _ 1)pn72 pnfsfl -1
Lo—0p 2= =D %) | 2 (0 T e (D)
o-0p = + v ) [ 52 (T — e v

Table 24: The weight distribution of Cp fmsq When n + s is odd

obviously recover the linear codes obtained by Tang et al. [20]. Therefore, this subsection
can be viewed as an extension of [20] to the notion of weakly regular plateaued functions.

The following natural question may now spring to mind: Are the constructed codes in
this section minimal? The following section investigates the minimality of the constructed
codes.

5 The minimality of the constructed linear codes

This section confirms that the constructed codes from weakly regular plateaued functions
in Section M] are minimal. In other words, with the help of Lemma [I, we observe that all
nonzero codewords of the constructed codes are minimal for almost all cases. To do this,
we consider separately the constructed codes in Theorems [I], 2], Bl 4 and [B

Theorem 6. Let n + s be an even integer. If 677(()"+s)/2(—1) =1, then the linear code Cp,

of Theorem [l is minimal with parameters

P (o= p T, (p - 1]
when 0 < s < n—4; otherwise, [p”_l —1—(p—1)prts=22 n (p-1) (p”_2 — p("+5_2)/2)]

when 0 < s <n —6. g

Proof. 1f 677(()"+S)/2(—1) = 1, then wiin = (p—1)p" 2 and Wmax = (p—1) (p" 2 +p(”+3_2)/2);
otherwise, wyin = (p — 1) (p" 2 —p("+8_2)/2) and wpax = (p — 1)p™ 2. In the first case,
we observe that

p-1_ (p—1)p" 2
p (p—1) (pn—2 _|_p(n+s—2)/2)
if 0 < s <n — 4. Similarly, in the second case, we observe that
-1 -1 n—2 _ (nt+s—2)/2
p—1_@-1 " )
p (p—1)p
if 0 < s <n — 6. Hence, the proof is completed from Lemma Il O
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Corollary 16. The constructed codes in Corollaries [, [3 and [A are minimal with the
corresponding condition in Theorem [0

Theorem 7. Let n+ s be an odd integer with 0 < s <n —5. Then the linear code Cp, of

Theorem [D is minimal with parameters [p"_l —1,n,(p—1) (p"_2 — p("+5_3)/2)]p.

Proof. There are two cases: en(()n+s_3)/ 2(—1) = 41. For both cases, we have wpin =

(p—1) (p"_2 — p("+8_3)/2) and Wpax = (p— 1) (p"_2 —I—p("+8_3)/2) . Then we observe that

p wmax

p_l < Wmin

if 0 < s <n—>5. It then follows from Lemma [I] that all nonzero codewords of Cp ; are
minimal if 0 < s <n —2>5. O

Corollary 17. Let n+ s be an odd integer with 0 < s < n—5. Then the constructed codes
in Corollaries 3, [] and [@ are minimal.

Theorem 8. Let n+s be an even integer. If en(()n+s)/2(—1) =1, then the linear code Cp,

of Theorem [3 is minimal with parameters

P11 (nts—2)2 (p—1)° n—2 1\ (n+s—2)/2
[ 5 (p p ),n,72 p (p—1)p

p

when 0 < s < n — 6; otherwise, [’%1 (p"_1 +p("+5_2)/2) M, Mp"‘ﬂ when 0 < s <
P

2
n — 4.

Proof. 1f 677((]"+8)/2(—1) = 1, then wmin = (p_;)zp"_2 —(p— 1)11)("+8_2)/2 and Wyax =

—(pél)zp"_2; otherwise, wmin = Mpn—2 and Wa = Mpn—2 +(p— Dpnts=2/2 I

2 2
the first case, we have

p—1 (p—zl)zpn—2 — (p— 1)pnts—2)/2
< (p—1)% n—2
p S ptT

if 0 < s <n—6, and in the second case, we have

—-1)2
p—1 ) (p _ ) P2
P (p—21)2pn_2 + (p — 1)pnts=2)/2

if 0 < s <n — 4. Hence, the proof is completed by Lemma [Tl O

Corollary 18. The constructed codes in Corollaries [7, and [12 are minimal with the
corresponding condition in Theorem [8.
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Theorem 9. Let n+ s be an odd integer with 0 < s < n — 5. Then the linear code Cnysq
of Theorem []] is minimal with parameters

— —1)2 . n+s—
[p_21(pn—l 4 prts=1)/2) . %pn—ﬂp’ zfen(() + 1)/2(_1) _,

[”—El(p"‘l — pts=D/2) i B ((p — 1)p 2 — (p + 1)pnted/ 2)L,’ otherwise.

Proof. When p =1 (mod 4), we have
Wiin = (1’)_%1)2]9"_2 and 9)
Wmax = P (0= 1p" 72 + (p+ DplTo272)

if € = 1; otherwise, we have

w n—2 (10)

When p = 3 (mod 4), we have the Hamming weights in () if ené"+8_l)/2(—1) = 1; other-
wise, in ([{0). For each case above, we have

p—- 1 < Wmin
p Wmax

if 0 < s <n — 5. Hence, Lemma [I] completes the proof. O

Corollary 19. Let n+ s be an odd integer with 0 < s < n—5. Then the constructed codes
in Corollaries [8, [11 and [13 are minimal.

Theorem 10. Let n+ s be an odd integer with 0 < s <n—>5. Then the linear code Cp,,,.,
of Theorem [A is minimal with parameters

|:p_51 (pn—l _p(n+s—1)/2)’n’ p_;l ((p _ 1)pn—2 _ (p + 1)p(n+s—3)/2)]p’ if E77(()n—|—s—U/2(_1) —1,
[p;;(pn—l _Hp(n+s—1)/2)m7 (P—21)2pn—2]p7 otherwise.

Proof. When p = 1 (mod 4), we have the Hamming weights in (I0) if ¢ = 1; otherwise,
in ([@). Similarly, in the case of p = 3 (mod 4), we have the Hamming weights in (I0) if
enénJFS_l)/ 2(—1) = 1; otherwise, in ([@). Hence, the assertion follows directly from Theorem

i) O

Corollary 20. Let n+ s be an odd integer with 0 < s < n—>5. Then the constructed codes
in Corollaries [9, and [13 are minimal.

Remark 10. We conclude from this section that the constructed codes in this paper are
minimal for almost all cases. Hence, the secret sharing schemes based on the dual codes of
the constructed minimal linear codes in this paper have the nice access structures described
in Proposition [l This is the motivation why we construct a punctured version and a
subcode of each constructed code.
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6 Conclusion

In this paper, inspired by the work of [20], we push further the use of weakly regular
plateaued functions over finite fields of odd characteristic introduced recently by Mesnager
et al. [16]. By generalizing the linear codes constructed from weakly regular bent functions
in [20], we obtain new minimal linear codes with more freedom in the choice of the functions
involved in the construction of two or three weight linear codes. They contain the (almost)
optimal codes with respect to the Singleton and Griesmer bounds. The paper provides the
first construction of linear codes with few weights from weakly regular plateaued functions
based on the second generic construction. The obtained minimal codes in this paper can
be directly used to construct secret sharing schemes with the nice access structures. To the
best of our knowledge, they are inequivalent to the known ones (since there is no minimal
linear code with these parameters) in the literature.
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