
Maximizing Multivariate Information with Error-Correcting Codes

Kyle Reing∗, Greg Ver Steeg, and Aram Galstyan

Abstract— Multivariate mutual information provides a con-
ceptual framework for characterizing higher-order interactions
in complex systems. Two well-known measures of multivariate
information—total correlation and dual total correlation—
admit a spectrum of measures with varying sensitivity to
intermediate orders of dependence. Unfortunately, these inter-
mediate measures have not received much attention due to their
opaque representation of information. Here we draw on results
from matroid theory to show that these measures are closely
related to error-correcting codes. This connection allows us to
derive the class of global maximizers for each measure, which
coincide with maximum distance separable codes of order k.
In addition to deepening the understanding of these measures
and multivariate information more generally, we use these
results to show that previously proposed bounds on information
geometric quantities are tight at the extremes.

I. INTRODUCTION
Characterizing the interactions in a system by its pair-

wise correlations is a common modeling assumption, but
a more complete picture would also consider many-to-one,
and many-to-many interactions. In systems with emergent
properties, such as those studied in ecology [1], systems
biology [2], neuroscience [3], and genetics [4] (to name
a few), these higher-order interactions play a vital role in
macroscopic behavior. The issue of defining a proper mea-
sure of higher-order correlation, at least from an information
theoretic perspective, is what the study of multivariate mutual
information (MMI) seeks to do. Tools based on MMI and the
related subject of information decomposition have already
seen diverse application, offering insights into problems like
structure discovery in biological/artificial neural networks
[5], [6], [7], [8], [9], [10], [11], and in determining how genes
cooperate to produce a particular phenotypic effect [12],
[13]. Two major challenges faced by any work attempting
to utilize MMI are the selection of an appropriate measure,
and its computational cost. The first concern is discussed in
detail by Timme et al. [14], responding to the fact that no
single measure is universally accepted by the community.
Choosing from the multitude of measures, each with their
own idiosyncratic definition of group information, often boils
down to preference, application, or commitment to certain
axiomatic principles. To add to this long list of considera-
tions, the cost of analytically or approximately calculating
the measure may be prohibitive in all but the smallest
applications. The most expressive approaches (such as those
based on the partial information decomposition framework
[15]) are usually the most intractable, limiting their practical
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use to the simplest forms of multivariate dependence [16].
All this serves to reiterate that MMI is far from solved,
and could benefit greatly from continued study, especially
regarding the aforementioned computational problems.

Our contribution to this ongoing dialogue is to identify
the global maximizers for a class of MMI measures related
to Watanabe’s total correlation. Finding the extrema of a
function is usually a matter of optimization, but for non-
convex and/or high-dimensional functions, there may not be
a guaranteed strategy for convergence to the optimal solution.
Knowledge of a closed form generative procedure for the
extrema of MMI is desirable for at least two reasons: 1)
these properties inform us about the types of dependence
preferentially treated by the measure, which is important
when comparing different approaches; 2) additionally, the
scalar value of MMI for any distribution becomes more
meaningful when it can be ranked according to its relative
distance to the min and max.

The main theoretical results of this work connect the
global maximizers for each of the n− 1 measures (n being
the number of random variables) with the class of maximum
distance separable (MDS) codes [17] (equiv. ideal secret
sharing schemes [18]). Through this connection, it follows
that a complete description of the set of global maximizers
is still unknown, as this knowledge could be used to solve
an open conjecture in coding theory and finite projective
geometry [19] known as the MDS conjecture. The proof
of this result draws on a few disciplines, including matroid
theory and coding theory. Since we expect readers will
come from varying backgrounds, we have tried to make the
writing expository and the material self-contained. Section
II introduces the family of measures, summarizes the main
contributions in non-technical terms, and runs through an
example of why an uninformed search procedure is unlikely
to discover the maximizers. The preliminaries of Section
III are split into two nearly disjoint subsections, with each
presenting only the concepts necessary for both understand-
ing and completion of the final proof. The proofs of the
main claim appear in Section IV, building on the definitions,
theorems, and intuitions of Sections II and III. Section V
discusses important related work, focusing on a family of
information geometric measures shown to be upper-bounded
by the measures studied here. Previous results on these
bounds are strengthened in light of the connection to MDS
codes. Finally, Section VI concludes with a discussion of
where this work fits with regards to general trends in MMI
research, highlighting the appearance of coding theory and
cryptography in many recent papers.
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II. COHESION MEASURES

A. Total Correlation and Dual Total Correlation

Historically, the study of multivariate mutual information
began with the introduction of two measures, one being
Watanabe’s total correlation (TC) [20] (equiv. multiinfor-
mation [21]), defined as

TC(X) =

n∑
i=1

H(Xi)−H(X).

Here the vector random variable X = {X1, . . . , Xn}
will be taken over a finite support ||X||, and entropy is
defined in the standard way as

∑
x∈||X||

p(x) log[1/p(x)]. We

adopt the convention that each marginal Xi has the same
support q without loss of generality, implying ||X|| ≤ qn.
Additionally, we assume that our logarithms are taken with
respect to base q.

A related, and equally important measure for our dis-
cussion is the dual total correlation (DTC) (equiv. excess
entropy [22], binding information [23]), originating from
Han’s [24] work on lattice theoretic duality of information
measures. Dual total correlation can be defined as

DTC(X) = H(X)−
n∑

i=1

H(Xi|XE/i)

=

n∑
i=1

H(XE/i)− (n− 1)H(X),

where XE/i denotes the marginal random variable of cardi-
nality (n−1) that excludes Xi. Both total correlation and its
dual share a number of desirable properties [24][25], some
of which are detailed below.
• Entropic: A measure is considered entropic if it is

defined as a function of subset entropies H(XA) for
any XA ⊆ X . Both total correlation and dual total
correlation are linearly entropic since they are given by
linear functions 〈C,H〉, where H is a column vector
of all subset entropies, C a row vector of 2n constants,
and 〈·, ·〉 the inner product.

• Correlative: A measure is correlative if it equals zero
when the marginals Xi, ∀i ∈ [n] are mutually indepen-
dent.

• Symmetric: A measure is symmetric if it remains un-
changed under permutation of the marginals.

• Non-negative: The measure is always ≥ 0.

One property not shared between the two measures is that
total correlation can be represented as the KL-Divergence

DKL

(
p(x)||

n∏
i=1

p(xi)
)
, whereas dual total correlation has

no such divergence expression. Another difference is the
set of maximizing distributions for each measure. Previous
work has characterized these distributions [23][26], shown
in Table Ia/Ib below for three variables with binary support.
Maximizers of TC are exactly the distributions for which

a bijection over support q exists between every pair of
marginal variables. Such a relationship is often referred to as
informational redundancy, making the distribution in Table
Ia maximally redundant1. The counterpart to redundancy
is informational synergy, which refers to the presence of
relationships that only exist from a collection XA (1 < |A| <
n) to subset XB ⊆ XE/A of the complement set. The parity
distribution in Table Ib only has dependence when all n
variables are considered, mapping every (n − 1) variable
subset (XE/i ,∀i ∈ [n]) to the remaining variable Xi.
Therefore, we can say that Table Ib is maximally synergistic
of order (n− 1).

TABLE I: Maximizing Distributions for Three Variables

(a) Binary Maximizers TC

X0 X1 X2 Pr
0 0 0 1/2
1 1 1 1/2

(b) Binary Maximizers DTC

X0 X1 X2 Pr
0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 0 1/4

B. Fujishige’s Total Correlation(s) and Cohesion

If TC is maximized by information contained in every
pair of variables, and DTC by information present only
in the n variable joint state, what about information in
intermediate collections of variables? Do any measures exist
whose maximizers prefer dependence among subsets with
cardinality between 2 and n? A promising place to start in
answering this question is a family of measures introduced
by Fujishige [28]. The main content of his paper focuses on
connecting entropy and polymatroids (introduced in Section
III-A), but a small portion is dedicated to applying these
insights to extend TC and DTC. His observation was that
summing over all marginals of cardinality 1 causes each
member of the set to be covered 1 time (or respectively,
sums of cardinality (n−1) cover each element (n−1) times
for DTC). These cover relations are reflected in the constant
multiples of joint entropy appearing in both measures. From
this, one can generalize to correlation measures which sum
over marginals of cardinality k and cover each element

(
n−1
k−1
)

times. These generalized measures, and their duals, are given
by

C(k)(X) =
∑

XA∈Ek

H(XA)−
(
n− 1

k − 1

)
H(X)

C(n−k)(X) =
∑

XB∈En−k

H(XB)−
(

n− 1

n− k − 1

)
H(X).

Here, k (and (n − k) respectively) is called the interaction
order, which dictates the cardinality of subsets appearing in
the first term

Ek = {A : A ⊆ X, |A| = k}.
1We don’t make the distinction here between pairwise and multivariate

redundancy. Such a distinction is important in information decomposition,
where shared and unique information [27] are distinguished with respect to
a target variable



For n variables, C(1) is clearly equivalent to the total
correlation, and C(n−1) to the dual total correlation. For those
more comfortable with the conditional entropy definition of
dual total correlation, each of the measures can be written
as

C(k)(X) =
∑

XA∈Ek

H(XA)−
(
n− 1

k − 1

)
H(X)

=
∑

XA∈Ek

H(XA) +
((n− 1

k

)
−
(
n

k

))
H(X)

=

(
n− 1

k

)
H(X)−

∑
XB∈En−k

H(XB |XA)

The desirable properties satisfied by C(1) and C(n−1),
including being linearly entropic, continue to be satisfied
for any choice of parameters n and k. Because of this, the
measures can be related according to the following linear
inequalities [28], which we call polymatroid bounds.

(n− k)·C(k)(X) ≥ k·C(k+1)(X)

(n− k)·C(n−k)(X) ≥ k·C(n−k−1)(X)
(1)

Fujishige referred to each measure as a (dual) total corre-
lation, but we believe such overlapping nomenclature might
be confusing. To maintain some link to total correlation
without trying to re-brand existing terminology, we refer
to the family of measures as Cohesion measures, after one
of Watanabe’s (and subsequently, Han’s) original names for
the total correlation [24], [29]. For interaction order k, the
associated measure is referred to as Cohesion-k, or adopting
the shorthand of [30], C(k).
C. Summary of main results

The maximizers for Cohesion-k have only been studied
for the special cases of k = 1 and (n − 1). This leaves the
question open regarding each Cohesion measures’ sensitivity
to certain orders of dependence. We will show through the
main result of the paper (Theorem 3) that each intermediate
measure can be upper-bounded by a constant, and that
this bound is always achieved for a particular class of
distributions with marginal support q. The exact value of q,
if known in general, would provide an answer to the MDS
conjecture (discussed further in Section III). Intuitively,
the MDS conjecture is a claim about how large q must be
(q ≥ n − 1) in order for certain types of linear dependence
structures to occur. Despite the uncertainty surrounding q,
it is still possible to prove that such an integer must exist
for arbitrary values of n and 1 ≤ k ≤ n − 1. The proof
relies on a subfield of combinatorics, called matroid theory,
to exploit the dependence structure of distributions that
achieve the bound with equality. Matroids are objects that
generalize the concepts of linear independence and provide
a common language for talking about dependence, both in
codes and probability distributions.

While matroids are required to make the most general
claims, for special cases, such as when the number of vari-
ables is a prime power and q = n, straightforward methods

for constructing MDS codes are well established. Because
these special cases provide concrete examples of distributions
that achieve the bound, the details of their construction is
worth introducing. Thus, the preliminaries of Section III
attempts to balance high level abstractions required for the
proof (Section III-A) with motivated examples from coding
theory (Section III-B). Before jumping straight into these
preliminaries, we wish to solidify intuition for the problem,
and further demonstrate why the theoretical approach is
necessary. To do this, we look at the simplest Cohesion
measure whose maximizers have not been characterized,
which is Cohesion-2 over four random variables.

D. Cohesion-2 for 4 Variables

A naive but immediately accessible way of exploring
the maximizing distributions, given the material presented
so far, is empirical evaluation. This might take the form
of a simplex search using gradient descent, or even a
brute force evaluation of every point on a discretized (alt.
uniformly sampled) simplex. Due to the low dimensionality
of this special case, we have the luxury of performing
the latter without much computational concern. Assuming
for now that each marginal variable is binary, and given
a sample from the 16-simplex, we can calculate all three
Cohesion measures for four variables and use the results as
coordinates to a three-dimensional vector space.

Through the polymatroid upper and lower bounds of
Equation 1, we can define a convex polytope over feasible
solutions. Normally the region is unbounded, but constraints
on the support of each variable lead to three additional
inequalities

C(1) + C(3) ≤ 4, C(2) + 3·C(1) ≤ 12, C(2) + 3·C(3) ≤ 12.

The proofs for these inequalities appear in Appendix
A. Figure 1 shows the two-dimensional projections of
this space, alongside the bounds. Given these results, we
are interested in two questions: what are the empirically
maximal distributions, and do they achieve the upper
bound? As a sanity check, we see Cohesion-1 (TC) and
Cohesion-3 (DTC) achieve their maximum of 3 bits for the
four variable versions of distributions in Table 1, which
meet the bounds with equality. Cohesion-2, on the other
hand, peaks for the distribution in Table II, which has
been called a redundant-synergy distribution [31], owing
to the combination of third-order (first three variables)
and second-order (first and last variable) information. This
answers the first question, but when comparing the value of
this distribution (5 bits) with the upper bound (6 bits), we
observe a large gap in the feasible region. The appearance
of this gap unfortunately means that there is no verification
this distribution is actually maximal. Perhaps the sampling
over the simplex was too course, or the bound is too
loose and additional (possibly nonlinear) inequalities are
required. Suppose we are fortunate in not having to check
these alternatives due to our access to an oracle O(C, n).
This oracle takes as input our Cohesion measure C, some



Fig. 1: Plots of each Cohesion measure for four binary variables, alongside the polymatriod bounds (orange lines). The
color gradient represents the value of the third measure, with blue for low values, and yellow for high. The dashed red lines
correspond to the constant upper bounds, introduced in Section IV

TABLE II: Binary Maximizers for Cohesion-2

X0 X1 X2 X3 Pr
0 0 0 0 1/4
0 1 1 0 1/4
1 0 1 1 1/4
1 1 0 1 1/4

integer number of variables n, and returns a distribution
of cardinality n in the set of global maximizers for C. On
entering Cohesion-2 and n = 4, the following distribution
is revealed (Table III).

TABLE III: Reed-Solomon Maximizers for Cohesion-2

X0 X1 X2 X3 Pr X0 X1 X2 X3 Pr
0 0 0 0 1/16 2 2 2 2 1/16
0 1 2 3 1/16 2 3 0 1 1/16
0 2 3 1 1/16 2 0 1 3 1/16
0 3 1 2 1/16 2 1 3 0 1/16
1 1 1 1 1/16 3 3 3 3 1/16
1 0 3 2 1/16 3 2 1 0 1/16
1 3 2 0 1/16 3 1 0 2 1/16
1 2 0 3 1/16 3 0 2 1 1/16

Calculating Cohesion-2 for this distribution yields a value
of 6 quaternary digits (12 bits), meeting the upper bound
with equality. Our oracle has verified that the polymatroid
bounds are indeed enough to fully characterize Cohesion, at
least in this special case. However, we’ve only replaced one
mystery with another: how does the oracle work, and does
it generalize to arbitrary Cohesion measures? It turns out
that each row in Table III is related to an important concept
in algebraic coding theory called a Reed-Solomon code.
Reed-Solomon codes have the property of being maximum
distance separable (MDS), and provide a way of constructing
these codes when the support is large ( q ≥ n ) and n is a
prime power. Notice that our restriction to binary support in
Figure 1 played an important role in the existence of a gap.
The dangers of empirical evaluation should now be apparent
if they weren’t before. Even if the criteria on the number
of variables and size of the support are met, a search over
the nn simplex would be required to find a Reed-Solomon
distribution. As we will later show, if the MDS conjecture

holds true, for any value of n and k, q is expected to be at
least n− 1, meaning superexponential search complexity is
likely unavoidable. Thankfully, since we know which vertex
of the Cohesion polytope a maximizer would appear if one
existed, we can abandon search in favor of investigating
the structural properties at this point. The next section is
dedicated to preliminaries on matroid and coding theory,
including illustrative examples whenever possible.

III. PRELIMINARIES

A. Matroids and Polymatroids

A matroid M is given by a tuple (E, I), where E is some
finite set, and I is a collection of subsets of E satisfying the
following three conditions:

(M1): ∅ ∈ I
(M2): If I ∈ I and I ′ ⊆ I , then I ′ ∈ I
(M3): If I1 and I2 are in I and |I1| < |I2|, then there is

an element e of I2 − I1 such that I1 ∪ e ∈ I
E and I are referred to as the ground set and the

independent set of M , respectively. As an example, consider
an m × n matrix A. Define the ground set E(A) to be
the set of all column labels {i ∈ [n]} indexing A. The
independent set I(A) consists of all collections of labels
that index linearly independent columns. For the matrix
A given below, the independent set would be I(A) ={
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}

}
.

A =
1 2 3[
1 0 1
0 1 1

]
Any matroid that can be used to describe the dependence

structure of a matrix defined over some finite field Fq (as
with A above for q = 2) is called a vector matroid. The last
axiom (M3) is called the exchange axiom, and is the least
intuitive of the three. To get a better sense for it, we include
a proof that it is satisfied for the independent set of a vector
matroid.

Proof: Let I1 and I2 be two members of the indepen-
dent set I for a vector matroid M(A), with |I1| < |I2|.
This means both I1 and I2 index collections of linearly
independent columns. The subspace W spanned by I1 ∪ I2



has dimension at least |I2| (which occurs if I1 ⊂ I2). Assume
for the sake of contradiction that I1∪e is linearly dependent
for all e ∈ I2−I1. Subtraction here is set subtraction, making
I2 − I1 the set of all elements contained in I2, but not in
I1. By this assumption, W is contained in the span of I1,
implying |I2| ≤ dimW ≤ |I1| < |I2|; contradiction.

For two matroids M1 and M2, denote the corresponding
ground sets by E(M1), E(M2), and independent sets by
I(M1), I(M2). These matroids are said to be isomorphic
(M1

∼= M2) if there exists a bijection ψ satisfying

ψ : E(M1)→ E(M2), ∀X ⊆ E(M1)

ψ(X) ∈ I(M2) ⇐⇒ X ∈ I(M1).

If a matroid M1 is isomorphic to a vector matroid M2(A),
where A is a matrix over the field Fq , then M1 is said to
be Fq-representable. It’s important to note that not every
matroid is Fq-representable for an arbitrary field. To illustrate
this, let F2 be the Galois field of two elements, where
element x ∈ {0, 1}, and addition/multiplication are given
by mod-2 arithmetic. Construct a matroid M over E =
{1, 2, 3, 4} such that all subsets of cardinality two or less
are contained in the independent set; namely,

I =
{
S ⊆ E : 0 ≤ |S| ≤ 2

}
.

Any matroid defined over a ground set of cardinality n,
whose independent set contains all subsets of cardinality k or
less is called a uniform matroid Uk,n. Here, M corresponds
to the uniform matroid U2,4.

Proposition 1 (Oxley): The uniform matroid U2,4 is not
F2-representable

Proof: Assume that U2,4 is F2-representable, implying
that U2,4

∼= M(A) for some matrix A defined over F2.
Since the largest element in I(U2,4) has cardinality two,
the column space of A must have dimension two. A two-
dimensional vector space over F2 has exactly four members,
but only three of them are non-zero. This means that A
cannot have four distinct non-zero columns, so a set of two
columns in A must be linearly dependent. However, this
contradicts the original claim, since every pair of columns
must be linearly independent in order for U2,4

∼= M(A).

A polymatroid P is given by a tuple (E, f) of ground
set E and a submodular set function f . A submodular
set function is a mapping from the power set of E to the
non-negative real numbers (f : 2E → R+) satisfying the
following three conditions:

(non-negativity): f(∅) = 0, f(S) ≥ 0 ∀S ⊆ E
(monotonicity): f(S) ≤ f(T ) ⇐⇒ S ⊆ T ⊆ E
(submodularity): f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T )

Fujishige [28] was the first to show that Shannon entropy acts
as a submodular set function H for the polymatroid (E,H)
over ground set E of random variables {X1, X2, ..., Xn}.
Polymatroids are generalizations of matroids in that, if we

restrict the codomain of the set function to the non-negative
integers (f : 2E → Z+) and require the additional upper
bound condition f(S) ≤ |S| ∀S ⊆ E, then f is called a
rank function, and can be used to build a matroid M .

Lemma 1 (Oxley): Let E be a set and f a function on 2E

satisfying the above rank function conditions. If X and Y
are subsets of E such that, for all y ∈ (Y −X), f(X∪y) =
f(X), then f(X ∪ Y ) = f(X)

Proof: See [32], the argument follows by induction on
the number of elements in (Y −X).

Theorem 1 (Oxley): Let E be a set and f a function on
2E satisfying the above rank function conditions. Let I be
the collection of subsets S of E for which f(S) = |S|. Then
(E, I) is a matroid having rank function f .

Proof: We will show that the independent set I,
constructed in the manner above satisfies the matroid axioms
(M1)-(M3).
• By the non-negativity and upper bound conditions on
f , 0 ≤ f(∅) ≤ |∅| = 0, so f(∅) = |∅| and ∅ ∈ I,
satisfying (M1).

• If I ∈ I then f(I) = |I|. For I ′ ⊆ I , and by submodu-
larity of f , f(I)+f(∅) ≤ f(I ′)+f(I−I ′). Since each
term on the right hand side is upper-bounded, we can
simplify to |I| ≤ |I ′| + |I − I ′| = |I|. Equality must
hold throughout, implying f(I ′) = |I ′| and I ′ ∈ I,
satisfying (M2).

• Assume for the sake of contradiction I1 and I2 are in
I with |I1| < |I2|, but for all e ∈ I2 − I1, f(I1 ∪ e) 6=
|I1 ∪ e|. We have |I1|+ 1 > f(I1 ∪ e) ≥ f(I1) = |I1|,
meaning f(I1 ∪ e) = |I1|. Now, by applying Lemma
1 with X = I1 and Y = I2, it follows that f(I1) =
f(I1∪I2). But f(I1∪I2) ≥ f(I2) = |I2|, so |I1| ≥ |I2|;
contradiction, meaning (M3) is satisfied.

With these basic definitions and theorems established, we
move on to our discussion of coding theory.

B. Algebraic Coding Theory and MDS Codes

The fundamental object of coding theory is the message,
which in the discrete case considered here is simply a string
of length k represented over some alphabet Σ of cardinality
q. Different subfields of coding theory are often interested
in transformations of messages into codewords (strings of
length n ≥ k), with the utility of these codewords ranging
from error-correction to cryptographic secret sharing [33].
For each mapping from message to codeword, the message
length k, codeword length n, alphabet size q, and minimum
distance d, are important parameters. The minimum distance
is given by d := min

ci,cj∈C
∆(ci, cj), where ∆(·) is the

Hamming Distance, and ci cj are any two codewords in
C ⊆ qn. This minimum distance is used as a measure
of error-correction and detection capabilities of a code.
In particular, if the minimum distance between any two
codewords is k+1, the coding scheme can be used to detect



k errors, while a minimum distance of 2k + 1 allows for
the correction of k errors [17].

For any coding scheme with minimum distance d,
we can upper bound the number of codewords M in
the following way. For the codewords c1, ..., cM of an
(n, k, d)q code C, let c̄i be the prefix of ci ∈ C of length
n − d + 1. Each c̄i must be distinct (c̄i 6= c̄j), otherwise
∆(ci, cj) ≤ d − 1, violating the claim that C has minimum
distance d. Thus, the number of these prefixes bounds
M ≤ qn−d+1, which is known as the Singleton bound.
For linear codes, which are any C ⊆ qn such that each
codeword ci ∈ C is generated by a linear combination of
codewords cj ∈ C (ci 6= cj), M is equal to qk. Plugging
this into the Singleton bound, we get d ≤ n − k + 1.
Codes that meet this bound with equality are termed
maximum distance separable (MDS), and are an important
class of codes with optimal error-correction/detection
capabilities (for large alphabets). If we treat each ci as
a 1 × n row vector, MDS codes are represented by a
basis c1, ..., ck of k vectors, whose span produces all qk

codewords. This k × n collection of basis vectors is called
the generator matrix Ak,n of C. An interesting property
of Ak,n follows from the constraints imposed by the
minimum distance d = n − k + 1; each set of k (and by
extension, ≤ k) columns are linearly independent. This
fact falls directly from the prefix argument introduced above.

Recalling examples from the matroid preliminaries,
linearly independent columns can be used to define the
independent set of a vector matroid. In this case the matroid
produced by Ak,n is isomorphic to the uniform matroid
Uk,n. This will be the crucial fact allowing us to connect
codes and probability distributions, but we must first discuss
the alphabet size q (or equivalently, the field Fq of Ak,n)
necessary for a code to be MDS. The MDS conjecture
postulates that MDS codes only exist when q ≥ n − 1,
except when k = 3 or k = q − 1 and q = 2m m ∈ Z>0,
in which case q ≥ n − 2 [19][34]. While such conditions
seem arbitrary at first glance, they stem from a meaningful
equivalence with an object in projective geometry called
a k-arc. Most progress on the MDS conjecture, such as
the recent positive result for prime fields [35], proceeds by
arguments and new results on these geometric objects.

As previously mentioned, when q is large, strategies for
constructing certain MDS codes are known, with the most
well established corresponding to Reed-Solomon (RS) codes
[36]. In explaining what Reed-Solomon codes are, and how
they are generated, we will only consider the classical case
when q = n. Note that this limits the possible values of n
significantly, since finite fields Fq only exist when q = pm

is a prime power. In these cases, the elements of Fpm are the
pm roots of the polynomial x(p

m) − x [37]. In the simplest
case when q is a prime number (m = 1), the elements of
Fp are just Zp, the integers mod p . Given values for k, and

q = n, start by defining a polynomial

f(z) =

k−1∑
j=0

fjz
j ∀jfj ∈ Fq

of degree less than k for some indeterminate z.
Since the coefficients range over all k-tuples in
(Fq)k, f(z) is one of qk polynomials of this form.
Next, define a q-tuple B = (β1, β2, ..., βq) such that
β1 = 0, β2 = 1, β3 = α, ..., βq = αq−2, for a primitive
element α over Fq . A primitive element is any element of
the field that forms a multiplicative cyclic group, meaning
raising α to some power generates all other elements
(except 0). This implies B is just an ordered list of distinct
elements in Fq (ex: a permutation of [q] − 1 for q a prime
number). The idea behind introducing B is that we wish
to construct another polynomial of degree less than n by
evaluating the polynomials f(z) at n points. This procedure
is referred to as a valuation map from (Fq)k to (Fq)n. By
evaluating f(z) at each element in B,

(
f(β1), ..., f(βq)

)
,

with each f(βi) =
k−1∑
j=0

fjβ
j
i , we can produce the k basis

vectors for our generator matrix Ak,n. These vectors form a
Vandermonde matrix, where each row is B raised to some
power.

Ak,n =


1 1 1 . . . 1
0 1 α . . . α−1

0 1 α2 . . . α−2

...
...

...
...

...
0 1 αk−1 . . . α−(k−1)


Here the negative exponents are the same as a reverse

indexing of B − {0} (ex: α−1 = αq−2 ). To build intuition
as to why/how this procedure works, let’s look at the Reed-
Solomon code underlying the distribution in Table III. In
this case, n = 4 with field F4 = F22 . The elements of F4

(the roots of x4 − x) are {0, 1, z, z + 1} for indeterminate
z. Addition and multiplication are given by the following
tables, where z2 = z + 1.

(a) Addition over F4

⊕ 0 1 z z2

0 0 1 z z2

1 1 0 z2 z
z z z2 0 1
z2 z2 z 1 0

(b) Multiplication over F4

⊗ 0 1 z z2

0 0 0 0 0
1 0 1 z z2

z 0 z z2 1
z2 0 z2 1 z

Since 4 is a prime power, multiplication over the field
obeys mod-g(z) arithmetic, for a prime polynomial g(z)
of degree m = 2 (in particular, g(z) = z2 + z + 1). We
have chosen not to include a detailed background on non-
prime finite fields (which can be found here [37]), but only
knowledge of the addition/multiplication tables is required
to move forward. For k = 2, the polynomials f(z) of the
valuation map take the form f0 + f1z, {f0, f1} ∈ F4, and
B = {0, 1, z, z + 1}. Evaluating f(z) at each β ∈ B results
in the vector

(
f0, f0+f1, f0+f1z, f0+f1(z+1)

)
. Choosing



the standard basis, i.e f(z) = 1 and f(z) = z, the vector
simplifies to (1, 1, 1, 1) and (0, 1, z, z + 1) respectively. The
span of these produces the following 16 row vectors.

TABLE V: Reed-Solomon codes over F4

0 0 0 0 z z z z
0 1 z z + 1 z z + 1 0 1
0 z z + 1 1 z 0 1 z + 1
0 z + 1 1 z z 1 z + 1 0
1 1 1 1 z + 1 z + 1 z + 1 z + 1
1 0 z + 1 z z + 1 z 1 0
1 z + 1 z 0 z + 1 1 0 z
1 z 0 z + 1 z + 1 0 z 1

Since all fields with pm elements are isomorphic to Fpm

up to relabeling of the elements, we can map z to 2 and z+1
to 3. Doing so produces the rows of Table III.

IV. MAXIMIZING DISTRIBUTIONS

To recapitulate the last two sections, we introduced ma-
troids and demonstrated their connection to MDS codes
(through the generator matrix Ak,n) and to entropy (through
polymatroids). What’s left to show is that the maximizers
of Cohesion-k have a matroidal structure isomorphic to that
of MDS codes, and that Fq-representability of an MDS
code implies achievability of the polymatroid bound for
distributions with support q. To prove the first claim, we
introduce a constant upper bound on each Cohesion measure
that meets the polymatroid bound at a single point. Given the
standard expression for Cohesion-k, namely

C(k)(X) =
∑

XA∈Ek

H(XA)−
(
n− 1

k − 1

)
H(X),

we can upper bound each term in the sum, and lower bound
the joint entropy. For any S ⊆ X , the entropy H(S) is
maximal when S is uniform over its support. Since each Xi

has support q, S = {X1, ..., Xm}, ||S|| ≤ qm, it follows
that H(S) ≤ logq(qm) = m, the cardinality of S. Thus,
each term in the sum of Cohesion-k is at most k. The joint
entropy can be lower bounded by noticing XA ⊆ X and
H(XA) ≤ H(X) by monotonicity, implying

H(X) ≥ max
XA∈Ek

H(XA) = k.

Substituting these results into the equation, we get the
following constant bound

C(k)(X) ≤ k
(
n

k

)
− k
(
n− 1

k − 1

)
= k

(
n− 1

k

)
.

Lemma 2: The entropy function at the constant bound
maps the power set of random variables in X to the non-
negative integers (H : 2X → Z+)

Proof: Split up the elements of the power set into
different cases according to the value of k. Consider some
subset S ⊆ X such that the cardinality of S is
• 0 : H(∅) = 0, which is integer valued.
• j, 1 ≤ j ≤ k : Since the upper bound requires all

subsets XA of cardinality k to have H(XA) = k, every
collection of k random variables is independent and

uniform over qk, implying that every collection of j
variables between 1 and k is uniform over qj . Thus,
H(S) = j, which is integer valued.

• l, k ≤ l ≤ n : Both the joint entropy H(X) of cardi-
nality n and all subset entropies H(XA) of cardinality
k are equal to k. By monotonicity, every element of the
power set with cardinality l between k and n must also
have H(S) = k, which is integer valued.

By Lemma 2, the upper bound on subset entropies,
and the fact that entropy is a submodular set function,
entropy satisfies the requirements of a rank function for
any distribution meeting the constant bound with equality.
By Theorem 1, we can construct the independent set of
a matroid Ck,n by looking at all subsets S of X where
H(S) = |S|. When the bound is met, the independent set
consists of all subsets of X with cardinality ≤ k, making
Ck,n ∼= Uk,n (and consequently Ck,n ∼= M(Ak,n) for the
vector matroid of an MDS generator matrix). This takes
care of the first claim, but says nothing about the form
of the distributions meeting these criteria. To prove the
second claim, we must explore the connection between
independence in vector and probability spaces.

Theorem 2 (Matúš): If a matroid M is Fq-representable,
then M also describes the statistical independence relation-
ships for a distribution with marginal support q [38].

Proof: For a vector matroid M(A) with rank function
f , recall that 0 ≤ f(I) ≤ |I|, I ⊆ E, where E is a
collection of column labels for A. The dual space (collection
of rows) for any I columns must also have rank f(I). The
linear space spanned by these rows over Fq has qf(I) points.
If we take each of these coordinate vectors and assign them a
probability of q−f(I) uniformly, the entropy of this collection
will be H(XI) = f(I)· logq q = f(I), ∀I ⊆ [n]. Since under
these conditions the entropy is a rank function, we have
a one-to-one correspondence between the rank of a vector
space and a probability space. Since the ground sets are also
the same, this implies M(A) is isomorphic to the matroid
describing the resulting distribution.

By Theorem 2, the maximizing distributions for Cohesion-k,
whose matroid structure is the same as M(Ak,n), can
be generated by Ak,n (as evidenced by Table III and the
Reed-Solomon code from the Section III-B example). This
result is almost enough to conclude the form of Cohesion
maximizers in full generality, but one final piece is needed.
Construction via Reed-Solomon code generalizes to any n
and k, as long as n = pm, but what about n 6= pm?

Theorem 3: There exists an integer q such that a distribu-
tion with marginal support q achieves the upper bound on
Cohesion-k for n variables.

Proof: Since the matroid structures are the same, it
suffices to show that Uk,n is Fq-representable for some
integer q. A family of subsets of X is a finite se-
quence (A1, A2, ..., Am) such that each member Aj , j ∈



{1, 2, ...,m}, Aj ⊆ X need not be distinct. A transversal is a
subset {e1, e2, ..., em} of X such that each ej ∈ Aj , ∀j ∈ J .
If S ⊆ X , then S is a partial transversal if for some subset
K of J , S is a transversal of (Aj : j ∈ K). For a family A of
subsets, let I be the set of all partial transversals of A. Then
I defines the independent set of a transversal matroid on
X . The class of uniform matroids is a subclass of transversal
matroids (ex: family A = (A1, A2, ..., Ak) such that each
Ai = [n] defines a transversal matroid that is isomorphic
to Uk,n). By Corollary 12.2.17 in [32], for all transversal
matroids M , there exists an integer n(M) such that M is
representable over every extension field of F having at least
n(M) elements.

This concludes the proof in full generality, and solidifies
the connection between matroids, MDS codes, and maximiz-
ers of Cohesion. Having accomplished what we set out to do
by establishing this connection, what’s left is to show from a
broader perspective where these findings may be applicable.

V. RELATED WORK

With the intention of quantifying emergence in complex
systems, or how the whole deviates from the sum of its
parts, Ay et al. [30] developed an approach based on the
principles of information geometry. In this framework, the
parts of a system are represented by the parameters of a
hierarchical model Ek. For a specified value of k, each
parameter corresponds to a kth order marginal of p. The
deviation from this hierarchical model is given by the KL-
Divergence DKL(p||Ek). Due to the closure property of hier-
archical models, this deviation is equivalent to DKL(p||p(k)),
where p(k) is the maximum entropy projection for Ek. This
distribution is restricted to have the same kth order marginals
as p. Each of these divergence measures DKL(p||p(k)) was
shown to be upper-bounded by a normalized version of
Cohesion-k

DKL(p||p(k)) ≤ 1(
n−1
k−1
)C(k) (2)

This bound is loose in general, as evidenced by results on
a tighter upper bound:

D(p||p(k)) ≤ Hp(k) + (N − k)hp(k)−Hp(N)

For a better understanding of the notation used above
(what Hp(·) and hp(·) represent), see section 3 of [30].
Other than these bounds, no results on the global maximizers
of D(p||p(k)) were given for general k until a recent paper
by Matus [39]. An upper bound on the divergence to
hierarchical log-linear models was introduced for any family
of subsets A over X , with an analysis of its tightness and
achievability. When A is the family of all cardinality k
subsets, this divergence is the same as D(p||p(k)). This
special case was studied as an example of achievability,
and a subset of the global maximizers were arrived at by
matroid-based arguments. These distributions, referred to
as partition representable distributions by Matus [40], are

exactly the global maximizers of Cohesion-k. These findings
imply that the upper bound of Equation 2 is tight for the
extrema of both measures over a sufficiently large field, but
what about more generally? By the nature of D(p||p(k)) as
a KL-Divergence, any distribution that can be represented
solely by its kth order marginals receives zero weight,
meaning no lower-order information (≤ k) contributes to
the measure. For example, the maximizers of D(p||p(1)) (the
maximally redundant distributions of Table Ia) would be in
the set of global minimizers for D(p||p(2)). This is not the
case for Cohesion-k, which only assigns zero weight when
all variables are independent. As a result, Cohesion has
preference for linear dependence structures, since (k − 1)th
order interactions receive almost as much weight as kth
order. The gap in the bound between each measure can
thus be accounted for by their different treatment of lower
order information. To illustrate these differences further, we
compare Cohesion-k and D(p||p(k)) empirically for four
binary variables.

Directing our attention to the second plot in Figure 2,
recall that the maximizing distributions for Cohesion-2 over
four binary variables was given in Table II. By the result
of Matus, we know that over a sufficiently large field,
D(p||p(2)) and Cohesion-2 have the same global maximiz-
ers, but what about when the support is restricted? When
optimizing over a discretized simplex of bin size 1/12,
the maximizing distribution for D(p||p(2)) over four binary
variables is

TABLE VI: Binary (local) Maximizers for D(p||p(2))
X0 X1 X2 X3 Pr

0 0 0 0 1/4
0 1 1 1 1/4
1 0 1 1 1/6
1 1 0 1 1/6
1 1 1 0 1/6

While this might not be the global maximizer, we can still
gain insight from comparing it to maximizers of Cohesion-2.
This distribution does not have a linear dependence structure,
since no marginal variables have entropy of 1 bit. It does,
however, have more third order information (1.44 bits) than
the normalized redundant-synergy maximizer of Cohesion-
2 (1 bit). When the support is large, it is possible to
have both linear dependence and maximal information of
a particular order (Table III), which is the main reason why
these measures converge at the extremes.

VI. DISCUSSION AND FUTURE WORK

In addition to its appearance in this work, coding theory
has been referenced in a few recent papers on MMI and
information decomposition, hinting that a meaningful
connection may exist between the two fields. Secret sharing,
as alluded to in Section III-B, is a sub-discipline of
coding theory and cryptography concerned with the secure
transmission of information. Each message is transformed
into a codeword such that no information about the message



Fig. 2: Plots of normalized Cohesion-k vs D(p||p(k)) (labeled IGC-k along the y-axis) for four binary variables. The orange
line represents the upper bound of Equation 2. Each point appearing below this line represents lower order dependence that
was accounted for by Cohesion, but not the divergence.

or its encoding process can be recovered by an eavesdropper
via repeated observation (and under certain computational
assumptions). Ideas from secret sharing have been used
to argue for an expanded definition of local positivity in
the partial information decomposition [41], and to define
new measures of MMI-based capacity bounds in secret
key agreement [42]. MDS codes, under the secret sharing
interpretation, correspond to perfect/ ideal secret sharing
schemes where the share is the same size as the secret and
no collection of (k − 1) users can recover it (assuming the
secret is size k). Although this is the first time MDS codes
and perfect/ideal secret sharing schemes have been affiliated
with Cohesion measures, it is not the first time they have
appeared in the study of MMI.

Since many potential real world applications of these
measures will have data with fixed support much smaller
than q = n, it will be interesting to further study the
maximizers of Cohesion over small/ restricted fields. From
the limited experimental evidence we gathered in comparing
to D(p||p(k)) (and some additional simplex search), it seems
that Cohesion maximizers are always related to linear depen-
dence structures over Fq , with the matroid structure as close
to uniform as allowable over the fixed field. Such structures
seem conceptually close to near-MDS (NMDS) and almost-
MDS (AMDS) codes over small fields [43][44].

APPENDIX

Proofs for additional polymatroid bounds

Each proof has similar construction to the constant upper
bound of Section IV. Each term in the sum is upper-bounded
by its cardinality, and the joint entropy is lower bounded
through monotonicity.

C(1) + C(3) =

n∑
i=1

H(Xi) +

n∑
i=1

H(XE/i)− 4·H(X)

≤ n(1) + n(n− 1)− 4(n− 1)

≤ 4

C(2) + 3·C(1) =

(n
2)∑

A=1

H(XA) +

n∑
i=1

3·H(Xi)− 6·H(X)

≤ 2

(
n

2

)
+ n(3)− 6(2)

≤ 12

C(2) + 3·C(3) =

(n
2)∑

A=1

H(XA) +

n∑
i=1

3·H(XE/i)− 12·H(X)

≤ 2

(
n

2

)
+ n(n− 1)(3)− 12(n− 1)

≤ 12
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