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Abstract—This paper studies the complexity of solving two
classes of non-cooperative games in a distributed manner, in
which the players communicate with a set of system nodes over
noisy communication channels. The complexity of solving each
game class is defined as the minimum number of iterations
required to find a Nash equilibrium (NE) of any game in that class
with ε accuracy. First, we consider the class G of all N -player
non-cooperative games with a continuous action space that admit
at least one NE. Using information-theoretic inequalities, a lower
bound on the complexity of solving G is derived which depends
on the Kolmogorov 2ε-capacity of the constraint set and the total
capacity of the communication channels. Our results indicate that
the game class G can be solved at most exponentially fast. We next
consider the class of all N -player non-cooperative games with at
least one NE such that the players’ utility functions satisfy a
certain (differential) constraint. We derive lower bounds on the
complexity of solving this game class under both Gaussian and
non-Gaussian noise models. Finally, we derive upper and lower
bounds on the sample complexity of a class of quadratic games.
It is shown that the complexity of solving this game class scales
according to Θ

(
1
ε2

)
where ε is the accuracy parameter.

Index Terms—Non-cooperative games, Nash seeking algo-
rithms, information-based complexity, minimax analysis, Fano’s
inequality

I. INTRODUCTION

A. Motivation
Game theory offers a suite of analytical frameworks for

investigating the interaction between rational decision-makers,
hereafter called players. In the past decade, game theory
has found diverse applications across engineering disciplines
ranging from power control in wireless networks to modeling
the behavior of travelers in a transport system. The Nash
Equilibrium (NE) is the fundamental solution concept for non-
cooperative games, in which a number of players compete to
maximize conflicting utility functions that are influenced by
the action of others. At the NE, no player benefits from a
unilateral deviation from its NE strategy.

Finding the NE of a non-cooperative game is a fundamental
research problem that lies at the heart of game theory litera-
ture. This problem also has important engineering applications,
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e.g., voltage control problem in electricity networks [1] and
routing problem in communication networks [2]. For non-
cooperative games with continuous action spaces, various
Nash seeking algorithms have been proposed in the literature,
e.g. see [3], [4]. In this paper, we investigate the intrinsic
difficulty of finding a NE in such games. Using the notion
of complexity from the convex optimization literature, and
information-theoretic inequalities, we derive bounds on the
minimum number of iterations required to find a NE within a
desired accuracy, for any N -player, non-cooperative game in
a given class.

B. Contributions
This paper studies the complexity of solving two classes

of non-cooperative games in a distributed setting. Players
communicate, not with an oracle, but with a set of utility
system nodes (USNs) and constraint system nodes (CSNs)
to obtain the required information for updating their actions.
Each USN computes the utility-related information for a subset
of players whereas a CSN evaluates a subset of constraint
functions. The communication between players and system
nodes is subject to noise, i.e., the system nodes will receive
noisy versions of players’ actions, and the players will receive
noisy information from the system nodes.

First, we consider the game class G of all N -player non-
cooperative games admitting at least one Nash equilibrium
(NE), and with joint action space defined by L convex con-
straints. We derive lower bounds on the minimum number
of iterations required to get within ε distance of a NE of
any game in G with confidence 1 − δ, without imposing any
particular structure on the computation model at USNs. Our
results indicate that the complexity of solving the game class
G is limited by the Kolmogorov 2ε-capacity of the constraint
set and the total capacity of communication channels from
the USNs to the players, see Lemma 1 in Subsection III-A for
more details.

We also derive a lower bound on the complexity of solving
the game class G in terms of the volume and surface area of
the constraint set, see Theorem 1 in Subsection III-A for more
details. Our results indicate that the game class G can be solved
at most exponentially fast regardless of the computation model
at USNs. Hence, it is not possible to construct an algorithm
with a super-exponential convergence rate for solving this
class. We note that, in a precursor conference paper [5], we
have studied the complexity of solving the game class G under
a slightly different setting than that in the current manuscript.
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TABLE I
COMPLEXITY OF DIFFERENT GAME CLASSES AND COMPUTATION MODELS

Channel Model Game Class and Computation Model

(G,Oa)
(
Gγ ,O1

b
)

(Gq,O1)

Gaussian/Non-Gaussian Ω
(
log 1

ε

)
Ω
(

1
ε2

)
Θ
(

1
ε2

)
aA general computation model at USNs.
bThe partial derivative computation model at USNs.

We next consider the subclass Gγ , consisting of all games
in G where the norm of the Jacobian of the pseudo-gradient
vector, induced by utility functions of players, exceeds a
specified threshold γ. We study the complexity of solving the
game class Gγ under a partial-derivative computation model
at USNs, wherein each player receives a noisy version of
the partial derivative of its utility function, with respect to
its action, in each iteration.

Our results show that the complexity of solving the game
class Gγ up to ε accuracy is at least of order 1

γ2ε2 , as ε tends
to zero, with Gaussian communication channels, see Theorem
2 in Subsection III-B for more details. We further consider a
setting in which the channels from system nodes to players are
non-Gaussian and the channels from players to system nodes
are noiseless. In this setting, our results show that the solution
complexity remains of at least of order 1

γ2ε2 as ε tends to zero.
This is established by deriving an asymptotic expansion for
the Kullback-Leibler (KL) divergence between a non-Gaussian
probability distribution function (PDF) and its shifted version,
under some mild assumptions on the non-Gaussian PDF. More
precisely, it is shown that the KL distance between a PDF
and its shifted version can be written, up to an error term,
as a monomial which is quadratic in the shift parameter and
linear in the Fisher information of the corresponding PDF with
respect to the shift parameter, see subsection III-D for more
details.

Finally, we study the complexity of solving the class Gq of
quadratic games. A Nash-seeking algorithm is proposed for
solving this game class and its convergence rate is analyzed.
Our results show that the complexity of solving this game class
scales according to Θ

(
1
ε2

)
in both Gaussian and non-Gaussian

settings. Our main results are summarized in Table I-B.

C. Related Work

This paper is inspired by the rich literature on the com-
plexity of convex optimization, as pioneered in [6]. In the
formulation of this book, an algorithm sequentially queries an
oracle about the objective function of a convex optimization
problem, and the oracle responds according to the queries and
the objective function. Bounds are derived on the minimum
number of queries required to find the global optimizer of
any function in a given function class. In [7], information-
theoretic lower bounds were derived on the complexity of
convex optimization with a stochastic first order oracle for
the class of functions with a known Lipschitz constant. In

a stochastic first order oracle model, the algorithm receives
randomized information about the objective function and its
subgradient. These results were extended to different function
classes in [8].

The paper [9] considered a model in which the algorithm
observes noisy versions of the oracle’s response, and estab-
lished lower bounds on the complexity of convex optimization
problems under first-order as well as gradient-only oracles.
In [10], complexity lower bounds were obtained for convex
optimization problems with a stochastic zero-order oracle.
The paper [11] studied the complexity of convex optimization
problems under a zero-order stochastic oracle in which the
optimization algorithm submits two queries at each iteration
and the oracle responds to both queries. These results were
extended to the case in which the algorithm makes queries
about multiple points at each iteration in [12]. In [13], the
complexity of convex optimization was studied under an
erroneous oracle model, wherein the oracle’s responses to
queries are subject to absolute/relative errors.

There has been comparatively little work on the complexity
of solving games. The authors in [14] studied the query com-
plexity of finding the correlated equilibria of non-cooperative
binary-action games. The query complexity of an ε-well-
supported Nash equilibrium was studied in [15] for a non-
cooperative game with binary actions. In contrast, our focus
here is on games with continuous action spaces and at least
one Nash equilibrium.

This paper is organized as follows. Section II discusses our
modeling assumptions and problem formulation. Section III
discusses our main results along with their interpretations.
All the proofs are relegated to Section IV to improve the
readability of the paper. Section V concludes the paper.

II. SYSTEM MODEL

A. Game-theoretic Set-up

Consider a non-cooperative game with N players indexed
over N = {1, · · · , N}. Let xi (i ∈ N ), and x =[
x1, · · · , xN

]>
denote the action of the ith player and the col-

lection of all players’ actions, respectively. The utility function
of the ith player is denoted by ui

(
xi,x−i

)
where x−i is the

vector of those other players’ actions that affect the ith player’s
utility. The utility function of the ith player quantifies the
desirability of any point in the action space for the ith player.
The actions of players are limited by L convex constraints
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Fig. 1. A pictorial representation of the communication graph between system nodes and players. Solid arrows denote the uplink channels
and dashed arrows denote the downlink channels.

denoted by g (x) ≤ 0 where g (·) = [g1 (·) , · · · , gL (·)]> is
a mapping from RN to RL. The set of constraint functions
is indexed over L = {p ∈ N : 1 ≤ p ≤ L}. Let S denote the
action space of players, i.e.,

S =
{
x ∈ RNs.t. g (x) ≤ 0

}
.

We assume that S is a compact and convex subset of RN .
In non-cooperative games, each player is interested in max-

imizing its own utility function, irrespective of other players.
Since the maximizers of utility functions of players do not
necessarily coincide with each other, a trade-off is required. In
this paper, the Nash equilibrium is considered as the canonical
solution concept of the non-cooperative game among players.
Let xNE ∈ S be the NE of the game among players. Then,
at the NE, no player has incentive to unilaterally deviate its
action from its NE strategy, i.e.,

xiNE = arg max
xi∈S(x−iNE,C)

ui
(
xi,x−iNE

)
,∀i ∈ N ,

where x−iNE,C is the collection of NE strategies of players
which are coupled with the ith player through constraints, and
S
(
x−iNE,C

)
is the set of possible actions of the ith player

given x−iNE,C. The vector of all utility functions is denoted by
U (x) = [u1 (x) , · · · , uN (x)]

>.
Let F denote the class of functions from RN to RN such

that any N -player non-cooperative game with the constraint
set S and utility function vector in F admits at least one NE.
By the class of non-cooperative games G = 〈N ,S,F〉, we
mean the set of all games with N players, the action space S,
and the utility function vector in F , i.e., U (·) ∈ F .

B. Communication Model

In this paper, we consider a distributed Nash seeking set-
up wherein, at each time-step, players communicate with a
set of utility system nodes (USNs) and constraint system
nodes (CSNs) to obtain the required utility/constraint related
information for updating their actions. A USN computes
utility-related information for a set of players, e.g., the util-
ity functions of players or their partial derivatives. A CSN
evaluates a subset of constraints based on the received actions
of players. Each utility function or constraint is evaluated at
only one USN or CSN, respectively. The number of USNs and
CSNs are denoted by Ku and Kc, respectively, with Ku ≤ N

and Kc ≤ L. We use USNl (l ∈ {1, . . . ,Ku}) and CSNn
(n ∈ {1, . . . ,Kc}) to refer to the lth USN and nth CSN,
respectively.

At each time-step, player i transmits its action to USNl if
its action affects at least a utility function evaluated by USNl.
The set of players which transmit their actions to USNl is
denoted by Nusnl . We use the mapping π (·), from {1, · · · , N}
to {1, . . . ,Ku}, to indicate the USN which computes the
utility-related information for a given player, i.e., π (i) = l
if USNl computes the utility-related information for the ith
player. Thus, the utility-related information for the ith player
is computed by USNπ(i).

Similarly, at each time-step, player i transmits its action
to CSNn if its action affects at least one constraint function
evaluated by CSNn. The set of players which transmit their
actions to CSNn is represented by Ncsnn . We use the mapping
φ (·), from {1, · · · , L} to {1, . . . ,Kc}, to indicate the CSN
which evaluates a given constraint function, i.e., φ (p) = n
if CSNn evaluates the pth constraint function. Hence, the
pth constraint function is evaluated by CSNφ(p). The set of
constraint functions which are affected by the ith player’s
action are denoted by Li.

The communication topology between players and system
nodes is given by a bipartite digraph in which the players
and the system nodes form two disjoint sets of vertices.
There exists a directed edge, in the communication graph,
from the ith player to USNl if i ∈ Nusnl . Also, there
exists a directed edge from USNπ(i) to the ith player for all
i ∈ N . Furthermore, there exist a directed edge from the ith
player to CSNn, and a directed edge from CSNn to the ith
player if i ∈ Ncsnn . We refer to communication channels
from players to system nodes as uplink channels and the
communications channels between system nodes and players
as downlink channels. Fig. 1 shows a pictorial representation
of the communication topology between system nodes and
players.

Players communicate with system nodes using frequency
division multiplexing (FDM) or time division multiplexing
(TDM) schemes, i.e., each player broadcasts its action to its
neighboring system nodes in the communication graph using
a dedicated time or frequency band. Similarly, system nodes
communicate with players via FDM or TDM communication
schemes. The communication between players and system
nodes is performed over noisy communication channels, i.e.,
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players receive noisy information from system nodes, and
system nodes receive noisy versions of players’ actions. This
will be made more explicit in the next subsection.

C. Nash Seeking Algorithms

1) The Update Rule: In this paper, we consider a general
structure for the Nash seeking algorithms which allows each
player’s action to be updated using the past actions of that
player as well as the past received utility/constraint related
information by that player. Let A be such a Nash seeking
algorithm. Then, under A, the ith player’s action at time k,
i.e., xik, is updated according to the update rule

xik = Aik
(
Xi

1:k−1, Ŷ
i
1:k−1, Ẑ

i
1:k−1

)
,

where Xi
1:k−1 is the history of the ith player’s actions from

time 1 to k−1, Ŷ i1:k−1 denotes the sequence of received utility-
related information by the ith player from time 1 to k − 1,
and Ẑi1:k−1 denotes the sequence of received constraint-related
information by the ith player from time 1 to k − 1. Here,
Aik (·, ·, ·) is a mapping from Rk−1×Rk−1×R(k−1)|Li| to R.
Note that Xi

1:k−1, Ŷ i1:k−1 and Ẑi1:k−1 can be written as

Xi
1:k−1 =

{
xit
}k−1
t=1

,

Ŷ i1:k−1 =
{
ŷit
}k−1
t=1

,

Ẑi1:k−1 =
{
ẑi,pt , p ∈ Li

}k−1
t=1

,

, respectively, where xit is the action of the ith player at time
t, ŷit denotes the received utility-related information by the
ith player at time t and ẑi,pt denotes the received information
regarding the pth constraint by the ith player at time t.

The kth step of the algorithm A is denoted by

Ak
(
X1:k−1, Ŷ1:k−1, Ẑ1:k−1

)
=
{
Aik
(
Xi

1:k−1, Ŷ
i
1:k−1, Ẑ

i
1:k−1

)}
i
,

where

X1:k−1 =
{
xit : i ∈ N

}k−1
t=1

,

Ŷ1:k−1 =
{
ŷit : i ∈ N

}k−1
t=1

,

Ẑ1:k−1 =
{
ẑi,pt : i ∈ N , p ∈ Li

}k−1
t=1

.

We refer to

A =
{
Ak
(
X1:k−1, Ŷ1:k−1, Ẑ1:k−1

)}
k
,

as the Nash seeking algorithm A.
2) Communication and Computation At USNs: The re-

ceived action of the ith player by USNl at time k, i.e., x̂ik,usnl ,
can be written as

x̂ik,usnl = xik +W i
k,usnl

,

where W i
k,usnl

is the noise in the uplink channel from the

ith player to USNl. Let X̂usnl
1:k =

{
x̂it,usnl : i ∈ Nusnl

}k
t=1

denote the history of actions received by USNl from time 1 to
time k. At time k, USNl computes yik, i.e., the utility-related
information for player i at time k, for all i such that π (i) = l.

In this paper, we study the complexity of solving non-
cooperative games under two computation models at USNs.
We first consider a general computation model in which yik
is allowed to be any arbitrary function of ui (·) and the
information available at USNl from time 1 to k, i.e.,

yik = Ok,i
(
X̂usnl

1:k , ui (·)
)
∀i : π (i) = l. (2)

where Ok,i (·, ·) is a functional. This formulation allows us to
capture the complexity of solving the game class G under a
general class of computation models at USNs in Theorem 1.
We refer to O =

{
Ok,i

(
X̂

usnπ(i)

1:k , ui (·)
)}

k,i
as the general

computation model at USNs.
We also study the complexity of solving non-cooperative

games under the partial-derivative computation model in which
USNl at time k evaluates the partial derivative of the utility
function of the ith player with respect to its action, i.e., yik =
∂

∂(xi)ui
(
xi,x−i

)∣∣∣
X̂

usnl
k

for all i with π (i) = l. We refer to

the partial-derivative computational model for USNs as

O1 =
{
O1
k,i

(
X̂

usnπ(i)

k , ui (·)
)}

k,i
(3)

where X̂usnl
k =

{
x̂ik,usnl : i ∈ Nusnl

}
denotes the set of

actions received by USNl at time k and

O1
k,i

(
X̂

usnπ(i)

k , ui (·)
)

=
∂

∂ (xi)
ui
(
xi,x−i

)∣∣∣∣
x=X̂

usnπ(i)
k

.

Then, USNl transmits yik to the ith player for all i with
π (i) = l. The received utility-related information by the ith
player at time k can be written as

ŷik = yik + V ik ,

where V ik is the noise in the downlink channel from the
USNπ(i) to the ith player.

3) Communication and Computation At CSNs: The re-
ceived action of the ith player by CSNn at time k, i.e, x̂ik,csnn ,
can be written as

x̂ik,csnn = xik +W i
k,csnn ,

where W i
k,csnn

is the noise in the uplink channel from the ith
player to CSNn. The collection of received actions at time k
by the CSNn is denoted by X̂csnn

k =
{
x̂ik,csnn : i ∈ Ncsnn

}
.

At time k, CSNn evaluates its associated constraint functions
using the received actions at time k, i.e.,

zpk = gp

(
X̂csnn
k

)
, ∀p : φ (p) = n

Finally, CSNn broadcasts zpk to the players which their actions
affect gp (·). If the action of the ith player affects the pth
constraint, the ith player will receive

ẑi,pk = zpk + V i,pk ,

at time k where V i,pk is the noise in the downlink channel
from CSNφ(p) to the player i.

Remark 1: Although, we assume that the CSNn at time
k transmits gp

(
X̂csnn
k

)
to the ith player (if p ∈ Li), our

results continue to hold when other computation models are
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T ?ε,δ (G,O) = inf

{
T ∈ N : ∃A s.t. sup

U(·)∈F
inf
i
Pr
(∥∥∥xNEi,U(·) −AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ ≥ ε) ≤ δ} . (1)

implemented at the CSNs, e.g., when the CSNn at time k
transmits ∂

∂xi gp (x)
∣∣
x=X̂csnn

k

to the ith player.

D. The Complexity Criterion

Consider the class of games G and and the computation
model O. Then, the (ε, δ)-complexity of solving the class
of games G with the computation model O, denoted by
T ?ε,δ (G,O), is defined in (1) where xNEi,U(·) is a NE of the
non-cooperative game with the utility function vector given by
U (·) ∈ F . According to (1), the (ε, δ)-complexity of solving
the class of games G with the computation model O is defined
as the smallest positive integer T for which there exists an
algorithm A such that, for any game in G, the probability of
ε deviation of the algorithm’s output at time T + 1 from at
least a NE of the game is less than δ. Note that (1) assigns
a positive integer to any class of games. For a given pair of
(G,O), a small value of T ?ε,δ (G,O) indicates that the class of
games G with the computation model O can be solved faster
compared to a large value of T ?ε,δ (G,O). The complexity of
solving the game class G under the computation model O1

can be defined in a similar way.
Remark 2: The ε-Nash equilibrium (ε-NE) is a closely

related solution concept to the NE which is defined as the point
such that no play can gain more than ε by unilaterally deviating
its strategy from its ε-NE strategy. However, an ε-NE is not
always close to a NE since game-theoretic problems are not
necessarily convex problems and a NE is not necessarily the
maximizer/minimizer of utility functions of all players [16].
Hence, we do not consider ε-NE as a solution concept in this
paper.

E. Modeling Assumptions

In this paper, we impose the following assumptions on
the Nash seeking algorithms and the noise terms in the
uplink/downlink communication channels:

1) X1 is specified by the algorithm A, and the algorithm
A uses the same value of X1 for solving any game.

2)
{
W i
k,usnl

, i ∈ Nusnl

}
k

is a collection of zero mean,
independent and identically distributed (i.i.d.) random
variables with variance σ2

usnl
> 0 for all 1 ≤ l ≤ Ku.

3)
{
W i
k,csnn

, i ∈ Ncsnn

}
k

is a collection of zero mean,

i.i.d. random variables with variance σ2
csnn > 0 for all

1 ≤ n ≤ Kc.
4)
{
V ik , V

i,p
k , p ∈ Li

}
k

is a collection of i.i.d. random

variables with zero mean and variance σ2
i > 0 for all

i ∈ N .
5) All the uplink/downlink noise terms are jointly indepen-

dent.

F. Organization of The Paper and Notations

The rest of this paper is organized as follows. Section III
states our main results on the complexity of solving two
classes of non-cooperative games. Section IV presents the
derivation of our results, and Section V concludes the paper.

In the rest of this paper, we use the following notations from
asymptotic analysis literature. For two positive functions f (x)

and g (x), we say f (x) = Ω (g (x)) if lim infx↓0
f(x)
g(x) > 0.

We also say f (x) = Θ (g (x)) if lim infx↓0
f(x)
g(x) > 0 and

lim supx↓0
f(x)
g(x) <∞. Our main notations are summarized in

Table II.

III. RESULTS AND DISCUSSIONS

In this section, we establish various lower bounds on
the complexity of solving two game classes under different
assumptions on the distribution of uplink/downlink noise terms
and different computation models at USNs. In Subsection
III-A, we derive two lower bounds on the complexity of
solving the game class G under the general computation model
at USNs without assuming any particular distribution for the
uplink/downlink noise terms. In Subsection III-B, we establish
a lower bound on the complexity of solving a subclass of
G, denoted by Gγ , under Gaussian uplink/downlink channels
and the partial-derivative computation model. Subsection III-B
presents a lower bound on the complexity of solving the
game class Gγ under noiseless uplink channels, non-Gaussian
downlink channels, and the partial-derivative computation
model. Subsection III-E discusses the complexity of solving
the game class Gγ under the partial-derivative computation
model when both uplink and downlink channels are non-
Gaussian distributed.

A. General Computation model at USNs and General Up-
link/Downlink Channels

In this subsection, our objective is to study the computa-
tional complexity of solving the game class G in a general
setting. That is, we do not impose any particular structure on
the computation model at the USNs, or any specific probability
distribution on the noise in the uplink/downlink channels.
Here, our results indicate the impossibility of constructing
an algorithm with a super-exponential convergence rate for
solving the game class G regardless of the computation model
at USNs. This inherent limitation is a consequence of the
additive communication noise terms.

To this end, we first give the definition of the total capacity
of downlink channels, the notion of 2ε-distinguishable subsets
of S, and the Kolmogorov capacity of S . Our first result
(Lemma 1) establishes a lower bound on the complexity of
G which depends on Kolmogorov capacity of S. Our main
result in Theorem 1 derives a lower bound on the complexity
of G which explicitly depends on ε.
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TABLE II
TABLE OF THE MAIN VARIABLES

Variable Description
N The set of players
L The set of constraints
Li The set of constraints which are affected by the ith player action
USNπ(i) The USN which computes utility-related information for the ith player
CSNφ(p) The CSN which evaluates the pth constraint
Nusnl The set of players which transmit their actions to USNl
Ncsnn The set of players which transmit their actions to CSNn
xik Action of the ith player at time k
Xi

1:k Actions of the ith player from time 1 to k
X1:k Actions of all the players from time 1 to k
x̂ik,usnl The received action of the ith player by USNl at time k
X̂usnl
k The collection of received actions by USNl at time k

X̂usnl
1:k The collection of received actions by USNl from time 1 to k

yik The utility-related information computed by USNπ(i) for the ith player
ŷik The received utility-related information by the ith player
Ŷ i1:k The history of received utility-related information by the ith players from time 1 to k
Ŷ1:k The history of received utility-related information by all the players from time 1 to k
x̂ik,csnn The received action of the ith player by CSNn at time k
X̂csnn
k The collection of received actions by CSNn at time k

zpk The value of the pth constraint at time k evaluated by CSNφ(p)
ẑi,pk The received value of the pth constraint at time k by the ith player
Ẑi1:k The history of received constraint-related information by the ith players from time 1 to k
Ẑ1:k The history of received constraint-related information by all the players from time 1 to k
W i
k,usnl

The additive noise in the uplink channel from the ith player to USNl at time k (i ∈ Nusnl )
W i
k,csnn

The additive noise in the uplink channel from the ith player to CSNn at time k (i ∈ Ncsnn )
V ik The additive noise in the downlink channel from USNπ(i) to the ith player at time k
V i,pk The additive noise in the downlink channel which transmits zpk to the ith player at time k (p ∈ Li)

The total capacity of downlink channels
from USNs to players is defined as Cdown =
maxpY (y),E[‖Y ‖2]≤α I

[
y1, · · · , yN ; ŷ1, · · · , ŷN

]
where yi

and ŷi are the input and the output of the downlink
channel from USNπ(i) to the ith player, respectively,
Y =

[
y1, · · · , yN

]>
, pY (y) is the joint distribution of Y ,

and α is the total average power constraint of the downlink
channels between USNs and players.

Definition 1: A subset of S is 2ε-distinguishable if the
distance between any two of its points is more than 2ε [17].

Definition 2: LetM2ε (S) denote the cardinality of maximal
size 2ε distinguishable subsets of S. Then, the Kolmogorov
capacity of S is defined as logM2ε (S) [17].

The next lemma establishes a lower bound on T ?ε,δ (G,O).
Lemma 1: Let T ?ε,δ (G,O) denote the complexity of the class

of N -player non-cooperative games G with the continuous
action space S. Then, we have

T ?ε,δ (G,O) ≥ (1− δ) logM2ε (S)− 1

Cdown
(4)

where Cdown is the total capacity downlink channels from
USNs to players, and logM2ε (S) is the Kolmogorov 2ε-
capacity of the action space S.

Proof: See Subsection IV-A.

Lemma 1 establishes an algorithm-independent lower bound
on the order of complexity of solving the game class G.
According to this lemma, T ?ε,δ (G,O) is lower bounded by
the ratio of the Kolmogorov 2ε-capacity of the action space
S to the total Shannon capacity of the downlink channels.
Note that the Kolmogorov 2ε-capacity of S can be interpreted
as a measure of players’ ambiguity about their NE strategies.
Thus, as logM2ε (S) becomes large, T ?ε,δ (G,O) is expected to
increase since players have to search in a bigger space to find
their NE strategies. Based on lemma 1, Cdown has a reverse
impact on T ?ε,δ (G,O). Note that Cdown is an indication of the
information transmission quality from USNs to players. That
is, as Cdown decreases, players will receive noisier information
regarding their utility functions compared with a large value
of Cdown.

Lemma 1 depends on the 2ε-capacity of the constraint set
S which is usually hard to compute unless the action space
of players is restricted to special geometries. As M2ε (S) is
just the maximum number of ε-balls that can be packed into
S, it is asymptotically equal to Vol(S)

Vol(Bε)
= Vol(S)

αN εN
as ε tends to

zero, where Bε is the N -ball of radius ε, and αN is the N -
dimensional spherical constant under the assumed norm. Thus,
the complexity is at least of order log 1

ε as ε becomes small.
The next result establishes a non-asymptotic lower bound of
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the same order, by lower bounding M2ε (S) using a result
from lattice theory.

Theorem 1: The complexity of solving the class of N -player
non-cooperative games G with continuous action space S can
be bower bounded as

T ?ε,δ (G,O) ≥
(1− δ)

(
N log 1

2ε+log (Vol (S)−εP (S))
)
− 1

Cdown

where Vol (S) and P (S) are the volume and the surface area
of the action space of players, respectively.

Proof: See Subsection IV-B.
According to Theorem 1, the game class G cannot be solved
faster than Θ

(
log 1

ε

)
time-steps regardless of uplink/downlink

noise distributions, and the computation model at the USNs.
Note that Θ

(
log 1

ε

)
corresponds to an exponential (linear) con-

vergence rate. Therefore, Theorem 1 disproves the existence
of a (Newton-like) algorithm which can solve the game class
G with a super-exponential convergence rate, regardless of the
computation model at USNs.

Based on Theorem 1, the lower bound on T ?ε,δ (G,O)
increases at least linearly with the number of players. This
is due to the fact that the amount of uncertainty about the NE
increases as the number of players becomes large. Recall that
logM2ε (S) is a quantitative indicator of ambiguity about the
NE. Furthermore, ε has a logarithmic effect on T ?ε,δ (G,O),
i.e., the complexity of solving the class of games G increases
according to Ω

(
log 1

ε

)
as ε becomes small.

According to Theorem 1, the lower bound on the complexity
of solving the game class G increases as the volume of the
action space of players becomes large. Also, for a given
surface area of action space of players, i.e., P (S), the volume
of action space of players can be upper bounded using the
isoperimetric inequality for convex bodies [18] as follows:

Vol (S) ≤ Vol (B)

(P (B))
N
N−1

P (S)
N
N−1 (5)

where B is the closed unit ball in N -dimensional Euclidean
space RN . Note that the equality in (5) is achieved if and only
if S is a ball in RN [18]. Thus, for a given surface area of action
space of players P (S), the lower bound on the complexity of
solving games in the class G increases as the action space
of players becomes closer to a ball in RN with the volume

Vol(B)

(P(B))
N
N−1

P (S)
N
N−1 .

B. Partial-derivative Computation Model at USNs and Gaus-
sian Uplink/Downlink Channels

In this section, we establish a lower bound on the com-
plexity of solving a subclass of G, denoted by Gγ , under
the partial-derivative computation model (see Equation (3)).
Motivated by the importance of Gaussian channels, we assume
that the noise distribution is Gaussian. The game class Gγ can
be considered as an equivalent of the class of strongly convex
objective functions for the non-cooperative games. We also
compare the complexity of solving the game class Gγ with
that of the class of strongly convex optimization problems.

To specify the game class Gγ , we first define the notion of
pseudo-gradient for a utility function vector as follows.

Definition 3: The pseudo-gradient of the utility function vec-
tor U (x) =

[
u1
(
x1,x−1

)
, · · · , uN

(
xN ,x−N

)]>
is defined

as

∇̃U (x)=

[
∂

∂ (x1)
u1
(
x1,x−1

)
, · · · , ∂

∂ (xN )
uN
(
xN ,x−N

)]>
We use J∇̃U (x) to denote the Jacobian matrix of the vector
valued function ∇̃U (x), i.e.,

[J∇̃U (x)]
ij

=
∂2

∂ (xj) (xi)
ui
(
xi,x−i

)
, 1 ≤ i, j ≤ N

We next specify a set of utility vector functions, denoted by
Fγ , which is used to define the game class Gγ .

Definition 4: The set of utility vector functions Fγ is defined
as the set of all vector valued functions U (x) from RN to RN
such that

1) The N -player non-cooperative game with utility vector
function given by U (x) and the constraint set S admits
at least a Nash equilibrium (NE).

2) The matrix J∇̃U (x) exists for all x in S.
3) The matrix J∇̃U (x) satisfies

∥∥∥J∇̃U(x)

∥∥∥ ≥ γ > 0 for all
x ∈ S where ‖J∇̃U (x)‖ denotes the matrix norm of
J∇̃U (x).

The next definition specifies the game class Gγ .
Definition 5: The class of games Gγ = 〈N ,S,Fγ〉 is defined

as the set of all non-cooperative games with N players, the
constraint set S, and the utility function vector U (·) in Fγ .

Note that the game class Gγ reduces to the class G when γ
is equal to zero. The complexity of solving the game class Gγ
heavily depends on J∇̃U (x) as shown in Theorem 2.

Remark 3: In the context of non-cooperative games, the
game class Gγ can be considered as an equivalent of the class
of strongly convex functions. Recall that a twice differentiable
function f (x) : Rn → R is strongly convex with parameter
m ∈ R+ if the matrix ∇2f (x)−mI is positive semi-definite
for all x in the domain of f (·). The vector-valued function
∇f (x) denotes the steepest descent direction at x, and the
Jacobian of ∇f (x) is the Hessian matrix, ∇2f (x), which
encodes the first order behavior of the steepest descent func-
tion. In a non-cooperative game, ∂

∂(xi)ui
(
xi,x−i

)
denotes the

steepest descent direction of the utility function of agent i at
x. Thus, the function ∇̃U (x) encodes the steepest descent
directions of individual agents at x and J∇̃U (x) captures the
first order behavior of this function. However, unlike strongly
convex functions, the game class Gγ imposes a constraint on
the norm of J∇̃U (x) rather than on its eigenvalues.

Remark 4: We note that both ∇̃U (x) and J∇̃U (x) play
important roles in the game theory and system theory litera-
ture. To clarify this point, consider an unconstrained N -player
game with the utility vector function U (x) =

[
ui
(
xi,x−i

)]
i

such that each ui
(
xi,x−i

)
is concave in xi. Then, any

solution of ∇̃U (x) = 0 will be a NE of this game. Also,
consider the dynamical system ẋ = ∇̃U (x). Then, any NE
of the aforementioned game will be an equilibrium of this
dynamical system and the eigenvalues of the matrix J∇̃U (x)
determine the local stability of this dynamical system around
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its equilibria. Moreover, the matrix J∇̃U (x) can be used to
study the uniqueness of the NE in non-cooperative games [19].

The next theorem studies the complexity of solving the
game class Gγ under the partial-derivative computation model
and Gaussian distributed uplink/downlink channels. In the
derivation of Theorem 2, it is assumed that the constraint set
S contains a 2-ball with radius

√
2ε, i.e., the set of all points

in a 2-dimensional plane with the distance
√

2ε from a point
in S.

Theorem 2: Let T ?ε,δ
(
Gγ ,O1

)
denote the complexity of

solving the game class Gγ under the partial-derivative com-
putation model at USNs. Then, for Gaussian distributed up-
link/downlink channels and δ ≤ 0.5, we have

T ?ε,δ
(
Gγ ,O1

)
≥ (2 (1− δ)− 1) mini σ

2
i

4γ2ε2
, (6)

where σ2
i is the variance of noise at the player i’s receiver.

Proof: See Subsection IV-C.
Theorem 2 establishes an algorithm-independent lower bound
on the complexity of solving the game class Gγ . According
to this result, the game class Gγ cannot be solved faster than
Θ
(

1
γ2ε2

)
under the partial-derivative computation model and

Gaussian noise model for uplink and downlink channels. The
lower bound in Theorem 2 also depends on the smallest noise
variance among the downlink channels and the lower bound
increases as the smallest noise variance becomes large. A
comparison between Theorems 1 and 2 indicates that the lower
bound in Theorem 1 is not necessarily tight for all subsets of
G. Recall that Gγ is a subset of G.

Since the game class Gγ is akin to the class of strongly
convex functions, it is helpful to compare the complexity of
solving the game class Gγ with that of solving a class of
strongly convex optimization problems. To this end, consider
the following optimization problem

min
x∈S

f (x) ,

where S is a convex set, and f (x) belongs to the class of
continuous and strongly convex functions Fsc. The complexity
of solving the class of convex optimization problems with the
objective function in Fsc is defined as [9]

inf

{
T ∈ N : ∃A s.t. sup

f(·)∈Fsc

Pr (f (xT+1)− f? ≥ ε) ≤ δ

}
where xT+1 is the output of the algorithm A after T queries,
and f? = infx∈S f (x).

It is shown in [9] that the complexity of solving the class of
strongly convex optimization problems under the subgradient
computation model and Gaussian noise model is given by
Ω
(
1
ε

)
. However, according to the Theorem 2, the lower

bound on the complexity of the game class Gγ scales as
Ω
(

1
ε2

)
. This implies that the game class Gγ is harder to

solve compared with the class of strongly convex optimization
problems. This is essentially due facts that (i) the games are
non-convex problems, (ii) NE is a more sophisticated solution
concept compared with the minimizer of a convex function
(see Remark 2 for more details).

C. Complexity of Solving A Class Of Quadratic Games

In this subsection, we derive an upper bound on the sample
complexity of a class of quadratic games under the computa-
tional modelO1 for both Gaussian and non-Gaussian channels.
To this end, let A = [aij ]i,j be an N -by-N , symmetric,
negative definite matrix. Consider a quadratic game in which
the utility function of each player i is given by

ui
(
xi,x−i

)
=
aii
2

(
xi
)2

+ xi

−Aix? +
∑
j 6=i

aijx
j

 , ∀i

(7)

where Ai is the ith row of A and x? belongs to S. It is
straightforward to show that x? is a Nash equilibrium of
this game. Given the negative constants λmin and λmax, the
quadratic game class Gq (λmin, λmax) is defined as the set of
all non-cooperative games with the utility functions in (7) such
that the matrix A satisfies the following constraints

λmin ≤ λmin (A) ≤ λmax (A) ≤ λmax < 0

We next propose a distributed Nash seeking algorithm
for solving the game class Gq (λmin, λmax) and study its
convergence rate. Under the proposed algorithm, each agent i
updates its action according to

xik+1 = xik +
1

γk
ŷik (8)

where γ = 2
3 |λmax| and ŷik is the received utility-related

information by player i at time k.
Next theorem derives an upper bound on the sample com-

plexity of solving the game class Gq (λmin, λmax). The upper
bound is obtained by analyzing the convergence rate of the
update rule (8).

Theorem 3: Consider the game class Gq (λmin, λmax)
with the computation model O1. Assume that the down-
link and uplink noise terms have zero mean and bounded
second moments. Then, the sample complexity of solving
Gq (λmin, λmax) can be upper bounded as

T ? (Gq (λmin, λmax) ,O1) ≤ max

(
L

δε2
,

9λ2min

4λ2max

)
where L is a positive constant.

Proof: See subsection IV-D
Theorem 3 establishes an upper bound on the sample com-
plexity of solving the game class Gq (λmin, λmax). According
to this result, the number of samples required for solving
each game in this class is at most equal to d Lδε2 e for ε small
enough. The constant L depends on the noise distribution, the
constraint set S, λmin and λmax, see the proof of Theorem 3
for more details.

Using Theorem 2, T ? (Gq (λmin, λmax) ,O1) can be lower
bounded as

T ? (Gq (λmin, λmax) ,O1) ≥ (2 (1− δ)− 1) mini σ
2
i

4λ2maxε
2

(9)

Combining the above inequality with the result of Theorem 3,
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we have

T ? (Gq (λmin, λmax) ,O1) = Θ

(
1

ε2

)
for ε small enough, which indicates that the complexity of
solving the class Gq (λmin, λmax) scales inversely with ε2.
Finally, we note that the upper bound in Theorem 3 holds
for both Gaussian and non-Gaussian channels.

D. Partial-derivative Computation Model at USNs, Non-
Gaussian Downlink Channels and Noiseless Uplink Channels

At this point, one might speculate whether the scaling
behavior of T ?ε,δ

(
Gγ ,O1

)
with ε changes when the noise

distribution is non-Gaussian. To evaluate this hypothesis, in
this subsection, we study the complexity of solving the game
class Gγ under the partial-derivative computation model when
the downlink channels are not necessarily Gaussian and the
uplink channels are noiseless.

Let pV i (x) denote the common probability distribution
function (PDF) of the collection of random variables

{
V ik
}
k
,

i.e., the collection of noise terms in the downlink channel from
USNπ(i) to player i. To investigate the complexity of the game
class Gγ in the non-Gaussian setting, we assume that pV i (x)
satisfies the following mild assumptions for all 1 ≤ i ≤ N

1) The PDF pV i (x) is non-zero everywhere on R.
2) The PDF pV i (x) is at least 3 times continuously differ-

entiable, i.e., pV i (x) ∈ C3.
3) There exist positive constants β1, β2, β3 > 0 such that∣∣∣∣ d3dx3 log pV i (x)

∣∣∣∣ ≤ β1 + β2 |x|β3 ∀x ∈ R

4) The tail of the random variable
∣∣V ik ∣∣ decays faster than

x−(β3+1), i.e., we have

lim
x→∞

x(β3+1+r)Pr
{∣∣V ik ∣∣ ≥ x} = 0 ∀k

for some r > 0.
The next theorem derives a lower bound on the complexity of
solving the game class Gγ in the non-Gaussian setting.

Theorem 4: Let T ?ε,δ
(
Gγ ,O1

)
denote the complexity of

solving the N -player non-cooperative games in the class
Gγ using the partial-derivative computation model at USNs.
Assume that the PDFs of the downlink noise terms satisfy the
assumptions 1-4 above and the uplink channels are noiseless.
Then, for δ ≤ 0.5 we have

T ?ε,δ
(
Gγ ,O1

)
≥ 2 (1− δ)− 1

4Nε2γ2 maxi Ii +O (ε3)
.

where Ii is the Fisher information of the PDF pV i (x) with
respect to a shift parameter.

Proof: See Subsection IV-E.
Theorem 4 establishes a lower bound on the complexity of
solving the game class Gγ under noiseless uplink channels
and non-Gaussian downlink channels. Similar to the lower
bound in Theorem 2, the lower bound on the complexity of
solving the game class Gγ is also of the order 1

γ2ε2 when the
uplink channels are noiseless and the downlink channels are
not necessarily Gaussian distributed. Different from Theorem

2, the lower bound on the complexity of solving Gγ in the non-
Gaussian setting depends on the Fisher information of noise
at the players’ receivers rather than the noise variance.

Since the upper bound in Theorem 3 holds in
both Gaussian and non-Gaussian settings, we have
T ? (Gq (λmin, λmax) ,O1) = Θ

(
1
ε2

)
in the non-Gaussian

setting. This observation implies that the scaling behavior of
T ? (Gq (λmin, λmax) ,O1) with ε does not change when the
noise is non-Gaussian.

Theorem 4 is established by deriving an asymptotic expan-
sion for the Kullback-Leibler (KL) divergence between the
PDF pV i (x) and its shifted version. More precisely, we show
that

D [pV i (x) ‖pAiτ+V i (x) ] =
1

2
Ii (Aiτ )

2
+O

(
‖τ‖3

)
where Ai is a 1-by-N row vector, τ is an N -by-1 column
vector, pAiτ+V i (x) is the PDF of Aiτ + V i, and Ii is the
Fisher information of pV i (x) with respect to a shift parameter.
Since the Taylor series of a real function is not necessarily
convergent, Theorem 4 is proved using Taylor expansion
Theorem. The assumptions 1-4 above are used to bound the
remainder integral which appears in the Taylor expansion (see
Lemma 7 in Subsection IV-E and its proof for more details).

E. Partial-derivative Computation Model at USNs With Arbi-
trarily Distributed Uplink and Downlink Channels

The next theorem establishes a lower bound on the complex-
ity of solving the game class Gγ under the partial-derivative
computation model when the uplink and downlink channels
are not necessarily Gaussian distributed.

Theorem 5: The complexity of solving the game class Gγ
using the partial-derivative computation model at USNs is
lower bounded by

T ?ε,δ
(
Gγ ,O1

)
≥ sup
A:‖A‖≥γ,S2ε∈S

(1− δ) log |S2ε| − 1

I
[
x?M ;−Ax?M + ŴA

] (10)

where S2ε is a 2ε-distinguishable subset of S, A = [aij ]
is an N -by-N symmetric, negative definite matrix, x?M is a
random vector taking value in S2ε with uniform distribution,

the random vector ŴA =
[
Ŵ i

1

]N
i=1

is defined as

Ŵ i
1 =

 ∑
j∈Nusnπ(i)

aijW
j
1,usnπ(i)

+ V i1 , 1 ≤ i ≤ N

and I
[
x?M ;−Ax?M + ŴA

]
is the mutual information between

x?M and −Ax?M + ŴA.
Proof: See Subsection 5.

Theorem 10 derives a lower bound on the complexity of
solving the game class Gγ which depends on the constraint
set S, the constant γ and the noise distribution in the uplink
and downlink channels. The optimization in (10) is over the set
of all symmetric, negative definite matrices with norm greater
than or equal to γ, and the set of all 2ε-distinguishable subsets
of S. The matrix A in (10) stems from the construction of
quadratic utility functions in the proof of Theorem 5, the set
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S2ε and the matrix A jointly represent a finite subset of the
function class Fγ , and Ŵ i

1 represents the combined impact of
uplink and downlink channels at player i’s receiver under the
constructed quadratic utility functions (see the proof of this
theorem for more details).

Theorem 5 can be used to numerically obtain a lower bound
on the complexity of solving the game class Gγ up to ε
accuracy when the uplink/downlink channels are not Gaussian
distributed. Note that according to (10), T ?ε,δ

(
Gγ ,O1

)
can be

lower bounded as

T ?ε,δ
(
Gγ ,O1

)
≥ (1− δ) log |S2ε| − 1

I
[
x?M ;−Ax?M + ŴA

] (11)

where A is a symmetric, negative definite matrix with ‖A‖ ≥
γ and S2ε is a 2ε-distinguishable subset of S. Thus, by
numerically evaluating the mutual information term in (11),
one can obtain a lower bound on T ?ε,δ

(
Gγ ,O1

)
.

The lower bound in Theorem 5 has the following
information-theoretic interpretation. Consider an auxiliary
multiple-input-single-output (MISO) broadcast channel with
x?M as input and the −Ax?M + ŴA as output. Here, the
channel input, i.e., x?M , takes value from the finite set of
input alphabets S2ε with uniform distribution. The symmetric,
positive definite matrix −A acts on the input, and the received
signal by player i is given by −Aix?M + Ŵ i

1 where Ai is the
ith row of A. Note that log |S2ε| can be intuitively interpreted
as the transmitter’s bit-rate and I

[
x?M ;−Ax?M + ŴA

]
can

be intuitively deemed as the amount of common information
between the transmitted signal and the set of received signals
by players. Therefore,

R (A,S2ε) =
I
[
x?M ;−Ax?M + ŴA

]
(1− δ) log |S2ε| − 1

can be viewed as the relative common information between the
transmitted signal and the set of received signals by players
for a particular choice of the set S2ε and the matrix A. Note
that I

[
x?M ;−Ax?M + ŴA

]
≤ H [x?M ] = log |S2ε| as x?M is

uniformly distributed over S2ε. Thus, according to (10), the
complexity of solving the game class Gγ is limited by the
choice of S2ε and A such that the transmitted signal and the
set of received signals by players have the smallest amount of
relative common information.

IV. DERIVATIONS OF RESULTS

A. Proof of Lemma 1

The proof of Lemma 1 is based on the following four steps:

1) Firstly, we construct a finite subset of F , denoted by
F ′(see subsection IV-A1 for more details).

2) Secondly, for the function class F ′, the Nash seeking
problem is reduced to a hypothesis test problem (see
subsection IV-A2 for more details).

3) Thirdly, the generalized Fano inequality is used to obtain
a lower bound on the error probability of the hypothesis
test problem (see subsection IV-A2 for more details).

4) Finally, information-theoretic inequalities are used to
obtain an upper bound on the mutual information term
which appears in the generalized Fano inequality.

1) Restricting the Class of Utility Function Vectors: The
first step in deriving the lower bound on T ?ε,δ (G,O) is to
restrict our analysis to an appropriately chosen, finite subset
of F . To this end, let

S?2ε = {x?m ∈ S : m = 1, · · · ,M2ε (S)} (12)

be a maximal size, 2ε-distinguishable subset of S where
M2ε (S) is the cardinality of maximal size, 2ε-distinguishable
subsets of S (see Definition 1 for more details on 2ε-
distinguishable subsets of S). Next, for each x?m ∈ S?2ε
(m = 1, · · · ,M2ε (S)), we construct a utility function vector
Um (x) such that x?m is the NE of the non-cooperative game
with N players, utility function vector Um (x) and the action
space S.

The utility function vector Um (x) (m = 1, · · · ,M2ε (S))
is constructed as follows. Let A = [aij ]i,j be a symmetric,
negative definite N -by-N matrix. Also, let um,i

(
xi,x−i

)
=

aii
2

(
xi
)2

+ xi
(
−Aix?m +

∑
j 6=i aijx

j
)

denote the utility
function of player i where Ai is the ith row of A. The
utility function vector Um (x) is constructed as Um (x) =[
um,i

(
xi,x−i

)]>
i

. Let F ′ be the finite set of utility function
vectors defined as

F ′ = {Um (·) ∈ F ,m = 1, · · · ,M2ε (S)} (13)

Clearly, we have |F ′| =M2ε (S).

The next lemma shows that the utility function vector
Um (x) belongs to the function class F , i.e., the class of
vector-valued functions from RN to RN such that any N -
player non-cooperative game with the constraint set S and
utility function vector in F admits at least one NE.

Lemma 2: Consider the N -player non-cooperative game in
which: (i) the utility function of the ith player is given by
um,i

(
xi,x−i

)
= aii

2

(
xi
)2

+xi
(
−Aix?m +

∑
j 6=i aijx

j
)

, (ii)

the action space of players is given by S. Then, x?m is a NE
of the game among players, and we have Um (x) ∈ F .

Proof: To prove this result, we first show that x?m is the
NE of the unconstrained, N -player non-cooperative game with
the utility function vector Um (x) as follows. Consider the
non-cooperative game in which the utility function of player i
is given by um,i

(
xi,x−i

)
. Then, the best response of the ith

player to x−i is obtained by solving the following optimization
problem:

max
xi

um,i
(
xi,x−i

)
(14)

where um,i
(
xi,x−i

)
= aii

2

(
xi
)2

+

xi
(
−Aix?m +

∑
j 6=i aijx

j
)

. Note that aii < 0 for
1 ≤ i ≤ N as the matrix A is negative definite. Thus,
the objective function in (14) is strongly concave in xi and
the optimization problem (14) admits a unique solution. The
best response of player i to x−i can be obtained using the
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first order necessary and sufficient optimality condition:

−Aix?m +

N∑
j=1

aijx
j = 0

Note that any intersection of the best responses of players is
a NE. Thus, the NE of the unconstrained game can be found
by solving the following system of linear equations

−Aix?m+

N∑
j=1

aijx
j = 0, 1 ≤ i ≤ N (15)

It can be easily verified that x?m is a solution of (15) which
implies x?m is a NE of the N -player, unconstrained non-
cooperative game with the utility function vector Um (x).
Since x?m belongs to S, it is also a NE of the N -player, non-
cooperative game with the utility function vector Um (x) and
the action space S. Thus, Um (·) belongs to the function class
F .

Lemma 2 implies that F ′ is a subset of F . We refer
to the class of N -player non-cooperative games with the
utility function vectors in F ′ and the action space S as
G′ = 〈N ,S,F ′〉. Here, we make the technical assumption
that each game in the game class G′ admits a unique NE.
This assumption can be satisfied by imposing more structure
on the constraint set S, e.g., see [19]. In this paper, we do not
explicitly impose a specific requirement on the action space S
to guarantee the uniqueness of NE for the games in G′ since
these restrictions are only sufficient conditions (not necessary
and sufficient) to guarantee the existence of a unique NE.

Now, for a given ε and δ, consider any algorithm A for
which after T time-steps, we have

sup
U(·)∈F

inf
i
Pr
(∥∥∥xNEi,U(·)−AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥≥ε) ≤ δ.
Since F ′ is a subset of F and any game in G′ admits a unique
NE, we have

sup
m=1,··· ,M2ε(S)

Pr
(∥∥∥x?m −AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ ≥ ε) ≤ δ.
(16)

2) A Genie-aided Hypothesis Test: In this subsection, we
construct a genie-aided hypothesis test as follows which op-
erates based on the output of the algorithm A. Consider a
genie-aided hypothesis test in which, first, a genie selects a
game instance from G′ uniformly at random. Let x?M ∈ S?2ε
and UM (·) ∈ F ′ denote the NE and the utility function vector
associated with the randomly selected game instance, respec-
tively, where M is a random variable uniformly distributed
over the set {1, · · · ,M2ε (S)}.

At time k ∈ {1, · · · , T}, the ith player updates
its action using the algorithm A according to xik =

Aik
(
Xi

1:k−1, Ŷ
i
1:k−1, Ẑ

i
1:k−1

)
. At time T + 1, the genie es-

timates the NE according to the following decision rule:

x̂? = arg min
x∈S?2ε

∥∥∥x−AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ (17)

where x̂? ∈ S?2ε is the closest elements of S?2ε to the output

of algorithm. An error is declared if the error event

EA = {x?M 6= x̂?}

happens, that is, if the estimated NE is not equal to the true NE.
The next lemma establishes an upper bound on the probability
of the error event EA.

Lemma 3: Let Pr (EA) denote the error probability under
the proposed genie-aided hypothesis test. Then,

Pr (EA)

≤ sup
m∈{1,··· ,M2ε(S)}

Pr
(∥∥∥x?m −AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ ≥ ε)
where x?m is the NE corresponding to the utility function
vector Um (·).

Proof: We show that the error event EA implies∥∥∥x?M −AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ > ε

by contraposition. That is, we show if the following inequality
holds ∥∥∥x?M −AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ ≤ ε, (18)

then, we have x̂? = x?M . Assume that the inequality (18)
holds. For x?m 6= x?M , we have

2ε
(a)
< ‖x?m − x?M‖

≤
∥∥∥x?m −AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥+∥∥∥x?M −AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥
<
∥∥∥x?m −AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ + ε

where (a) follows from the fact that x?m and x?M belong to the
2ε-distinguishable set S?2ε. Thus, x?m cannot be the solution of
the optimization problem (17). Therefore, we have

Pr (EA)

≤ Pr
(∥∥∥x?M −AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ ≥ ε)
= EM

[
Pr
(∥∥∥x?M −AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ ≥ ε∣∣∣M)]
≤ sup
m∈{1,··· ,M2ε(S)}

Pr
(∥∥∥x?m −AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ ≥ ε)
which completes the proof.

We next use Fano inequality to obtain a lower bound
on Pr (EA). To this end, let the random variable M ∈
{1, · · · ,M2ε (S)} encode the choice of utility function vec-
tor from the set F ′. Also, let the random variable M̂ ∈
{1, · · · ,M2ε (S)} encode the estimated NE by genie. Then,
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using Fano inequality [20], we have

Pr (EA) ≥
H
[
M
∣∣∣M̂ ]

− 1

logM2ε (S)

(a)
=≥ 1−

1 + H [M ]− H
[
M
∣∣∣M̂ ]

logM2ε (S)

= 1−
1 + I

[
M ; M̂

]
logM2ε (S)

(19)

where (a) follow from the fact that H [M ] = logM2ε (S)
since M is uniformly distributed over {1, · · · ,M2ε (S)}.
Using (16), (19) and Lemma 3, we have

δ ≥ 1−
1 + I

[
M ; M̂

]
logM2ε (S)

(20)

Next, we obtain an upper bound on I
[
M ; M̂

]
using informa-

tion theoretic inequalities.
3) Applying information theoretic inequalities: First note

that
(
M,
{
X1:T , Ŷ1:T , Ẑ1:T

}
, M̂
)

form a Markov chain as

follows: M −→ X1:T , Ŷ1:T , Ẑ1:T −→ M̂ . Therefore, we have

I
[
M ; M̂

]
≤ I
[
M ;X1:T , Ŷ1:T , Ẑ1:T

]
. (21)

Using the chain rule for mutual information,
I
[
M ;X1:T , Ŷ1:T , Ẑ1:T

]
can be expanded as

I
[
M ;X1:T , Ŷ1:T , Ẑ1:T

]
=

T∑
k=1

I
[
M ;Xk, Ŷk, Ẑk

∣∣∣X1:k−1, Ŷ1:k−1, Ẑ1:k−1

]
(22)

where Xk =
[
xik
]
i

is the collection of players’ actions at time
k, Ŷk =

[
ŷik
]
i

is the collection of all received utility-related

information by players at time k, and Ẑk =
{
ẑi,pk : p ∈ Li

}
i

is the collection of all constraint-related information received
by players at time k where Li is the set of constraints affected
by the ith player’s action.

Using the chain rule for conditional mutual information, we
have

I
[
M ;Xk, Ŷk, Ẑk

∣∣∣X1:k−1, Ŷ1:k−1, Ẑ1:k−1

]
= I
[
M ;Xk

∣∣∣X1:k−1, Ŷ1:k−1, Ẑ1:k−1

]
+ I
[
M ; Ẑk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k−1

]
+ I
[
M ; Ŷk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
Note that Ẑk can be written as Ẑk ={
gp

(
X̂

csnφ(p)
k

)
+ V i,pk : p ∈ Li

}
i

where X̂
csnφ(p)
k ={

xik +W i
k,csnφ(p)

}
i∈Ncsnφ(p)

. Thus, given Xk, Ẑk only de-

pends on
{
W i
k,csnφ(p)

: i ∈ Ncsnφ(p)

}
p

and
{
V i,pk : p ∈ Li

}
i

which are independent of
{
M,X1:k−1, Ŷ1:k−1, Ẑ1:k−1

}
.

Thus, we have M,X1:k−1, Ŷ1:k−1, Ẑ1:k−1 −→ Xk −→ Ẑk

and

I
[
M ; Ẑk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k−1

]
= 0

Also, we have

I
[
M ;Xk

∣∣∣X1:k−1, Ŷ1:k−1, Ẑ1:k−1

]
= 0

since xik = Aik
(
Xi

1:k−1, Ŷ
i
1:k−1, Ẑ

i
1:k−1

)
, and the collection

of random variables
(
M,
{
X1:k−1, Ŷ1:k−1, Ẑ1:k−1

}
, Xk

)
from a Markov chain as follows M −→
X1:k−1, Ŷ1:k−1, Ẑ1:k−1 −→ Xk. Thus, we have

I
[
M ;X1:T , Ŷ1:T , Ẑ1:T

]
=

T∑
k=1

I
[
M ; Ŷk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
(23)

Now, I
[
M ; Ŷk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
can be upper bounded

as

I
[
M ; Ŷk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
≤ I
[
M,Yk; Ŷk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
= I
[
Yk; Ŷk

∣∣∣X1:k,Ŷ1:k−1,Ẑ1:k

]
+ I
[
M ; Ŷk

∣∣∣X1:k,Ŷ1:k−1,Yk,Ẑ1:k

]
(24)

where Yk =
[
yik
]
i

is the collection of utility-related informa-
tion computed by the USNs at time k. Using the definition of
conditional mutual information, we have

I
[
M ; Ŷk

∣∣∣X1:k, Ŷ1:k−1, Yk, Ẑ1:k

]
= h

[
Ŷk

∣∣∣X1:k,Ŷ1:k−1,Yk,Ẑ1:k

]
−h
[
Ŷk

∣∣∣X1:k,Ŷ1:k−1,Yk,Ẑ1:k,M
]

Note that Ŷk can be written as Ŷk =
[
yik + V ik

]
i
.

Thus, given Yk, Ŷk only depends on
{
V ik
}
i

which

is independent of
{
X1:k, Ŷ1:k−1, Yk, Ẑ1:k,M

}
. Thus, ran-

dom variables
({
M,X1:k, Ŷ1:k−1, Ẑ1:k

}
, Yk, Ŷk

)
form a

Markov chain as M,X1:k, Ŷ1:k−1, Ẑ1:k −→ Yk −→
Ŷk. Hence, we have h

[
Ŷk

∣∣∣M,X1:k, Ŷ1:k−1, Yk, Ẑ1:k

]
=

h
[
Ŷk |Yk

]
. It is straight forward to verify that random

variables
({
X1:k, Ŷ1:k−1, Ẑ1:k

}
, Yk, Ŷk

)
form a Markov

chain as X1:k, Ŷ1:k−1, Ẑ1:k −→ Yk −→ Ŷk, thus
h
[
Ŷk

∣∣∣X1:k, Ŷ1:k−1, Yk, Ẑ1:k

]
= h

[
Ŷk |Yk

]
which implies

I
[
M ; Ŷk

∣∣∣X1:k, Ŷ1:k−1, Yk, Ẑ1:k

]
= 0 (25)



13

Now, we expand I
[
Yk; Ŷk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
as follows

I
[
Yk; Ŷk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
= h

[
Ŷk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
− h

[
Ŷk

∣∣∣Yk, X1:k, Ŷ1:k−1, Ẑ1:k

]
= h

[
Ŷk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
− h

[
Ŷk |Yk

]
(a)

≤ h
[
Ŷk

]
− h

[
Ŷk |Yk

]
= I
[
Yk; Ŷk

]
(26)

where (a) follows from the fact that conditioning reduces
entropy. Combining (23)-(26), we have

I
[
M ;X1:T , Ŷ1:T , Ẑ1:T

]
≤

T∑
k=1

I
[
Yk; Ŷk

]
≤ T max

pY (y),E[‖Y ‖2]≤α
I
[
Y ; Ŷ

]
= TCdown (27)

Combining (20), (21) and (27), we have

T ≥ (1− δ) logM2ε (S)− 1

Cdown

which completes the proof.

B. Proof of Theorem 1

Let D be a diagonal matrix with diagonal entries equal to
2ε. Let D be the lattice DZN , i.e., D =

{
Dz, z ∈ ZN

}
. Note

that the elements of D are at least 2ε apart. Let |D ∩ S| be
the number of lattice points of D which lie in S. Clearly,
M2ε (S) is lower bounded by |D ∩ S|. We use the following
result from [21] to obtain a lower bound on |D ∩ S| in terms
of ε, volume and surface area of S.

Lemma 4: [21] Let D be a lattice in RN with non-zero
determinant, i.e., Det (D) 6= 0. Let S be a convex and compact
subset of RN . Then, we have

|D ∩ S| ≥ 1

Det (D)

(
Vol (S)− λN (D)

2
P (S)

)
(28)

where Vol (S) is the volume of S, P (S) is the surface area
of S and λN (D) is the successive minima of D defined as
the smallest ρ such that there exist N linearly independent
elements of lattice, {d1, · · · , dN ∈ D\{0}} such that ‖di‖ ≤
ρ [22].
For the lattice D = DZN , we have Det (D) = (2ε)

N and
λN (D) = 2ε. Thus, M2ε (S) can be lower bounded as

M2ε (S) ≥
(

1

2ε

)N
(Vol (S)− εP (S)) (29)

C. Proof of Theorem 2

Similar to the proof of Theorem 1, we first construct a finite
subset of Fγ as follows. Recall that S contains a 2-ball of
radius

√
2ε. Let B√2ε denote such a ball. Also, let

S?2ε = {x?1, · · · ,x?4} (30)

be the set of four points in B√2ε which are 90 degrees apart.
Thus, we have maxx?m,x?m′∈S

?
2ε
‖(x?m − x?m′)‖ = 2

√
2ε and

|S?2ε| = 4.

Here, for each x?m ∈ S?2ε (m = 1, · · · , 4), we construct a
utility function vector Um (x) such that x?m becomes the Nash
equilibrium (NE) of the non-cooperative game with N players,
utility function vector Um (x) and the action space S. To
this end, let A = [aij ]i,j be an N -by-N , symmetric, negative
definite matrix with ‖A‖ = γ. Then, the utility function vector
Um (x) is constructed as Um (x) =

[
um,i

(
xi,x−i

)]
i

where

um,i
(
xi,x−i

)
= aii

2

(
xi
)2

+xi
(
−Aix?m +

∑
j 6=i aijx

j
)

and
Ai is the ith row of A. It is straight forward to verify that x?m
is a NE of the N -player non-cooperative game with the utility
function vector Um (x) and the constraint set S (see the proof
of Lemma 2 in Subsection IV-A). Let

F ′γ = {Um (x) ,m = 1, · · · , 4} (31)

denote a finite set of utility vector functions. Since we have
J∇̃Um(x) = A for m = 1, · · · , 4, each utility function vector
Um (·) belongs to the function class Fγ . Hence, F ′γ is a subset
of Fγ . The class of N -player non-cooperative games with
utility function vectors in F ′γ and the action space S is denoted
as G′γ = 〈N ,S,F ′γ〉. Here, we make the technical assumption
that each game in G′γ admits a unique NE.

For a given ε and δ < 1
2 , consider any algorithm A such

that after T time-steps, we have

sup
U(·)∈Fγ

inf
i
Pr
(∥∥∥xNEi,U(·)−AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ ≥ ε) ≤ δ.
Since F ′γ is a subset of Fγ and the games in G′γ admit a unique
NE, we have

sup
m=1,··· ,|S?2ε|

Pr
(∥∥∥x?m −AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ ≥ ε) ≤ δ.
Consider a genie-aided hypothesis test in which a genie selects
a game instance from G′γ uniformly at random. Let x?M ∈ S?2ε
and UM (·) ∈ F ′ denote the NE and the utility function
vector associated with the randomly selected game instance,
respectively, where M is a random variable uniformly dis-
tributed over the set {1, · · · , 4}. Also, let the random variable
M̂ = {1, · · · , 4} encode the outcome of the genie-aided
hypothesis test in Subsection IV-A. Then, using Lemma 3,
Fano inequality and the fact that |S?2ε| = 4, we have

δ ≥ 1−
1 + I

[
M ; M̂

]
2

(32)

Using (23) in Subsection IV-A, we have

I
[
M ; M̂

]
≤

T∑
k=1

I
[
M ; Ŷk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
(33)

Under the partial-derivative computation model for USNs, yik
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can be written as

yik = −Aix?M +
∑

j∈Nusnπ(i)

aij x̂
j
k,usnπ(i)

= −Aix?M +
∑

j∈Nusnπ(i)

aij

(
xjk +W j

k,usnπ(i)

)
Thus, ŷik can be written as

ŷik = −Aix?M +

 ∑
j∈Nusnπ(i)

aij

(
xjk +W j

k,usnπ(i)

)+ V ik

= −Aix?M +

∑
j

aijx
j
k

+ Ŵ i
k (34)

where Ŵ i
k =

(∑
j∈Nusnπ(i)

aijW
j
k,usnπ(i)

)
+ V ik . Note that

Ŷk =
[
ŷik
]
i

can be written as Ŷk = AXk−Ax?M + Ŵk where

Xk =
[
xik
]
i

and Ŵk =
[
Ŵ i
k

]
i
.

Note that I
[
M ; Ŷk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
can be upper

bounded as:

I
[
M ; Ŷk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
(a)
= h

[
Ŷk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
− h

[
Ŷk

∣∣∣M,X1:k, Ŷ1:k−1, Ẑ1:k

]
= h

[
AXk −Ax?M + Ŵk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
− h

[
AXk −Ax?M + Ŵk

∣∣∣M,X1:k, Ŷ1:k−1, Ẑ1:k

]
(b)
= h

[
−Ax?M + Ŵk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
− h

[
Ŵk

∣∣∣M,X1:k, Ŷ1:k−1, Ẑ1:k

]
(c)
= h

[
−Ax?M + Ŵk

∣∣∣X1:k, Ŷ1:k−1, Ẑ1:k

]
− h

[
Ŵk

]
(d)

≤ h
[
−Ax?M + Ŵk

]
− h

[
Ŵk

]
(e)
= h

[
−Ax?M + Ŵk

]
− h

[
−Ax?M + Ŵk |x?M

]
(e)
= h

[
−Ax?M + Ŵ1

]
− h

[
−Ax?M + Ŵ1 |x?M

]
= I
[
x?M ;−Ax?M + ŴA

]
(35)

where ŴA =
[
Ŵ i

1

]
i

with Ŵ i
1 =∑

j∈Nusnπ(i)

(
aijW

j
1,usnπ(i)

)
+ V i1 , (a) follows from the

definition of conditional mutual information, (b) follows
from the translation invariance property of differential
entropy, (c) follows from the fact that Ŵk is independent
of
{
M,X1:k, Ŷ1:k−1, Ẑ1:k

}
, (d) follows from the fact that

conditioning reduces entropy, and (e) follows from the
translation invariance property of the differential entropy and
the fact that the random vectors Ŵ1 and Ŵk have the same
probability density functions (PDFs). Combining (33) and
(35), we have

I
[
M ; M̂

]
≤ T I

[
x?M ;−Ax?M + ŴA

]
(36)

Using the convexity of the Kullback-Leibler (KL) diver-
gence, I

[
x?M ;−Ax?M + ŴA

]
can be upper bounded as (37)

where D [p (x) ‖q (x) ] is the KL distance between the pair of
PDFs (p (x) , q (x)), x?M ′ is a random vector taking value in
S?2ε with uniform distribution, independent of x?M , (a) follows
from the fact that

p−Ax?M+ŴA
(x) = Ex?

M′

[
p−Ax?

M′+ŴA
(x |x?M ′ )

]
since the random vectors −Ax?M + ŴA and −Ax?M ′ + ŴA

have the same joint PDFs, and (b) follows from the convexity
of D [p (x) ‖q (x) ] in (p (x) , q (x)).

To evaluate the KL term in (37), we need to study the joint
PDF of the random vector −Ax?m + ŴA. Note that random
vector −Ax?m + ŴA is a Gaussian distributed random vector
with mean −Ax?m. The next lemma provides an expression
for the covariance matrix of Ax?m + ŴA.

Lemma 5: Let ΣA be an N -by-N matrix defined as

ΣA =diag
(
σ2
1 , · · · , σ2

N

)
+ diag

(
σ2
usnπ(1)

, · · · , σ2
usnπ(N)

)
AA

Also, let G = [Gij ]ij denote an N -by-N matrix defined as

Gij =

{
1 if π (i) = π (j)
0 Otherwise

(38)

Then, the covariance matrix of −Ax?m + ŴA can be written
as ΣA ◦G where ◦ represents the Hadamard product.

Proof: Note that the covariance matrix of −Ax?m +

ŴA is the same as that of ŴA =
[
Ŵ i

1

]
i

where Ŵ i
1 =∑

j∈Nusnπ(i)

(
aijW

j
1,usnπ(i)

)
+ V i1 . The covariance of the ith

and tth entries of ŴA can be written as

E
[
Ŵ i

1Ŵ
t
1

]
=

{
σ2
i δ [i− t]+σ2

usnπ(i)
Ai (At)

>
if π (i) = π (t)

0 Otherwise

where δ [·] denotes the Kronecker delta function, and Ai is the
ith row of A. Using the definition of the matrix G, we have

E
[
Ŵ i

1Ŵ
t
1

]
= σ2

i δ [i− t] +σ2
usnπ(i)

Ai (At)
>
Git

Thus, the covariance of ŴA, i.e., CŴA
, can be written as

CŴA
=diag

(
σ2
1 , · · · , σ2

N

)
+(

diag
(
σ2
usnπ(1)

, · · · , σ2
usnπ(N)

)
AA>

)
◦G

(a)
=
(
diag

(
σ2
1 , · · · , σ2

N

)
+

diag
(
σ2
usnπ(1)

, · · · , σ2
usnπ(N)

)
AA
)
◦G

=ΣA ◦G

where (a) follows from the fact that the matrix A is symmetric.

To use the expression of KL distance between two Gaussian
PDFs, we need to ensure that the matrix ΣA ◦G is invertible.
This result is established in the next lemma.

Lemma 6: The matrix ΣA ◦G is an invertible matrix.
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I
[
x?M ;−Ax?M + ŴA

]
= Ex?M

[
D
[
p−Ax?M+ŴA

(x |x?M )
∥∥∥p−Ax?M+ŴA

(x)
]]

(a)
= Ex?M

[
D
[
Ex?

M′

[
p−Ax?M+ŴA

(x |xM )
] ∥∥∥Ex?

M′

[
p−Ax?

M′+ŴA
(x |x?M ′ )

]]]
(b)

≤ Ex?M

[
Ex?

M′

[
D
[
p−Ax?M+ŴA

(x |x?M )
∥∥∥p−Ax?

M′+ŴA
(x |x?M ′ )

]]]
≤ max
x?m,x

?
m′∈S

?
2ε

D
[
p−Ax?m+ŴA

(x)
∥∥∥p−Ax?

m′+ŴA
(x)
]

(37)

Proof: Note that ΣA can be written as

ΣA ◦G =diag
(
σ2
1 , · · · , σ2

N

)
+
(
diag

(
σ2
usnπ(1)

, · · · , σ2
usnπ(N)

)
AA
)
◦G (39)

The second term in (39) is the covariance of the random vector ∑
j∈Nusnπ(i)

aijW
j
1,usnπ(i)


i

,

thus, it is a positive semi-definite matrix. Since
diag

(
σ2
1 , · · · , σ2

N

)
is positive definite, ΣA ◦ G is a

positive definite matrix. Hence, ΣA ◦G is invertible.
Using the expression of KL distance between two Gaus-
sian PDFs, we have (40) where ‖A‖ and

∥∥∥(ΣA ◦G)
−1
∥∥∥

are the induced matrix norms of A and (ΣA ◦G)
−1, re-

spectively. Recall that the set S?2ε was selected such that
maxxm,xm′∈S?2ε ‖(x

?
m − x?m′)‖ = 2

√
2ε and |S?2ε| = 4. Using

this construction for S?2ε, (37) and (40), I
[
x?M ;−Ax?M + ŴA

]
can be upper bounded as

I
[
x?M ;−Ax?M + ŴA

]
≤ 4γ2ε2

∥∥∥(ΣA ◦G)
−1
∥∥∥ (41)

Note that
∥∥∥(ΣA ◦G)

−1
∥∥∥ can be upper bounded as (42)

where λmax (·) and λmin (·) represent the maximum and
minimum eigenvalues, respectively, (a) follows from the fact
that (ΣA ◦G)

−1 is symmetric and positive definite, (b) follows
from (39), (c) follows from dual Weyl inequality [23] and (d)

follows from the fact that diag
(
σ2
usnπ(1)

, · · · , σ2
usnπ(N)

)
AA◦

G is a positive semi-definite matrix (see the proof of Lemma
6). Combining (32), (36), (41) and (42), we have

T ≥ (2 (1− δ)− 1) mini σ
2
i

4γ2ε2

which completes the proof.

D. Proof of Theorem 3

To prove this result, consider a non-cooperative game from
class Gq (λmin, λmax) defined by a matrix A and x? ∈ S .
Using (34) in Subsection IV-C, ŷik can be written as

ŷik = −Aix? +

∑
j

aijx
j
k

+ Ŵ i
k

where Ŵ i
k =

(∑
j∈Nusnπ(i)

aijW
j
k,usnπ(i)

)
+ V ik . Then, the

update rule of agent i can be expressed as

xik+1 = xik +
1

γk
ŷik

= xik +
1

γk
Ai (xk − x?) +

1

γk
Ŵ i
k

Combining the update rules of agents, we have the following
update rule in vector form

xk+1 = xk +
1

γk
A (xk − x?) +

1

γk
Ŵk (43)

where Ŵk =
[
Ŵ i
k

]
i
. Let Φk = xk − x? denote the

difference between the queries of agents at time k and the
Nash equilibrium. Using the above equality, the evolution of
Φk can be written as

Φk+1 =

(
I +

1

γk
A

)
Φk +

1

γk
Ŵk (44)

where I is an identity matrix. Then, E
[
‖Φk+1‖2

]
can be upper

bounded as (45) where σ̂2 (A) = E

[∥∥∥Ŵk

∥∥∥2], (a) follows

from the fact that Ŵk has zero mean and is independent
of Φk, (b) follows from the negative definiteness of A and
positive definiteness of A2, and (c) follows from the fact that
λmin ≤ λmin (A) ≤ λmax (A) ≤ λmax < 0. Using Lemma
5 in Subsection IV-C, we have σ̂2 (A) = Tr (ΣA ◦G) where
◦ represents the Hadamard product, Tr (·) denotes the trace
operator,

ΣA =diag
(
σ2
1 , · · · , σ2

N

)
+ diag

(
σ2
usnπ(1)

, · · · , σ2
usnπ(N)

)
AA

and G = [Gij ]ij denotes an N -by-N matrix defined as

Gij =

{
1 if π (i) = π (j)
0 Otherwise

Note that σ̂2 (A) is finite since the noise terms have bounded
second moments.

Let αk = E
[
‖Φk‖2

]
denote the mean norm square of Φk

and k0 = d 9λ
2
min

4λ2
max
e. Using (45), we have

αk+1 ≤
(

1− 2

k

)
αk +

σ̂2 (A)

γ2k2
(46)
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D
[
p−Ax?m+ŴA

(x)
∥∥∥p−Ax?

m′+ŴA
(x)
]

=
1

2
(A (x?m − x?m′))

>
(ΣA ◦G)

−1
A (x?m − x?m′)

≤ 1

2
‖A‖2 ‖(x?m − x?m′)‖

2
∥∥∥(ΣA ◦G)

−1
∥∥∥

=
1

2
γ2 ‖(x?m − x?m′)‖

2
∥∥∥(ΣA ◦G)

−1
∥∥∥ (40)

∥∥∥(ΣA ◦G)
−1
∥∥∥ (a)

= λmax

(
(ΣA ◦G)

−1
)

=
1

λmin (ΣA ◦G)
(b)
=

1

λmin

(
diag (σ2

1 , · · · , σ2
N ) + diag

(
σ2
usnπ(1)

, · · · , σ2
usnπ(N)

)
AA ◦G

)
(c)

≤ 1

λmin (diag (σ2
1 , · · · , σ2

N )) + λmin

(
diag

(
σ2
usnπ(1)

, · · · , σ2
usnπ(N)

)
AA ◦G

)
(d)

≤ 1

λmin (diag (σ2
1 , · · · , σ2

N ))

=
1

mini σ2
i

(42)

E
[
‖Φk+1‖2

]
= E

[∥∥∥∥(I +
1

γk
A

)
Φk +

1

γk
Ŵk

∥∥∥∥2
]

(a)
= E

[∥∥∥∥(I +
1

γk
A

)
Φk

∥∥∥∥2
]

+ E

[∥∥∥∥ 1

γk
Ŵk

∥∥∥∥2
]

= E

[
Φ>k Φk +

2

γk
Φ>k AΦk +

1

γ2k2
Φ>k A

2Φk

]
+
σ̂2 (A)

γ2k2

(b)

≤ E

[
‖Φk‖2 +

2λmax (A)

γk
‖Φk‖2 +

λ2min (A)

γ2k2
‖Φk‖2

]
+
σ̂2 (A)

γ2k2

(c)

≤ E

[
‖Φk‖2 +

2λmax

γk
‖Φk‖2 +

λ2min

γ2k2
‖Φk‖2

]
+
σ̂2 (A)

γ2k2

=

(
1 +

1

k

(
−3 +

λ2min

γ2k

))
E
[
‖Φk‖2

]
+
σ̂2 (A)

γ2k2
(45)

for k ≥ k0. Next, we show by induction that αk ≤ L(x?,A)
k for

k ≥ k0 where L (x?, A) = max
(
k0αk0 (x?) , 9σ̂

2(A)
4λ2

max

)
. Note

that the claim holds for k = k0. Assume that the claim holds
for k ≥ k0. We show by induction that it holds for k + 1 as
follows. Using (46) and the fact that αk ≤ L(x?,A)

k , we have

αk+1 ≤
L (x?, A)

k
− 2

L (x?, A)

k2
+

9σ̂2 (A)

4λ2maxk
2

≤ L (x?, A)

k
− L (x?, A)

k2

≤ L (x?, A)

k + 1

Using Markov inequality, we have

Pr (‖xk − x?‖ ≥ ε) ≤
E
[
‖xk − x?‖2

]
ε2

≤ L (x?, A)

kε2
(47)

for k ≥ k0.

Let L = supx?,A L (x?, A). It is straightforward to show
that L (x?, A) is uniformly bounded for all x ∈ S and all
matrix A with λmin ≤ λmin (A) ≤ λmax (A) ≤ λmax < 0.
This implies L is finite. Hence, for k ≥ max

(
L
δε2 , k0

)
, the

output of the update rule (8) is ε close to the Nash equilibrium
of any game in Gq (λmin, λmax) with confidence 1− δ. Thus,
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we have

T ? (Gq (λmin, λmax) ,O1) ≤ max

(
L

δε2
,

9λ2min

4λ2max

)

E. Proof of Theorem 4

Similar to the proof of Theorem 2, we first restrict our
analysis to a finite subset of Fγ . To this end, let S?2ε and F ′γ
denote the 2ε-distinguishable subset of S and the finite subset
of Fγ , respectively, constructed in the proof of Theorem 2.
For a given ε and δ < 1

2 , consider any algorithm A which
can solve any game in Gγ after T time-steps when the uplink
channels are noiseless, i.e.,

sup
U(·)∈Fγ

inf
i
Pr
(∥∥∥xNEi,U(·)−AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ ≥ ε) ≤ δ.
Using the proposed genie-aided hypothesis test in Subsection
IV-C, (32) and (36), we have

δ ≥ 1−
1 + T I

[
x?M ;−Ax?M + ŴA

]
2

(a)
= 1− 1 + T I [x?M ;−Ax?M + V1]

2
(48)

where x?M is a random vector taking value in S?2ε with uniform
distribution, V1 =

[
V 1
1 , · · · , V N1

]>
and (a) follows from the

fact that the uplink channels are noiseless. Next, we obtain
an upper bound on the mutual information term in (48) as
follows. In the absence of uplink noise, the inequality (37)
can be written as (49) where Ai is the ith row of matrix A
and (a) follows from the fact that the entries of the random
vector V1 are jointly independent.

The next lemma derives an asymptotic expansion for
D
[
p−Aix?m+V i1

(x)
∥∥∥p−Aix?m′+V i1 (x)

]
.

Lemma 7: The KL distance between the probability distri-
bution functions (PDFs) p−Aix?m+V i1

(x) and p−Aix?m′+V i1 (x)
can be written as

D
[
p−Aix?m+V i1

(x)
∥∥∥p−Aix?m′+V i1 (x)

]
=

1

2
Ii (Ai (x?m − x?m′))

2
+O

(
ε3
)

where Ii = −
∫∞
−∞ pV i (x) d2

dx2 log pV i (x) dx denotes the
Fisher information of pV i (x) with respect to a shift parameter.

Proof: To prove this lemma, we first expand
D
[
p−Aix?m+V i1

(x)
∥∥∥p−Aix?m′+V i1 (x)

]
as (50) where

p−Aix?m+V i1
(x) represents the PDF of −Aix?m + V i1 , and

pV i (x) denotes the PDF of V i1 . Note that log pV i (x+Aix
?
m′)

can be written as

log pV i (x+Aix
?
m′) = log pV i

(
x+Aix

?
m −Aiε?m,m′

)
(51)

where ε?m,m′ = x?m −x?m′ . We next use the Taylor expansion
Theorem to expand the right hand side of (51). To this end, let
θ = [θ1, · · · , θN ]

> be an N -dimensional vector in RN . Then,

using the Taylor expansion [24] of log pV i (x+Aix
?
m −Aiθ)

around θ = 0, we have

log pV i (x+Aix
?
m −Aiθ) = log pV i (x+Aix

?
m)

+

N∑
j=1

θj
∂

∂θj
log pV i (x+Aix

?
m −Aiθ)|θ=0

+
∑
|α|=2

θα

α!
∂α log pV i (x+Aix

?
m −Aiθ)|θ=0

+
∑
|α|=3

θα

α!

∫ 1

0

3 (1− s)2 ∂α log pV i (x+Aix
?
m − sAiθ) ds

(52)

where α = [α1, · · · , αN ]
> is an N -tuple of positive integers,

i.e., αi ∈ N0 for 1 ≤ i ≤ N , |α| =
∑
i αi, θ

α =
∏
i θ
αi
i ,

α! =
∏
i αi!,

∂

∂θj
log pV i (x+Aix

?
m −Aiθ)|θ=0 =

−Aij
d
dxpV i (x+Aix

?
m)

pV i (x+Aix?m)
(53)

and

∂α log pV i (x+Aix
?
m −Aiθ)

= ∂αN · · · ∂α1 log pV i (x+Aix
?
m −Aiθ)

= (−Ai)α
d|α|

dx|α|
log pV i (x+Aix

?
m −Aiθ) (54)

Setting θ = ε?m,m′ , and substituting (52)-(54)
in (50), we have (55) where (a) follows from
the fact that

∫∞
−∞

d
dxpV i (x+Aix

?
m) dx = 0,

Ii = −
∫∞
−∞ pV i (x) d2

dx2 log pV i (x) dx is the Fisher
information of the PDF pV i (x) with respect to a shift
parameter, and Remi is defined in (56).

To complete the proof, we show that Remi = O
(
ε3
)
.

To this end, we upper bound |Remi| in (57) where (a)
follows from the assumption 3 in Subsection III-D, (b)
follows from triangle inequality, (c) follows from the fact
that 0 ≤ s ≤ 1 and (d) follows from the fact that∥∥ε?m,m′∥∥ = ‖(x?m − x?m′)‖ ≤ 2

√
2ε (see the construc-

tion of S?2ε in the proof of Theorem 2 for more details).
Note that the second integral in the right hand side of
(57) can be upper bounded as (58). It is straightforward
to show that the series

∑∞
j=1 j

β3Pr
{∣∣V i1 ∣∣ ≥ j − 1

}
in (57)

is bounded since the PDF of V i1 , i.e., pV i (x), satisfies
limx→∞ x(β3+1+r)Pr

{∣∣V i1 ∣∣ ≥ x} = 0 for some r > 0. Thus,
we have Remi = O

(
ε3
)

which completes the proof.

Using (49) and (55), I [x?M ;−Ax?M + V1] can be upper
bounded as (59) where (a) follows from the facts that∑
i ‖Ai‖

2 ≤ N ‖A‖ and maxx?m,x?m′∈S
?
2ε
‖(x?m − x?m′)‖ =

2
√

2ε, and (b) follows from the fact that ‖A‖ = γ. Since we
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I [x?M ;−Ax?M + V1] ≤ max
x?m,x

?
m′∈S

?
2ε

D
[
p−Ax?m+V1 (x)

∥∥∥p−Ax?
m′+V1 (x)

]
(a)
= max
x?m,x

?
m′∈S

?
2ε

N∑
i=1

D
[
p−Aix?m+V i1

(x)
∥∥∥p−Aix?m′+V i1 (x)

]
(49)

D
[
p−Aix?m+V i1

(x)
∥∥∥p−Aix?m′+V i1 (x)

]
=

∫
pV i (x+Aix

?
m) (log pV i (x+Aix

?
m)− log pV i (x+Aix

?
m′)) dx (50)

D
[
p−Aix?m+V i1

(x)
∥∥∥p−Aix?m′+V i1 (x)

]
= Aiε

?
m,m′

∫ ∞
−∞

d

dx
pV i (x+Aix

?
m) dx− 1

2

(
Aiε

?
m,m′

)2 ∫ ∞
−∞

pV i (x+Aix
?
m)

d2

dx2
log pV i (x+Aix

?
m) dx

−
∫ ∞
−∞

∑
|α|=3

ε?m,m′
α

α!
(−Ai)α

∫ 1

0

3 (1− s)2 d3

dx3
log pV i

(
x+Aix

?
m − sAiε?m,m′

)
ds

 pV i (x+Aix
?
m) dx

(a)
=

1

2

(
Aiε

?
m,m′

)2 Ii + Remi (55)

Remi =

∫ ∞
−∞

∑
|α|=3

ε?m,m′
α

α!
(−Ai)α

∫ 1

0

3 (1− s)2 d3

dx3
log pV i

(
x+Aix

?
m − sAiε?m,m′

)
ds

 pV i (x+Aix
?
m) dx (56)

have Remi = O
(
ε3
)

(see the proof of Lemma 7), (59) implies

I [x?M ;−Ax?M + V1] ≤ 4Nε2γ2 max
i
Ii +O

(
ε3
)

(60)

Combining (48) and (60), we have

T ≥ 2 (1− δ)− 1

4Nε2γ2 maxi Ii +O (ε3)

which completes the proof.

F. Proof of Theorem 5

To establish this result, we first construct a finite subset of
Fγ . To this end, let S2ε denote an arbitrary 2ε-distinguishable
subset of S. Note that the set S2ε is not necessarily a maximal
size 2ε-distinguishable subset of S. For each x?m ∈ S2ε (m =
1, · · · , |S2ε|), we construct a utility function vector Um (x)
such that x?m is the NE of the non-cooperative game with N
players, utility function vector Um (x) and the action space S.

The utility function vector Um (x) (m = 1, · · · , |S2ε|)
is constructed as follows. Let A = [aij ]i,j be an N -by-
N , symmetric, negative definite matrix with ‖A‖ ≥ γ.
The utility function vector Um (x) is defined as Um (x) =[
um,i

(
xi,x−i

)]
i

where um,i
(
xi,x−i

)
= aii

2

(
xi
)2

+

xi
(
−Aix?m +

∑
j 6=i aijx

j
)

where Ai is the ith row of A.
Let F ′ be the finite set of utility function vectors defined as

F ′γ = {Um (·) ∈ F ,m = 1, · · · , |S2ε|} (61)

Clearly, we have |F ′| = |S2ε|

It is straight forward to verify that Um (x) belongs to Fγ
which implies that F ′γ is a subset of Fγ . We refer to the N -
player non-cooperative games with the utility functions in F ′γ
and the action space S as G′γ = 〈N ,S,F ′γ〉. Similar to the
proof of Theorem 1, we make the technical assumption that
each game in G′γ admits a unique Nash equilibrium (NE).

Now, for a given ε and δ, consider any algorithm A for
which after T time-steps, we have

sup
U(·)∈Fγ

inf
i
Pr
(∥∥∥xNEi,U(·)−AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ ≥ ε) ≤ δ.
Since F ′γ is a subset of Fγ and each game in G′γ admits a
unique NE, we have

sup
m=1,··· ,|S2ε|

Pr
(∥∥∥x?m −AT+1

(
X1:T , Ŷ1:T , Ẑ1:T

)∥∥∥ ≥ ε) ≤ δ.
Using Lemma 3 in Subsection IV-A2 and Fano inequality, we
have

δ ≥ 1−
1 + I

[
M ; M̂

]
log |S2ε|

(62)

Combing (36) and (62), we have

T ≥ (1− δ) log |S2ε| − 1

I
[
x?M ;−Ax?M + ŴA

]
where x?M is a random vector taking value in S2ε with
uniform distribution and ŴA =

[
Ŵ i

1

]
i

with Ŵ i
1 =∑

j∈Nusnπ(i)

(
aijW

j
1,usnπ(i)

)
+V i1 . Optimizing over the choice
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|Remi| ≤
∫ ∞
−∞

∑
|α|=3

∣∣ε?m,m′ ∣∣α
α!

|Ai|α
∫ 1

0

3 (1− s)2
∣∣∣∣ d3dx3 log pV i

(
x+Aix

?
m − sAiε?m,m′

)
ds

∣∣∣∣
 pV i (x+Aix

?
m) dx

(a)

≤
∫ ∞
−∞

∑
|α|=3

∣∣ε?m,m′ ∣∣α
α!

|Ai|α
∫ 1

0

3 (1− s)2
(
β1 + β2

∣∣x+Aix
?
m − sAiε?m,m′

∣∣β3
ds
) pV i (x+Aix

?
m) dx

(b)

≤
∫ ∞
−∞

∑
|α|=3

∣∣ε?m,m′ ∣∣α
α!

|Ai|α
∫ 1

0

3 (1− s)2
(
β1 + β2

(
|x+Aix

?
m|+ s

∣∣Aiε?m,m′ ∣∣)β3
ds
) pV i (x+Aix

?
m) dx

(c)

≤
∫ ∞
−∞

∑
|α|=3

∣∣ε?m,m′ ∣∣α
α!

|Ai|α
∫ 1

0

3 (1− s)2
(
β1 + β2

(
|x+Aix

?
m|+ ‖Ai‖

∥∥ε?m,m′∥∥)β3

ds

) pV i (x+Aix
?
m) dx

(d)

≤
(

2
√

2ε
)3 ∑
|α|=3

|Ai|α

α!

(∫ 1

0

3 (1− s)2 ds
)(

β1 +

∫ ∞
−∞

β2

(
|x+Aix

?
m|+ 2

√
2 ‖Ai‖ ε

)β3

pV i (x+Aix
?
m) dx

)
(57)

∫ ∞
−∞

β2

(
|x+Aix

?
m|+ 2

√
2 ‖Ai‖ ε

)β3

pV i (x+Aix
?
m) dx =

∫ ∞
−∞

β2

(
|x|+ 2

√
2 ‖Ai‖ ε

)β3

pV i (x) dx

≤ β2
∞∑
j=1

(
j + 2

√
2 ‖Ai‖ ε

)β3

Pr
{∣∣V i1 ∣∣ ≥ j − 1

}
= β2

∞∑
j=1

(
1 + 2

√
2
‖Ai‖ ε
j

)β3

jβ3Pr
{∣∣V i1 ∣∣ ≥ j − 1

}
≤ β2

(
1 + 2

√
2 ‖Ai‖ ε

)β3
∞∑
j=1

jβ3Pr
{∣∣V i1 ∣∣ ≥ j − 1

}
(58)

I [x?M ;−Ax?M + V1] ≤ max
x?m,x

?
m′∈S

?
2ε

N∑
i=1

1

2
Ii (Ai (x?m − x?m′))

2
+ Remi

≤ max
x?m,x

?
m′∈S

?
2ε

N∑
i=1

1

2
Ii (Ai (x?m − x?m′))

2
+ max
x?m,x

?
m′∈S

?
2ε

N∑
i=1

Remi

≤ max
x?m,x

?
m′∈S

?
2ε

N∑
i=1

1

2
Ii ‖x?m − x?m′‖

2 ‖Ai‖2 + max
x?m,x

?
m′∈S

?
2ε

N∑
i=1

Remi

(a)

≤ 4ε2N ‖A‖2 max
i
Ii + max

x?m,x
?
m′∈S

?
2ε

N∑
i=1

Remi

(b)
= 4Nε2γ2 max

i
Ii + max

x?m,x
?
m′∈S

?
2ε

N∑
i=1

Remi (59)
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of the matrix A and the 2ε-distinguishable set S2ε, we have

T ≥ sup
A:‖A‖≥2,S2ε∈S

(1− δ) log |S2ε| − 1

I
[
x?M ;−Ax?M + ŴA

]
which completes the proof.

V. CONCLUDING REMARKS

In this paper, we studied the complexity of solving two
game classes in a distributed setting in which players obtain
the required information for updating their actions by commu-
nicating with a set of system nodes over noisy communication
channels. We first considered the game class G which is
comprised of all N -player non-cooperative games with a
continuous action space such that any game in G admits at
least a Nash equilibrium. We obtained a lower bound on the
complexity of solving the game class G to an ε accuracy which
depends on the Kolmogorov 2ε-capacity of the constraint set
and the total capacity of the communication channels which
convey utility-related information to players. We also studied
the complexity of solving a subclass of G under both Gaussian
and non-Gaussian noise models. An upper bound on the
complexity for solving a class of quadratic games is derived
and its tightness is studied.

These results can be extended in several directions. An
important research avenue is to investigate the impact of
communication topology on the sample complexity of solving
non-cooperative games. Another research direction is to study
the tightness of the lower bounds for a class of games with
general non-linear utility functions.
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