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Abstract—In this paper, capacity bounds for the two-user 
Interference Channel (IC) with cooperative receivers via 
conferencing links of finite capacities is investigated. The capacity 
results known for this communication scenario are limited to a 
very few special cases of the one-sided IC. One of the major 
challenges in analyzing such cooperative networks is how to 
establish efficient capacity outer bounds for them. In this paper, 
by applying new techniques, novel capacity outer bounds are 
presented for the ICs with conferencing users. Using the outer 
bounds, several new capacity results are proved for interesting 
channels with unidirectional cooperation in strong and mixed 
interference regimes. A fact is that the conferencing link  
(between receivers) may be utilized to provide one receiver with 
information about its corresponding signal or its non-
corresponding signal (interference signal). As a remarkable 
consequence, it is demonstrated that both strategies can be 
helpful to achieve the capacity of the channel. Finally, for the case 
of Gaussian IC, it is mathematically shown that our outer bound 
is strictly tighter than the previous one derived by Wang and Tse. 

Keywords-Interference Channel; Cooperation; Conferecing 
Decoders; Capacity; Outer Bound. 

I.  INTRODUCTION 

One of the main challenges to establish a reliable wireless 
communication network with a satisfactory performance is 
how to manage the interference effect caused by concurrent 
signaling of different users. In network information theory, 
this key aspect of wireless communication systems is basically 
addressed by the Interference Channel (IC). Another important 
feature of many practical wireless systems is the feasibility of 
cooperation among different users that allows them to 
exchange information. User cooperation has been shown to be 
a crucial way of improving performance of communication 
networks [1]. Specifically, it is an effective way to mitigate the 
interference in networks [2].  

One of significant ways to set up cooperation among 
transmitters/receivers in a communication network is the use 
of conferencing links of finite capacities. In particular, modern 
cellular systems typically rely on some high capacity direct 
link between base-stations. Such configurations fall under the 
umbrella of channels with conferencing transmitters and/or 
conferencing receivers. Cooperation via conferencing links 
was first studied by Willems [3] for a Multiple Access 
Channel (MAC). Willems characterized the capacity region of 
the two-user MAC with conferencing transmitters. In the past 
decade, various communication scenarios with conferencing 
transmitters/receivers have been studied in network 
information theory [4]–[15]. In this paper, we study the two-
user IC with conferencing receivers. This means, two clients, 
forming a two-user IC, send data to their respective base-
stations, and the two base-stations are connected through links 
of given capacities. This scenario has been previously 
considered in several papers. Specifically, the capacity region 
of the Gaussian IC with conferencing receivers was 

established in [8] to within a constant gap. Other works in this 
regard include [10-15]. Despite considerable work on the 
cooperative interference channels with conferencing links, up 
to our knowledge, the available capacity results are limited to 
a very few special cases of the one-sided IC with 
unidirectional conferencing between receivers [14, 15]. In fact, 
the capacity of the two-user fully-connected IC with 
conferencing users was not previously known even for any of 
the special cases where the capacity is known for the IC 
without cooperation, for example, the strong interference 
channel [16]. 

Indeed, a major challenge to analyze cooperative networks 
in general and the IC with conferencing users in specific is 
how to establish efficient capacity outer bounds. In literature, 
generally there exist three types of outer bounds for 
cooperative interference networks: cut-set bounds [17], Sato 
type outer bounds [18], [19], and genie-aided outer bounds [8, 
9]. The cut-set bounds and Sato type outer bounds are usually 
insufficient to derive capacity results or even to establish 
capacity to within constant-gap results for Gaussian channels. 
The outer bounds derived by genie-aided techniques, similar to 
[8, 9], are useful to establish constant-gap results for Gaussian 
channels; however, they still need to be tightened to derive 
exact capacity results. In this paper, we present a novel outer 
bound for the two-user IC with conferencing receivers. The 
derivation of our outer bound is indeed involved in subtle 
applications of the Csiszar-Korner identity [20] for 
manipulating multi-letter mutual information functions to 
establish consistent and well-formed single-letter constraints 
on the communication rates. In fact, we derive our bound by 
extending the constraints of the outer bound established in [21-
22] for the IC without cooperation (which was shown to be 
useful to derive several capacity results) to the conferencing 
settings as well as presenting constraints with new structures. 
Using our outer bound, we prove several new capacity results 
for the two-user (fully-connected) IC with conferencing users 
for both discrete and Gaussian cases. In particular, we derive 
four capacity results for interesting channels with 
unidirectional cooperation in mixed and strong interference 
regimes. It is a fact that a conferencing link (between 
receivers) may be utilized to provide one receiver with 
information about its corresponding signal or its non-
corresponding signal (interference). As a remarkable 
consequence, we demonstrate that both strategies can be 
helpful to achieve capacity for the IC with conferencing 
receivers.  

Finally, for the case of Gaussian IC, we show that the 
derived outer bound can be tightened more by introducing 
additional constraints which are derived by utilizing genie-
aided techniques as well. As a result, we obtain a new outer 
bound for the Gaussian IC with conferencing receivers, which 
can be mathematically shown that is strictly tighter than the 
previous one obtained by Wang and Tse [9]. 



The rest of the paper is organized as follows. In Section II, 
channel models and definitions are given. The main results are 
presented in Section III and the paper is concluded in Section 
IV. Due to limited space, some of the proofs are given in the 
Appendix. 

II. CHANNEL MODELS 

In this paper, a Random Variable (RV) is denoted by an upper 
case letter (e.g., ) and a lower case letter is used to show its 
realization (e.g., ). The alphabet of  is represented by . 
The notation 1:  represents the set of integers from 1 to , 
and ‖ ‖ denotes the cardinality of the set . 

Definition 1. The two-user IC is a communication scenario 
where two transmitters send independent messages to their 
corresponding users via a common media. The channel is 
given by the input signals ∈  and ∈ , the outputs 
∈  and ∈  and the transition probability function 

ℙ , | , . The Gaussian channel is usually formulated 
in the following standard form: 

 

 
(1) 

where  and  are zero-mean unit-variance Gaussian RVs 
and , 1,2. 

Conferencing Decoders: The two-user IC with conferencing 
decoders is depicted in Fig. 1. For this channel, a length-  
code with  conferencing rounds, denoted by 

, , , ,  is described as follows. 

The message , which is uniformly distributed over the set 
1: 2 , is transmitted by the  transmitter and 

decoded by the  receiver, 1,2. The code includes two 
encoder functions as: 

: → , , ∈ 1,2  

Each transmitter encodes its message by the respective 
encoding function and sends the generated codeword over the 
channel. The receiver  receives a sequence ∈ . Before 
decoding process, the decoders hold a conference. The code 

consists of two sets of conferencing functions ,  and 

,  with the corresponding output alphabets ,  

and , , respectively, which are described below. 

, : , … , → , ,		 

, , , , 

, : , … , → , ,		 

, , ,  

The conference is said to be , -permisible if 

log , , log ,  

(2) 

The receivers exchange information by holding , -
permisible conference. After the conference the first receiver 
knows the sequence , , , , … , ,   and the 

second receiver knows the sequence , , … , , . 

 
Fig. 1: Interference Channel with Conferencing Decoders. 

Lastly, the code includes two decoder functions as follows: 

∆ :		 → , ∆  

∆ :		 → , ∆  

Thus, each decoder decodes its message by the respective 
decoder function. 

The capacity region for the two-user IC with conferencing 
decoders is defined as usual. 

III. MAIN RESULTS 

This section is divided into two parts. We present our 
results for the general two-user IC with cooperative users in 
Part III.A. Then in Part III.B, we specifically consider the 
Gaussian channel given in (1). 

A.  General IC with Conferencing Decoders 

We begin by presenting our novel outer bound for the general 
two-user IC with conferencing decoders.  

Define →  as the union of all rate pairs , ∈  
such that 

           min , ; | , ; | ,  

            ; | , , , ; | ,  

            ; | , , , ; | ,  

            min , ; | , ; | ,  

            ; | , , , ; | ,  

            ; | , , , ; | ,  

; | , , , ; |  

; | , , , ; |  

   ; | , , , , ; |  

   ; | , , , , ; |  

   , ; , |  

 (3) 

for some joint PDFs | | | . The following 
theorem holds. 

Theorem 1. The set →  constitutes an outer bound on the 
capacity region of the two-user IC with decoders connected by 
the conferencing links of capacities  and , as shown in 
Fig. 1. 

Proof of Theorem 1: The proof is given in Appendix I. ■ 

Next, using the outer bound (3), we prove four capacity results 
for IC with unidirectional conferencing between receivers. We 
highlight that a conferencing link (between receivers) may be 
utilized to provide one receiver with information about its 
corresponding signal or its non-corresponding signal (the 



interference). Our following theorems reveal that both 
strategies can be helpful to achieve the capacity of the channel. 

Theorem 2. For the two-user IC with unidirectional 
conferencing between decoders, where 0, if  

; | ; |    for all  

                → , →   (Markov chain) 

(4) 

then, the outer bound (3) is optimal. The capacity region is 
given by the union of all , ∈  such that: 

               ; | , , 

               ; | , , ; | ,  

, ; | , , ; |  

(5) 

for some joint PDFs | | .  

Proof of Theorem 2: Let first prove the achievability of (5). 
Without loss of generality, assume that the time-sharing 
variable is null ≅ ∅. We present a coding scheme in which 
both messages are decoded at both receivers. Consider the 
independent random variables  and  uniformly 
distributed over the sets 1: 2  and 1: 2 , respectively. 
Partition the set 1: 2  into 2  cells each containing 
2  elements, where min , . Now label 
the cells by ∈ 1: 2  and the elements inside each cell by 
∈ 1: 2 . Accordingly, we have  if  is 

inside the cell , and  if  is the  element of 
the cell that it belongs to. 

Encoding at the transmitters is similar to a MAC. For 
decoding, the first receiver decodes both messages  and , 
by exploring all codewords  and  which are jointly 
typical with its received sequence . This receiver then sends 
the cell index of the estimated message of the second 
transmitter, i.e. , to the receiver  by holding a 

, 0 -permissible conference. The second receiver applies a 
jointly typical decoder to decode the messages, with the caveat 
that the cell which  belongs to is now known. Clearly, given 

, the second receiver detects the message  and  
by exploring codewords  and  which are jointly typical 
with its received sequence . One can easily show that under 
the conditions (4), this coding scheme yields the achievability 
of the rate region (5).  

Next, using the outer bound (3), we show that under the 
conditions (4), the achievable rate region (5) is in fact optimal. 
Based on (3) for 0 we have: 

          ; | , , , ; | ,  

                ; | ,  

          ; | , , , ; |  

                         ; | , , , ; |  

                         , ; |  

; | , , , , ; |  

                         , ; |  

where equalities (a) and (c) are due to the second condition of 
(4) (given ,  is a degraded version of ), and inequality 
(b) is due to the first condition of (4) (see [21-22]). Note that 
the other constraints of (5) are directly given by (3) when 

0. The proof is thus complete. ■ 

Corollary 1. Consider the following Gaussian IC with 
unidirectional conferencing between decoders ( 0).  

 

 
(6) 

where  and  are independent unit-variance Gaussian 

noises. If  , then the capacity region is given by 

(5).  

Proof of Corollary 1: First note that the channel (6) satisfies 
the second condition of (4) by definition. Moreover, one can 
easily see that for this channel the first condition of (4) is 

equivalent to . Therefore, we can apply the 

result of Theorem 2. ■ 

Based on Theorem 2, for the channel satisfying the conditions 
(4) the optimal scheme to achieve the capacity region is to 
decode both messages at both receivers and the optimal 
cooperation strategy is to provide one receiver with 
information about its corresponding signal via the 
conferencing link. In fact, the conditions (4) could be 
interpreted as a strong interference regime for the IC with 
unidirectional cooperation between receivers. Note that if the 
channel satisfies (4), it will also satisfy the standard strong 
interference regime [16] as well. 

Theorem 3. For the two-user IC with unidirectional 
conferencing between decoders, where 0, if 

; | ; |      for all |  

           → , →          (Markov chain) 
(7) 

then the outer bound (3) is sum-rate optimal and the sum-
capacity is given by 

| |

; | , ; | ,
, ; |  

(8) 

Proof of Theorem 3: The coding scheme that achieves the 
sum-rate (8) is similar to that given in the proof of Theorem 2, 
except for the decoding of the second receiver. Here, the 
second receiver only decodes its own signal. Given , the 
second receiver detects  by exploring codewords  
which are jointly typical with its received sequence . One 
can see that the sum-rate (8) is achieved by this scheme. Now 
consider the outer bound (3) where 0 . Under the 
conditions (7), we have: 

  ; | , , , ; |  

       ; | , , ; | , ; |  

       ; | , , ; | , ; |  

       ; | , ; |  
(9) 



where inequality (a) is due to the second condition of (7). 
Moreover,  

     ; | , , , , ; |  

                    , ; |  
(10) 

where equality (b) holds because of the second condition of 
(7), i.e., given ,  is a degraded version of , and thereby 
the first mutual information on the left side of (b) is zero. 
Therefore, (8) is in fact the sum-rate capacity of the channel 
and the proof is thus complete. ■ 

Corollary 2. Consider the Gaussian IC given in (6) with 
unidirectional conferencing between decoders, where 

0. If , then the sum-rate capacity is given by (8). 

Proof of Corollary 2: The Gaussian channel (6) satisfies the 
second condition of (7) by definition. Furthermore, for this 

channel the first condition of (7) is equivalent to 

. Thus, we can apply the result of Theorem 3. ■ 

According to Theorem 3, for the channel given in (7) the 
optimal scheme to achieve the sum-rate capacity is to decode 
interference at the receiver which is the source of the 
conferencing link, and to treat interference as noise at the 
receiver which is the destination of the conferencing link. 
Moreover, the optimal cooperation strategy is to provide the 
receiver that treats interference as noise with information 
about its corresponding signal via the conferencing link. The 
regime (7) could be indeed interpreted as a mixed interference 
regime for the IC with unidirectional cooperation between 
receivers.  

In the next theorem, we derive another mixed interference 
regime for the channel where, unlike Theorem 3, the optimal 
scheme to achieve the sum-capacity is to treat interference as 
noise at the receiver which is the source of the conferencing 
link and to decode interference at the one which is the 
destination of the conferencing link; also, the optimal 
cooperation strategy is to provide the receiver that decodes 
interference with information on its non-corresponding signal 
(the interference) via the conferencing link. 

Theorem 4. For the two-user IC with unidirectional 
conferencing between receivers, where 0, if  

; | ; |    for all  

                → , →   (Markov chain) 

(11) 

then, the outer bound (3) is sum-rate optimal and the sum-rate 
capacity is given by 

| |

; | , ; | ,
, ; |  

(12) 

Proof of Theorem 4: The achievability of (12) is indeed 
derived by treating interference as noise at the first receiver 
and decoding interference at the second receiver. Moreover, 
the conferencing link is used to provide information about the 
interference for the second receiver. Let assume ≡ ∅ . 
Consider two independent messages  and , uniformly 
distributed over the sets 1: 2  and 1: 2 , respectively. 

Partition the set 1: 2  into 2  cells each containing 
2  elements, where min , . Now label 
the cells by ∈ 1: 2  and the elements inside each 
cell by ∈ 1: 2 . Accordingly, we have  if  
is inside the cell , and  if  is  element of the 
cell that it belongs to. 

Encoding at the transmitters is similar to a MAC. For 
decoding, the first receiver simply decodes its own message by 
exploring all codewords  which are jointly typical with its 
received sequence . This receiver then sends the cell index 
of the estimated message, i.e. , to the second receiver by 
holding a , 0 -permissible conference. The second 
receiver applies a jointly typical decoder to decode both 
messages with the caveat that the cell index which  belongs 
to is known. Clearly, given , the second receiver detects 

 and  by exploring codewords  and  which are 
jointly typical with its received sequence . One can easily 
show that this scheme yields the achievable sum-rate (12).  

Next using our outer bound (3) we prove that under the 
conditions (11), the sum-rate capacity of the channel is 
bounded by (12). Based on (3), when 0, we have: 

; | , , , , ; |  

              ; , | , , ; | , ,  

                       ; | , ; |  

              ; , | , , ; | ,  

                       ; |  

              ; | , , ; | , , ,  

                       ; | , ; |  

              ; | , , ; | , ; |  

              ; | , , ; | , ; |  

              ; | , ; |  

where equality (a) holds because by the Markov chain given in 
(11), the second mutual information on the left side of (a) is 
zero; similarly, inequality (b) holds because the Markov chain 
in (11) implies that ; | , ; | , . Moreover, 
we have: 

; | , , , ; |  

              ; | , , , ; |   

              , ; |  

where inequality (c) is due to the first condition of (11), (see 
[21-22]). The proof is thus complete. ■ 

Corollary 3. Consider the following Gaussian IC with 
unidirectional conferencing between decoders ( 0). 

 

 

(13) 

where  and  are independent unit-variance Gaussian 

noises. If , then the sum-rate capacity is given 

by (12).  



Proof of Corollary 3: The Gaussian channel (13) satisfies the 
second condition of (11) by definition. Moreover, for this 

channel the first condition of (11) is equivalent to 

. Thereby, we can apply the result of Theorem 4. ■ 

Finally, we characterize the capacity region of the one-sided 
IC with unidirectional conferencing from the non-interfered 
receiver to the interfered one in the strong interference regime. 
This result is given in the following theorem. 

Theorem 5. Consider the two-user one-sided IC where 
ℙ , | , ℙ | ℙ | , . For the channel 
with unidirection conferencing between receivers, where  is 
connected to  by a conferencing link of capacity , if 

; | ; |    for all  

(14) 

then the outer bound (3) is optimal and the capcity region is 
given by the union of all rate pairs , ∈  such that 

                                 ; | , 

                                 ; | ,  

, ; |  
(15) 

for some joint PDFs | | .  

Proof of Theorem 5: The achievability proof is similar to the 
one presented in Theorem 4. The first receiver simply decodes 
its own message while the second receiver jointly decodes 
both messages. The conferencing link is utilized to provide 
information about the interference (non-desired signal) for the 
second receiver. For the one-sided channel, this scheme 
achieves the rate region (15). Then we prove the converse part. 
Based on (3), when 0, we have: 

        ; | , ; |  

        ; | , , , ; | ,  

              ; | ,  

; | , , , ; |  

                       ; | , , , ; |  

                       , ; |   

where (a) holds because for the one-sided IC, the first mutual 
information on the left side of (a) is zero; the inequality (b) is 
due to the condition (14) (see [21-22]). Thus, the proof is 
complete. ■ 

Corollary 4. Consider the Gaussian one-sided IC which is 
given by 0 in (1). If , then the capacity region 
of the channel with unidirectional conferencing between 
receivers is given by (15). This recovers a result of [14, Th.1].  

Based on the proof of Theorem 5, the optimal coding scheme 
to achieve the capacity region (15) is to decode both messages 
at the interfered receiver and the optimal cooperation strategy 
is to provide the interfered receiver with information about its 
non-corresponding signal (the interference) via the 
conferencing link. 

B. Gaussian IC with Conferencing Receivers 

In this section, we show that for the Gaussian IC one can 
tighten the outer bound by utilizing genie-aided techniques as 
well. Consider the two-user Gaussian IC in (1) with decoders 
connected by conferencing links of capacities  and . 
Define genie signals , , , and  as follows: 

≜  

≜  

≜  

≜  

(16) 

where  and  are unit-variance Gaussian noises 
independent of other variables. Let ,〈 〉

→  denote the set of 
all rate pairs , ∈  which satisfy the constraints (3) as 
well as the following: 

     , ; | , , ; | ,  

                                                                                

   2 ; | , , , ; | ,  

                                               , ; | 2  

   2 ; | , , , ; | ,  

                                               , ; | 2  

   2 ; , | , , , ; | ,  

                                                 , ; |  

   2 ; , | , , , ; | ,  

                                                 , ; |  

2 , ; , , , ; |  

2 , ; , , , ; |  

(17) 

for some joint PDFs | | | . The following 
theorem holds. 

Theorem 6. The set ,〈 〉
→  constitutes an outer bound on the 

capacity region of the two-user Gaussian IC (1) with 
conferencing decoders. 

Proof of Theorem 6. Refer to Appendix II.■ 

In the following theorem, we present an explicit 
characterization of the outer bound given in Theorem 6. For 
this purpose, we indeed apply several novel techniques to 
optimize the bound over its auxiliary random variables.  

Theorem 7: Let →  denote the set of all rate pairs 
, ∈  which satisfy the constraints (18) given on the 

top of the next page for some , ∈ 0,1 . The set →  
constitutes an outer bound on the capacity region of the 
Gaussian IC (1) with decoders connected by the conferencing 
links of capacities  and , as shown in Fig. 1. 

Proof of Theorem 7.  We need to optimize the outer bound 
established in Theorem 6 over the auxiliary random variables 

 and , which is indeed a complicated problem. To solve it, 
we apply novel techniques including several subtle 
applications of the entropy power inequality. Let present our 
approach. First note that some of the mutual information 
functions given in (3) and (17) can be re-written as follows: 



min
| | | | 1

| | 1
, | | 																				 

                                                                                                                                                                                          (1-18) 

min
| |

| | 1
| | ,

| |
| | 1

| |  

                                                                                                                                                                                          (2-18) 

min
| | 1 | |

| | 1
, | | 																			 

                                                                                                                                                                                          (3-18) 

	 min
| |

| | 1
| | ,

| |
| | 1

| |  

                                                                                                                                                                                          (4-18) 

| |
| | 1 | |

| | 1
| | | | 																						 

                                                           | | | | | | | |                                                         (5-18) 

| |
| | | | 1

| | 1
| | | | 																							 

                                                           | | | | | | | |                                                         (6-18) 

| |
| | 1

| | | | 																																																						 

                                                                                                                                                                                         (7-18) 
| |

| | 1
| | | | 																																																						 

                                                                                                                                                                                         (8-18) 
| | | | | | | | | | 																	 

                                                                                                                                                                                         (9-18) 

| |
| |

| | 1
| |

| |
| | 1

														 

                                                                                                                                                                                       (10-18) 

2 | | | | | | | | | |
| |

| | 1
				 

                                                           | | | | 2 	                                                                             (11-18) 

2 | | | | | | | | | |
| |

| | 1
			 

                                                           | | | | 2                                                                              (12-18) 

2 | | | |
| | 1
1 | |

| |
| | 1 1 | |

 

                                                           | | | |                                                                                (13-18) 

2 | | | |
| | 1
1 | |

| |
| | 1 1 | |

 

                                                          | | | |                                                                                 (14-18) 

2 | |
| |

1 | |
| |

| |

1 | |
| |

1 | |
		 

                                                          | | | |                                                                                            (15-18) 

2
| |

1 | |
| |

| |

1 | |
| |

| |

1 | |
		 

                                                          | | | |                                                                                            (16-18) 

(18) 

; | , , ,
; , | , , ; | , ,  

; | , , ,
; , | , , ; | , ,  

; | , , ,
; , | , , ; | , ,  

; | , , ,
; , | , , ; | , ,  

 (19) 

In general it is difficult to directly treat expressions such as 
; , | , ,  or ; , | , , . To make the 

problem tractable, we apply the following technique. Let 
define two new outputs  and  as follows: 



≜
| | | | | | | |

 

≜
| | | | | | | |

 

(20) 

where  and  are given as: 

≜
| | | |

 

≜
| | | |

 

(21) 

It is clear that the mapping from ,  to ,  and also to 
,  is one-to-one. Now we have: 

| | | |
̿  

| | | |
̿  

(22) 

where 

̿ ≜
| | | |

 

̿ ≜
| | | |

 

(23) 

One can easily check that ̿  is independent of  and also ̿  
is independent of . Therefore, the following equalities hold: 

; , | , , ; , , ,  

                                  ; , ,  

; , | , , ; , , ,  

                                  ; , ,  
(24) 

for any arbitrary input distributions. Next fix a distribution 
| | |  with , 1,2 . In what 

follows, we present the optimization for the auxiliary random 
variable . The optimization over  is derived symmetrically, 
and therefore we do not present the details to avoid repetition.  

Let divide the problem into two different cases. First consider 
the channel with weak interference at the first receiver where 

| | | | 
(25) 

It is clear that: 

1
2
log 2 | , , ,  

                | , ,  

                | , ,  

        | log 2 | | 1  
(26) 

Comparing the two sides of (26), one can deduce that there is 
∈ 0,1  such that: 

| , , | , ,  

																												
1
2
log 2 | | 1  

(27) 

Then by considering (27) and also (19) and (24), one can 
easily verify that the optimization is equivalent to maximize 

, ,  and minimize | , , , simultaneously. 
For this purpose, we apply the entropy power inequality. This 
inequality implies that for any arbitrary random variables , , 
and , where  and  are independent conditioned on , the 
following holds: 

exp 2 | exp 2 | exp 2 |  

(28) 

Therefore, assuming that |  is fixed, given 
| , one can derive an upper bound on | , and 

given | , one can derive a lower bound on 
| . This fact is the essence of our arguments in 

what follows.  

Let ∗ be a Gaussian random variable, independent of all other 

variables, with zero mean and a variance equal to 
| |

| | | |
. 

One can write: 

, ,  

										
| | | |

, ,  

										 , ,  

										 , ,
1
2
log| |  

										
1
2
log

exp 2 ∗ , ,

exp 2 ∗ , ,
 

																
1
2
log| |  

										
1
2
log
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1
2
log| |  

										
1
2
log

exp log 2 | | 1

exp log 2
| |

| | | |
 

																
1
2
log| |  

										
1
2
log 2

1
| | | |

 

(29) 

where (a) is due to the EPI, (b) holds because ∗ is a 
Gaussian random variable with zero mean and unit variance 
(the same as ), and (c) is given by (27). Next let ∗ be a 
Gaussian random variable, independent of all other variables, 

with zero mean and a variance equal to 
| |

| |
1. We have: 
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(30) 

where (a) holds because ∗  is a Gaussian random 

variable with zero mean and a variance equal to 
| |

| |
, i.e., the 

same as , (b) is due to the EPI, and (c) is given by (27). 

Thus, we applied the entropy power inequality twice: once to 
establish an upper bound on , ,  as in (29) and 
once to establish a lower bound on | , ,  as in (30). It 
is important to note that one may also apply the principle of 
“Gaussian maximizes differential entropy” to obtain an upper 
bound on , , , however, the upper bound derived 
by that approach does not necessarily relate to  (which is 
specifically determined by (27)) and thereby we cannot 
establish a bound consistent to other entropy functions 
including the auxiliary random variable .  

Let again consider the derivations in (30). One can easily see 
that all of the relations given in (30) hold only for the channel 
with weak interference at the first receiver where | |
| |. As the second case, we need to consider the Gaussian IC 
with strong interference at the first receiver where 

| | | | 
(31) 

For this case, the derivations in (30) are no longer valid. The 
fact is that when | | | |, by fixing | , ,  as in 
(27), we cannot establish a lower bound on | , ,  
using the EPI because given , the output  is not a 
stochastically degraded version of  anymore. Therefore, we 
need to change our strategy for the optimization. For this 
purpose, first note that the strong interference condition (31) 
implies the following inequality (see [21]): 

; | , , ; | , ,   for all PDFs  

(32) 

Considering (32), we can derive: 

; | , , , ; |  
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Then, we evaluate , , . We can write: 
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(35) 

Comparing the two sides of (35), we can argue that there is 
∈ 0,1  such that: 

, ,
1
2
log 2

1
| | | |

 

(36) 

Now by substituting (33-34) in (3) and (17) and considering 
(19) and (24), one can readily verify that the optimization is 
reduced to minimize | , ,  and | , , , 
simultaneously. Moreover, given , both  and  are 
stochastically degraded versions of . Therefore, considering 
(36), one can successfully apply the EPI to establish lower 
bounds on | , ,  and | , , . Clearly, let  
and  ∆ be two Gaussian random variables, independent of all 
other variables, with zero mean and variances 

| |

| | | | | |
 and we have 

| |

| | | | | |
, respectively. 

We have: 
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(37) 

where (a) holds because  is a Gaussian variable with 
zero mean and variance 

| |
, i.e., the same as , (b) is due 

to the EPI, and (c) is given by (36). Similarly, we can derive: 
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(38) 

where (a) holds because ∆ is a Gaussian variable with 
zero mean and variance 

| |
, i.e., the same as , (b) is 

due to the EPI, and (c) is given by (36). Therefore, 
| , ,  and | , ,  are minimized by the right 

side of (37) and (38), respectively. The proof is thus complete. 
■ 

As indicated earlier, an outer bound was also established by 
Wang and Tse in [9] for the Gaussian IC with conferencing 
decoders. In the following, we argue that ours is strictly tighter 
than that of [9]. 

Remark. For all channel parameters, the outer bound 
→  given by (18) is strictly tighter than that of [9, 

Lemma 5.1]. 

In fact by a straightforward comparison via simple algebraic 
computations, one can verify that each of the constraints given 
in (18) is tighter than the corresponding one of [9, Page 2920].  

We conclude our paper by providing some numerical results. 
In Fig. 1, 2, and 3, we compare our new outer bound for the 
Gaussian IC with conferencing decoders and that of [9] in the 
weak, strong, and mixed interference regimes, respectively. As 
shown in these figures, for all cases our new outer bound 
could be strictly tighter. 

CONCLUSION 

In this paper, we investigated capacity bounds for the two-
user Interference Channel (IC) with cooperative receivers via 
conferencing links of finite capacities. By applying new 
techniques, we presented novel capacity outer bounds for this 
channel. Using the outer bounds, we proved several new 
capacity results are proved for interesting channels with 
unidirectional cooperation in strong and mixed interference 
regimes. A fact is that a conferencing link (between receivers) 
may be utilized to provide one receiver with information about 
its corresponding signal or its non-corresponding signal 
(interference). An interesting conclusion of the paper was to 
show that both of these strategies can be helpful to achieve the 
capacity of the channel. Finally, for the case of Gaussian IC, 
we showed that our outer bound is strictly tighter than the 
previous one derived by Wang and Tse [9]. 

 
Fig. 2: Comparison of the new outer bound for the Gaussian IC (1) with 
conferencing decoders and that of [9] in the weak interference regime 
( 1, .5, 100, 60). 

 

Fig. 3: Comparison of the new outer bound for the Gaussian IC (1) with 
conferencing decoders and that of [9] in the strong interference regime 
( 1, .5, 60, 100). 

 
Fig. 4: Comparison of the new outer bound for the Gaussian IC (1) with 
conferencing decoders and that of [9] in the mixed interference regime 
( 1, .5, 60, 100). 

In our ongoing work, we are investigating the interesting 
question that whether our new outer bound for the Gaussian 
channel could be used to obtain a better approximation of the 
capacity region compared to the result of [9]. 

 

APPENDIX I 

PROOF OF THEOREM 1 

Consider a length-  code with vanishing average probability 
of error. Define new auxiliary random variables: 
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≜ , , , ,     for    1,… ,  

(A.1) 

Let first derive some bounds on . By Fano’s inequality, 
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        ; |  

        ; |  

        ∑ , ; , ,  

(A.2) 

where inequality (a) holds because conditioning does not 
reduce the entropy, and inequality (b) is due to (2). Moreover, 

; ,  

        ; ;  

        ∑ ; , ,  

        ∑ , , , , , ; ,  

        ∑ , , ; ,  

(A.3) 

where inequality (a) holds because conditioning does not 
reduce the entropy. Next we derive some bounds on . By 
Fano’s inequality we have: 

; ,  

        ; , ,  

        ; ,  

        ; , |  

(A.4) 

where (a) holds because  is given by a deterministic 
function of , . Now consider the mutual information 
function on the right side of the last inequality of (A.4). We 
can write: 

; , | ; | ; | ,                       

           ∑ , ; , , ,  

                   ∑ , ; , , , , , , , , , ,                         

           ∑ , ; , , ,  

                   ∑ , ; , , , , , , ,   

           ∑ , ; , , ∑ , ; , , , , ,  

(A.5) 

where (a) holds because ,  is given by a deterministic 
function of ; the inequality (b) holds because conditioning 
does not reduce the entropy and also given the inputs , , , , 
the outputs , , ,  are independent of other variables. 
Similarly, we can derive: 

; , | ; | ; | ,  

           ∑ , ; , , ∑ , ; , , , , ,  

(A.6) 

Now by substituting (A.5) and (A.6) in (A.4), we obtain: 

  

 min
∑ , ; , , , ; , , , , , ,

	
∑ , ; , , , ; , , , , ,

 

(A.7) 

Finally, we establish constraints on the sum-rate. Based on 
Fano’s inequality, one can write: 

; , ; ,  

                    ; ; ;  

                                         ;  

                    ; ; |  

                                          

                    ; ; |  

                                          

(A.8) 

The sum of the two mutual information functions on the right 
side of (A.8) can be bounded as follows: 

; ; |  

 ∑ ; , , ∑ ; , ,  
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 ∑ , , ; , ∑ , ; , , ,  

(A.9) 

where (a) holds because due to the Csiszar-Korner identity the 
second and the third mutual information functions on the left 
side of (a) are equal; (b) holds because conditioning does not 
reduce the entropy. Then by substituting (A.9) in (A.8), we 
derive: 
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(A.10) 

Also, we have: 

; , ; ,  
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(A.11) 

where the inequality (a) holds because  is given by a 
deterministic function of ,  and also conditioning does 
not reduce the entropy; the inequality (b) is derived by 
following the same lines as in (A.9) and (A.5). Lastly, we can 
derive: 

, ; , , ,  

                    , ; ,  

                    ∑ , , , ; , , ,  

(A.12) 

where (a) holds because  and  are given by 
deterministic functions of , . By collecting (A.2), (A.3), 
(A.4), (A.7), (A.10), (A.11), (A.12) and applying a standard 
time-sharing argument, we derive desired constraints of (3) 
including those given by the auxiliary random variable . The 
remaining constraints of (3) can be indeed derived 
symmetrically. The proof is thus complete. ■ 

 

APPENDIX II 

PROOF OF THEOREM 6 

Consider a length-  code with vanishing average error 
probability for the Gaussian IC (1) with conferencing 
decoders. Consider also the auxiliary random variables defined 
in (A.1). We need to derive the constraints in (17). Define the 
genie signals , , , , , , and ,  as follows: 

  

, ≜ , , ,

, ≜ , , ,

, ≜ , , ,

, ≜ , , ,

                   1, … ,  

 (A.13) 

where ,  and ,  are zero-mean unit-variance 
Gaussian random processes which are independent of all other 
random variables.  Based on Fano’s inequality we have: 
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(A.14) 

where equality (a) holds because → → , 1,2 
forms a Markov chain, and equality (b) holds because 

| , , 1,2. We next derive constraints 
on the linear combination of the rates 2 . We can write: 

2 ; , ; ,  
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                         ; 2 2  

(A.15) 

Then, for the first two mutual information functions on the 
right side of the last equality in (A.15) we have: 

; | ; |  
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(A.16) 

where (a) is derived by [22, Lemma 2]; (b) holds because 
, , → , → ,  forms a Markov chain and 

conditioning does not reduce the entropy; (c) holds because 
,  is given by a deterministic function of  and , →
, , → ,  forms a Markov chain. Now by substituting 

(A.16) in (A.15), we obtain: 
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We can also derive: 
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(A.18) 

where (a) is due to (A.16), and (b) holds because conditioning 
does not reduce the entropy. Finally, we can write: 

2 , ; , , ,  
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(A.19) 

Finally, by applying a standard time-sharing argument to 
(A.14), (A.17), (A.18), and (A.19), we derive 1 , 3 , 5 , 
and 7  constraints of (17), respectively. The remaining 
constraints of (17) could be symmetrically derived (similar to 
(A.17), (A.18), and (A.19)). The proof is thus complete. ■ 
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