
ar
X

iv
:1

70
8.

04
32

2v
1

 [
cs

.I
T

]
 1

4
A

ug
 2

01
7

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 1

Optimization of Heterogeneous Coded Caching
Alexander Michael Daniel and Wei Yu

Abstract—This paper aims to provide an optimization frame-
work for coded caching that accounts for various heteroge-
neous aspects of practical systems. An optimization theoretic
perspective on the seminal work on the fundamental limits of
caching by Maddah Ali and Niesen is first developed, whereas
it is proved that the coded caching scheme presented in that
work is the optimal scheme among a large, non-trivial family
of possible caching schemes. The optimization framework is
then used to develop a coded caching scheme capable of

handling simultaneous non-uniform file length, non-uniform
file popularity, and non-uniform user cache size. Although the
resulting full optimization problem scales exponentially with the
problem size, this paper shows that tractable simplifications of
the problem that scale as a polynomial function of the problem
size can still perform well compared to the original problem.
By considering these heterogeneities both individually and in
conjunction with one another, insights into their interactions
and influence on optimal cache content are obtained.

Index Terms—Coded caching, linear programming, non-
uniform popularity, non-uniform cache size, non-uniform file
length

I. INTRODUCTION

A. Background

Caching technologies stand poised to make an important

contribution to future 5G cellular networks [1]. One such

technique is coded caching, which, roughly speaking, is the

idea of using carefully designed user cache content to enable

content delivery via coded multicast transmissions. (The

cached contents themselves are uncoded.) First introduced

by Maddah-Ali and Niesen in [2], [3], coded caching has

since been the subject of a great number of studies seeking to

extend the original scheme into more practical scenarios. The

coded caching scheme of [2], [3] is developed for a system

in which a central server has complete knowledge of user

numbers and identities, users have identical cache sizes and

make a single download request, transmission occurs over an

error free link, and files are of equal length and popularity.

Subsequent work has since extended the coded caching idea

to the decentralized system [4], and to systems with non-

uniform file popularity [5]–[17], non-uniform file length [18],

[19], multiple user requests [20]–[23], non-uniform cache

size [24]–[27], and non-uniform channel quality [28]–[40].

The aforementioned works typically either discuss how the

scheme of [2], [3] should be modified to accommodate the

considered heterogeneity, or develop an entirely new scheme

that enables coded multicast transmissions while accom-

modating the aforementioned heterogeneity. Most of these

Manuscript prepared on August 16, 2017. This work is supported by
Natural Science and Engineering Research Council (NSERC). The authors
are with the Edward S. Rogers Sr. Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-
mails: alex.daniel@mail.utoronto.ca, weiyu@ece.utoronto.ca).

papers, however, consider only one type of non-uniformity.

While this is sensible from the viewpoint of understanding

how each heterogeneity affects coded caching systems by

itself, practical systems would have to account multiple types

of non-uniform parameters. Moreover, we cannot in general

expect the effects of these non-uniformities to be additive. It

is thus important to consider combinations of heterogeneities,

which, to the best of our knowledge, only a few recent works

have started to explore: the recent work [19] examines the

achievable rate region for a system serving two users with

two files, where the user cache sizes and file lengths are

not necessarily uniform, while some of the aforementioned

work on caching with non-uniform channel quality exploits

heterogeneous cache size to rectify disparities in channel

quality (see e.g. [33] and references therein).

B. Main Contributions

This paper proposes an optimization theoretic framework

to design caching schemes capable of accommodating non-

uniform file length, non-uniform file popularity, and non-

uniform user cache size at the same time. More specifically,

we design a caching scheme that uses a generalized version of

the transmission scheme of [4], paired with an optimization

problem designed to yield the optimally coded content.

This optimization problem, although convex, has the number

of variables, constraints, and objective function terms that

scale exponentially with the problem size, so subsequently

this paper develops high-quality simplifications that scale

polynomially with the problem size, yet perform well com-

pared to the original problem. The proposed optimization

approach only yields numerical answers corresponding to

the optimized caching schemes, but also generate practical

insight into the problems considered.

Optimization approaches have been used in the past for

content placement for femtocaching systems [41], [42], but

its use in the coded caching context has only appeared

recently: for instance, [43] uses an information-theory based

optimization problem to help characterize the achievable rate

region for certain numbers of users and files in the case where

all other systems parameters are uniform. More related is

the recent work [27] in which an optimization framework

similar to the one used here is employed to develop a caching

scheme in the case of non-uniform cache size. Crucially,

both approaches design cache content in terms of the subsets

of users who have cached the content (see Section III).

While we directly express our transmission scheme in terms

of that cache content, the approach in [27] is to further

design two sets of variables through which the transmission

scheme is expressed. Moreover, the framework used in [27]

http://arxiv.org/abs/1708.04322v1

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 2

does not distinguish between different files beyond designing

a scheme for the worst-case scenario where users request

different files. This prevents their framework from addressing

file heterogeneity, whereas ours allows for it. Finally, while

the optimization problem in [27] suffers from the same

exponential scaling problem that the general problem here

has, they do not present any tractable methods of solution

like we do here.

During the preparation of this paper, we became aware of

independent work [17], which uses an optimization frame-

work essentially the same as the one proposed here to study

the case of non-uniform file popularity. While independently

and simultaneously developed, a number of results in [17]

are echoed in this paper. Specifically, both works develop

the same exponential-order general optimization problem;

then a simplified polynomial-order optimization problem is

developed for the non-uniform popularity case (Section IV-C

of this paper), although the exact formulations are different.

Moreover, both works show that in the special case of

uniform popularity, the caching and delivery scheme of [2],

[3] is the optimal solution (Section III of this paper); however,

the proof in [17] is quite involved, while a much simpler

proof is presented here. Ultimately, the focus of [17] is to

study the case of non-uniform popularity in great depth, while

here, it is only considered as an intermediate step towards the

study of the interactions of several heterogeneities at the same

time. Thus, despite the similarities, both papers develop many

unique insights of practical significance. Indeed, the results

of [27] and [17] taken jointly with the results of this paper

suggest that the optimization framework common to all three

works is likely to be a useful one for coded caching.

C. Notation

The notation [a : b] is used as shorthand for the set of

consecutive integers {a, a+ 1, . . . , b− 1, b}, and [b] is used

as an abbreviation of [1 : b]. The symbol ⊕ is used to

denote the bitwise “XOR” operation between two or more

files (i.e. strings of bits). Both l and W (l) are used to refer

to the l-th file under consideration. For an arbitrary file

W (n), |W (n)| refers to the length of the file, and W
(l)
S ,

called a “subfile” of file W (l), refers to the portion of file

l stored exclusively on the caches of the users in the set

S. For notational convenience, notation of the form W
(l)
123 is

used instead of W
(i)
{1,2,3} (for the S = {1, 2, 3} case in this

example), returning only to the latter notation if necessary to

resolve ambiguity. For a set S, P(S) refers to the power set

of S. For a real number t, ⌊·⌋ and ⌈·⌉ denote the floor and

ceiling functions, respectively.

We define the binomial coefficient
(

n

k

)

in the usual way

for 0 ≤ k ≤ n, i.e.
(

n
k

)

= n!/(k!(n − k!)), but for n < 0
or k > n, we take

(

n

k

)

= 0. Moreover, the notation of the

so-called “multinomial coefficient” is used, defined as:
(

n

k1, k2, . . . , km

)

=
n!

k1!k2! . . . km!
,

where k1+k2+· · ·+km = n. We use the notation
∑b

i=a ni in

the usual way when a ≤ b, and take
∑b

i=a ni = 0 identically

if a > b. More generally, a sum over an empty set of indices

is taken to equal zero. Finally, if a sum over an empty set is

raised to the power of zero, we take the resulting value to be

1; this is simply used for notational convenience.

D. Organization

The organization of the rest of the paper is as follows.

Section II introduces the optimization framework used in this

paper and Section III uses this framework to provide a new

interpretation and understanding of [2]–[4] by showing how

they represent feasible points in the optimization problem.

Sections IV-VI use the framework to develop tractable sim-

plifications of the original problem for different types and

combinations of non-uniformities. Section VII concludes the

paper with a summary and discussion of main results.

II. OPTIMIZATION PERSPECTIVE ON CODED CACHING

We begin by providing an optimization perspective on the

coded caching schemes of Maddah-Ali and Niesen for both

the centralized [2], [3] and the decentralized [4] cases. The

transmission scenario consists of a server with a set of N
files, F = {1, 2, . . . , N} = [N], serving a set of K users,

U = {1, 2, . . . ,K} = [K], over a shared, error-free link. For

full generality, we allow each file l to have a distinct length

of Fl bits and a distinct probability pl of being requested,

and allow each user k to have arbitrary cache size of Mk

bits.

Central to the coded caching scheme of [2]–[4] is the

partitioning of each file l ∈ F into subfiles W
(l)
S , indexed

by all subsets of S ⊆ U . (No two subfiles have a non-

empty intersection; together the subfiles jointly reconstruct

the original file.) In the caching phase, each user k caches
⋃

l,S∈P(U\{k})

W
(l)
S∪k (1)

without coding. In the content delivery phase, given the set of

user requests d = [d1, . . . , dK], where dk denotes the index

of the file requested by user k, the server transmits
⊕

k∈S

W
(dk)
S\{k} (2)

over the shared link with zero-padding if necessary, for each

S ∈ P(U) \ ∅, so that together with uncoded content stored

a priori in each user’s local cache, all users are guaranteed

to be able to reconstruct the entirety of their requested files.

Any coded caching scheme (with coded transmission and

uncoded cache) can be described using this “subset parti-

tioning” representation [4]. Different caching strategies differ

in their partitioning of the subfiles. But instead of thinking

of the above as a way of labelling the cache contents, we

can also use this to design the cache content, and regard the

size of each subfile W
(l)
S as design variables. Consequently,

instead of designing cache contents by assigning discrete bits

to sets, the problem can be simplified by designing only the

sizes of the subfiles: if we have |W
(l)
∅ | = b

(l)
∅ , |W

(l)
1 | =

b
(l)
1 , . . . , |W

(l)
U | = b

(l)
U , then the first b

(l)
∅ Fl bits of W (l) are

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 3

assigned to W
(l)
∅ , the next b

(l)
1 Fl bits to W

(l)
1 , and so on,

assigning the final b
(l)
U Fl bits to W

(l)
U . (Formally, this requires

that b
(l)
S ∈ {0, 1/Fl, . . . (Fl − 1)/Fl, 1}, but for large Fl, this

can be relaxed to b
(l)
S ∈ [0, 1] without any significant loss.)

For example, consider the centralized scenario wherein the

numbers and identities of users are known in advance, so the

server has the ability to design the cache content of each user.

The coded caching scheme of [2], [3] (assuming uniform file

length, cache size and uniform popularity) sets |WS | to be

non-zero for only the S’s with |S| = t = KM/N . In the

decentralized setting of [4], all subfiles have non-zero sizes

due to the use of random cache content. More generally,

|W
(l)
S | can be explicitly designed.

The design of coded caching in this way imposes some

natural constraints on the subfile sizes. First, the subfiles

together must contain the entire file, i.e.
∑

S∈P(U)

|W
(l)
S | = Fl, ∀l ∈ F . (3)

Second, denoting the amount of cache dedicated to file l
by user k as µk,l, the amount of a file cached by a user is

expressed as
∑

S∈P(U\{k})

|W
(l)
S∪k| ≤ µk,l, ∀k ∈ U , ∀l ∈ F , (4)

where
N
∑

l=1

µk,l = Mk, ∀k ∈ [K]. (5)

Finally, the subfiles cannot have a negative size:

|W
(l)
S | ≥ 0, ∀S ∈ P(U), ∀l ∈ F . (6)

In the transmission defined in (2), zero-padding is neeeded

whenever the subfiles do not have the same length, so the

length of a single transmission is determined by the largest

subfile in the transmission. For a vector of user requests d,

the number of bits sent to satisfy user requests given in d is

thus

Rd =
∑

S∈P(U)\∅

max
k∈S

{

|W
(dk)
S\{k}|

}

(7)

The set of choices of |W
(l)
S | define a broad family of

caching schemes. To find the most efficient caching strategy

among this family of schemes that minimize the expected

delivery rate over all demand requests, we can formulate the

following optimization problem:

minimize E[Rd] =
∑

d∈FK

p(d)
∑

S∈P(U)\∅

max
k∈S

{

|W
(dk)
S\{k}|

}

(8)

subject to (3)-(6). (9)

We note before continuing that the transmission scheme

described above is the same for all possible user requests,

which may be suboptimal if there is repetition in the users’

requests, i.e. the same file is requested by more than one

user. However, it can readily be shown that the probability

of each user requesting a distinct file goes to one as N → ∞
of a fixed K . Since it is likely that N ≫ K in practice, the

optimization formulation (8) can be therefore be used without

fear of significant loss.

The optimization problem (8)-(9) is convex in the |WS |
variables. However, there are N2K variables, NK(2K − 1)
summands in the objective function, and N2K +KN +N+
K constraints, making it impractical to solve for large-scale

problems. The rest of this paper is dedicated to developing

simplifications of (8)-(9) that allow for high quality (and even

optimal) solution while maintaining a tractable problem size.

III. HOMOGENEOUS CODED CACHING

Consider the special case of problem (8)-(9) with uniform

file lengths, Fl = F, ∀l ∈ [N], uniform file popularities, pl =
1/N, ∀l ∈ [N], and uniform cache sizes Mk = M, ∀k ∈ [K];
this is the same system originally considered in [2], [3]. The

symmetry of the resulting problem can be exploited to reduce

the computational complexity of optimization. Specifically,

define vj such that vj = |WS | for all S such that |S| = j
and for all files W ; this reduces the number of optimization

variables from an exponential number in K to a linear

number in K . Since the file length, file popularity and cache

size are all homogeneous, there is symmetry across both the

users and the files, and so we would expect the solution to

(8)-(9) for this uniform case to have this form, i.e., any two

subfiles have the same size if their respective user sets are

the same size. The summands of the objective function now

simplify as

max
k∈S

{

|W
(k)
S\{k}|

}

= |W
(k′)
S\{k′}| = v|S|−1

where k′ is any user in the set S \ {k}, because each subfile

in a given transmission is the same size. Since the files are

equally popular, every request vector is equally likely, and

since every transmission scheme requires the same number

of bits to satisfy the requests, the average does not need to be

taken across all the NK possible demands as in (8). Finally,

since vjF bits are sent to any subset of j + 1 users, and

there are
(

K

j+1

)

subsets of j+1 users, the objective function

becomes

E[Rd] =

K−1
∑

j=0

(

K

j + 1

)

vjF, (10)

Note that the number of terms in the objective function now

scales linearly in K instead of exponentially in K , because

each term in (10) accounts for a combinatorial number of

transmissions.

The constraints simplify as well. Since all files are of equal

length, only one file reconstruction constraint is required.

Then, because there are
(

K
j

)

subsets of size j, the file

reconstruction constraint becomes

K
∑

j=0

(

K

j

)

vj = F. (11)

Moreover, since the cache sizes are uniform, only one cache

constraint is needed, and since all file are homogeneous, an

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 4

equal amount of memory is allocated to each. The cache

constraint thus simplifies to

K
∑

j=1

(

K − 1

j − 1

)

vj ≤ MF/N, (12)

because there are
(

K−1
j−1

)

subsets of size j that contain the

index k. As a final step, we follow [2], [3] and normalize

the file length F = 1 in (10)-(12). This yields the following

linear programming problem with K + 1 variables, K + 3
constraints, and K terms in the objective function:

minimize

K−1
∑

j=0

(

K

j + 1

)

vj (13)

subject to

K
∑

j=0

(

K

j

)

vj = 1, (14)

K
∑

j=1

(

K − 1

j − 1

)

vj ≤ M/N, (15)

vj ≥ 0, ∀j ∈ U . (16)

Note that the reduction to an optimization problem that scales

as a linear function of K and as a constant function of N
is possible because of the symmetry created by the uniform

file length, file popularity, and cache size. Later in this paper,

cases when one or more of these parameters are non-uniform

are treated; but the reduction from the exponential order will

no longer be without loss of generality.

Note also that the schemes of [2], [3] and [4] are all

feasible points of this problem. In particular, assuming that

t = KM/N is an integer, the caching scheme of [2],

[3] sets vt = 1/
(

K

t

)

and vj = 0 if j 6= t, while the

decentralized scheme of [4] sets the variables to be of the

form vj = (M/N)j(1 − M/N)K−j for all j. For the non-

integer t case, a similar scheme is also stated in [2], [3]. The

following theorem shows that the caching scheme of [2], [3]

is, in fact, the optimal scheme among the broad family of

schemes discussed above. The theorem works for the cases

of integer or non-integer t. We note that while a similar result

for the integer t case exists in [17], the proof used here

uses a novel reformulation over the probability simplex. It

is considerably simpler and lends additional insight into the

problem.

Theorem 1. Assume M ≤ N . The unique, optimal solution

to (13)-(16) is:

• For t = KM/N ∈ Z:

v∗j =

{

1/
(

K
t

)

if j = t,

0 if j 6= t
(17)

• For t = KM/N /∈ Z:

v∗j =











s/
(

K

⌊t⌋

)

if j = ⌊t⌋

(1− s)/
(

K
⌈t⌉

)

if j = ⌈t⌉

0 else

(18)

where s = ⌈t⌉ − t.

Proof: First, we make a change of variables: aj =
vj/
(

K

j

)

; after some mild algebra, the original problem (13)-

(16) can be reformulated as:

minimize

K
∑

j=0

K − j

j + 1
aj (19)

subject to

K
∑

j=0

jaj ≤ t (20)

K
∑

j=0

aj = 1 (21)

aj ≥ 0, ∀j ∈ [0 : K]. (22)

In this form, the optimization problem is more easily under-

stood. Constraints (21) and (22) restrict the feasible space to

the probability simplex. The key features of the formulation

is that the coefficients of the objective function K−j

j+1 are

decreasing in j with decreasing second differences, while

the cache constraint (20) now has coefficients that increase

linearly in j. Intuitively, the optimal solution would involve

placing as much “probability mass” in high-j aj variables in

order to lower the objective function, but not so high as to

violate the cache constraint. This results in the optimal aj to

concentrate around at most two consecutive j’s close to t.

To complete the argument, we first observe that at the

optimal solution a
∗ of (19)-(22), the cache constraint (20)

must be tight, when M ≤ N . This is because if it were

not, one can always shift some of the weight of aj to a

higher indexed aj+1 without violating the constraints while

lowering the objective function. In the practical context, this

means that the optimal caching strategy does not waste any

cache space.

Second, for a similar reason, we can show that if a feasible

solution a = [a0, . . . , aK]T to (19)-(22) has two non-zero

variables ai1 6= 0 and ai2 6= 0 such that i2 − i1 ≥ 2,

then a cannot be an optimal solution of (19)-(22). This is

because for any such a, we can always construct a better

feasible solution ā = [ā0, . . . , āK]T in the following way.

For some small ∆, set āi1 = ai1 −∆, āi1+1 = ai1+1 + ∆,

āi2 = ai2 −∆, āi2−1 = ai2−1+∆, and āj = aj for all other

j values. (If i1 + 1 = i2 − 1, then set āi2−1 = ai2−1 + 2∆.)

Note that such ā remains on the probability simplex; the

cache constraint remains satisfied as
∑K

j=0 jāj =
∑K

j=0 jaj ,

while the objective function decreases strictly, because the

coefficients of aj in the objective, K−j
j+1 is a decreasing

function of j with decreasing second differences.

The above two observations imply that the optimal solution

has either only one non-zero variable, or two non-zero

variables that have adjacent indices, i.e. some j and j+1. In

this case, the constraints for the optimal solution to (19)-(22)

reduce to

jaj + (j + 1)aj+1 = t, (23)

and

aj + aj+1 = 1. (24)

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 5

This system of equations has a unique solution. Indeed, due to

(24) and the positivity constraints, (23) implies that t must be

a convex combination of j and j+1. If t /∈ Z, the only integer

possibility for j is j = ⌊t⌋ and j + 1 = ⌈t⌉; representing

t = s⌊t⌋ + (1 − s)⌈t⌉ for some s ∈ (0, 1), it becomes clear

that the unique solution to (23)-(24) is aj = s, aj+1 = 1− s
for j = ⌊t⌋ and s = ⌈t⌉− t. If t ∈ Z, then we can set j = t,
then the unique solution to (23)-(24) is aj = 1, aj+1 = 0.

Using the change of variables vi = ai/
(

K

i

)

, this gives the

optimal solution to (13)-(16) as stated by (17)-(18).

As a final remark for this section, we acknowledge that

there exist stronger results about optimal coded caching

schemes than Theorem 1 in the literature, for instance, [44]

shows that a slightly modified version of the scheme in [2],

[3] is the optimal coded caching scheme among all schemes

with uncoded cache content using information theoretical

upper bounds. The optimization theoretic perspective of this

paper is nevertheless worthwhile in that it easily begets

extensions to more practical non-uniform scenarios, which

is the focus of the rest of this paper.

IV. CODED CACHING WITH HETEROGENEOUS FILES

We now move onto the coded caching problem with het-

erogeneous parameters. Although the optimization problem

(8)-(9) is already capable of accounting for non-uniform file

popularity, file length, and cache size, the problem size scales

exponentially in system parameters, hence the optimization

problem is intractable for practical system sizes. The main

contributions of this and the next section are to develop

simplifications to (8)-(9) that reduce the computational com-

plexity of the problem while maintaining high-quality perfor-

mance. Each non-uniformity is considered both individually

and in conjunction with the others in order to gain insight

into the interactions of their respective effects. We begin by

examining the effect of non-uniform file popularity and non-

uniform file length, but for now keep the cache sizes uniform

across the users.

The procedure for each case is roughly as follows: first a

new set of variables are defined that are intended to capture

some structural feature of the problem, e.g. the vj variables of

the simplified homogeneous problem (13)-(16). Next, certain

conditions, referred to as memory inequality constraints, are

imposed on the new variables (see e.g. (35)), which forces

feasible solutions to dedicate more cache memory to certain

kinds of files, e.g. more popular files. While no a priori

justification for the use of these variable and constraints

is given, subsequent numerical results justify their use a

posteriori.

These memory inequality constraints then allow the simpli-

fication of the objective function (8). First, the max function

can be eliminated from (8), since the memory inequality

constraints are sufficient to determine a priori which subfiles

will be the maximum given some request vector d. This

in turn allows the expected rate to computed precisely in

terms of the largest file requested, the second largest file

requested, and so on, instead of in terms of the NK possible

request vectors. Since there are K files requested, and N

possibilities for each file, this ultimately reduces the scaling

of the objective function from exponential to polynomial,

although the objective function does not necessarily scale

with NK precisely.

A. Prior Work

The effect of non-uniform file popularity, also referred

to as non-uniform demands, on coded caching has been

explored in a number of papers [5]–[16]. In [5], [6], Niesen

and Maddah-Ali modify their decentralized scheme from [4]

by first grouping users according to the popularity of their

respective file requests, and then transmitting to the groups

sequentially using the scheme from [4]. The authors of [7]–

[11] develop an order-optimal scheme using random caching

with a graph-based algorithm to design coded multicast

transmissions, with [9] focusing specifically on the applica-

tion of video delivery. In [10], [11], both the popularity of

the files and their request correlation are considered when

designing the caching and transmission scheme, while in

[12]–[15], a heterogeneous network structure is considered,

with file popularity organized in discrete levels. Using a

novel random caching-based scheme, [16] is able to show

order-optimality with a constant that is independent of the

popularity distribution. Finally, we repeat earlier comments

that [17] uses the same optimization framework that is used to

study non-uniform popularity in great depth; we nevertheless

show our (similar) work for the sake of exposition.

The literature on the effects of non-uniform file length is,

however, comparatively scarce. To the best of our knowledge,

Zhang et al [18] provide the only scheme designed to

accommodate non-uniform file length for a general number of

users. A scheme is provided that uses random caching with a

transmission scheme similar to the one used in this paper, and

upper and lower bounds on system performance are derived.

In particular, [18] explores a random caching scheme where

files are cached with a probability proportional to size of

the file. Non-uniform file size is also explored in the recent

letter [19], in which the achievable rate region for both non-

uniform file size and non-uniform cache size is characterized,

but only for the case of K = 2 users and N = 2 files.

Note that it can be argued that if files are indeed different

sizes, they can be broken up into smaller packets of a constant

size F ′ bits, and then treated as separate files. While this

is a reasonable assumption while investigating other aspects

of a coded caching scheme, there are two issues that need

be addressed in practice. First, if a file is broken up into

multiple pieces, then a user who seeks to to download the

entire file must make multiple (correlated) requests to the

server - a fact that should be accounted for in subsequent

system design. The second practical issue comes from the

fact that it is unclear how to set the common file size F ′:

efficiency demands that F ′ be as large as possible so that any

required headers represent a small proportion of the entire

download, while at the same time, F ′ should also be small

enough to divide files without significant remainder.

We therefore contend that heterogeneous file length is an

important parameter that a practical system must capable

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 6

of accommodating in one way or another. The approach to

handling non-uniform files sizes discussed above may indeed

have some merit; some work has been done to analyze the

case of multiple requests from users, see e.g. [20]–[23], and

so an approach based on this technique may be viable. This

paper, however, uses a different approach: files are not broken

up into smaller files of equal lengths, and so the cache

content is designed to accommodate their different lengths.

The possibility of comparing the performance of the different

approaches is left to future work.

To the best of our knowledge, there has been no work

exploring the relationship between file length and popularity

and the resulting effect on cache content. In the literature

discussed above, it is noted (roughly) that more popular files

should be allocated more cache memory, but also that larger

files should be allocated more cache memory. Given that,

in general, file lengths and popularity may not have any

correlation, it is not clear how these non-uniformities jointly

affect optimal cache content. These interactions are explored

in the following.

B. Preliminaries

First, we introduce two lemmas. The first one is a classic

result about binomial coefficients, while the second lemma

is used to determine the probability that the file n is the k-th

largest file requested; the proof of the latter is contained in

Appendix A.

Lemma 1 (Chu-Vandermonde Convolution). For N,N1, N2,
and n positive integers, with N1 +N2 = N and n ≤ N ,

(

N

n

)

=

n
∑

k=0

(

N1

k

)(

N2

n− k

)

(25)

Lemma 2. Consider K independent multinomial random

trials with N possible outcomes per trial, with probabilities

{p1, p2, . . . , pN}, denoted by Z ∈ [N]K , i.e., Zi, the i-th
element of Z, is the outcome of the i-th trial. Let the random

vector Y be a sorted version of Z, but with index shifted by

1, so that Y0 is the smallest element of Z, Y1 is the second

smallest element, and so on. The probability mass function

of Ym is given by

Pr[Y0 = i] =

(

N
∑

l=i

pl

)K

−

(

N
∑

i+1

pl

)K

, (26)

Pr[Y1 = i] = Pr[Y0 = i] +K





(

i−1
∑

l=1

pl

)(

N
∑

l=i

pl

)K−1

−

(

i
∑

l=1

pl

)(

N
∑

l=i+1

pl

)K−1


 , (27)

and for m ∈ [2 : K − 1],

Pr[Ym = 1] =

K−m−1
∑

k=0

(

K

m+ 1 + k

)

pm+1+k
1 (1 − p1)

K−m−1−k (28)

Pr[Ym = i] =

(

K

K −m

)





(

N
∑

l=i

pl

)K−m

−

(

N
∑

l=i+1

pl

)K−m




(

i−1
∑

l=1

pl

)m

+

K−2
∑

k=0

min {m−1,K−2−k}
∑

b=max {0,m−1−k}




(

K

2 + k, b,K − 2− k − b

)

p2+k
i

(

i−1
∑

l=1

pl

)b(N
∑

l=i+1

pl

)K−2−k−b


 (29)

where the final expression is for i ∈ [2 : N].

C. Optimization Formulation

The first step in reducing the exponential number of

variables in (8)-(9) is the definition of a new set of (K+1)N
variables as

vl,j = |W
(l)
S |, ∀S s.t. |S| = j, ∀l ∈ [N]. (30)

similar to the vj variables used in Section III, except now

there is a set of vj variables for each file to capture the

difference in length and popularity between files. Such a

reduction enforces |W
(l)
S | to depend only on the cardinality

of S, which is a reasonable thing to do and in fact can be

proved to be without loss of generality for the special case

of non-uniform file popularity alone but with uniform file

length [17]. The effect of this reduction in the general case

is numerically evaluated later in the section.

The simplification of the general constraints in (9) follows

similar reasoning used to obtain the constraints (11)-(12) in

Section III, except now there are arbitrary file lengths Fl and

popularities pl; this gives

K
∑

j=0

(

K

j

)

vl,j = Fl, ∀l ∈ [N] (31)

as the file reconstruction constraints, and

K
∑

j=1

(

K − 1

j − 1

)

vl,j ≤ µl, ∀l ∈ [N] (32)

for the cache constraint. The other two constraints,

vl,j ≥ 0, ∀l ∈ [N], ∀j ∈ [0 : K], (33)

and
N
∑

l=1

µl ≤ M (34)

have more obvious modifications.

To express the objective function in polynomial number of

terms, we now need to impose certain memory inequality con-

ditions in order to simplify the max operator in the objective.

We propose two different approaches called the popularity-

first approach and the length-first approach respectively for

handling the non-uniform file popularity and file length.

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 7

1) Popularity-First Approach: In the popularity-first ap-

proach, files are labelled in decreasing over of popularity, i.e.

such that p1 ≥ · · · ≥ pN . Then, motivated by the idea that

more popular files ought to have more cache space dedicated

to them, a memory inequality condition is imposed on the

cache content as

vl1,j ≥ vl2,j , ∀l1, l2 ∈ [N] s.t. l1 < l2, j ∈ [K]. (35)

This memory inequality constraint is adopted to help reduce

the complexity of the problem; as previously discussed, this

constraint (and others like it later in the paper) allow the max

function in (8) to be eliminated in favour of a linear function

of the variables, which in turn allows for the expected rate to

be computed in a polynomial number of operations, instead

of the exponential number required by (8).

The popularity-first approach is most appropriate for the

special case of non-uniform file popularity alone, but with

uniform file length. The following proposition shows explic-

itly the effect that (35) has on the objective function in this

case. Note that in this special case of uniform file length,

(35), which holds for j = 1, . . . ,K , becomes reversed for

j = 0. To see this, consider two files l1 and l2 with l1 < l2,

that satisfy (35); if both have length F , i.e. satisfy (31) with

Fl! = Fl2 = F , then vl1,0 ≤ vl2,0 because every other subfile

of l1 is larger than every other subfile of l2.

As mentioned earlier, this special case of non-uniform

file popularity alone with uniform file length has already

been considered in independent work [17]. But the problem

formulation of [17] does not account for the difference in

the lengths of subfiles within the max operator, thus may

result in loss of optimality. The expression below is an exact

accounting of the expected delivery rate.

Proposition 1. Consider the case of non-uniform file popu-

larity and uniform file length. Let the variables defined in (30)

be subject to condition (35) with files labelled in decreasing

order of popularity. Then the objective function (8) simplifies

exactly as

E





∑

S∈P(U)\∅

max
k∈S

{|W
(dk)
S\{k}|}



 =

K−1
∑

j=1

K−1
∑

i=0

N
∑

l=1

(

K − 1− i

j

)

Pr[Yi = l]vl,j

+

K−1
∑

i=0

N
∑

l=1

Pr[YK−i−1 = l]vl,0, (36)

where Yi is the random variable representing the (i + 1)-th

smallest index in a random request vector d.

The proof of Proposition 1 is contained in Appendix B.

Note that the probabilities Pr[Yi = l] can be obtained directly

from Lemma 2: since the files are labelled in decreasing order

of popularity, the probability that l is the (i+ 1)-th smallest

file requested in d is equivalent to the probability that l is the

(i+1)-th smallest index in Z. The optimization problem for

the case of non-uniform file popularity, uniform file length,

and uniform cache size can now be written as

minimize

K−1
∑

j=1

K−1
∑

i=0

N
∑

l=1

(

K − 1− i

j

)

Pr[Yi = l]vl,j

+
K−1
∑

i=0

N
∑

l=1

Pr[YK−i−1 = l]vl,0 (37)

subject to (31)-(35), (38)

Note that this is a linear program, with a number of

summands in the objective function that scales K2N , and

exactly KN variables and N(K+3)+K(N(N − 1))/2+1
constraints.

If the files are also of non-uniform length, further work is

required, but a similar optimization problem can nonetheless

be developed. The details are omitted here both for the sake

of brevity and because numerical results suggest that the

popularity-first approach does not perform as well as the

length-first approach in the general case when both popularity

and file lengths are non-uniform.

2) Length-First Approach: In the length-first approach,

files are labelled in decreasing order of length, i.e. such that

F1 ≥ F2 ≥ · · · ≥ FN . Then, motivated by the idea that

longer files ought to have more cache space dedicated to

them, the following memory inequality condition is imposed:

vl1,j ≥ vl2,j , ∀l1, l2 ∈ [N] s.t. l1 < l2, j ∈ [0 : K− 1]. (39)

Using similar reasoning as Proposition 1, it is straightfor-

ward to show that

Proposition 2. Consider the case of non-uniform file length

with either uniform or non-uniform popularity. Let the vari-

ables defined in (30) be subject to condition (39) with files

labelled in decreasing order of length. Then the objective

function (8) simplifies exactly as

E





∑

S∈P(U)\∅

max
k∈S

{|W
(dk)
S\{k}|}





=

K−1
∑

j=0

K−1
∑

i=0

N
∑

l=1

(

K − 1− i

j

)

Pr[Yi = l]vl,j (40)

where Yi is the random variable representing the (i + 1)-th

smallest index in a random request vector d.

The length-first optimization problem for non-uniform file

popularity, non-uniform file length, and uniform cache size

is obtained as

minimize

K−1
∑

j=0

K−1
∑

i=0

N
∑

l=1

(

K − 1− i

j

)

Pr[Yi = l]vl,j (41)

subject to (31)-(34), (39) (42)

which is a linear program with K2N summands in the

objective function, KN variables, and N(K+3)+K(N(N−
1))/2 + 1 constraints.

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 8

0 1 2 3 4 5 6

Memory Size, M

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
E

xp
ec

te
d

R
at

e,
 R

Optimal Solution, Polynomial Problem
Optimal Solution, Exponential Problem
Random Caching

Fig. 1. A comparison of the performance of the solution obtained from
(8)-(9) to the solution obtained by (37)-(38), with reference to a baseline
random caching scheme, for the case of non-uniform file popularity only

D. Numerical Results

To evaluation the effect of the simplified problem formu-

lation, we consider a case with K = 4 users with equal

cache sizes of M , and N = 6 files. When the files are

of uniform length, the value F = 1 is used, and when

they are of non-uniform length, the values {F1, . . . , F6} =
{9/6, 8/6, 7/6, 5/6, 4/6, 3/6} are used. Similarly, when the

files are of uniform popularity, the value pl = 1/N is used for

all l ∈ [N], but when the files have non-uniform popularity,

the distribution is given by a Zipf distribution with parameter

s, which has been observed empirically to be reasonable

model for user demands; a parameter of s = 0.56 is used

in this paper (see e.g. [42]). When both the file lengths and

popularities are non-uniform, the relationship between length

and popularity is specified explicitly.

Fig. 1 compares the rate-memory tradeoff curve for the

original problem (8)-(9) and the simplified problem (37)-

(38) for the non-uniform popularity and uniform length case.

A baseline random caching scheme is also included for

reference. This random caching scheme is essentially the

decentralized scheme of [4] but with file n allocated µnF
bits of cache memory instead of MF/N bits; initially, the

value is obtained as µn = min{Mpn, 1} for all n ∈ [N], and

if
∑N

n=1 µn < M after that, the remaining cache memory is

allocated to each file sequentially until the remaining memory

runs out.

Conversely, Fig. 2 compares the rate-memory tradeoff

curves of (8)-(9) and the simplified problem (41)-(42) for the

non-uniform length and uniform popularity case. The random

caching baseline scheme used here is essentially equivalent

to the one proposed in [18].

Both figures show that the performance of the general

problem and the two simplified problems is identical for the

respective cases considered here. Indeed, when the numer-

0 1 2 3 4 5 6

Memory Size, M

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
xp

ec
te

d
R

at
e,

 R

Random Caching
Optimal Solution, Polynomial Problem
Optimal Solution, Exponential Problem

Fig. 2. A comparison of the performance of the solution obtained from
(8)-(9) to the solution obtained by (41)-(42), with reference to a baseline
random caching scheme, for the case of non-uniform file length only.

TABLE I
THE FILE LABELLING AND LENGTH-POPULARITY PAIRINGS USED IN THE

NON-UNIFORM FILE POPULARITY AND LENGTH CASE.

Length-First (LF) and Popularity-First (PF) Labelling

LF File Index PF File Index Length Popularity

1 5 9/6 0.1176

2 3 8/6 0.1566

3 2 7/6 0.1965

4 6 5/6 0.1062

5 1 4/6 0.2897

6 4 3/6 0.1333

ical solutions of (8)-(9) for these two cases are examined

explicitly, it is clear that the memory constraint conditions

are indeed satisfied, and so the optimal solutions in these

cases are attainable by the respective simplified problems.

Next, Fig. 3 compares the performance of the original

problem (8)-(9) to both the length-first and popularity-first

simplified problems for the case of non-uniform file length

and popularity. The specific pairings of length and populari-

ties used and their associated labels are listed in Table I.

Although somewhat arbitrary, these file length and popular-

ity combinations are intended to simulate a practical scenario

where file popularity and length are relatively uncorrelated.

While examining this individual case is not sufficient for

determining general patterns, it is enough to gain some

important insight about the tension between file length and

popularity.

Fig. 3 shows that in this case, the length-first scheme yields

much better results than the popularity-first scheme. Indeed,

the length-first scheme obtains the same performance as the

original problem for all M considered except M = 1. The

reason for this divergence can be seen from Table II which

shows the optimal solution to the original problem (8)-(9) in

the M = 1 case. The value of |W
(l)
S | is shown in the l-th

column of the row labelled with S, and the files are ordered

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 9

0 1 2 3 4 5 6

Memory Size, M

0

0.5

1

1.5

2

2.5

3

3.5

4
E

xp
ec

te
d

R
at

e,
 R

Optimal File-First Caching, Polynomial Problem
Optimal Probability-First Caching, Polynomial Problem
Optimal Caching, Exponential Problem
Random Caching

Fig. 3. A comparison of the performance of the solution obtained from (8)-
(9) to the solutions obtained by (41)-(42) and a popularity-first optimization
problem, with reference to a baseline random caching scheme, for the case
of non-uniform file length and popularity.

TABLE II
OPTIMAL SUBFILE SIZES AND MEMORY ALLOCATION FOR THE GENERAL

PROBLEM (8)-(9) WITH K = 4, N = 6, M = 1, AND FILE LENGTHS AND

POPULARITIES GIVEN IN TABLE I (USING LENGTH-FIRST INDEXING),
WITH VALUES ROUNDED TO THREE DECIMAL PLACES.

File Index

Subset 1 2 3 4 5 6

∅ 0.833 0.583 0.417 0.167 0 0

{1} 0.167 0.188 0.188 0.167 0.167 0.125

{2} 0.167 0.188 0.188 0.167 0.167 0.125

{3} 0.167 0.188 0.188 0.167 0.167 0.125

{4} 0.167 0.188 0.188 0.167 0.167 0.125

{1, 2} 0 0 0 0 0 0

.

{1, 2, 3, 4} 0 0 0 0 0 0

Total memory: 0.167 0.188 0.188 0.167 0.167 0.125

using the length-first labelling of Table I. It is clear that file 1,

the largest file but fifth-most popular, has been allocated less

cache memory than files 2 and 3, which are the third and

second most popular files respectively. Thus the memory-

inequality constraint (39) is violated and so the length-first

simplified problem cannot attain the optimal solution of (8)-

(9). Despite this, the optimal value to the simplified problem

is only about 10−4 larger than the optimal value of (8)-

(9), and so the difference is not significant. It would thus

appear that, while probability cannot be completely ignored

in theory, a length-first approach to caching can yield very

good results in practice. This insight is later used in Section

VI-A, but first the problem of non-uniform cache size must

be studied on its own first; this is done next.

V. CODED CACHING WITH HETEROGENEOUS CACHE

SIZES

We next consider simplifying the optimization formulation

for the case with non-uniform cache sizes. For now, file

popularity and file length are kept uniform; the case with

all parameters being non-uniform is treated in the subse-

quent section. For the case of non-uniform cache size, a

decentralized coded caching scheme is developed in [24]

and subsequently improved upon in the K > N case by

[25], [26]. As previously discussed, [27] uses an optimization

framework similar to the one used in this paper to generate a

scheme for the centralized case. For the sake of completion,

we note again the work [19] in which the rate region for both

non-uniform cache and file size is characterized for K = 2
users and N = 2 files, but the optimal scheme is not yet

known for the general case.

A. Optimization Formulation

We first consider a simple case where there are only two

cache sizes, “large” and “small”, represented by ML and MS

respectively. The variable KL is used to represent the number

of users with large caches, and KS is used to represent the

number of users with small caches, such that KL+KS = K .

Note that file lengths and popularities are fixed as uniform,

i.e. p1 = · · · = pN = 1/N and F1 = · · · = FN = F = 1
respectively.

Since files here are equally popular and of the same size,

we have symmetry across files, but now the symmetry across

users is broken by the non-uniform cache size. However,

certain user symmetry still exists, i.e., symmetry among

members of the same cache size group. We therefore define

three sets of variables for j ∈ [0 : K], denoted vj,S , vj,L, and

vj,M , as follows. For a subset of users S with a size |S| = j,

|W
(l)
S | =











vj,S if S contains only small-cache users,

vj,L if S contains only large-cache users,

vj,M otherwise,
(43)

for all files l ∈ [N].

This definition suggests some natural constraints. First,

since there are only KS small-cache users, there cannot be

a group of j small-cache users if j > KS , so we set

vj,S = 0, ∀j > KS . (44)

Similarly, for large-cache users,

vj,L = 0, ∀j > KL. (45)

A similar constraint is required for the v1,M . Since there

cannot be a subset of size one with both large- and small-

cache users, we require

v1,M = 0; (46)

Moreover, since the j = 0 variables correspond to subsets of

size 0, it it not particularly meaningful to discuss whether or

note this corresponds to a small, large, or mixed subset. To

avoid any further complications, we simply set

v0,S = v0,L = v0,M = v0 , (47)

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 10

To understand the file reconstruction condition, note that,

for j ≥ 2, there are
(

KS

j

)

groups of small-cache users,
(

KL

j

)

groups of large-cache users, and

j−1
∑

i=1

(

KS

i

)(

KL

j − i

)

mixed groups, because each mixed group must have at least

one small-cache users and at least one-large cache user. By

adding and subtracting the i = 0 and i = j terms and using

Lemma 1, we can rewrite this as

j
∑

i=0

(

KS

i

)(

KL

j − i

)

−

(

KL

j

)

−

(

KS

j

)

=

(

K

j

)

−

(

KL

j

)

−

(

KS

j

)

,

and so the total portion of the file cached by subsets of size

j ≥ 2 is
(

KL

j

)

(vj,L − vj,M) +

(

KS

j

)

(vj,S − vj,M) +

(

K

j

)

vj,M .

(48)

For j = 1, there are KL =
(

KL

1

)

large users and KS =
(

KS

1

)

small users. Moreover, since v1,M = 0, it is easy to see that

(48) also holds for j = 1. Finally, consider the j = 0 case.

Here we only need to add v0 to capture the portion of the

file not cached by any user. However, note that if we set

j = 0 in (48) and apply constraint (47), the first two terms

become 0, while the last term reduces to v0,M = v0. Thus

(48) applies for all j, and so we can conveniently express

the file reconstruction constraint as

K
∑

j=0

(

KL

j

)

(vj,L − vj,M) +

(

KS

j

)

(vj,S − vj,M)

+

(

K

j

)

vj,M = 1. (49)

Similar reasoning is used to obtain the cache memory

constraints. A small cache user caches every subfile labelled

with a subset in which he is contained as a member, and

so necessarily caches only subfiles of size vj,S and vj,M .

Specifically, a small-cache user is a member of
(

KS−1
j−1

)

small

groups of size j, and

K−2
∑

i=0

(

KS − 1

i

)(

KL

j − 1− i

)

(50)

mixed groups. Using Lemma 1 once again, the cache memory

constraint for the small user is obtained as

K
∑

j=1

(

KS − 1

j − 1

)

(vj,S − vj,M) +

(

K − 1

j − 1

)

vj,M = MS/N.

(51)

Note that the j = 1 expression reduces to
(

KL−1
0

)

(v1,S−0)+
0 = v1,S , as desired. Note also that each file is allocated an

equal MS/N of the cache because the files are equally sized

and equally popular. Using similar reasoning for large-cache

users, we obtain

K
∑

j=1

(

KL − 1

j − 1

)

(vj,L − vj,M) +

(

K − 1

j − 1

)

vj,M = ML/N.

(52)

As always, it is required that all subfiles be of nonnegative

size:

vj,S ≥ 0, vj,L ≥ 0, vj,M ≥ 0, ∀j ∈ {0, . . . ,K}. (53)

Finally, the memory inequality constraints for this problem

are introduced. In general, we would expect the subfiles that

large users have cached to be longer than the ones cached by

small users. This is codified in the problem explicitly with

vj,L ≥ vj,M , j ∈ [2 : KL] (54)

vj,M ≥ vj,S , j ∈ [2 : KS] (55)

vj,L ≥ vj,S , j ∈ [1 : KL]. (56)

Again note that there is some redundancy in these constraints,

but they are nonetheless included for clarity of exposition.

Note also that the first two inequalities hold from j = 2 to

j = KL and j = KS respectively; the j = 1 is already

constrained by (46), while the j = 0 is constrained by (47),

and the j > KL and j > KS cases are governed by (45) and

(44) respectively.

As Proposition 3 shows, the memory inequality constraints

allow us to greatly simplify the original objective function

(8).

Proposition 3. Assuming uniform file length and popularity

but two different user cache sizes, and with variables as

defined in (43) and satisfying (44)-(47) and (53)-(56), the

objective function (8) simplifies exactly as

E





∑

S∈P(U)\∅

max
k∈S

{|W
(dk)
S\{k}|}





=

K−1
∑

j=0

(

Ks

j + 1

)

(vj,S − vj,M) +

(

K

j + 1

)

vj,M+

((

KL

j + 1

)

+

(

KS

1

)(

KL

j

))

(vj,L − vj,M) (57)

The proof of Proposition 3 is in Appendix C. The simpli-

fied optimization problem can then be written as

minimize

K−1
∑

j=0

(

Ks

j + 1

)

(vj,S − vj,M) +

(

K

j + 1

)

vj,M+

((

KL

j + 1

)

+

(

KS

1

)(

KL

j

))

(vj,L − vj,M)

(58)

subject to (44)-(47), (49), (51)-(56). (59)

This is a linear program that has a number of variables,

constraints, and objective function summands that scale lin-

early in K .

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 11

0 1 2 3 4 5 6

Memory Factor, M

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
E

xp
ec

te
d

R
at

e,
 R

Optimal Caching, Polynomial Problem
Optimal Caching, Exponential Problem
Wang et al., Random Caching Scheme

Fig. 4. A comparison of the performance of the solution obtained from
(8)-(9) to the solution obtained by (58)-(59) for KS = 2.

Finally, we remark that only two cache sizes were consid-

ered in this paper. While a practical system would likely have

more than two cache sizes, it is reasonable to expect that only

a small number of cache sizes will be used, e.g. cell phones

with 8,16, 32 or 64 GB of cache memory. The reasoning

used here for two cache sizes could then be extended to

accommodate these additional cache sizes as needed.

B. Numerical Results

Consider a case where there are N = 6 files, uniform in

popularity and length, and K = 4 users. Define a ”memory

factor” M ∈ [0 : N]; there are KS small users with a cache

size of MS = 0.8M , and KL large users with a cache

size of ML = 1.2M . Fig. 4 compares the corresponding

solution of the general problem (8)-(9) to the solution of

the simplified problem (58)-(59) when there are KS = 2
small users. The random caching scheme of [24] is included,

but the centralized scheme of [27] (which has exponential

complexity) is not. The purpose here is not to determine

the best caching scheme for the heterogeneous cache case,

but to, first, demonstrate the implicit performance-tractability

tradeoff of using the simplified problem (58)-(59) over the

general problem, and second, to demonstrate that it is worth

the effort of developing and using these problems to design

cache content (rather than caching randomly) when the

engineering context allows for it. Nevertheless, we expect the

performance of the problem in [27] to be very similar, if not

identical, to the exponential problem developed here, even

though the two optimization frameworks are not identical

themselves. Table III also shows the optimal cache content

obtained from the general problem in the KS = 2, M = 4
case.

Fig. 4 shows that in the KS = 2 case, while the simplified

problem tracks the optimal scheme for small cache size

TABLE III
OPTIMAL SUBFILE SIZES AND MEMORY ALLOCATION FOR THE GENERAL

PROBLEM (8)-(9) WITH K = 4, N = 6, KS = 2, MS = 3.2 AND

ML = 4.8, WITH VALUES ROUNDED TO THREE DECIMAL PLACES.

File Index

Subset 1 2 3 4 5 6

∅ 0 0 0 0 0 0

.

{4} 0 0 0 0 0 0

{1, 2} 0.056 0.056 0.056 0.056 0.056 0.056

{1, 3} 0.056 0.056 0.056 0.056 0.056 0.056

{1, 4} 0.056 0.056 0.056 0.056 0.056 0.056

{2, 3} 0.056 0.056 0.056 0.056 0.056 0.056

{2, 4} 0.056 0.056 0.056 0.056 0.056 0.056

{3, 4} 0.056 0.056 0.056 0.056 0.056 0.056

{1, 2, 3} 0.033 0.033 0.033 0.033 0.033 0.033

{1, 2, 4} 0.033 0.033 0.033 0.033 0.033 0.033

{1, 3, 4} 0.300 0.300 0.300 0.300 0.300 0.300

{2, 3, 4} 0.300 0.300 0.300 0.300 0.300 0.300

{1, 2, 3, 4} 0 0 0 0 0 0

Mem. (L): 0.800 0.800 0.800 0.800 0.800 0.800

Mem. (S): 0.533 0.533 0.533 0.533 0.533 0.533

(M ≤ 3), it performs worse than even the random caching

scheme for large M values. Table III reveals why this is

the case. Here, users 1 and 2 are the small users, and

users 3 and 4 are the large users. The variable definitions

in (43) specify one variable for all mixed subsets of the

same size, but consider the subfile sizes for the size-three

subsets: the subsets with 2 small users have smaller subfiles

than the subsets with 2 large users. Thus using only one

vMl,j variable for these four subsets results in a loss in

performance. In principle, one could introduce more variables

to accommodate this, albeit at a cost of a more complicated

objective function.

VI. CODED CACHING WITH HETEROGENEOUS FILES AND

CACHE SIZES

The natural final step in this program is to develop

a tractable optimization problem that accommodates non-

uniformity in cache size, file size, and popularity at the same

time. To the best of our knowledge, there has yet to be a

caching scheme proposed that handles heterogeneity in all

three of these domains.

A. Optimization Formulation

We begin by defining a new set of variables that, in a

sense, combines the functionality of the variables defined in

(30) and (43). Let

|W
(l)
S | =











vSl,j if S contains only small-cache users,

vLl,j if S contains only large-cache users,

vMl,j otherwise,
(60)

for a subset of users S such that |S| = j and all files l ∈ [N].
The symmetry across users is broken by the heterogeneity of

the user cache size, and the symmetry across files is broken

by a the heterogeneity of files in both length and popularity.

Nevertheless, we can still exploit the symmetry across subsets

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 12

of users of the same size (j) and type (i.e. small, large, mixed)

for a particular file (l) to reduce the complexity of the original

problem (8)-(9) while still accounting for the aforementioned

heterogeneity.

Many of the constraints used in the non-uniform cache size

case can be converted to their equivalents for this new case.

If j > KS , there cannot be a subset of j small cache users,

so

vSl,j = 0, ∀j > KS , ∀l ∈ [N], (61)

and similarly

vLl,j = 0, ∀j > KL, ∀l ∈ [N]. (62)

Since there cannot be a subset of size 1 containing both large

and small users, the l = 1 variable is constrained as

vMl,1 = 0, ∀l ∈ [N], (63)

and for convenience, we set

vSl,0 = vLl,0 = vMl,0 = vl,0, ∀l ∈ [N]. (64)

The cache size-based memory inequalities should still hold,

giving, for a fixed file l,

vLl,j ≥ vMl,j , j ∈ [2 : KL], ∀l ∈ [N], (65)

vMl,j ≥ vSl,j , j ∈ [2 : KS], ∀l ∈ [N], (66)

vLl,j ≥ vSl,j , j ∈ [1 : KL], ∀l ∈ [N]. (67)

We also import conditions from the non-uniform file size

and popularity problem. As seen earlier, it is better to

prioritize file length rather than popularity, and so we label

the files in decreasing order of file length. This gives

vLl1,j ≥ vLl2,j , j ∈ [0 : K − 1], ∀l1, l2 s.t. l1 < l2 (68)

vMl1,j ≥ vMl2,j , j ∈ [0 : K − 1], ∀l1, l2 s.t. l1 < l2 (69)

vSl1,j ≥ vSl2,j , j ∈ [0 : K − 1], ∀l1, l2 s.t. l1 < l2. (70)

The remaining conditions are formed using identical rea-

soning to the non-uniform cache case, but occur on a file-

by-file basis as needed. The file reconstruction constraint

remains the same, with the minor change that the file must

add up not to the common file length 1, but to Fl, the actual

length of the file as expressed below:

Fl =

K
∑

j=0

(

KL

j

)

(vLl,j − vMl,j) +

(

KS

j

)

(vSl,j − vMl,j)

+

(

K

j

)

vMl,j , ∀l ∈ [N] (71)

The cache memory constraints are modified similarly,

except instead of giving an equal amount MS/N to each

file, an amount µS
l is allocated to file l, yielding

µS
l =

K
∑

j=1

(

KS − 1

j − 1

)

(vSl,j − vMl,j)

+

(

K − 1

j − 1

)

vMl,j , ∀l ∈ [N], (72)

where it must be the case that

N
∑

l=1

µS
l = MS . (73)

A similar pair of equations holds for large users:

µL
l =

K
∑

j=1

(

KL − 1

j − 1

)

(vLl,j − vMl,j)

+

(

K − 1

j − 1

)

vMl,j , ∀l ∈ [N], (74)

and
N
∑

l=1

µL
l = ML. (75)

The subfiles are also required to be positive in size, as always:

vLl,j ≥ 0, vSl,j ≥ 0, vMl,j ≥ 0, ∀j ∈ [0 : K], l ∈ [N] (76)

Finally, another set of memory inequality constraints are

required to break ties between small-index, small-cache

subfiles and large-index, large-cache subfiles. Leaving the

justification and discussion of this choice to later sections,

we develop a caching scheme under the constraints

vLl1,j ≥ vMl2,j , j ∈ [2 : KL], ∀l1, l2 ∈ [N] (77)

vMl1,j ≥ vSl2,j , j ∈ [2 : KS], ∀l1, l2,∈ [N] (78)

vLl1,j ≥ vSl2,j , j ∈ [1 : KL], ∀l1, l2 ∈ [N]. (79)

In words, this means that subfiles for any file stored on a

larger cache type should be larger than the subfiles of any file

stored on a smaller cache type, independent of which files

are involved. The following proposition gives the objective

function of the simplified optimization problem.

Proposition 4. Define the following functions of the integer

parameters n,m, j and i:

ν1(n,m, j, i) =

(

KS −m

K − n+ 1

)

(

KS −m− 1

i

)(

KL − n+ 1 +m

j − i

)

,

ν2(n,m, j, i) =

(

KL − n+ 1 +m

K − n+ 1

)

(

KS −m

i

)(

KL − n+m

j − i

)

,

and

ν(n, j) =

n−1
∑

m=0

(

KS

m

)(

KL

n−1−m

)

(

K
n−1

)

(

j−2
∑

i=1

ν1(n,m, j, i) +

j−1
∑

i=2

ν2(n,m, j, i)

)

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 13

Then for the variables defined in (60) satisfying (61)-(79),

the objective function (8) simplifies exactly as

E





∑

S∈P(U)\∅

max
k∈S

{|W
(dk)
S\{k}|}





=

K−1
∑

i=0

N
∑

l=1

Pr[Yi = l]vMl,0

+

KL−1
∑

j=1

KL−1
∑

i=0

N
∑

l=1

(

KL − 1− i

j

)

Pr[Y L
i = l]vLl,j

+

KS−1
∑

j=1

KS−1
∑

i=0

N
∑

l=1

(

KS − 1− i

j

)

Pr[Y S
i = l]vSl,j

+

KL
∑

j=1

KS−1
∑

i=0

N
∑

l=1

(

KL

j

)

Pr[Y S
i = l]vLl,j

+

KS−1
∑

j=2

KS−1
∑

i=0

N
∑

l=1

(

KS − 1− i

j

)(

KL

1

)

Pr[Y S
i = l]vMl,j

+

K−1
∑

j=max{KS ,KL}+1

K−1
∑

i=0

N
∑

l=1

(

K − 1− i

j

)

Pr[Yi = l]vMl,j

+

max{KS ,KL}
∑

j=3

K
∑

n=1

N
∑

l=1

Pr[Yn−1 = l]ν(n, j)vMl,j (80)

Proposition 4 is proved in Appendix D. Although visually

complicated, (80) simplifies the original objective function

(8) by using only 3(K+1)N variables and having a number

of terms that scales with K2N rather than (2N)K . The num-

ber of constraints described by (61)-(79) scales with KN2,

and so the following optimization problem is a tractable

method of obtaining a caching scheme that accommodates

heterogeneity in cache size, file size, and file popularity:

minimize (80) (81)

subject to (61) − (79) (82)

B. Numerical Results

To demonstrate that this simplified optimization problem

performs well when compared to the general problem (8)-(9),

we again consider K = 4 users (KS = 2 of which are small-

cache users) and N = 6 files, with all of the non-uniformities

used thus far: file labels and popularity/size pairs as given in

Table I, and cache sizes of MS = 0.8M and ML = 1.2M
for M ∈ [0 : N]. Fig. 5 compares the simplified and general

problems with a naive random caching baseline.

We see that the simplified problem yields a scheme that

closes mirrors, although does not match exactly, the perfor-

mance of the scheme obtained from the general problem for

small and intermediate M values. Table IV shows the optimal

solution to the general problem for the M = 2 case; we see

several violations of the memory inequality constraints that

explain why the simplified problem could not achieve as good

a performance as the general problem: the “true” optimal

solution lies outside of its feasible space. Nevertheless, the

0 1 2 3 4 5 6

Memory Factor, M

0

0.5

1

1.5

2

2.5

3

3.5

4

E
xp

ec
te

d
R

at
e,

 R

Optimal Caching, Polynomial Problem
Optimal Caching, Exponential Problem
Random Caching

Fig. 5. A comparison of the performance of the solution obtained from
(8)-(9) to the solution obtained by (81)-(82), with reference to a baseline
random caching scheme, for the case of non-uniform file size, file popularity,
and cache size.

simplified problem still achieves good performance compared

to the general problem in this regime. For large M , we see

that the expected rate of the simplified scheme does not

drop as quickly as the general problem solution, and is even

eclipsed by the random caching scheme. This occurs for the

same reason we saw in Section V in the KS = 2 case (Fig. 4).

To compare the relative performance of the three schemes in

general, Fig. 6 shows the percent increase in expected rate

if the random caching scheme is used over the general and

simplified schemes respectively. The significant increase in

rate when using random caching make it clear that designing

the cache content can be worthwhile when the engineering

context allows for it.

C. Further Extensions

We first echo the earlier comments about heterogeneous

cache sizes: we consider only two different cache sizes here,

but it is possible to use the same reasoning to develop a

tractable optimization problem for a practical system having

more (but not many more) cache sizes.

The primary focus in this section, however, is on the

memory inequality constraints (77)-(79) used in developing

the simplified problem (81)-(82) of this section. Recall that

these constraints require, among other things, that (roughly

speaking) for a fixed index j, the vLl,j variables for all files l

be larger than the vSl,j variables for all files. Thus the large-

user subfile for the smallest file is larger than the small-

user subfile for the largest file. This restriction was required

to allow us to write the simplified problem, and numerical

results show that the simplified problem still performed

well compared to the general problem for the considered

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 14

TABLE IV
OPTIMAL SUBFILE SIZES AND MEMORY ALLOCATION FOR THE GENERAL

PROBLEM (8)-(9) WITH K = 4, N = 6, KS = 2, MS = 1.6, ML = 2.4
AND FILE POPULARITY/ SIZE PAIRS GIVEN BY TABLE I, WITH VALUES

ROUNDED TO THREE DECIMAL PLACES.

File Index

Subset 1 2 3 4 5 6

∅ 0 0 0 0 0 0

{1} 0.178 0.178 0.178 0.178 0.165 0.085

{2} 0.178 0.178 0.178 0.178 0.165 0.085

{3} 0.178 0.178 0.178 0.178 0.165 0.085

{4} 0.178 0.178 0.178 0.178 0.165 0.085

{1, 2} 0 0.077 0.008 0 0 0

{1, 3} 0.090 0.090 0.090 0.008 0 0

{1, 4} 0.090 0.090 0.090 0.008 0 0

{2, 3} 0.090 0.090 0.090 0.008 0 0

{2, 4} 0.090 0.090 0.090 0.008 0 0

{3, 4} 0.431 0.188 0.090 0.090 0.008 0

{1, 2, 3} 0 0 0 0 0 0

.

{1, 2, 3, 4} 0 0 0 0 0 0

Mem. (L): 0.788 0.554 0.446 0.284 0.173 0.165

Mem. (S): 0.357 0.434 0.365 0.194 0.165 0.085

0 1 2 3 4 5 6

Memory Factor, M

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
er

ce
nt

 In
cr

ea
se

 in
 R

at
e,

 %
/1

00

Random v.s. Exponential Program
Random v.s. Polynomial Program

Fig. 6. The percent increase in expected rate due to random cache content
when compared to the simplified problem (81)-(82) and general problem
(8)-(9) optimal solutions.

parameters. While a full investigation of the performance

of the simplified problem across all parameter values would

be labourious, it is still possible to estimate the behaviour

for certain parameter regimes. We should expect (77)-(79) to

result in a good simplification when the disparity between

the large and small cache sizes is big, and when there are

small numbers of files, because the large cache users will

likely store much larger subfiles than the small cache users,

irrespective of the length of the file. Conversely, we should

expect the performance of (81)-(82) to be relatively poor

when the cache sizes are comparable and there are large

numbers of files. In this case, it may make more sense to use

something like the “opposite” memory inequality constraint:

a small-user subfile variable vSl1,j should be larger than any

larger-user subfile variable vLl2,j if file l1 is larger than file l2.

While the simplified optimization problem that would result

from this constraint is not explored in this paper, it should

be possible to construct such a problem using the same kind

of reasoning used here.

Indeed, there may also be other memory inequality con-

straints that prove to yield useful simplified optimization

problems for other parameter sets. The appeal of the tractabil-

ity of these models is that a server, knowing the relevant

parameters for its system, could easily compute the perfor-

mance of these schemes and choose the best among them;

any discussion of the specifics of such schemes, however, is

left to future work.

VII. SUMMARY AND CONCLUSIONS

The two primary goals of this paper are to advance a

certain optimization theoretic approach to coded caching

problems, and to use that framework to derive both specific

caching schemes and general insight for system models con-

taining multiple heterogeneities that have yet to be considered

in the literature. An exponentially-scaling optimization prob-

lem corresponding to a caching scheme capable of handling

non-uniform file size, popularity, and cache size is developed.

It is shown that the original scheme of Maddah-Ali and

Niesen in [2], [3] is the optimal solution of that problem

for the special case of uniform file length, popularity, and

cache size.

Tractable problems are then developed to handle various

combinations of heterogeneous system parameters. The con-

sideration of these special cases also permitted the observa-

tion of the effects that these non-uniformities have on the

optimal cache content. When considering non-uniform file

popularity and size jointly, it is shown that while popularity

may in general have some influence on the optimal cache

allocation, file size can be a much stronger influence; indeed,

very good performance is obtained in the case considered by

ignoring file popularity altogether. Finally, with the insights

obtained from the previously-explored special cases, we

developed a tractable optimization problem corresponding

to a caching scheme capable of accommodating all three of

the aforementioned heterogeneities, and showed numerically

that it performs well compared to the original exponentially-

scaling problem.

APPENDIX

A. Proof of Lemma 2

We begin with the proof of the expression of Pr[Y0 = i],
for which we use induction on i for i = 1, . . . , N . We begin

first with the i = 1 case. Let Z ∈ [N]K denote the sequence

of outcomes from the N trials, e.g. if for K = 3 and N
= 4, trial 1 obtains outcome 2, trial 2 obtains outcome 4,

and trial 3 obtains outcome 1, we have Z = [2, 4, 1]T . Let

Xn denote the random variable representing the number of

times the outcome n occurs in the K trials (i.e. the number of

times it appears in Z), and stack the Xn variables in a vector

X ∈ [K]N ; the example above would yield X = [1, 1, 0, 1]T .

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 15

Then the smallest element of Z is 1 (i.e. Y0 = 1) if and only

if X1 >= 1; in other words, since 1 is the smallest possible

outcome, if it occurs anywhere in Z then it is the smallest

element. Thus we have

Pr[Y0 = 1] = Pr[X1 ≥ 1] = 1− Pr[X1 = 0]

= 1− (1− p1)
K =

(

N
∑

l=1

pl

)K

−

(

N
∑

l=2

pl

)K

,

which is indeed the formula (26) with i = 1, as desired.

For an arbitrary i such that 2 ≤ i ≤ N − 1, we note that

if the smallest element of Z is i, (i.e. Y0 = i), then there

cannot be any values smaller than i, and there must be at

least one i in Z; in other words:

Pr[Y0 = i] = Pr[Xi ≥ 1, Xi−1 = 0, . . .X1 = 0]

= Pr[X1 = 0]Pr[X2 = 0|X1 = 0] · · ·

Pr[Xi−1 = 0|Xi−2 = · · · = X1 = 0]

Pr[Xi ≥ 1|Xi−1 = · · · = X1 = 0]

= Pr[X1 = 0]Pr[X2 = 0|X1 = 0] · · ·

Pr[Xi−1 = 0|Xi−2 = · · · = X1 = 0]

(1− Pr[Xi = 0|Xi−1 = · · · = X1 = 0]) .
(83)

Now, comparing the expression (83) for Y0 = i to the same

expression with Y0 = i− 1, it is easy to show that

Pr[Y0 = i] = Pr[Y0 = i− 1]
(

Pr[Xi−1 = 0|Xi−2 = · · · = X1 = 0]

1− Pr[Xi−1 = 0|Xi−2 = · · · = X1 = 0]

)

(1− Pr[Xi = 0|Xi−1 = · · · = X1 = 0]) .
(84)

It is possible to compute these conditional probabilities

directly:

Pr[Xj = 0|Xj−1 = · · · = X1 = 0] =
(

1− p
(j)
j

)K

, (85)

where

p
(j)
j =

pj
∑N

l=j pl

is the probability of outcome j occurring in a trial condi-

tioned on the knowledge that outcomes 1 through j− 1 have

not occurred in that trial. From the definition of p
(j)
j , we can

rewrite (85) as

Pr[Xj = 0|Xj−1 = · · · = X1 = 0] =

(

∑N

l=j+1 pl
∑N

l=j pl

)K

.

Evaluating this expression for j = i and j = i − 1, we can

obtain from (84), after some mild algebraic manipulation,

Pr[Y0 = i] = Pr[Y0 = i− 1]

(

∑N

l=i pl
∑N

l=i−1 pl

)K

(

∑N

l=i−1 pl

)K

(

∑N

l=i−1 pl

)K

−
(

∑N

l=i pl

)K

(

∑N

l=i pl

)K

−
(

∑N

l=i+1 pl

)K

(

∑N

l=i pl

)K

= Pr[Y0 = i− 1]

(

∑N

l=i pl

)K

−
(

∑N

l=i+1 pl

)K

(

∑N

l=i−1 pl

)K

−
(

∑N

l=i pl

)K
.

(86)

Now by the inductive hypothesis, Pr[Y0 = i− 1] is precisely

equal to the denominator of (86), and so we obtain

Pr[Y0 = i] =

(

N
∑

l=i

pl

)K

−

(

N
∑

l=i+1

pl

)K

, (87)

as desired.

Although the Pr[Y0 = N] formula was covered in the

preceding paragraph, we discuss it in further detail here

because (26) above may not appear sensible in the i = N
case. Note that if N is the smallest value in the multinomial

vector Z, then it must be the case that every element of Z is

equal to N , otherwise some element not equal to N would

be the smallest value. Thus we have

Pr[Y0 = N] = Pr[XN = K,XN−1 = 0, . . . , X1 = 0]

= pKN

=

(

N
∑

l=N

pl

)K

−

(

N
∑

l=N+1

pl

)K

,

which is the formula (26) with i = N , noting that we use

the definition that
∑b

l=a nl = 0 when a > b.
Next, we proceed to the m = 1 case. Here we will directly

compute Pr[Y1 = i] by first deriving Pr[Y1 = i, Y0 = j], and

then obtaining the desired quantity from the sum

Pr[Y1 = i] =

N
∑

j=1

Pr[Y1 = i, Y0 = j] (88)

Clearly the second smallest element of Z is no smaller than

the smallest element of Z, so there are two cases to consider:

i > j, and i = j. If i > j, we write

Pr[Y1 = i, Y0 = j]

= Pr[Xi ≥ 1, Xi−1 = 0, . . . , Xj = 1,

Xj−1 = · · · = X1 = 0]

= Pr[Xi−1 = 0, . . . , Xj = 1, Xj−1 = · · · = X1 = 0]

− Pr[Xi = 0, Xi−1 = 0, . . . , Xj = 1,

Xj−1 = · · · = X1 = 0] (89)

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 16

To compute the difference (89), note that we can form a (K ,

4) sequential vector of outcomes Z̃(m,n), indexed by two

integers m and n, from the original (K , N) sequential vector

of outcomes Z in the following way: for a single trial, the first

outcome of Z̃(m,n) occurs if any of the first n−1 outcomes

of Z occur, and so it has the probability p̃1 =
∑n−1

l=1 pj; the

second outcome of Z̃(m,n) occurs if the n-th outcome of

Z occurs, and so it has a probability of p̃2 = pn; the third

outcome of Z̃(m,n) occurs if any outcomes of Z from n+1
to m occurs, and so it has a probability of p̃3 =

∑m

l=n+1 pl;

and the fourth outcome of Z̃(m,n) occurs if any of the last

N − m outcomes of Z occur, and so it has a probability

p̃4 =
∑N

l=m+1 pl. If we define X̃j as the number of times

outcome j occurred in Z̃(m,n), then we consequently have

X̃1 =
∑n−1

l=1 Xl, X̃2 = Xn, X̃3 =
∑m

l=n+1 Xl, and X̃4 =
∑N

l=m+1 Xl. We can then rewrite1 (89) using vectors X̃(i, j)

and X̃(i− 1, j) as

Pr[Y1 = i, Y0 = j]

= Pr[X̃4 = K − 1, X̃3 = 0, X̃2 = 1, X̃1 = 0]

− Pr[X̃4 = K − 1, X̃3 = 0, X̃2 = 1, X̃1 = 0]

where the first term is computed with respect to X̃(i− 1, j),
and the second with respect to X̃(i, j). Using the probabilities

defined earlier, this gives

Pr[Y1 = i, Y0 = j]

= Kp̃2(p̃4)
K−1 −Kp̃2(p̃4)

K−1 (90)

= Kpj





(

N
∑

l=i

pl

)K−1

−

(

N
∑

l=i+1

pl

)K−1


 (91)

where, again, the terms in (90) are computed with respect to

X̃(i − 1, j), and X̃(i, j) respectively.

Similar reasoning yields the value of the joint probability

when i = j:

Pr[Y1 = i, Y2 = i]

= Pr[Xi ≥ 2, Xi−1 = · · · = X1 = 0]

= Pr[Xi−1 = · · · = X1 = 0]− Pr[Xi = 0 = · · · = X1 = 0]

− Pr[Xi = 1, Xi−1 = · · · = X1 = 0]

= Pr[X̃4 = K, X̃3 = X̃2 = X̃1 = 0]

− Pr[X̃4 = K, X̃3 = X̃2 = X̃1 = 0]

− Pr[X̃4 = K − 1, X̃3 = 1, X̃2 = X̃1 = 0]. (92)

Here, the first term in (92) is computed with respect to X̃(i−
1, i−2), the second with respect to X̃(i, i−1), and the third

with respect to X̃(i, i−1), although this choice of X̃ variables

1Note that the X̃ variables lose the (m, n) indices of the original variable

X̃(m,n). This is done for notational convenience, but will result in an abuse

of the notation when multiple X̃(m,n) are involved. We will therefore be

careful to indicate which X̃ variables belong to which X̃(m,n) vectors.

is not unique. This gives

Pr[Y1 = i, Y2 = i]

= (p̃4)
K − (p̃4)

K −Kp̃2(p̃4)
K−1

=

(

N
∑

l=i

pl

)K

−

(

N
∑

l=i+1

pl

)K

−Kpi

(

N
∑

l=i+1

pl

)K−1

.

(93)

We can now evaluate (88) as

Pr[Y1 = i]

=

N
∑

j=1

Pr[Y1 = i, Y0 = j]

=

i−1
∑

j=1

Pr[Y1 = i, Y0 = j] + Pr[Y1 = i, Y0 = i] + 0

=

i−1
∑

j=1



Kpj





(

N
∑

l=i

pl

)K−1

−

(

N
∑

l=i+1

pl

)K−1








+

(

N
∑

l=i

pl

)K

−

(

N
∑

l=i+1

pl

)K

−Kpi

(

N
∑

l=i+1

pl

)K−1

=

(

N
∑

l=i

pl

)K

−

(

N
∑

l=i+1

pl

)K

−Kpi

(

N
∑

l=i+1

pl

)K−1

+K

(

N
∑

l=i

pl

)K−1




i−1
∑

j=1

pj





−K

(

N
∑

l=i+1

pl

)K−1




i−1
∑

j=1

pj





= Pr[Y0 = i] +K

(

N
∑

l=i

pl

)K−1




i−1
∑

j=1

pj





−K

(

N
∑

l=i+1

pl

)K−1




i
∑

j=1

pj



 , (94)

which is the desired formula. Note that, although we refer

to Pr[Y0 = i] in the formula for Pr[Y1 = i], this is only for

notational simplicity; we do not wish to suggest some sort

of interpretation relating the two quantities in this way.

Finally, we must compute Pr[Ym = i] for m = 2, . . . ,K−
1. We take an approach similar to the Pr[Y1 = i] case, and

derive Pr[Ym = i] using the joint probabilities Pr[Ym =
i, Ym−1 = j]. As before, there are two cases, i > j, and

i = j, as the m-th smallest element of Z cannot be smaller

than the (m−1)-th element of Z, and so Pr[Ym = i, Ym−1 =
j] = 0 if i < j.

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 17

In the case where i > j, we have

Pr[Ym = i, Ym−1 = j]

=
m
∑

k=1

Pr[Xi ≥ 1, Xi−1 = · · · = Xj+1 = 0,

Xj = k,Xj−1 + · · ·+X1 = m− k]

=

m
∑

k=1

Pr[Xi−1 = · · · = Xj+1 = 0, Xj = k,

Xj−1 + · · ·+X1 = 0]− Pr[Xi = · · · = Xj+1 = 0,

Xj = k,Xj−1 + · · ·+X1 = m− k]

= (Pr[Xi−1 = · · · = Xj+1 = 0, Xj + · · ·+X1 = m]

− Pr[Xi−1 = · · · = Xj = 0, Xj−1 + · · ·+X1 = m])

− (Pr[Xi = · · · = Xj+1 = 0, Xj + · · ·+X1 = m]

− Pr[Xi = · · · = Xj = 0, Xj−1 + · · ·+X1 = m]) .
(95)

Now we recast the four terms of (95) in terms of X̃(i−1, j+
1), X̃(i− 1, j), X̃(i, j + 1), and X̃(i, j) respectively:

Pr[Ym = i, Ym−1 = j]

=
(

Pr[X̃4 = K −m, X̃3 = 0, X̃2 = 0, X̃1 = m]

− Pr[X̃4 = K −m, X̃3 = 0, X̃2 = 0, X̃1 = m]
)

−
(

Pr[X̃4 = K −m, X̃3 = 0, X̃2 = 0, X̃1 = m]

− Pr[X̃4 = K −m, X̃3 = 0, X̃2 = 0, X̃1 = m]
)

.

=

(

K

K −m

)

(p̃4)
K−j(p̃1)

j +

(

K

K −m

)

(p̃4)
K−j(p̃1)

j

+

(

K

K −m

)

(p̃4)
K−j(p̃1)

j +

(

K

K −m

)

(p̃4)
K−j(p̃1)

j

=

(

K

K −m

)





(

N
∑

l=i

pl

)K−m(j
∑

l=1

pl

)m

−

(

N
∑

l=i

pl

)K−m(j−1
∑

l=1

pl

)m

−

(

N
∑

l=i+1

pl

)K−m(j
∑

l=1

pl

)m

+

(

N
∑

l=i+1

pl

)K−m(j−1
∑

l=1

pl

)m




=

(

K

K −m

)





(

N
∑

l=i

pl

)K−m

−

(

N
∑

l=i+1

pl

)K−j




((

j
∑

l=1

pl

)m

−

(

j−1
∑

l=1

pl

)m)

. (96)

In the case where i = j, there are two sub-cases to

consider: i = j 6= 1 and i = j = 1. In the former sub-case,

we must have Xi ≥ 2, and Xi−1 + · · ·+X1 = b ≤ m− 1.

Suppose that Xi = 2+k for some integer k ∈ {0, . . . ,K−2}.

We know that Ym = i and Ym−1 = i, but that leaves k Y
variables “adjacent” to Ym and Ym−1 that must also have a

value of i. Let nl denote the number of variables Ym′ that are

equal to i and have m′ > m, and ns denote the number of

variables Ym′ that are equal to i and have m′ < m−1. Then

nl+ns = k and the following must be true: there are at most

K−1−m variables Ym′ with m′ > m, because there are only

K−1 total Ym′ variables, and so nl ≤ K−1−m; moreover

there are only m− 2 variables Ym′ with m′ < m− 1, and so

ns ≤ m− 2. We will use these inequalities to place bounds

on b as a function of k.

We first consider an upper bound on b. We have already

seen that b ≤ m − 1 in general, but the inequality on nl

induces a second upper bound on b that is sometimes stricter

than the first. Note that b = m−1 only if Ym−1 is the first Ym′

variable with the value i; if Xi = 2+ k, then we must have

nl = k, and therefore k ≤ K−1−m. Thus if k > K−1−m,

then b < m−1, where the maximum possible b decreases by

one every time k increases by one. Indeed, the upper limit on

b is imposed by (m−1)−(k−(K−1−m)) = K−k−2; the

general upper limit on be is then b ≤ min{m−1,K−k−2}.

The lower limit on b is obtained through similar reasoning,

but we first note that the trivial lower limit on b is 0, which

occurs when the number i constitutes (at least) the first m
smallest values of Z; in this case k ≥ m− 1. If k < m− 1,

then not all Ym′ with m′ < m can have values of i. In

general, k+2+b ≥ m+1, which implies that b ≥ m−1−k.

Then general lower bound on b is therefore b ≥ max{0,m−
1− k}.

We are therefore now in a position to write

Pr[Ym = i, Ym−1 = i 6= 1]

=

K−2
∑

k=0

min{m−1,K−2−k}
∑

b=max{0,m−1−k}

Pr[Xi = 2 + k,Xi−1 + · · ·+X1 = b]

=

K−2
∑

k=0

min{m−1,K−2−k}
∑

b=max{0,m−1−k}

Pr[X̃4 = K − k − 2− b, X̃3 = 0, X̃2 = 2 + k, X̃1 = b]
(97)

where the X̃ variables in (97) are with reference to X̃(i, i).
This can be computed as

Pr[X̃4 = K − k − 2− b, X̃3 = 0, X̃2 = 2 + k, X̃1 = b]

=

(

K

K − k − 2− b, b, 2 + k

)

(p̃4)
K−k−2(p̃2)

2+k(p̃1)
b

=

(

K

K − k − 2− b, b, 2 + k

)

(

N
∑

l=i+1

pl

)K−k−2−b

(pi)
2+k

(

i−1
∑

l=1

pl

)b

(98)

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 18

When i = j = 1, we simply have

Pr[Ym = 1, Ym−1 = 1]

= Pr[X1 ≥ m+ 1]

=

K−1−m
∑

k=0

Pr[X1 = j + 1 + k]

=

K−1−m
∑

k=0

(

K

m+ 1 + k

)

(p1)
m+1+k(1 − p1)

K−m−1−k

(99)

Finally, we compute Pr[Ym = i] as

Pr[Ym = i]

=

N
∑

j=1

Pr[Ym = i, Ym−1 = j]

=

i−1
∑

j=1

Pr[Y −m = i, Y −m− 1 = j]

+ Pr[Ym = i, Ym−1 = i]

=

(

K

K −m

)





(

N
∑

l=i

pl

)K−m

−

(

N
∑

l=i

pl

)K−m








i−1
∑

j=1

(

j
∑

l=1

pl

)m

−

(

j−1
∑

l=1

pl

)m




+ Pr[Ym = i, Ym−1 = i]

=

(

K

K −m

)





(

N
∑

l=i

pl

)K−m

−

(

N
∑

l=i+1

pl

)K−m




((

i−1
∑

l=1

pl

)m)

+ Pr[Ym = i, Ym−1 = i] (100)

Combing (100) with (98) and (100) yields the desired

result. This completes the proof.

B. Proof of Proposition 1

We wish to show that

E





∑

S∈P(U)\∅

max
k∈S

{|W
(dk)
S\{k}|}





=

K−1
∑

j=1

K−1
∑

i=0

N
∑

l=1

(

K − 1− i

j

)

Pr[Yi = l]vl,j

+

K−1
∑

i=0

N
∑

l=1

Pr[YK−i−1 = l]vl,0 (101)

if the memory inequality condition holds for the vl,j vari-

ables. We begin with an examination of the left hand side of

the equation. Inside the expectation, we sum over all subsets

S of the set of users U . This can be rewritten as a double

summation: in the inner summation, we sum over all subsets

of size j + 1, and in the outer summation, we sum over all

j from 0 to K − 1, giving

∑

S∈P(U)\∅

max
k∈S

{|W
(dk)
S\{k}|}

=

K−1
∑

j=0

∑

S∈P(U)\∅:|S|=j+1

max
k∈S

{|W
(dk)
S\{k}|} (102)

Replacing the |WS | variables with the appropriate vl,j
variables, (102) becomes

K−1
∑

j=0

∑

S∈P(U)\∅:|S|=j+1

max
k∈S

{vdk,j}. (103)

For a fixed j ≥ 1, we note that we send one transmission to

each of the
(

K

j+1

)

subsets of size j + 1. For a fixed d, let

ki denote the user requesting the i-th most popular file, i.e.

the file i-th smallest index. Then k1 has requested the most

popular file, and so by the memory inequality (35), vdk1
,j is

the largest variable for any transmission to a subset of which

k1 is a member. Since k1 is a member of
(

K−1
j

)

subsets of

size j+1 that contain k1 as a member, the inner summation of

(103) will have
(

K−1
j

)

terms with the value vdk1
,j . Similarly,

user k2 has requested the second most popular file, and so

vdk2
,j will be the largest subfile for all subsets that contain

k2 but don’t contain k1. This constitutes
(

K−2
j

)

subsets of

size j + 1.

This reasoning can be extended until all subsets are

characterized in terms of their maximum vl,j variable. User

ki requests the i-th most popular file, and so vdki
,j will

be the largest element sent in any subset containing ki but

not containing k1, k2, . . . , ki−1. Since there are K − i users

who are not users k1, . . . , ki, and user ki is already in

the subset, there are
(

K−i
j

)

subsets that contain ki but not

k1, k2, . . . , ki−1. We can therefore eliminate the max{} term

from the inner sum of (103) to obtain, for j = 1, . . . ,K− 1,

K
∑

i=1

(

K − i

j

)

vdki
,j. (104)

As noted earlier, the memory inequality reverses for j = 0,

so the least popular files take up the most memory in that

case; the reasoning is the same as in the above, but we instead

obtain

K
∑

i=1

(

K − i

0

)

vdkK+1−i
,0 =

K
∑

i=1

vdkK+1−i
,0, (105)

All that remains is to compute the expectation of these

terms with respect to the demand vectors. Using the linearity

of expectation and the results of (102)-(105), the left hand

side of (101) reduces to

K−1
∑

j=1

K
∑

i=1

(

K − i

j

)

E[vdki
,j] +

K
∑

i=1

E[vdkK+1−i
,0] (106)

To compute the expected value of the vdki
,j variables

(j = 1, . . . ,K − 1), we note that it has N possible values,

v1,j , v2,j , . . . , vN,j , and the probability of each outcome can

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 19

be obtained from Lemma 2 in the following way. We have

vdki
,j = vl,j if l is the i-th most popular file in the request

vector d; since the files are labelled in terms of decreasing

order of popularity, the i-th most popular file requested

is represented by the i-th smallest index in d. Thus the

probability that dki
= l is equivalent to the probability that l

is the i-th smallest index in d, and so by Lemma 2, we have

E[vdki
,j] =

N
∑

l=1

Pr[dki
= l]vl,j

=

N
∑

l=1

Pr[Yi−1 = l]vl,j. (107)

For j = 0, the size ordering is reversed, so we are concerned

with the largest indices of d. However, as has been noted

already, the i-th largest index of d must necessarily be the

K + 1− i-th smallest index of d, which gives

E[vdkK+1−i
,0] =

N
∑

l=1

Pr[dkK+1−i
= l]vl,0

=

N
∑

l=1

Pr[YK−i = l]vl,0. (108)

Combing (107)-(108), we see that (106) is equal to

K−1
∑

j=1

K
∑

i=1

(

K − i

j

) N
∑

l=1

Pr[Yi−1 = l]vl,j

+

K
∑

i=1

N
∑

l=1

Pr[YK−i = l]vl,0. (109)

We complete the proof through a cosmetic change of vari-

ables i′ = i − 1 to obtain the desired expression on the

right-hand side of (101).

C. Proof of Proposition 3

We follow reasoning similar to what we have already seen

in the previous proof, where users are divided into subsets

that require the same amount of data to be sent to them,

and then count how many such subsets there are. For this

proof, however, we instead divide the various subsets into

subsets containing only small-cache users, subsets containing

only large-cache users, and subsets containing both large- and

small-cache users.

But first, we note that since the files are all the same size

and length, the transmission length will be independent of

the request vector d, and so we have

E





∑

S∈P(U)\∅

max
k∈S

{|W
(dk)
S\{k}|}





=
∑

S∈P(U)\∅

max
k∈S

{|W
(dk)
S\{k}|}. (110)

As discussed above, the sum in the above expression is

over all S ∈ P(U) \ ∅, which we can separate into small,

large, and mixed sets. For a fixed subset size of j + 1, there

are
(

KS

j+1

)

sets of small users,
(

KL

j+1

)

sets of large users, and

j
∑

i=1

(

KS

i

)(

KL

j + 1− i

)

(111)

groups of at least one small user and at least one large user.

For a set of j + 1 small users, every subfile in a single

coded transmission is cached by j small users, and so has

the size vj,S . Similarly, for any set of j + 1 large users, the

transmission has the size vj,L.

For the mixed subset case, we must consider three cases.

First, when there are at least 2 small users and 2 large users

in the subset of j + 1 users, then since every subfile sent

is cached on j of the j + 1 users, there must be at least

1 small user and 1 large users among those j users, and

so every subfile must be of size vj,M . However, if there is

only one small user in the subset of j + 1 users, then the

subfile requested by the small user will have been stored on

the caches of j large users, and so will have size vj,L. The

length of the entire transmission will therefore also be of size

vj,L. The third case occurs when there is only one large users

in the subset of j + 1 users. Then the subfile requested by

the large user will be store on the caches of j small user and

so will be of size vj,S , while every other subfile is cached

on a mixed set of j users and so will be of size vj,M ; the

entire transmission will therefore be of length vj,M . 2

So, in addition to the
(

KL

j+1

)

transmissions of size vj,L
sent for groups entirely consisting of entirely large users,

there are
(

KS

1

)(

KL

j

)

transmissions of the same size for those

mixed subsets with only one small user. The total number

of transmissions of size vj,M can then be simplified using

Lemma 1 as

j
∑

i=2

(

KS

i

)(

KL

j + 1− i

)

=

j+1
∑

i=0

(

KS

i

)(

KL

j + 1− i

)

−

(

KS

j + 1

)

−

(

KS

1

)(

KL

j

)

−

(

KL

j + 1

)

=

(

K

j + 1

)

−

(

KS

j + 1

)

−

(

KS

1

)(

KL

j

)

−

(

KL

j + 1

)

(112)

Altogether, (110) reduces to

K−1
∑

j=0

(

Ks

j + 1

)

(vj,S − vj,M) +

(

K

j + 1

)

vj,M

+

((

KL

j + 1

)

+

(

KS

1

)(

KL

j

))

(vj,L − vj,M),

which is what we aimed to show. We make a special note

that the formula is indeed sensible for j = 0: the j = 0 term

2In the case where a subset of size 2 contains one large user and one
small user, obviously the entire transmission is of length v1,L.

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 20

reduces to
(

K
1

)

v0,M = Kv0, as needed for the individual

transmissions to the K users.

D. Proof of Proposition 4

We derive the terms of (80) in the order that they appear.

In general, we do this using the following steps. First, we

identify a certain group of subsets that have similar user

composition; then for that group, we determine the number

of transmissions that the largest subfile will be in, the number

of transmissions that the second largest subfile will be in, and

so on. Finally, we compute the expected size of the maximum

subfile, the second largest subfile, and so on. This approach

will be familiar from previous proofs, but we nevertheless

repeat it here due to the complexity of (80).

The groups of subsets that the seven terms of (80) corre-

spond to are, in order: subsets of size one, subsets of size

greater than one containing only large users, subsets of size

greater than one containing only small users, mixed subsets

containing more than one user but only one small user,

mixed subsets containing only one large user but more than

one small user, subsets containing greater than or equal to

max{KS,KL}+2 users, and subsets containing at least two

small and two large users that are less than max{KS,KL}+2
users. We label these sets of subsets S1, . . . ,S7 respectively.

The following lemma shows these sets form a partition (in

the loose sense of the word discussed earlier) of P(U) \ ∅,

and so the sum over all S ∈ P(U) \ ∅ at the beginning of

(80) can equivalently be done over all subsets in S1, then

all subsets in S2, and so on, so that all subsets of users in

P(U) \ ∅ will have been accounted for precisely once.

Lemma 3. For the sets S1, . . . ,S7 described above,

P(U) \ ∅ =
7
⋃

i=1

Si, (113)

and the Si are mutually disjoint.

Proof: That
⋃7

i=1 Si ⊆ P(U) \ ∅ is trivial: for any i, any

set in Si is a non-empty subset of users, and so must be

contained in P(U) \ ∅. To show that P(U) \ ∅ ⊆
⋃7

i=1 Si,

consider the number of users in an arbitrary subset of users

S ∈ P(U) \ ∅: if it is one, then S ⊆ S1 and if it is greater

than or equal to max{KS,KL} + 2, then it must be mixed

because there are not enough of any one type of user to

comprise the entire group, and so is must be that S ⊆ S6.

Otherwise, suppose 1 < |S| < max{KS,KL}+ 1, consider

the number of small users, kS , in S. If kS = 0, then S is

contains only large users, and so S ⊆ S2. If kS = 1, then

we have S ⊆ S4. If 1 < kS < |S|, then either the number of

large users is either one, or more than one; if it is one, then

S ⊆ S5, while if it is more than one, then S ⊆ S7. Finally, if

kS = |S|, there are only small users, and so S ⊆ S3, proving

that indeed P(U) \ ∅ ⊆
⋃7

i=1 Si. The mutual disjointedness

is obvious once it is noted that a subset containing only one

large/small user or no large/small users cannot exceed a size

of max{KS ,KL} or max{KS,KL} + 1 respectively. Each

S ⊆ P(U)\∅ thus falls into one and only one set Si, proving

the lemma.

We remark before continuing that, given the specific values

of KS,KL, some of the above subsets may be empty. As per

the notation adopted in this paper, a sum over an empty set

is identically zero, and so this will not affect our subsequent

calculations. In terms of the expressions below, this will

correspond to binomial coefficients
(

n

k

)

with n < 0 or k > n,

both of which, by our notation, gives
(

n
k

)

= 0.

So per the above discussion, we can change the summation

over all subsets of P(U) \ ∅ into seven summations over one

of the Si each:

E





∑

S∈P(U)\∅

max
k∈S

{|W
(dk)
S\{k}|}





=

7
∑

i=1

∑

S∈Si

E

[

max
k∈S

{|W
(dk)
S\{k}|}

]

(114)

This allows us to analyze each subset of subsets separately.

We begin with the analysis of S1, i.e. to broadcasts of

individual users. Since each transmission is to only one

person, we get

∑

S∈S1

E

[

max
k∈S

{|W
(dk)
∅ |}

]

=

K
∑

k=1

E

[

|W
(dk)
∅ |

]

=

K
∑

k=1

E [vdk,0]

The above sum is over all users from k = 1 to k = K , i.e. in

lexicographic order. But we can instead sum over all users by

adding the user requesting the largest subfile, then the user

requesting the second largest subfile, and so on. Using the

index i to indicate the user requesting the (i + 1)-th largest

subfile, we can write the expectation E[vdk,0] in terms of the

random variable Yi as defined in Lemma 2 to obtain

K
∑

k=1

E [vdk,0] =
K−1
∑

i=0

E
[

vfd(i+1),0

]

=
K−1
∑

i=0

N
∑

l=1

Pr[Yi = l]vl,0,

(115)

which is the first term of (80), with vl,0 = vMl,0 as per

constraint (64). Here, fd(i) denotes the index of the i-th
largest file in the request vector d (recall that f(i) was used

earlier to denote the i-th largest file in the set of all files).

We next consider S2, the set of user subsets with more

than one user containing only large-cache users. There are
(

KL

j

)

user subsets of size j + 1 in S2, for j values ranging

from 1 to KL−1; we cannot have a subset of only large users

that contains more members than there are large users. Since

there are only large users in these subsets, the subfiles sent

will stored on j large users caches, and so only subfiles of

size vLj,l are sent. As we saw in earlier proofs, the largest

subfile requested (i.e. corresponding to the file with the

smallest index), will be sent to
(

KL−1
j

)

subsets, the second

largest subfile is the largest subfile for
(

KL−2
j

)

subsets, and

in general, the i-th largest subfile sent will be sent in
(

KL−i

j

)

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 21

subsets, giving

∑

S∈S2

E

[

max
k∈S

{|W
(dk)
S\{k}|}

]

=

KL−1
∑

j=1

KL
∑

i=1

(

KL − i

j

)

E

[

vL
fL

d
(i),j

]

=

KL−1
∑

j=1

KL
∑

i=1

(

KL − i

j

) N
∑

l=1

Pr[Y L
i−1 = l]vLl,j

=

KL−1
∑

j=1

KL−1
∑

i=0

N
∑

l=1

(

KL − i+ 1

j

)

Pr[Y L
i = l]vLl,j , (116)

where the last line is obtained by rearranging the terms and

using a minor change of variable for the index of summation

i. This is the second term of (80). Here we use fL
d (i) to

refer to the i-th largest file requested within the set of large

users, and by Pr[Y L
i = l], we mean the probability that file

l is the i + 1th largest file requested within the set of large

users. We can compute Pr[Y L
i = l] using Lemma 2 with N

files (outcomes) and KL users (trials). The change from the

second to third lines above then follows immediately from

the definition of expectation (see Appendix B).

Using identical reasoning for S3, the set of user subsets of

size greater than 1 with only small users, we can obtain

∑

S∈S3

E

[

max
k∈S

{|W
(dk)
S\{k}|}

]

=

KS−1
∑

j=1

KS−1
∑

i=0

N
∑

l=1

(

KS − i+ 1

j

)

Pr[Y S
i = l]vSl,j (117)

which is the third term of (80). Here, Pr[Y S
i = l] is the

probability that file l is the i + 1-th largest file requested

among all small users. This can also be computed using

Lemma 2, but with N outcomes and KS trials.

Next, we consider S4, the set of mixed subsets containing

more than one user but only one small user. We saw in the

non-uniform cache memory case that the coded transmissions

to these kinds of groups will consist almost entirely of

subfiles whose size is described by mixed variables vMl,j ,

because the subfiles are stored on a mixed subset of users’

caches, save for one subfile whose size is described by a

large variable vLl,j , because that subfile is stored only on large

user caches. Due the memory inequality constraints (77)-(79)

that prioritize cache size over file size, the one large variable

(corresponding to the file requested by the one small user)

will necessarily be the maximum value.

The size of the transmissions sent to these kinds of subsets

will therefore depend on what files are requested by the

small-cache users. Each small cache user will be in
(

KL

j

)

many of these subsets for a subset size of j + 1, where j
takes values from 1 to KL; if j was any larger, there would

have to be more than one small user. We therefore have

∑

S∈S4

E

[

max
k∈S

{|W
(dk)
S\{k}|}

]

=

KL
∑

j=1

KS
∑

i=1

(

KL

j

)

E

[

vL
fS

d
(i),j

]

(118)

We use fS
d (i) to denote the index of the i-th largest file

requested by a small-user. Consequently, the second sum in

(118) is over all small cache users, in decreasing order of

the file size they requested. This allows us to compute the

expectation in (118) using the Y S
i variables in the following

way:

∑

S∈S4

E

[

max
k∈S

{|W
(dk)
S\{k}|}

]

=

KL
∑

j=1

KS
∑

i=1

(

KL

j

) N
∑

l=1

Pr[Y S
i−1 = l]vLl,j

=

KL
∑

j=1

KS−1
∑

i=0

N
∑

l=1

(

KL

j

)

Pr[Y S
i = l]vLl,j . (119)

The final step is once again attained with a rearranging of

terms and a change of variable for the i index of summation.

This gives the fourth term in (80).

The fifth term is obtained using similar reasoning. This

term corresponds to S5, the set of mixed user subsets con-

taining exactly one large user and more than one small user.

Here, the transmitted subfiles will all be stored on the caches

of a mixed subset of users, except for the subfile requested

by the large user, which will be stored on the caches of

every other user in the subset, i.e. all small users. The large

user’s requested subfile will have a size described by a small

variable vSl,j , and so due to the memory inequality constraints

(77)-(79), will never be the largest subfile transmitted; once

again, it is the small-cache user requests that determine the

largest subfile. The largest subfile requested by a small user

will be transmitted to
(

KS−1
j−1

)(

KL

1

)

subsets of size j+1; the

second largest subfile requested among small users will be the

largest subfile transmitted when the largest subfile requested

is not also being transmitted to that subset, and so will be

transmitted
(

KS−2
j−1

)(

KL

1

)

times. In general, the i-th largest

subfile requested among small users will be transmitted only

when the previous i − 1 largest subfiles are not also being

transmitted, and so will be sent
(

KS−i

j−1

)(

KL

1

)

times.

There are subsets of size 3 through KS + 1 in S5, so

indexing subset size with j + 1 yields

∑

S∈S5

E

[

max
k∈S

{|W
(dk)
S\{k}|}

]

=

KS
∑

j=2

KS−1
∑

i=1

(

KS − i

j − 1

)(

KL

1

)

E[vM
fS

d
(i),j]

=

KS
∑

j=2

KS−1
∑

i=1

(

KS − i

j − 1

)(

KL

1

)

(

N
∑

l=1

Pr[Y S
i−1 = l]vMl,j

)

=

KS
∑

j=2

KS−2
∑

i=0

N
∑

l=1

(

KS − 1− i

j − 1

)(

KL

1

)

Pr[Y S
i = l]vMl,j .

(120)

The last line is once again obtained through rearranging terms

and doing a change of variables for the index of summation

i. This is the fifth term of (80).

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 22

The sixth term of (80) contains the terms for S6, the set of

user subsets with more than max{KS,KL}+1 users. These

subsets are precisely large enough that they are all mixed

and have at least two of each user type in them. Thus only

subfiles stored on the caches of mixed subsets of users will be

sent, and so they will have a size given by a mixed variable

vMl,j . The only factor that determines the largest subfile for

a given subset will therefore be the file index. There are no

restrictions on subset composition, and so we find ourselves

in a familiar situation: the largest subfile requested will be

the largest file sent for
(

K−1
j

)

subsets, the second largest

subfile requested will be the largest subfile sent for
(

K−2
j

)

subsets, and so on, such that the i-th largest subfile is the

largest subfile sent for
(

K−i
j

)

subsets. This gives

∑

S∈S6

E

[

max
k∈S

{|W
(dk)
S\{k}|}

]

=

K−1
∑

j=max{KS ,KL}+1

K
∑

i=1

(

K − 1− i

j

)

E

[

vMfd(i),j

]

=
K−1
∑

j=max{KS ,KL}+1

K−1
∑

i=0

(

K − 1− i

j

)

Pr[Yi = l]vMl,j ,

(121)

the sixth term of (80).

The seventh and final term of (80) is by far the most

complicated term. It corresponds to S7, the set of subsets

with at least two large-cache and two small-cache users, but

less than max{KS,KL} + 2 users. Here, every subfile sent

will be stored on the caches of a mixed subset of users and so

will have a size given by a mixed variable vMl,j . The difficulty

arises when we try to characterize the number of transmis-

sions for each of the largest subfile requested, second largest

subfile requested, and so on - these numbers are dependent

on whether the file was requested by a large user or by a

small user. An example will illustrate this fact: consider the

third largest file requested among all users and transmissions

to subsets of 5 users. If a large-cache user has requested

the largest subfile, and another large-cache user requests

the second largest subfile, then the number of transmissions

where the third largest subfile requested is the largest subfile

transmitted is
∑2

n=1

(

KL−3
n

)(

KS

4−n

)

if the subfile is requested

by a large-cache user, and
∑3

n=2

(

KL−2
n

)(

KS−1
4−n

)

if it is

requested by a small-cache user. These two number are

clearly not equal in general, and so the cache size of the

user making the request matters.

Nevertheless, it is possible to compute the expected rate

with a number of terms that scales as a polynomial function

of N and K . To this end, let RSi

d,j(n) denote the number of

bits sent to subsets in Si of size j+1 as part of the transmis-

sions required to satisfy the request d, when the n-th largest

file in d is the largest subfile transmitted in that subset. By

this definition, we have Rd =
∑7

i=1

∑K−1
j=0

∑K

n=1 R
Si

d,j(n).
These values have been implicitly computed for S1 through

S6 earlier in this appendix; we only introduce this opaque

notation now because the complexity of the accounting done

for S7 demands it.

The RS7

d,j(n) quantity can be further decomposed: the

number of bits sent in this case is equal to the product of

the number of transmission sent in this case, denoted by

T (n), and the number of bits transmitted per transmission,

which is given buy the appropriate vMl,j variable. We can then

compute the S7 term of (80) using conditional expectation

in the following way:

∑

S∈S7

E

[

max
k∈S

{|W
(dk)
S\{k}|}

]

= E





max{KS ,KL}
∑

j=3

K
∑

n=1

RS7

d,j(n)





=

max{KS ,KL}
∑

j=3

K
∑

n=1

E

[

RS7

d,j(n)
]

(122)

For a fixed j value, we compute the expectation conditional

on the fact that the n-th largest file is file l, i.e. Yn−1 = l:

K
∑

n=1

E

[

RS7

d,j(n)
]

=

K
∑

n=1

N
∑

l=1

E

[

RS7

d,j(n)|Yn−1 = l
]

Pr[Yn−1 = l]

=

K
∑

n=1

N
∑

l=1

E

[

vMfd(n),jT (n)|Yn−1 = l
]

Pr[Yn−1 = l]

=

K
∑

n=1

N
∑

l=1

vMl,jE [T (n)|Yn−1 = l]Pr[Yn−1 = l]. (123)

The last line (123) is obtained because, given that Yn−1 =
l, it follows immediately that fd(n) = l, and so we have

vM
fd(n),j

= vMl,j , which is no longer a random quantity.

Comparing (123) to the form of (80) in the statement

of the proposition, we see that all that remains is to

show that E [T (n)|Yn−1 = l] = ν(n, j). First, we note

that E [T (n)|Yn−1 = l] = E [T (n)], since the number of

transmissions in which the n-th largest subfile requested is

the largest subfile sent to the subset depends only on the index

n but not the identity of the n-th largest subfile. Next, letting

S(n) denote the number of small users in the set of users

who requested the n− 1 largest files we further decompose

the expectation using conditional expectation:

E [T (n)] =

n−1
∑

m=0

E [T (n)|S(n) = m]Pr[S(n) = m]. (124)

And further, if DS(n) = 1 represents the event that a

small user requested the n-th largest file and DS(n) = 0
representing the event that a large user did it, we have

E [T (n)] =

n−1
∑

m=0

E [T (n)|S(n) = m] Pr[S(n) = m]

=

n−1
∑

m=0

1
∑

r=0

E [T (n)|S(n) = m,DS(n) = r]

Pr[DS(n) = r|S(n) = m]Pr[S(n) = m] (125)

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 23

Now with (123)-(125), we have finally expressed the original

expectation in (122) in terms of quantities that can be

computed directly.

We begin with Pr[S(n) = m], the probability that there are

m small-cache users in the set of users who have the n− 1
largest files among all files requested. Since all users have the

same preferences, these probabilities are simply determined

by the relative numbers of large and small users. Indeed S(n)
has a hypergeometric distribution: the probability that m of

the n− 1 largest files requested are requested by small users

(and thus n − 1 − m of these files are requested by large

users) is given by

Pr[S(n) = m] =

(

KS

m

)(

KL

n−1−m

)

(

K

n−1

) . (126)

Next we consider Pr[DS(n) = r|S(n) = m], which is

obtained with similar reasoning. Once again, since the large

and small users have the same preferences, only their relative

numbers will determine the probabilities. Since n − 1 users

have already been accounted for, there are K− (n−1) users

left to choose from, and if m of them are small users, there

are KS − m small users left and KL − (n − 1 − m) large

users left. This gives

Pr[DS(n) = 1|S(n) = m] =
KS −m

K − n+ 1
(127)

and

Pr[DS(n) = 0|S(n) = m] =
KL − n+ 1 +m

K − n+ 1
(128)

Finally, we compute E [T (n)|S(n) = m,DS(n) = r]; the

number of transmissions T (n) is deterministic given the

values of S(n) and DS(n), so no probabilities will be

involved in the calculation. First, if r = 1, i.e. a small user has

the n-th largest file request. In this case, the corresponding

subfile is the largest subfile transmitted for any transmission

to a subset with at least one other small user and two large

users, but not the users responsible for the n − 1 larger

requested files. This number is obtained as

E [T (n)|S(n) = m,DS(n) = 1]

=

j−2
∑

i=1

(

KS −m− 1

i

)(

KL − n+ 1 +m

j − i

)

(129)

for a subset size of j + 1. The equivalent number for r = 0,

i.e. a large user has the n-th largest file request, is

E [T (n)|S(n) = m,DS(n) = 0]

=

j−1
∑

i=2

(

KS −m

i

)(

KL − n+m

j − i

)

. (130)

Substituting the expressions in (126)-(130) into the appro-

priate places in (123) - (125) yields the desired term, i.e. the

seventh and final term of (80), which concludes the proof.

REFERENCES

[1] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Commun. Mag.,
vol. 52, no. 2, pp. 74–80, February 2014.

[2] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
in IEEE Int. Symp. Inf. Theory, July 2013, pp. 1077–1081.

[3] ——, “Fundamental limits of caching,” IEEE Trans. Inf. Theory,
vol. 60, no. 5, pp. 2856–2867, May 2014.

[4] ——, “Decentralized coded caching attains order-optimal memory-rate
tradeoff,” IEEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1029–1040, Aug
2015.

[5] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform
demands,” in IEEE Conf. Computer Commun. Workshops, April 2014,
pp. 221–226.

[6] ——, “Coded caching with nonuniform demands,” IEEE Trans. Inf.

Theory, vol. 63, no. 2, pp. 1146–1158, Feb 2017.

[7] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate of
caching and coded multicasting with random demands,” IEEE Trans.

Inf. Theory, vol. 63, no. 6, pp. 3923–3949, 2017.

[8] ——, “On the average performance of caching and coded multicasting
with random demands,” in 11th Int. Symp. Wireless Commun. Systems,
Aug 2014, pp. 922–926.

[9] A. S. Cacciapuoti, M. Caleffi, M. Ji, J. Llorca, and A. M.
Tulino. (2016, May) Speeding up Future Video Distribution via
Channel-Aware Caching-Aided Coded Multicast. [Online]. Available:
https://arxiv.org/abs/1605.05026.

[10] P. Hassanzadeh, A. Tulino, J. Llorca, and E. Erkip. (2016, Sep.)
Correlation-Aware Distributed Caching and Coded Delivery. [Online].
Available: https://arxiv.org/abs/1609.05836.

[11] ——. (2016, Sep.) Cache-Aided Coded Multicast for Correlated
Sources. [Online]. Available: https://arxiv.org/abs/1609.05831.

[12] J. Hachem, N. Karamchandani, and S. Diggavi, “Content caching
and delivery over heterogeneous wireless networks,” in IEEE Conf.

Computer Commun., April 2015, pp. 756–764.

[13] J. Hachem, N. Karamchandani, and S. N. Diggavi, “Coded caching for
multi-level popularity and access,” IEEE Trans. Inf. Theory, vol. 63,
no. 5, pp. 3108–3141, May 2017.

[14] J. Hachem, N. Karamchandani, and S. Diggavi, “Multi-level coded
caching,” in IEEE Int. Symp. Inf. Theory, June 2014, pp. 56–60.

[15] ——, “Effect of number of users in multi-level coded caching,” in
IEEE Int. Symp. Inf. Theory, June 2015, pp. 1701–1705.

[16] J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary
popularity distributions,” in Inf. Theory and Applications Workshop,
Feb 2015, pp. 98–107.

[17] S. Jin, Y. Cui, H. Liu, and G. Caire. (2017, Jul.) Structural proper-
ties of uncoded placement optimization for coded delivery. [Online].
Available: https://arxiv.org/abs/1707.07146.

[18] J. Zhang, X. Lin, C. C. Wang, and X. Wang, “Coded caching for files
with distinct file sizes,” in IEEE Int. Symp. Inf. Theory, June 2015, pp.
1686–1690.

[19] C. Li, “On rate region of caching problems with non-uniform file and
cache sizes,” IEEE Commun. Letters, vol. 21, no. 2, pp. 238–241, Feb
2017.

[20] A. Sengupta, R. Tandon, and T. C. Clancy, “Improved approximation
of storage-rate tradeoff for caching via new outer bounds,” in IEEE

Int. Symp. Inf. Theory, June 2015, pp. 1691–1695.

[21] A. Sengupta and R. Tandon, “Improved approximation of storage-rate
tradeoff for caching with multiple demands,” IEEE Trans. Commun.,
vol. 65, no. 5, pp. 1940–1955, May 2017.

[22] M. Ji, A. Tulino, J. Llorca, and G. Caire. (2015, Nov.) Caching-
Aided Coded Multicasting with Multiple Random Requests. [Online].
Available: https://arxiv.org/abs/1511.07542.

[23] M. Ji, A. M. Tulino, J. Llorca, and G. Caire. (2014, Feb.) Caching
and Coded Multicasting: Multiple Groupcast Index Coding. [Online].
Available: https://arxiv.org/abs/1402.4572.

[24] S. Wang, W. Li, X. Tian, and H. Liu. (2015, Apr.) Coded
Caching with Heterogenous Cache Sizes. [Online]. Available:
https://arxiv.org/abs/1504.01123.

[25] M. M. Amiri, Q. Yang, and D. Gunduz. (2016, Nov.) Decentralized
Coded Caching with Distinct Cache Capacities. [Online]. Available:
https://arxiv.org/abs/1611.01579.

[26] M. M. Amiri, Q. Yang, and D. Gndz, “Decentralized coded caching
with distinct cache capacities,” in 50th Asilomar Conf. Signals, Systems

and Computers, Nov 2016, pp. 734–738.

DANIEL, YU: OPTIMIZATION OF HETEROGENEOUS CODED CACHING 24

[27] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Centralized coded caching
with heterogeneous cache sizes,” in IEEE Wireless Commun. and Netw.

Conf., March 2017, pp. 1–6.
[28] S. Saeedi Bidokhti, M. Wigger, and R. Timo. (2016, May) Noisy

Broadcast Networks with Receiver Caching. [Online]. Available:
https://arxiv.org/abs/1605.02317.

[29] R. Timo and M. Wigger. (2015, May) Joint Cache-Channel
Coding over Erasure Broadcast Channels. [Online]. Available:
https://arxiv.org/abs/1505.01016.

[30] S. S. Bidokhti, M. Wigger, and R. Timo, “Erasure broadcast networks
with receiver caching,” in IEEE Int. Symp. Inf. Theory, July 2016, pp.
1819–1823.

[31] ——, “An upper bound on the capacity-memory tradeoff of degraded
broadcast channels,” in 9th Int. Symp. Turbo Codes and Iterative Inf.

Processing, Sept 2016, pp. 350–354.
[32] J. Zhang and P. Elia. (2016, Jun.) Wireless Coded Caching: A Topolog-

ical Perspective. [Online]. Available: https://arxiv.org/abs/1606.08253.
[33] S. Saeedi Bidokhti, M. Wigger, and A. Yener. (2017, Feb.) Benefits

of Cache Assignment on Degraded Broadcast Channels. [Online].
Available: https://arxiv.org/abs/1702.08044.

[34] A. Ghorbel, M. Kobayashi, and S. Yang, “Content delivery in erasure
broadcast channels with cache and feedback,” IEEE Trans. Inf. Theory,
vol. 62, no. 11, pp. 6407–6422, Nov 2016.

[35] M. M. Amiri and D. Gunduz. (2017, Feb.) Cache-Aided Data
Delivery over Erasure Broadcast Channels. [Online]. Available:
https://arxiv.org/abs/1702.05454.

[36] A. Destounis, M. Kobayashi, G. Paschos, and A. Ghorbel.
(2017, Jan.) Alpha Fair Coded Caching. [Online]. Available:
https://arxiv.org/abs/1701.07730.

[37] A. Ghorbel, K.-H. Ngo, R. Combes, M. Kobayashi, and S. Yang. (2017,
Feb.) Opportunistic Content Delivery in Fading Broadcast Channels.
[Online]. Available: https://arxiv.org/abs/1702.02179.

[38] L. Zheng, Q. Yan, Q. Chen, and X. Tang. (2016, Nov.) On the Coded
Caching Delivery Design over Wireless Networks. [Online]. Available:
https://arxiv.org/abs/1611.04853.

[39] W. Huang, S. Wang, L. Ding, F. Yang, and W. Zhang. (2015, Apr.) The
Performance Analysis of Coded Cache in Wireless Fading Channel.
[Online]. Available: https://arxiv.org/abs/1504.01452.

[40] A. S. Cacciapuoti, M. Caleffi, M. Ji, J. Llorca, and A. M. Tulino,
“Speeding up future video distribution via channel-aware caching-
aided coded multicast,” IEEE J. Sel. Areas Commun., vol. 34, no. 8,
pp. 2207–2218, Aug 2016.

[41] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless video content delivery through
distributed caching helpers,” in IEEE Conf. Computer Commun., March
2012, pp. 1107–1115.

[42] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402–
8413, Dec 2013.

[43] C. Tian. (2016, Oct.) Symmetry, Outer Bounds, and Code Construc-
tions: A Computer-Aided Investigation on the Fundamental Limits of
Caching. [Online]. Available: https://arxiv.org/abs/1611.00024.

[44] Q. Yu, M. A. Maddah-Ali, and A. Salman Avestimehr. (2016, Sep.) The
Exact Rate-Memory Tradeoff for Caching with Uncoded Prefetching.
[Online]. Available: https://arxiv.org/abs/1609.07817.

	I Introduction
	I-A Background
	I-B Main Contributions
	I-C Notation
	I-D Organization

	II Optimization Perspective on Coded Caching
	III Homogeneous Coded Caching
	IV Coded Caching with Heterogeneous Files
	IV-A Prior Work
	IV-B Preliminaries
	IV-C Optimization Formulation
	IV-C1 Popularity-First Approach
	IV-C2 Length-First Approach

	IV-D Numerical Results

	V Coded Caching with Heterogeneous Cache Sizes
	V-A Optimization Formulation
	V-B Numerical Results

	VI Coded Caching with Heterogeneous Files and Cache Sizes
	VI-A Optimization Formulation
	VI-B Numerical Results
	VI-C Further Extensions

	VII Summary and Conclusions
	Appendix
	A Proof of Lemma 2
	B Proof of Proposition 1
	C Proof of Proposition 3
	D Proof of Proposition 4

	References

