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On the 2-Adic Complexity of the
Ding-Helleseth-Martinsen Binary Sequences ∗

Lulu Zhang, Jun Zhang, Minghui Yang and Keqin Feng

Abstract-We determine the 2-adic complexity of the Ding-Helleseth-Martinsen (DHM)
binary sequences by using cyclotomic numbers of order four, “Gauss periods” and
“quadratic Gauss sum” on finite field Fq and valued in Z2N−1 where q ≡ 5 (mod 8) is
a prime number and N = 2q is the period of the DHM sequences.
keywords-binary sequences, autocorrelation, 2-adic complexity, Ding-Helleseth-Martinsen
sequences, cyclotomic number

1 Introduction

Let S = {si}
∞

i=0 be a binary sequence of period N ≥ 3, st ∈ {0, 1} sN+t = st. The
autocorrelation function of the sequence S is defined by

AS(τ) =
N−1∑

t=0

(−1)st+τ−st ∈ Z (0 ≤ τ ≤ N − 1).

For τ = 0, AS(0) = N. Let

Max AS = max{|AS(τ)| : 1 ≤ τ ≤ N}.

For many applications in communication, the value of Max As is required as small as
possible. It is easy to see that when N ≥ 3, AS(τ) ≡ N (mod 4) for all 0 ≤ τ ≤ N −1.
For N ≡ 0 (mod 4), a binary sequence S with period N is called to have perfect
autocorrelation if Max AS = 0. It is conjectured that the only perfect sequence is
N = 4 and S = (0, 0, 0, 1, . . .) up to (cyclic shift) equivalence. For N ≡ 3 (mod 4), a
binary sequence S with period N is called to have ideal autocorrelation if AS(τ) = −1
for all 1 ≤ τ ≤ N − 1. Several series of binary sequences with ideal autocorrelation
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have been found (m-sequences, Hall sequences, Paley sequences and the twin-prime
sequences, see [2]). A binary sequence S with period N is called to have optimal
autocorrelation if Max AS = 4, 3, 2 and 3 for N ≡ 0, 1, 2, 3 (mod 4) respectively. For
a list of known binary sequences with optimal autocorrelation we refer to [2].

In the application on cryptography, binary sequences, as candidates of keys in
stream cipher system, are required to have big “complexity”. There are huge works on
linear complexity of binary sequences. The sequences with linear complexity n can be
generated by a linear shift register of length n. Since the end of last century, the 2-adic
complexity has been viewed as one of the important security criteria of sequences. The
sequences with 2-adic complexity n can be generated by a feedback (with carry) shift
register of length n ([6]).

Let S = (si)
∞

i=0 be a binary sequence with period N (si ∈ {0, 1}). Let S(x) =∑N−1
i=0 six

i ∈ Z[x], d = gcd(S(2), 2N − 1). The 2-adic complexity of S is defined by

C2(S) = log2(
2N − 1

d
).

Comparing with the linear complexity, the 2-adic complexity of binary sequences
with small autocorrelation has not been fully researched. The 2-adic complexity of the
binary sequences with ideal autocorrelation (AS(τ) = −1 for 1 ≤ τ ≤ N − 1) has been
done in [12, 14, 5]. Particularly, H. Hu [5] presented a neat approach to show that for
all known ideal binary sequences with period N , their 2-adic complexity reaches the
maximum value log2(2

N −1). For some other sequences with good autocorrelation, the
2-adic complexity is determined or estimated by a nice lower bound [4, 9-11, 13].

In this paper, we determine the 2-adic complexity of the Ding-Helleseth-Martinsen
(DHM) binary sequences. The sequences has period N = 2q where q ≡ 5 (mod 8) is
a prime number, and optimal autocorrelation Max AS = 2. We will determine their
2-adic complexity. For doing this we use the cyclotomic numbers of order four and
develop “Gauss periods” and quadratic “Gauss sum” on finite field Fq valued in the
ring Z2N−1.

We introduce the construction on the DHM sequences and preliminaries on cyclo-
tomic numbers, “Gauss periods” and quadratic “Gauss sum” in Section 2. Then we
present upper and lower bounds on the 2-adic complexity of the DHM sequences in
Section 3. After further consideration we finally determine the exact value of the 2-adic
complexity of the DHM sequences in Section 4.
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2 Preliminaries

2.1 Ding-Helleseth-Martinsen (DHM) sequences

Let q be a prime number, q ≡ 5 (mod 8). It is well known that there exists unique
s, t ∈ Z up to their signs such that q = s2+4t2. Let F∗

q = 〈θ〉, q−1 = 4f and C = 〈θ4〉.
Then C is a subgroup of F∗

q , and the cosets of C in F∗

q

Dλ = θλC = {θλ+4i : 0 ≤ i ≤ f − 1} (2.1)

are called as cyclotomic classes of order four in Fq.
Let N = 2q(≡ 2 (mod 4)). We have the following isomorphism of rings

ϕ : Z2 × Zq
∼= Z2q = Zn, (a, b) → (q + 1)b+ qa.

The inverse of ϕ is ϕ−1(i) = (i (mod 2), i (mod q)).
Consider the following subset of Z2 × Zq, for i, j, l ∈ {0, 1, 2, 3}

C ′(i, j, l) = [{0} × (Di ∪Dj)] ∪ [{1} × (Dl ∪Dj)], C(i, j, l) = ϕ(C ′(i, j, l)) (2.2)

C̃ ′(i, j, l) = C ′(i, j, l) ∪ {(0, 0)}, C̃(i, j, l) = ϕ(C̃ ′(i, j, l)) = C(i, j, l) ∪ {0} (2̃.2)
Definition 2.1 Let q be a prime number, q ≡ 5 (mod 8), q− 1 = 4f,Dλ(λ = 0, 1, 2, 3)
be the cyclotomic classes of order four defined by (2.1). Let C(i, j, l) be the subset
of Z2q defined by (2.2). The Ding-Helleseth-Martinsen (DHM) binary sequence S =

S(i, j, l) = {sλ}
∞

λ=0 and S̃ = S̃(i, j, l) = {s̃λ}
∞

λ=0 with period N = 2q is defined by

sλ =





1, if λ ∈ C(i, j, l)(Namely, λ = (q + 1)b+ qa)
where “a = 0, b ∈ Di ∪Dj” or “a = 1, b ∈ Dl ∪Dj”

0, otherwise,

s̃λ =

{
1, if λ ∈ C̃(i, j, l),
0, otherwise.

Namely, s̃0 = 1 and s̃λ = sλ for 1 ≤ λ ≤ N − 1.
It is proved in [3] that if

(I) t = 1 and (i, j, l) = (0, 1, 3), (0, 2, 1); or
(II) s = 1 and (i, j, l) = (1, 0, 3), (0, 1, 2),

(2.3)

then the DHM sequence S = S(i, j, l) has optimal autocorrelation (AS(τ) = ±2 for
1 ≤ τ ≤ N − 1 = 2q − 1).
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If

(̃I) t = 1 and (i, j, l) = (0, 1, 3), (0, 2, 3), (1, 2, 0), (1, 3, 0) or

(ĨI) s = 1 and (i, j, l) = (0, 1, 2), (0, 3, 2), (1, 0, 3), (1, 2, 3). (2̃.3)

then the DHM sequences S̃ = S̃(i, j, l) has optimal autocorrelations.
In Section 3 we present upper and lower bounds for the DHM sequence S = S(i, j, l)

satisfying condition (2.3) and S̃ = S̃(i, j, l) satisfying condition (2̃.3) (Theorem 3.1 and

3.2). After further consideration we totally determine the value of C2(S) and C̃2(S) in
Section 4 (Theorem 4.2 and 4.4).

2.2 Cyclotomic Numbers of Order Four

Let q ≡ 5 (mod 8) be a prime number, F∗

q = 〈θ〉, C = 〈θ4〉 and Dλ = θλC (0 ≤ λ ≤ 3)
be the cyclotomic classes of order four in Fq.
Definition 2.2 The cyclotomic numbers of order four in Fq are defined by, for 0 ≤
i, j ≤ 3

(i, j) = |(Di + 1) ∩Dj| = ♯{(a, b) : a ∈ Di, b ∈ Dj, a+ 1 = b}.

The values of (i, j) has been computed (see [1] or [8]).
Lemma 2.3 Let q ≡ 5 (mod 8) be a prime number, q = s2 + 4t2, s, t ∈ Z and s ≡ 1
(mod 4). The values of the cyclotomic numbers (i, j) of order four in Fq are

16(0, 0) = 16(2, 2) = 16(2, 0) = A = q − 7 + 2s,

16(0, 1) = 16(1, 3) = 16(3, 2) = B = q + 1 + 2s− 8t,

16(1, 2) = 16(0, 3) = 16(3, 1) = B̄ = q + 1 + 2s+ 8t,

16(0, 2) = C = q + 1− 6s,

16(1, 0) = 16(1, 1) = 16(2, 1) = 16(3, 0) = 16(3, 3) = 16(2, 3) = D = q − 3− 2s.

2.3 “Gauss periods” of order four and quadratic “Gauss sum”

Since a ≡ b (mod q) implies 4a ≡ 4b mod (2N−1)(N = 2q), we can define the following
mapping

f : Zq → Z∗

2N−1, f(a) = 4a

where Z∗

m is the group of units in the ring Zm = Z/mZ (m ≥ 2). f is a homomorphism
of groups from (Zq,+) to (Z∗

2N−1, ·), and can be viewed as an additive character of
finite field Zq = Fq valued in Z∗

2N−1. Then we have the “Gauss periods” of order 4

ηλ =
∑

i∈Dλ

4i mod (2N − 1)(λ = 0, 1, 2, 3)

4



and quadratic “Gauss sum”

G =
∑

i∈F∗
q

4iχ(i) = η0 − η1 + η2 − η3 (mod 2N − 1),

where χ is the unique quadratic (multiplicative) character of F∗

q (the Legendre symbol).
Namely, for i ∈ F∗

q,

χ(i) =

{
1, if i ∈ D0 ∪D2 = 〈θ2〉
−1, if i ∈ D1 ∪D3 = θ〈θ2〉.

The following results show that ηλ and G have some similar properties as usual
Gauss periods and Gauss sums. (The proofs are also similar).
Lemma 2.4 (1). G2 ≡ q − 4q−1

3
(mod 4q − 1).

(2). For 0 ≤ λ, µ ≤ 3, ηληµ ≡ q−1
4
δλ,µ+2+

∑3
ν=0(λ−ν+2, µ−ν)ην (mod 4q−1), where

(a, b) is the cyclotomic numbers of order four on Fq and

δλ,µ =

{
1, if λ ≡ µ (mod 4)
0, otherwise.

Proof. (1). In the following, all equality a = b means a ≡ b (mod 4q − 1).

G2 =

q−1∑

a,b=1

4a+bχ(ab) =

q−1∑

a,c=1

4a(1+c)χ(a2c) (taking c = ba−1)

=

q−1∑

c=1

χ(c)

q−1∑

a=1

4a(1+c).

The contribution of c = q − 1 to the right-hand side is

χ(q − 1)

q−1∑

a=1

4aq = χ(−1)

q−1∑

a=1

1 = q − 1

(remark that χ(−1) = 1 for q ≡ 5 ≡ 1 (mod 4)). Therefore

G2 = q − 1 +

q−2∑

c=1

χ(c)(−1 +

q−1∑

a=0

4a) = q −

q−1∑

a=0

4a = q −
4q − 1

3
.

(2). By the definition of ηλ,

ηληµ =
∑

a∈Dλ
b∈Dµ

4a+b =
∑

c∈Fq

4c
∑

a∈Dλ
c−a∈Dµ

1 (c = a+ b)

=
∑

a∈Dλ
−a∈Dµ

1 +

3∑

ν=0

∑

c∈Dν

4c
∑

e∈Dλ−v+2
1+e∈Dµ−ν

1 (let e = −
a

c
for c 6= 0).

5



From q ≡ 5 (mod 8) we know that q−1
2

≡ 2 (mod 4) and −1 = θ
q−1

2 ∈ D2.
Therefore

a ∈ Dλ ⇐⇒ e(= −
a

c
) ∈ Dλ−ν+2

c− a ∈ Dµ ⇐⇒ 1 + e(=
1

c
(c− a)) ∈ Dµ−ν

Then we get

ηληµ =
q − 1

4
δλ,µ+2 +

3∑

ν=0

(λ− ν + 2, µ− ν)ην .

Remark From Lemma 2.4(2) we know that

ηλ+iηµ+i =
q − 1

4
δλ+i,µ+i+2 +

3∑

ν=0

(λ+ i− ν + 2, µ+ i− ν)ην

=
q − 1

4
δλ,µ+2 +

3∑

ν=0

(λ− ν + 2, µ− ν)ην+i. (2.4)

By Lemma 2.3 we get

16η20 = Aη0 +Bη1 + Cη2 +Bη3, 16η0η1 = Dη0 +Dη1 +Bη2 +Bη3
16η0η2 =

q−1
4

+ Aη0 +Dη1 + Aη2 +Dη3, 16η0η3 = Dη0 +Bη1 +Bη2 +Dη3
(2.5)

From (2.4) and (2.5) we get
Lemma 2.5 Let q ≡ 5 (mod 8) be a prime number, q = s2+4t2, s ≡ 1 (mod 4). Then

16η2λ = Aηλ +Bηλ+1 + Cηλ+2 +Bηλ+3

= q(η0 + η1 + η2 + η3) + (−7 + 2s)ηλ + (1 + 2s− 8t)ηλ+1

+ (1− 6s)ηλ+2 + (1 + 2s+ 8t)ηλ+3

= (
4q − 1

3
− 1)q + (−7 + 2s)ηλ + (1 + 2s− 8t)ηλ+1 + (1− 6s)ηλ+2 + (1 + 2s+ 8t)ηλ+3

16ηληλ+1 = (
4q − 1

3
− 1)q+(−3− 2s)(ηλ + ηλ+1)+ (1+2s+8t)ηλ+2+(1+2s− 8t)ηλ+3

16ηληλ+2 = (
4q − 1

3
− 1)q + (−7 + 2s)(ηλ + ηλ+2) + (−3− 2s)(ηλ+1 + ηλ+3) + 4(q − 1)

16ηληλ+3 = 16ηλ+3η(λ+3)+1.
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Lemma 2.6 Assume that q ≡ 5 (mod 8) is a prime number and q = s2 + 4t2, s ≡ 1
(mod 4). Then

(η0 − η1)
2 + (η2 − η3)

2 = −tG, 2(η0 − η2)
2 = −(sG+ q) +

4q − 1

3

(η0 − η3)
2 + (η2 − η1)

2 = tG, 2(η1 − η3)
2 = sG− q +

4q − 1

3

Proof. By Lemma 2.5,

16[(η0 − η1)
2 + (η2 − η3)

2] = 16(η20 + η21 + η22 + η23 − 2η0η1 − 2η2η3)

= 0(η0 + η1 + η2 + η3)− 16t(η0 − η1 + η2 − η3)

= −16tG.

We get (η0 − η1)
2 + (η2 − η3)

2 = −tG.
Similarly, we get

(η0 − η3)
2 + (η2 − η1)

2 = tG

Since η0 + η1 + η2 + η3 =
4q−1
3

− 1, by Lemma 2.5, we get

2(η0 − η2)
2 = −(sG+ q) +

4q − 1

3
, 2(η1 − η3)

2 = sG− q +
4q − 1

3
.

3 Upper and Lower Bounds of C2(S) and C2(S̃)

In this section we present upper and lower bounds of 2-adic complexity of DHM se-
quences.
Theorem 3.1 Let S = S(i, j, l) = {sλ}

∞

λ=0 be the DHM binary sequence with period
N = 2q defined in Definition 2.1, q ≡ 5 (mod 8) be a prime number, q = s2+4t2, s ≡ 1

(mod 4). If the condition (2.3) holds, then log2(
2N−1

3
) ≥ C2(S) ≥ log2(

2N−1
3D

), where
D = gcd(2N − 1, q2 + 3q + 4).

Proof. The 2-adic complexity of S is C2(S) = log2(
2N−1

d
), where d = gcd(S(2), 2N −1),

and S(2) =
∑N−1

λ=0 sλ2
λ. We need to estimate the value d. From 2N−1 = (2q−1)(2q+1)

and gcd(2q − 1, 2q + 1) = 1, we know that

d = d1d2, d1 = gcd(S(2), 2q − 1), d2 = gcd(S(2), 2q + 1).

By the definition of the sequence S, we have

S(2) =
N−1∑

λ=0

sλ2
λ ≡

∑

b∈Di∪Dj

2(q+1)b +
∑

b∈Dl∪Dj

2q+(q+1)b (mod 2N − 1)
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Let 2 ∈ Dk. From q ≡ 5 (mod 8) we know that 2 is not a square in F∗

q. Therefore
k = 1 or 3 and

S(2) ≡
∑

2b∈Di∪Dj

2(q+1)2b +
∑

2b∈Dl∪Dj

2q+(q+1)2b (mod 2N − 1)

≡
∑

b∈Di−k∪Dj−k

4b + 2q
∑

b∈Dl−k∪Dj−k

4b (mod 2N − 1) (N = 2q)

≡ ηi−k + ηj−k + 2q(ηl−k + ηj−k) (mod 2N − 1) (3.1)

(A). Firstly we prove d2 = 3.
The assumption q ≡ 5 ≡ 1 (mod 2) implies 3|2q + 1. On the other hand,

ηλ =
∑

a∈Dλ

4a ≡
∑

a∈Dλ

1 =
q − 1

4
(mod 3)(λ ∈ {0, 1, 2, 3}),

we get S(2) = ηi−k+ηj−k−ηl−k−ηj−k ≡ 0 (mod 3). Therefore 3|d2 = gcd(S(2), 2q+1).
Moreover, if 9|2q + 1, then 2q ≡ −1 (mod 9). The order of 2 (mod 9) is 6, we get
q = 3 + 6l which implies that q = 3 since q is a prime number. This contradicts to
assumption q ≡ 5 (mod 8). Thus 9 ∤ 2q+1 and d2 = 3d′2 where 3 ∤ d′2 = gcd(S(2), 2

q+1
3

).
Now we prove d′2 = 1. By (3.1),

0 ≡ S(2) ≡ ηi−k + ηj−k − ηl−k − ηj−k ≡ ηi−k − ηl−k (mod 2q + 1)

≡





η0−k − η3−k

η0−k − η1−k

η1−k − η3−k

η0−k − η2−k

(mod d′2) if (i, j, l) =





(0, 1, 3)
(0, 2, 1)
(1, 0, 3)
(0, 1, 2)

(3.2)

where k = 1 or 3. We consider the four cases of the condition (2.3) separately.
(1). For t = 1 and (i, j, l) = (0, 1, 3), we have η−k− η3−k ≡ 0 (mod d′2) by (3.2) and

k = 1 or 3. Namely, η3−η2 ≡ 0 or η1−η0 ≡ 0 (mod d′2). Then G = η0−η1+η2−η3 ≡
−(η1 − η0) or η2 − η3 (mod d′2). In both cases,

G2 ≡ (η1 − η0)
2 + (η2 − η3)

2 (mod d′2)

≡ −G (mod d′2) (by Lemma 2.6 and t = 1)

From Lemma 2.4 we have

G2 ≡ q −
4q − 1

3
(mod d′2)

≡ q (mod d′2) (since 3 ∤ d′2 and d′2|4
q − 1). (3.3)

Therefore −G ≡ q and q ≡ G2 ≡ q2 (mod d′2). We get d′2| gcd(q
2 − q, 2

q+1
3

).
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(2). For t = 1 and (i, j, l) = (0, 2, 1), we have η−k − η1−k ≡ 0 (mod d′2). Namely,
0 ≡ η3 − η0 or η1 − η2 (mod d′2) and G ≡ −η1 + η2 or η0 − η3 (mod d′2). In both of
cases,

q ≡ G2 ≡ (η0 − η3)
2 + (η1 − η2)

2 ≡ G (mod d′2) (by Lemma 2.6 and t = 1).

Therefore q ≡ G2 ≡ q2 (mod d′2) and we also get d′2| gcd(q
2 − q, 2q+1

3
) as in case (1).

(3). For s = 1 and (i, j, l) = (1, 0, 3), we have η1−k − η3−k ≡ 0 (mod d′2). Namely,
0 = η0 − η2 or η2 − η0 (mod d′2). Therefore

0 ≡ 2(η0 − η2)
2 ≡ −(G + q) +

4q − 1

3
(mod d′2) (by Lemma 2.6 and s = 1)

From 3 ∤ d′2 we get 4q−1
3

≡ 0 (mod d′2). Therefore G ≡ −q and q ≡ G2 ≡ q2 (mod d′2).
Then we get d′2| gcd(q

2 − q, 2q+1
3

).
(4). At last, for s = 1 and (i, j, l) = (0, 1, 2), we have η−k − η2−k ≡ 0 (mod d′2).

Namely, 0 ≡ η3 − η1 or η1 − η3 (mod d′2). Therefore

0 ≡ 2(η1 − η3)
2 ≡ G− q +

4q − 1

3
(mod d′2) (by Lemma 2.6 and s = 1).

We also get d′2| gcd(q
2 − q, 2q+1

3
).

In summary, we have proved that d′2| gcd(q
2 − q, 2q+1

3
) for all four cases.

Now we prove that g = gcd(q2 − q, 2
q+1
3

) = 1. If g > 1, let p be a prime divisor of
g. Then p ≥ 5, p = q or p|q − 1. If p = q, we get 2q ≡ 2 (mod p) which contradicts
to p|2q + 1. If p|q − 1 from 2q ≡ −1 (mod p) we know that the order of 4 (mod p) is
q. Therefore q|p − 1 which contradicts to p|q − 1. Therefore g = 1, d′2 = 1 and then
d2 = 3 for all four cases.

This implies that C2(S) ≤ log2(
2N−1

3
).

(B). Now we prove that d1| gcd(q
2 + 3q + 4, 2q − 1).

From (3.1) we know that

S(2) ≡ ηi−k + ηj−k + ηl−k + ηj−k (mod 2q − 1)

≡ −1 + ηj−k − ηλ−k (mod d1) (where λ ∈ {0, 1, 2, 3}\{i, j, l})

Therefore

0 ≡ S(2) ≡





−1 + η1−k − η2−k

−1 + η2−k − η3−k

−1 + η−k − η2−k

−1 + η1−k − η3−k

(mod d1) if (i, j, l) =





(0, 1, 3)
(0, 2, 1)
(1, 0, 3)
(0, 1, 2)

(3.4)

Since d1|(2
q−1), we have 4q−1

3
≡ 0 (mod d1) and then η0+η1+η2+η3 =

4q−1
3

−1 ≡
−1 (mod d1).
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(1). For t = 1 and (i, j, l) = (0, 1, 3), we have 1 ≡ η0 − η1 or η2 − η3(mod d1) and
1−G ≡ −η2 + η3 or −η0 + η1 (mod d1). Therefore by Lemma 2.6 and t = 1,

12 + (1−G)2 ≡ (η0 − η1)
2 + (η2 − η3)

2 ≡ −G (mod d1)

Since 12 + (1 − G)2 = G2 − 2G + 2 ≡ q − 2G + 2 (mod d1), we get G ≡ q + 2 and
q ≡ G2 ≡ q2 + 4q + 4 (mod d1). Therefore q2 + 3q + 4 ≡ 0 (mod d1) and then
d1| gcd(q

2 + 3q + 4, 2q − 1).
(2). For t = 1 and (i, j, l) = (0, 2, 1), we get 1 ≡ η1 − η2 or η3 − η0 (mod d1) and

1 +G ≡ η0 − η3 or η2 − η1 (mod d1). Then by Lemma 2.6 we have

1 + (1 +G)2 ≡ (η0 − η3)
2 + (η1 − η2)

2 ≡ G (mod d1).

Since 1+(1+G)2 = q+2G+2, we get G ≡ −q−2 and q ≡ G2 ≡ q2+4q+4 (mod d1)
Then we also get d1| gcd(q

2 + 3q + 4, 2q − 1).
(3). For s = 1 and (i, j, l) = (1, 0, 3), we get 1 ≡ η3 − η1 or η1 − η3 (mod d1). By

Lemma 2.6 and s = 1, 2 ≡ 2(η1 − η3)
2 ≡ G− q and then G ≡ q+2 (mod d1). We also

get d1| gcd(q
2 + 3q + 4, 2q − 1).

(4). At last, for s = 1 and (i, j, l) = (0, 1, 2), we get 1 ≡ η0−η2 or η2−η0 (mod d1).
By Lemma 2.6 and s = 1 we have 2 ≡ 2(η0−η2)

2 ≡ −G−q and G ≡ −q−2 (mod d1).
We also get d1| gcd(q

2 + 3q + 4, 2q − 1).
In summary, we have proved d1| gcd(q

2 + 3q + 4, 2q − 1) for all four cases. This

completes the proof of C2(S) ≥ log2(
2N−1
3D

) for N = 2q and D = gcd(q2 + 3q + 4, 2q −
1).

Theorem 3.2 Let S̃ = S̃(i, j, l) be the DHM binary sequence with N = 2q defined in
Definition 2.1, q ≡ 5 (mod 8) be a prime number, q = s2 + 4t2, s ≡ 1 (mod 4). If the

condition (2̃.3) holds, then

C2(S̃) ≥ log2(
2N − 1

D
), D = gcd(q2 + 3q + 4, 2q + 1).

Proof. The 2-adic complexity of S̃ is C2(S̃) = log2(
2N−1

d
) where d = gcd(S̃(2), 2N − 1)

and S̃(2) = S(2) + 1. We need to estimate the value of d. Let d1 = gcd(S̃(2), 2q − 1),

d2 = gcd(S̃(2), 2q +1). Then d = d1d2. We have proved S(2) ≡ 0 (mod 3) in the proof

of Theorem 3.1. Thus 3 ∤ S̃(2) = S(2) + 1 and then 3 ∤ d.
(A). First we show that d1 = 1.

(1) Suppose that s = 1. From S̃(2) = 1 + S(2) ≡ ηj−k − ηλ−k (mod 2q − 1)(k =
1 or 3, λ ∈ {0, 1, 2, 3}\{i, j, l}) we get

0 ≡ S̃(2) ≡





η1−k − η3−k

η3−k − η1−k

η−k − η2−k

η2−k − η−k

(mod d1) if (i, j, l) =





(0, 1, 2)
(0, 3, 2)
(1, 0, 3)
(1, 2, 3)
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For (i, j, l) = (0, 1, 2), 0 ≡ η0 − η2 or η2 − η0 (mod d1) and then

0 ≡ 2(η0 − η2)
2 ≡ −G− q (mod d1) (by Lemma 2.6)

Thus q ≡ G2 ≡ q2 (mod d1) which implies that d1| gcd(q
2 − q, 2q − 1).

For (i, j, l) = (0, 3, 2), 0 ≡ η2−η0 or η0−η2 (mod d1) we also get d1| gcd(q
2− q, 2q−1).

For (i, j, l) = (1, 0, 3), 0 ≡ η1 − η3 or η3 − η1 (mod d1) and then

0 ≡ 2(η1 − η3)
2 ≡ G− q (mod d1).

We also get G ≡ q and q ≡ 1 (mod d1). Therefore d1| gcd(q
2 − q, 2q − 1).

For (i, j, l) = (1, 2, 3), 0 ≡ η3−η1 or η1−η3 (mod d1). We also have d1| gcd(q
2−q, 2q−1).

If d1 > 1, let l be a prime divisor of d1. Then l|q2 − q and l|2q − 1. If l = q, then
0 ≡ 2q−1 ≡ 2−1 ≡ 1 (mod q), a contradiction. If l|q−1, then 2q ≡ 1 (mod l) implies
that the order of 2 (mod l) is q. Then q|l − 1 which contradicts to l|q − 1. Therefore
we get d1 = 1.

(2). Assume that t = 1. From S̃(2) = S(2) + 1 ≡ ηj−k − ηλ−k (mod 2q − 1) we get

0 ≡ S̃(2) ≡





η1−k − η2−k

η2−k − η1−k

η2−k − η3−k

η3−k − η2−k

(mod d1) if (i, j, l) =





(0, 1, 3)
(0, 2, 3)
(1, 2, 0)
(1, 3, 0)

For (i, j, l) = (0, 1, 3), we get
0 ≡ η0 − η1 (or η2 − η3), G ≡ η2 − η3 (or η0 − η1) (mod d1). Therefore by Lemma

2.6,
q ≡ G2 ≡ (η0 − η1)

2 + (η2 − η3)
2 ≡ −G (mod d1)

which implies q2 ≡ G2 ≡ q (mod d1) and then d1 = 1 as before. Similarly, for
(i, j, l)=(0, 2, 3), (1, 2, 0) and (1, 3, 0) we get G ≡ ±q (mod d1) and then q ≡ G2 ≡ q2

(mod d1). We also get d1 = 1.
(B). Now we prove that d2| gcd(q

2 + 3q + 4, 2q + 1).

In this case S̃(2) = S(2) + 1 ≡ 1 + ηi−k − ηl−k (mod 2q + 1).
(1) Assume that s = 1, we get

0 ≡ S̃(2) ≡

{
1 + η−k − η2−k

1 + η1−k − η3−k
(mod d2), if (i, j, l) =

{
(0, 1, 2), (0, 3, 2)
(1, 0, 3), (1, 2, 3)

For (i, j, l) ≡ (0, 1, 2) or (0, 3, 2), we have

−1 ≡ η3 − η1 or η1 − η3 (mod d2).

11



By Lemma 2.6, 2 ≡ 2(η1 − η3)
2 ≡ G− q, G ≡ q + 2, q ≡ G2 ≡ q2 + 4q + 4 (mod d2).

We get d2| gcd(q
2 + 3q + 4, 2q + 1).

For (i, j, l) = (1, 0, 3) or (1, 2, 3), we have −1 ≡ ±(η0 − η2) (mod d2). By Lemma 2.6,

2 ≡ 2(η0 − η1)
2 ≡ −G− q, G ≡ −(q + 2), q ≡ G2 ≡ q2 + 4q + 4 (mod d2).

We also get d2| gcd(q
2 + 3q + 4, 2q + 1).

In summary, we have proved that d1 = 1 and d2|D = gcd(q2 + 3q + 4, 2q + 1). This

completes the proof of C2(S̃) = log2(
2N−1
d1d2

) ≥ log2(
2N−1
D

).

4 Determination of C2(S) and C2(S̃)

By the definition of 2-adic complexity, C2(S) = log2(
2N−1

d
) where d = gcd(S(2), 2N−1)

and N is the period of the sequence S. Theorem 3.1 presents nice bounds log2(
2N−1
3D

) ≤

C2(S) ≤ log2(
2N−1

3
) for the DHM sequence S where N = 2q and q ≡ 5 (mod 8) is a

prime number, D = gcd(q2 + 3q + 4, 2q − 1). In this section, we totally determine

exact value of C2(S). Firstly, if D = 1 then C2(S) = log2(
2N−1

3
). Now we show a

necessary and sufficient condition for D = 1. All arguments belongs to elementary
number theory.
Lemma 4.1 Let q = 8m − 3 be a prime number. Then D = gcd(q2 + 3q + 4, 2q − 1)
has a prime divisor l if and only if the following two conditions hold.

(1). l = 2mq + 1(= 16m2 − 6m+ 1 = 1
4
(q2 + 3q + 4)).

(2). 2 is a (2m)-th power (mod l) which means that there exists c ∈ Z such that
2 ≡ c2m (mod l).

Proof. Remark that if l = 2mq+1, then the condition (2) exactly means that l|(2q−1).
=⇒: Assume that l is a prime divisor of D = gcd(q2 + 3q + 4, 2q − 1). Then

q2 + 3q + 4 ≡ 2q − 1 ≡ 0 (mod l). From 2q ≡ 1 (mod l) and q is a prime we get
q|l − 1. Namely, l = 2qn+ 1(n ≥ 1). Therefore 2nq ≡ −1 (mod l) and

0 ≡ 2n(q2 + 3q + 4) ≡ −q − 3 + 8n (mod l).

From q ≥ 5 and l = 2qn+ 1 ≥ 11 we get

−l = −1 − 2nq < −q − 3 + 8n < 1 + 2nq = l

which implies that −q − 3 + 8n = 0. Thus q = 8n − 3 which means that n = m and
l = 2mq + 1 = 16m2 − 6m + 1 = 1

4
(q2 + 3q + 4). Moreover, from 2q ≡ 1 (mod l) we

know that 2 is a ( l−1
q
)-th power (mod l) where l−1

q
= 16m2

−6m
8m−3

= 2m.
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⇐=: Assume that conditions (1) and (2) hold. From condition (2) we know that
2q ≡ c2mq ≡ cl−1 ≡ 1 (mod l). Moreover,

q2 + 3q + 4 = (8m− 3)2 + 3(8m− 3) + 4 = 4(16m2 − 6m+ 1) = 4l ≡ 0 (mod l).

Therefore l is prime divisor of gcd(2q − 1, q2 + 3q + 4).

From Theorem 4.1 and Theorem 3.1 we finally determine the 2-adic complexity
C2(S) for the DHM binary sequences as shown in the following result.
Theorem 4.2 Let q ≡ 5 (mod 8) be a prime number, q = s2 + 4t2, s ≡ 1 (mod 4),
S = {sλ}

∞

λ=0 be the DHM binary sequence with period N = 2q defined by Definition
2.1 where one of the following conditions holds

(I,1) t = 1 and (i, j, l) = (0, 1, 3), (0, 2, 1); or
(I,2) s = 1 and (i, j, l) = (1, 0, 3), (0, 1, 2).

Let D = q2+3q+4
4

and C2(S) be the 2-adic complexity of the DHM binary sequence
S. Then

C2(S) = log2(
2N − 1

3
) or log2(

2N − 1

3D
). Moreover, C2(S) = log2(

2N − 1

3D
)

if and only if D is a prime number, 2q ≡ 1 mod D and D|S(2) =
∑N−1

λ=0 sλ2
λ.

Remark (1). By Lemma 4.1, we need to check if 2 is a (2m)-th power (mod D).
A series of criteria for 2 being an n-th power (mod D) for several n are given in Book
[1], which are helpful to simplify computation.

(2). From Theorem 4.2 we know that if q ≡ 5 (mod 8) is a prime and Mq = 2q − 1
is also a prime (called Mersenne prime), then C2(S) = log2(

4q−1
3

). The table 2.9 in the
Book [7], Section 2.7 presented all Mersenne primes Mq for q ≤ 7 × 106. There are
12 Mersenne primes Mq with q ≡ 5 (mod 8) : q=5, 13, 61, 4253, 9941, 11213, 21701,
1398269, 2976221, 13466917, 77232917, and 82589933.

Similarly we have the following result.
Lemma 4.3 Let q = 8m − 3 be a prime number, D = gcd(q2 + 3q + 4, 2q + 1). Then
D > 1 if and only if

(1). D = 2mq + 1(= 16m2 − 6m+ 1 = 1
4
(q2 + 3q + 4)) and D is a prime.

(2). 2q ≡ −1 (mod D) which means that 2 is an m-th power (mod D).

Proof. (⇒:) Let D > 1 and l be a prime divisor of D. Then 2q ≡ −1 and 22q ≡ 1
(mod l). Since 3 ∤ q2 + 3q + 4 we know that l 6= 3, and then the order of 2 (mod l) is
2q. Therefore 2q|l − 1 and l = 2nq + 1 (n ≥ 1). Then 2nq ≡ −1 mod l and

0 ≡ 2n(q2 + 3q + 4) ≡ −q − 3 + 8n (mod l).
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From q ≥ 5 and l = 2nq + 1 ≥ 11 we get

−l = −1− 2nq < −q − 3 + 8n < 1 + 2nq = l.

Therefore −q − 3 + 8n = 0, q = 8n− 3 so that n = m. Namely,

l = 2mq + 1 = D =
1

4
(q2 + 3q + 4)

which means that D is a prime. The condition (2) comes from 2q ≡ −1 (mod l) and
l = D.

(⇐:) If the conditions (1) and (2) holds, then gcd(q2+3q+4, 2q+1) = gcd(4D, 2q+
1) = D.

From Theorem 3.2 and Lemma 4.3 we finally determine the 2-adic complexity C2(S̃)

for the DHM sequences S̃ as shown in the following result.
Theorem 4.4 Let q ≡ 5 (mod 8) be a prime number, q = s2+4t2, s ≡ 1 (mod 4),

S̃ = S̃(i, j, l) be the DHM binary sequence with period N = 2q defined by Definition
2.1, where one of the following conditions holds

(II, 1) t = 1, (i, j, l) = (0, 1, 3), (0, 2, 3), (1, 2, 0), (1, 3, 0) or
(II, 2) s = 1, (i, j, l) = (0, 1, 2), (0, 3, 2), (1, 0, 3), (1, 2, 3).

Let D = 1
4
(q2 + 3q + 4). Then C2(S̃) = log2(2

N − 1) or log2(
2N−1
D

). Moreover,

C2(S̃) = log2(
2N−1
D

) if and only if D is a prime number, 2q ≡ −1 (mod D) and D|S̃(2).

At the end of this section we present a small example to show that C2(S̃) can be
less than log2(2

N − 1).
Example Let q = 5 = 1 + 4, s = 1,F∗

5 = 〈3〉. The cyclotomic classes of order 4 in F5

are
D0 = {1}, D1 = {3}, D2 = {32 = 4}, D3 = {33 = 2}.

Thus 2 ∈ Dk, k = 3, and

η0 ≡ 4, η1 ≡ 43, η2 ≡ 44, η3 ≡ 42 (mod 2N − 1), N = 2q = 10.

On the other hand, D = 1
4
(q2 + 3q + 4) = 11 is a prime number and 2q ≡ 25 ≡ −1

(mod 11).
For (i, j, l) = (1, 0, 3) and (1, 2, 3),

S̃(2) ≡ 1 + ηi−k − ηl−k ≡ 1 + η2 − η0 ≡ 1 + 44 − 4 ≡ 1 + 3− 4 ≡ 0 (mod 11).

By Theorem 4.4, for S̃ = S̃(1, 0, 3) and S̃(1, 2, 3) we have C2(S̃) = log2(
210−1
11

) = log2 93.

For (i, j, l) = (0, 1, 2) and (0, 3, 2), S̃(2) ≡ 1 + η1 − η3 ≡ 1 + 9− 5 6≡ 0 (mod 11). We

get C2(S̃) = log2(2
10 − 1). In fact, the DHM sequence S̃ = S̃(i, j, l) is

14



S̃ = (1 1 0 0 0 0 1 1 1 0 . . .), for (i, j, l) = (1, 0, 3)

S̃(2) = 1 + 2 + 26 + 27 + 28 ≡ 1 + 2 + 9 + 7 + 3 ≡ 0 (mod 11)

and

S̃ = (1 0 0 0 1 0 0 1 1 1 . . .), for (i, j, l) = (1, 2, 3)

S̃(2) = 1 + 24 + 27 + 28 + 29 ≡ 1 + 5 + 7 + 3 + 6 ≡ 0 (mod 11)

λ 0 1 2 3 4 5 6 7 8 9
λ (mod 2) 0 1 0 1 0 1 0 1 0 1
λ (mod 5) 0 1 2 3 4 0 1 2 3 4

s̃λ((i, j, l) = (1, 0, 3)) 1 1 0 0 0 0 1 1 1 0
s̃λ((i, j, l) = (1, 2, 3)) 1 0 0 0 1 0 0 1 1 1
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