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Effective condition number bounds for convex
regularization

Dennis Amelunxen, Martin Lotz and Jake Walvin

Abstract—We derive bounds relating Renegar’s condition
number to quantities that govern the statistical performance
of convex regularization in settings that include the `1-
analysis setting. Using results from conic integral geometry,
we show that the bounds can be made to depend only on
a random projection, or restriction, of the analysis operator
to a lower dimensional space, and can still be effective if
these operators are ill-conditioned. As an application, we
get new bounds for the undersampling phase transition of
composite convex regularizers. Key tools in the analysis are
Slepian’s inequality and the kinematic formula from integral
geometry.

Index Terms—Convex regularization, compressed sensing,
integral geometry, convex optimization, dimension reduc-
tion

I. INTRODUCTION

A well-established approach to solving linear inverse
problems with missing information is by means of convex
regularization. In one of its manifestations, this approach
amounts to solving the minimization problem

minimize f (x) subject to ‖Ωx −b‖2 ≤ ε, (I.1)

where Ω ∈ Rm×n represents an underdetermined linear
operator and f (x) is a suitable proper convex function,
informed by the application at hand. The typical example
is f (x) = ‖x‖1, known to promote sparsity, but many other
functions have been considered in different settings.

While there are countless algorithms and heuristics to
compute or approximate solutions of (I.1) and related
problems, the more fundamental question is: when does
a solution of (I.1) actually “make sense”? The latter is
important because one is usually not interested in a
solution of (I.1) per se, but often uses this and related
formulations as a proxy for a different, much more
intractable problem. The best-known example is the use
of the 1-norm to obtain a sparse solution [1], but other
popular settings are the total variation norm and its
variants for signals with sparse gradient, or the nuclear
norm of a matrix when aiming at a low-rank solution.

Regularizers often take the form f (x) = g (D x) for a linear
map D, as in the cosparse recovery setting [2], [3], [4],
where f (x) = ‖D x‖1 for an analysis operator D ∈Rp×n with
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possibly p ≥ n. In this article we present general bounds
relating the performance of (I.1) to properties of g and
the conditioning of D. Moreover, we show that for the
analysis we can replace D with a random projection applied
to D, where the target dimension of this projection is
independent of the ambient dimension n and only depends
on intrinsic properties of the regularizer g .

A. Performance measures for convex regularization

Various parameters have emerged in the study of the
performance of problems such as (I.1). Two of the most
fundamental ones depend on the descent cone D( f , x0) of
the function f at x0, defined as the convex cone of all
directions in which f decreases. These parameters are

• the statistical dimension δ( f , x0) := δ(D( f , x0)), or
equivalently the squared Gaussian width, of the
descent cone D( f , x0) of f at a solution x0 (cone
of direction from x0 in which f decreases), which
determines the admissible amount of undersampling
m in (I.1) in the noiseless case (ε = 0), in order to
uniquely recover a solution x0

1;
• Renegar’s condition number RC (Ω) of Ω with respect

to the descent cone C = D( f , x0) of f at a point x0,
which bounds the recovery error ‖x −x0‖2 of a solution
x of (I.1).

Before stating the results linking these two parameters,
we briefly define them and outline their significance.
The statistical dimension of a convex cone is defined
as the expected squared length of the projection of a
Gaussian vector g onto a cone: δ(C ) = E[‖ΠC (g )‖2] (see
Section IV-B for a principled derivation; unless otherwise
stated, ‖·‖ refers to the 2-norm). It has featured as a proxy
to the squared Gaussian width in [5], [6] and as the
main parameter determining phase transitions in convex
optimization [7]. More precisely, let x0 ∈Rn , Ω ∈Rm×n and
b = Ax0. Consider the optimization problem

minimize f (x) subject to Ωx = b, (I.2)

which we deem to succeed if the solution coincides with
x0. In [7, Theorem II] it was shown that for any η ∈ (0,1),

1Strictly speaking, this is a result for random measurement matrices
and holds with high probability.
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when Ω has Gaussian entries, then

m ≥ δ( f , x0)+aη
p

n

=⇒ (I.2) succeeds with probability ≥ 1−η;

m ≤ δ( f , x0)−aη
p

n

=⇒ (I.2) succeeds with probability ≤ η,

with aη := 4
√

log(4/η). For f (x) = ‖x‖1, the relative statisti-
cal dimension has been determined precisely by Stojnic [5],
and his results match previous derivations by Donoho
and Tanner (see [8] and the references). In addition,
the statistical dimension / squared Gaussian width also
features in the error analysis of the generalized LASSO
problem [9], as the minimax mean squared error (MSE)
of proximal denoising [10], [11], to study computational
and statistical tradeoffs in regularization [12], and in the
context of structured regression ([13] and references).

To define Renegar’s condition number, first recall the
classical condition number of a matrix A ∈Rm×n , defined
as the ratio of the operator norm and the smallest singular
value. Using the notation ‖A‖ := maxx∈Sn−1 ‖Ax‖, σ(A) :=
minx∈Sn−1 ‖Ax‖, the classical condition number is given by

κ(A) = min

{ ‖A‖
σ(A)

,
‖A‖
σ(AT )

}
.

Renegar’s condition number arises when replacing the
source and target vector spaces Rn and Rm with convex
cones. Let C ⊆Rn , D ⊆Rm be closed convex cones, and let
A ∈Rm×n . Define restricted versions of the norm and the
singular value:

‖A‖C→D := max
x∈C∩Sn−1

‖ΠD (Ax)‖, (I.3)

σC→D (A) := min
x∈C∩Sn−1

‖ΠD (Ax)‖, (I.4)

where ΠD : Rm → D denotes the orthogonal projection, i.e.,
ΠD (y) = arg min{‖y − z‖ : z ∈ D}.

Renegar’s condition number is defined as

RC (A) := min

{ ‖A‖
σC→Rm (A)

,
‖A‖

σRm→C (−AT )

}
. (I.5)

In what follows, we simply write σC (A) := σC→Rm (A) for
the smallest cone-restricted singular value. As mentioned
before, Renegar’s condition number features implicitly in
error bounds solutions of (I.1): if x0 is a feasible point and
x̂ is a solution of (I.1), then ‖x̂ −x0‖ ≤ 2εRD( f ,x0)(Ω)/‖Ω‖
(see, for example, [6]). Renegar’s condition number was
originally introduced to study the complexity of linear
programming [14], see [15] for an analysis of the running
time of an interior-point method for the convex feasibility
problem in terms of this condition number, and [16] for
a discussion and references. In [17], Renegar’s condition
number is used to study restart schemes for algorithms
such as NESTA [18] in the context of compressed sensing.

Unfortunately, computing or even estimating the sta-
tistical dimension or condition numbers is notoriously
difficult for all but a few examples. For the popular case
f (x) = ‖x‖1, an effective method of computing δ( f , x0) was
developed by Stojnic [5], and subsequently generalized

in [6], see also [7, Recipe 4.1]. In many practical settings
the regularizer f has the form f (x) = g (D x) for a matrix
D, such as in the cosparse or `1-analysis setting where
f (x) = ‖D x‖1. Even when it is possible to accurately esti-
mate the statistical dimension (and thus, the permissible
undersampling) for a function g , the method may fail
for a composite function g (D x), due to a lack of certain
separability properties [19] (see [20] for recent bounds
in the `1-analysis setting).

B. Main results - deterministic bounds

In this article we derive a characterization of Renegar’s
condition number associated to a cone as a measure of how
much the statistical dimension can change under a linear
image of the cone. The first result linking the statistical
dimension with Renegar’s condition is Theorem A. When
using the usual matrix condition number, the upper bound
in Equation (I.7) features implicitly in [21], [22] and
appears to be folklore.

Theorem A. Let C ⊆Rn be a closed convex cone, and δ(C )
the statistical dimension of C . Then for A ∈Rp×n ,

δ(AC ) ≤RC (A)2 ·δ(C ), (I.6)

where RC (A) is Renegar’s condition number associated to
the matrix A and the cone C . If p ≥ n, A has full rank, and
κ(A) denotes the matrix condition number of A, then

δ(C )

κ(A)2 ≤ δ(AC ) ≤ κ(A)2 ·δ(C ). (I.7)

Example I.1. Consider the n ×n finite difference matrix

D =


−1 1 0 · · · 0
0 −1 1 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1

 .

This matrix is usually defined with an additional column
(0, . . . ,0,1)T , but for simplicity, and to work with a square
matrix of full rank, we work with this truncated version.
The condition number is known to be of order Ω(n), mak-
ing condition bounds using the normal matrix condition
number useless. Using Renegar’s condition number with
respect to a cone, on the other hand, can improve the
situation dramatically. Consider, for example, the cone

C = {x ∈Rn : x1 ≥ 0, xi xi+1 ≤ 0 for 1 ≤ i < n}.

This cone is the orthant consisting of vectors with alter-
nating signs. The cone-restricted singular value of D is
given by

σC (D)2 = min
x∈C∩Sn−1

‖D x‖2

= min
x∈C∩Sn−1

n−1∑
i=1

(xi+1 −xi )2 +x2
n

= min
x∈C∩Sn−1

2−x2
1 −

n−1∑
i=1

2xi xi+1 ≥ 1.
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Using the same expression for ‖D x‖2, we see that the
square of the operator norm is bounded by 4, so that the
square of Renegar’s condition number with respect to this
cone is bounded by 4. If, on the other hand, C is the non-
negative orthant, then Renegar’s condition number coin-
cides with the normal matrix condition number. Intuitively,
Renegar’s condition number gives an improvement if the
cone C captures a portion of the ellipsoid defined by DDT

that is not too eccentric. Other examples when Renegar’s
condition number gives significant improvements is for
small cones (such as the cone of increasing sequences) or
cones contained in linear subspaces of small dimension
(such as subdifferential cones of the 1 or ∞ norms).

Theorem A translates into a bound for the statistical
dimension of convex regularizers by observing that if
f (x) = g (D x) with invertible D, then (see Section VI) the
descent cone of f at x0 is given by D( f , x0) = D−1D(g ,D x0).
Throughout this paper, we will use A for the transformation
matrix in the setting of convex cones, and D for the matrix
appearing in a regularizer.

Corollary I.2. Let f (x) = g (D x), where g is a proper convex
function and let D ∈Rn×n be non-singular. Then

δ( f , x0) ≤RD(g ,D x0)
(
D−1) ·δ(g ,D x0).

In particular,
δ(g ,D x0)

κ(D)2 ≤ δ( f , x0) ≤ κ(D)2 ·δ(g ,D x0).

Remark I.3. It is interesting to compare the bounds in
Corollary I.2 to the condition number bounds for sparse
recovery by `1-minimization from [23]. If D ∈ Rn×n is
invertible, then Problem I.2 with f (x) = g (D x) is mathe-
matically equivalent to

minimize g (y) subject to ΩD−1 y = b. (I.8)

In [23], the authors consider measurement matrices Ω for
which the rows ωT are sampled according to a distribution
with covariance E[ωωT ]. In the isotropic case where
the covariance is a multiple of the identity matrix, the
measurement ensemble in I.8 is non-isotropic and the
covariance matrix has condition number proportional to
κ(D)2. In [23, Theorem 2], a lower bound on the number
of measurements needed for recovering a signal is given
that involves the condition number of the covariance
matrix. The bounds in [23] apply directly to the number
of measurements for recovery by `1-minimization, and
under rather general assumptions on the distribution.
Moreover, the bounds in [23] rely on the condition number
restricted to sparse vectors, while in our case we consider
Renegar’s condition number with respect to the descent
cone. The bounds in Corollary I.2 also apply to any convex
regularizer, and their applicability to sparse recovery is via
the proxy of the statistical dimension, and thus restricted
to situations in which this parameter delivers recovery
bounds.

While Renegar’s condition number, defined by restricting
the smallest singular value to a cone, can improve the

bound, computing this condition number is not always
practical. Using polarity (IV.4), we get the following
version of the bound that ensures that the right-hand
side is always bounded by n.

Corollary I.4. Let C ⊆Rn be a closed convex cone, and δ(C )
the statistical dimension of C . Let A ∈Rn×n be non-singular.
Then

δ(AC ) ≤ κ(A)−2 ·δ(C )+ (
1−κ(A)−2) ·n.

If f (x) = g (D x), where g is a proper convex function and
D ∈Rp×n with p ≥ n, then

δ( f , x0) ≤ κ(D)−2 ·δ(g ,D x0)+ (
1−κ(D)−2) ·n. (I.9)

The simple proof of Corollary I.4 is given in Section V.
One can interpret the upper bounds in Corollary I.4 as
interpolating between the statistical dimension of C and
the ambient dimension n.

Remark I.5. The restriction to invertible dictionaries D
may look limiting at first, but a closer look reveals that
it is not necessary when working with the subdifferential
cone instead of the descent cone (see Section VI-A for
the relevant definitions and background). In fact, given a
proper convex function f (x) = g (D x), the statistical dimen-
sions of the descent cone and that of the subdifferential
cone are related as

δ( f , x0) = n −δ(cone(∂ f (x0))).

Therefore, lower bounds on the statistical dimension of the
subdifferential cone imply upper bounds on the statistical
dimension of f . It is well known that cone(∂ f (x0)) =
DT cone(∂g (D x0)), and therefore if D ∈ Rp×n with p ≤ n,
we can apply the lower bound from (I.7). In applications,
however, the case p ≥ n is of interest. In this case one
should note that the subdifferential cone is often contained
in a linear subspace of dimension at most n, and by
common invariance properties of the statistical dimension
(Section IV-B) it is enough to work with the restriction of
DT to this lower dimensional subspace. Proposition I.6
illustrates this idea in the case of the 1-norm.

In the statement of the proposition below, we use the
notation AI for the submatrix of a matrix A with columns
indexed by I ⊂ [n] = {1, . . . ,n}, and denote by I c = [n]\I the
complement of I . The proof is postponed to Section VI.

Proposition I.6. Let D ∈Rp×n , p ≥ n, be such that all n×n
minors of D have full rank, and A ∈ Rm×n with m ≤ n.
Consider the problem

minimize ‖D x‖1 subject to Ωx = b. (I.10)

Let x0 be such that Ωx0 = b, and such that y0 = D x0

is s-sparse with support I ⊂ [p]. Let C ∈ Rn×p−s+1 be a
matrix whose first p − s columns consist of the columns
of DT that are indexed by I c , and the last column is
cp−s+1 = 1p

s

∑
j∈I sign((y0) j )d j , where the vectors d j denote

the columns of DT . Then

δ(‖D ·‖1, x0) ≤ κ(C )−2 ·δ(‖·‖1,D x0)+ (
1− (p/n)κ(C )−2) ·n

(I.11)
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In particular, given η ∈ (0,1), Problem (I.10) with Gaussian
measurement matrix succeeds with probability 1−η if

m ≥ κ(C )−2 ·δ(‖·‖1,D x0)+ (
1− (p/n)κ(C )−2) ·n +aη

p
n,

Example I.7. An illustrative example is the finite differ-
ence matrix D of example I.1. The regularizer f (x) = ‖D x‖1

is a one-dimensional version of a total variation regularizer,
and is used to promote gradient sparsity. The standard
method [7, Recipe 4.1] for computing the statistical
dimension of the descent cone of f is not easily applicable
here, as this regularizer is not separable [19] (in fact,
it would require a careful analysis of the structure of
the signal with sparse gradient to be recovered). The
standard condition number bound Theorem A is also
not applicable, as it is known that the condition number
satisfies κ(D) ≥ 2(n+1)

π . Figure 1 plots the upper bound of
Proposition I.6 for signals with random support location
and sparsity ranging from 1 to 200, and compares it to
the actual statistical dimension computed by Monte Carlo
simulation. As can be seen in this example, the upper
bound is not very useful because of the large condition
numbers involved.

Fig. 1: The statistical dimension of ‖D ·‖1 for different
sparsity levels and the upper bound (I.11).

Remark I.8. It is natural to ask for which dictionaries
D Proposition I.6 gives good bounds. This clearly also
depends on the support of the signal one wishes to recover.
A closer look at the matrix C in the case of the finite
difference matrix and for monotonely increasing signals
shows that C is (up to rows of zeros) itself a finite
difference matrix of order n − s + 1, and the quality of
the bounds increases with the size of the support. Another
natural example is when D ∈Rp×n is a Gaussian random
matrix (that is, a matrix whose entries are independent
standard normal distributed random variables). In this
case, the invariance properties of Gaussians imply that the
matrix C is again a Gaussian matrix in Rn×p−s+1. For such
matrices, the condition number is known to be of order
(
p

n +√
p − s +1)/(

p
n −√

p − s +1) with high probability,
see for example [24, Theorem 5.32]. In this example we
see again that if the support is large, s ≈ p, then the
condition number is close to 1 and the bound becomes
useful.

Note that so far we have seen two types of bounds:
those based on the upper bound using Renegar’s con-
dition number in Theorem A, which improve on the

standard condition number by using the cone-restricted
smallest singular value, and those based on duality and
the lower bound of Theorem A. The latter only work
using the standard matrix condition number, but apply
to the matrix restricted to the subspace generated by the
cone of interest. Both bounds could yield good results
for tight frames / well-conditioned matrices, but fail to
give useful bounds in cases such as the finite difference
matrix, or for redundant dictionaries D for which the
statistical dimension δ(‖ · ‖1,D x0) is proportional to the
(larger) ambient dimension. In the next section we discuss
randomized improvements.

C. Main results - probabilistic bounds

While Corollary I.4 ensures that the upper bound does
not become completely trivial, when D is ill-conditioned
it still does not give satisfactory results, as seen in
Example I.1. The second part, and main contribution, of
our work is an improvement of the condition bounds using
randomization: using methods from conic integral geome-
try, we derive a “preconditioned” version of Theorem A.
The idea is based on the philosophy that a randomly
oriented convex cone C ought to behave roughly like
a linear subspace of dimension δ(C ). In that sense, the
statistical dimension of a cone C should be approximately
invariant under projecting C to a subspace of dimension
close to δ(C ). In fact, in Section IV-E we will see that for
n ≥ m ' δ(C ), we have

EQ [δ(PmQC )] ≈ δ(C ),

where Pm is the projection on the the first m coordinates
and where the expectation is with respect to a random
orthogonal matrix Q, distributed according to the nor-
malized Haar measure on the orthogonal group. From
this it follows that the condition bounds should ideally
depend not on the conditioning of D itself, but on a generic
projection of D to linear subspace of dimension of order
δ(C ). For m ≤ n define

κ2
m(A) := EQ [κ(PmQ A)2], R

2
C ,m(A) := EQ

[
RC (PmQ A)2] .

Theorem B. Let C ⊆ Rn be a closed convex cone and A ∈
Rp×n be a matrix of full rank. Let η ∈ (0,1) and assume that
m ≥ δ(C )+2

√
log(2/η)m. Then

δ(AC ) ≤R
2
C ,m(A) ·δ(C )+ (n −m)η.

For the matrix condition number,

δ(AC ) ≤ κ2
m(A) ·δ(C )+ (n −m)η. (I.12)

As a consequence of Theorem B we get the following
preconditioned version of the previous bounds.

Corollary I.9. Let f (x) = g (D x), where g is a proper convex
function and D ∈ Rn×n is non-singular. Let η ∈ (0,1) and
assume that m ≥ δ(g ,D x0)+2

√
log(2/η)m. Then

δ( f , x0) ≤R
2
D(g ,D x0),m(D−1) ·δ(g ,D x0)+ (n −m)η (I.13)
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and
δ( f , x0) ≤ κ2

m(D−1) ·δ(g ,D x0)+ (n −m)η.

Example I.10. Consider a diagonal matrix Σ and the
average condition κ2

m(Σ). Intuitively, the average condition
measures the expected eccentricity of the projection of an
ellipsoid to a random subspace.

Example I.11. Using the finite difference matrix D from
Example I.1, note that it is physically not possible, nor
do we aim to, locate the precise phase transition for
the recovery with f (x) = ‖D x‖1 in terms of that of the
1-norm, since the statistical dimension δ( f , x0) does not
only depend on the sparsity pattern of D x0, but also on
the location of the support.

D. Scope and limits of reduction

The condition bounds in Theorem B naturally lead to
the question of how to compute or bound the condition
number of a random projection of a matrix,

κ(PmQ A) or RC (PmQ A)

where Q ∈O(n) is a random orthogonal matrix. If m = bρnc
with ρ ∈ (0,1), then in some cases the condition number
κ(PmQ A) remains bounded with high probability as n →∞.
Below we sketch how such condition numbers can be
bounded.

In what follows, let A ∈Rn×n be fixed and non-singular,
and we write Qm = PmQ for a random matrix with
orthogonal rows, uniformly distributed on the Stiefel
manifold. We first reduce to the case of Gaussian matrices,
for which tools are readily available. If G ∼ N (0,1) is
an m × n random matrix with Gaussian entries, then
Qm = (GGT )−1/2G is uniformly distributed on the Stiefel
manifold, so that RC (Qm A) has the same distribution as
RC ((GGT )−1/2G A). Using Lemma II.7, we can bound (with
probability one)

RC
(
(GGT )−1/2G A

)≤ κ(
(GGT )−1/2)RC (G A) = κ(G)RC (G A) ,

transforming the problem into one in which the orthogonal
matrix is replaced with a Gaussian one. The are different
ways to estimate such condition numbers, the approach
taken here is based on Gordon’s inequality. We restrict
the analysis to the classical matrix condition number, a
more refined analysis using Renegar’s condition number
is likely to incorporate the Gaussian width of the cone.
Moreover, using the invariance of the condition number
under transposition, we consider κ(AG) with a n×m matrix
G, m ≤ n. An alternative, suggested by Armin Eftekhari,
would be to appeal to the Hanson-Wright inequality [25],
[26], or more directly, the Bernstein inequality.

Proposition I.12. Let A ∈Rn×n and G ∈Rn×m , with m ≤ n.
Then

E[κ(AG)] ≤ ‖A‖F +p
m‖A‖2

‖A‖F −p
m‖A‖2

(I.14)

whenever ‖A‖F ≥p
m‖A‖2.

Using a standard procedure one can show that the
singular value and the norm will stay close to their
expected values with high probability. More specifically,
one can use the above proposition as a basis for a weak
average-case analysis of Renegar’s condition number for
random matrices of the form AG, as in [27].

Proof. We will derive the inequalities

‖A‖F −p
m‖A‖2 ≤ E[σ(AG)] ≤ E[‖AG‖2] ≤ ‖A‖F +p

m‖A‖2.

where σ denotes the smallest singular value. We will
restrict to showing the lower bound, the upper bound
follows similarly by using Slepian’s inequality. Without
lack of generality assume A =Σ is diagonal, with entries
σ1 ≥ ·· · ≥σn on the diagonal, and assume σ1 = 1. Define
the Gaussian processes

Xx ,y = 〈G x ,Σy〉, Yx ,y = 〈g , x〉+〈h,Σy〉,
indexed by x ∈ Sm−1, y ∈ Sn−1, with g ∈ Rm and h ∈ Rn

Gaussian vectors. We get

E[(Xx ,y −Xx ′,y ′ )2] = ‖Σy‖2 +‖Σy ′‖2 −2〈x , x ′〉〈Σy ,Σy ′〉,
E[(Yx ,y −Yx ′,y ′ )2] = ‖Σy‖2 +‖Σy ′‖2 +2−2〈x , x ′〉−2〈Σy ,Σy ′〉,
so that

E[(Yx ,y −Yx ′,y ′ )2]−E[(Xx ,y −Xx ′,y ′ )2]

= 2(1−〈x , x ′〉)(1−〈Σy ,Σy ′〉)
≥ 0.

This expression is 0 if x = x ′, and non-negative otherwise,
since by assumption Σ has largest entry equal to 1. We
can therefore apply Gordon’s Theorem (see Section [1,
9.2] or [28, Theorem B.1]) to infer an inequality

E[σ(ΣG)] = E[ min
x∈Sm−1

max
y∈Sn−1

〈G x ,Σy〉]

= E[ min
x∈Sm−1

max
y∈Sn−1

Xx ,y ]

≥ E[ min
x∈Sm−1

max
y∈Sn−1

Yx ,y ]

= ‖Σ‖F −p
m.

In general, if σ1 6= 1, we replace Σ by Σ/‖Σ‖2 = Σ/‖A‖2,
and obtain the desired bound.

It would be interesting to characterize those matrices A
for which κ(PmQ A) ≈ 1 using a kind of restricted isometry
property, as for example in [29]. We leave a detailed
discussion of the probability distribution of κ(PmQ A) and
its ramifications for another occasion, and instead consider
a special case.

Example I.13. Consider again the matrix D from Exam-
ple I.1. For ρ ∈ {0.1,0.2,0.3,0.4} and n ranging from 1 to
400, m = bρnc, we plot the average condition number
κ(DG), where G ∈Rn×m is a Gaussian random matrix. As
n increases, this condition number appears to converge
to a constant value. We also plot the condition number
κ(D−1G), where D−1 is the upper triangular matrix with
non-zero entries −1. The different decay of the singular
values leads to condition number that increase with n.
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Fig. 2: Condition number κ(Gm D) for the matrix D from
Example I.1, and for its inverse. Gm is the projection to
the first m = bρnc coordinates of a Gaussian n ×n matrix
G

As we saw in Example I.1, the operator norm of D is
bounded by ‖σ‖∞ ≤ 2. The Frobenius norm, on the other
hand, is easily seen to be ‖D‖F = ‖σ‖2 =

p
2n −1. Setting

m = ρn, the condition number thus concentrates on a value
bounded by

p
2n −1+2

p
mp

2n −1−2
p

m
≈ 1+√

2ρ

1−√
2ρ

,

which is sensible if ρ < 1/2. We remark that, by construc-
tion, the bounds are not sharp, and also do not apply to
the inverse D−1.

1) A note on applicability: The previous discussion
has shown that the condition number bounds need only
consider the restricted condition number of a random
projection of a matrix, rather than the full matrix condition.
However, as the bounds are multiplicative, even small
values (for example, 2) lead to bounds for the the statistical
dimension of the transformed cone that may not be
practical. In addition, the statistical dimension of the
reference cone also determines how small the projected
dimension m is allowed to become, further limiting the
amount of potential reduction in condition. If, for example,
C is the descent cone of the `1-norm, then the resulting
bounds can only be used for the descent cones of the
`1-norm at very sparse vectors. The same applies when
considering, instead of the difference matrix D and its
inverse, diagonal matrices with various forms of decay in
the entries (this corresponds to a version of weighted `1

recovery). In these cases, the expected condition of the
randomly projected matrices can be improve dramatically,
but still not enough to give non-trivial bounds across all
sparsity levels. This limitation is inherent to the notion
of condition number: Condition bounds are, by definition,
pessimistic. In numerical analysis, they measure the worst
case sensitivity of a problem to perturbations in the input.
As such, it would be unrealistic to expect condition bounds
to be able to accurately locate the statistical dimension
of the descent cone of a composite regularizer, unless the
matrix D involved is close to orthogonal.

2) A note on distributions: The results presented are
based on integral geometry, and as such depend crucially
on Q being uniformly distributed in the orthogonal group
with the Haar measure. By known universality results [30],
the results are likely to carry over to other distributions.

In the context of this paper, however, we are neither
interested in actually preconditioning the matrices in-
volved, nor are we using them as a model for observation
or measurement matrices as is common in compressive
sensing. The randomization here is merely a technical tool
to improve bounds based on the condition number, and
the question of whether this is a “realistic” distribution is
of no concern.

E. Organisation of the paper

In Section II we introduce the setting of conically
restricted linear operators, the biconic feasibility problem,
and Renegar’s condition number in some detail. The
characterization of this condition number in the generality
presented here is new and of independent interest. Sec-
tion III derives the main condition bound. In Section IV we
change the scene and give a brief overview of conic integral
geometry, culminating in a proof of Theorem B in Section V.
Finally, in Section VI we translate the results to the setting
of convex regularizers. Appendix A presents some more
details on the biconic feasibility problem, while Appendix
B presents a general version of Gordon’s inequality. While
this version is more general than what is needed in this
paper, it may be of independent interest.

II. CONICALLY RESTRICTED LINEAR OPERATORS

In this section we discuss the restriction of a linear
operator to closed convex cones and discuss Renegar’s
condition number in some detail.

A. Restricted norm and restricted singular value

Before discussing conically restricted operators in more
detail, we record the following simple but useful lemma,
which generalizes the relation ker A = (im AT )⊥.

Lemma II.1. Let D ⊆ Rm be a closed convex cone. Then
the polar cone is the inverse image of the origin under
the projection map, D◦ := {z ∈Rm : 〈y , z〉 ≤ 0 for all y ∈ D} =
Π−1

D (0). Furthermore, if A ∈Rm×n , then

A−1(D◦) = (
AT D

)◦, (II.1)

where A−1(D◦) = {x ∈Rn : Ax ∈ D◦} denotes the inverse image
of D◦ under A.

Proof. For the first claim, note that ‖ΠD (z)‖ =
maxy∈D∩B m 〈z , y〉, and maxy∈D∩B m 〈z , y〉 = 0 is equivalent to
〈z , y〉 ≤ 0 for all y ∈ D, i.e., z ∈ D◦.

For (II.1), let x ∈ A−1(D◦) and y ∈ D. Then 〈x , AT y〉 =
〈Ax , y〉 ≤ 0, as Ax ∈ D◦. Therefore, A−1(D◦) ⊆ (AT D)◦. On
the other hand, if v ∈ (AT D)◦ and y ∈ D, then 〈Av , y〉 =
〈v , AT y〉 ≤ 0, so that Av ∈ D◦ and hence, (AT D)◦ ⊆ A−1(D◦).

Recall from (I.3) that for A ∈Rm×n , C ⊆Rn and D ⊆Rm

closed convex cones, the restricted norm and singular value
of A are defined by ‖A‖C→D := max{‖ΠD (Ax)‖ : x ∈C∩Sn−1}
and σC→D (A) := min{‖ΠD (Ax)‖ : x ∈C ∩Sn−1}, respectively.
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The following proposition provides geometric conditions
for the vanishing of the restricted norm or singular value.

Proposition II.2. Let A ∈ Rm×n , C ⊆ Rn and D ⊆ Rm be
closed convex cones. Then the restricted norm vanishes,
‖A‖C→D = 0, if and only if C ⊆ (AT D)◦. Furthermore, the
restricted singular value vanishes, σC→D (A) = 0, if and only
if C ∩ (AT D)◦ 6= {0}, which is equivalent to AC ∩D◦ 6= {0} or
ker A ∩C 6= {0}.

Proof. Using Lemma II.1 we have ΠD (Ax) = 0 if and only
if Ax ∈ D◦. This shows ‖A‖C→D = 0 if and only if Ax ∈ D◦
for all x ∈C ∩Sn−1, or equivalently, C ⊆ A−1(D◦) = (AT D)◦
by (II.1). The claim about the restricted singular value
follows similarly: σC→D (A) = 0 if and only if Ax ∈ D◦ for
some x ∈C ∩Sn−1, or equivalently, C ∩ A−1(D◦) 6= {0}. If x ∈
C ∩ A−1(D◦)\{0}, then either Ax is nonzero or x lies in the
kernel of A, which shows the second characterization.

It is easily seen that the restricted norm is symmetric
‖A‖C→D = ‖AT ‖D→C ,

‖A‖C→D = max
x∈C∩B m

max
y∈D∩B n

〈Ax , y〉

= max
y∈D∩B n

max
x∈C∩B m

〈AT y , x〉

= ‖AT ‖D→C .

(II.2)

Such a relation does not hold in general for the re-
stricted singular value. In fact, in Section II-B we will
see that, unless C = D = Rn , the minimum of σC→D (A)
and σD→C (−AT ) is always zero, if C and D have nonempty
interior, cf. (II.5). And if C or D is a linear subspace then
σD→C (−AT ) =σD→C (AT ).

Remark II.3. In the case C =Rn , D =Rm , with m ≥ n, one
can characterize the smallest singular value of A as the
inverse of the norm of the (Moore-Penrose) pseudoinverse
of A:

σ(A) = ‖A†‖−1.

Such a characterization does not hold in general for the
restricted singular value, i.e., in general one cannot write
σC→D (A) as ‖A†‖−1

D→C . Consider for example the case D =
Rm and C a circular cone of angle α around some center
p ∈ Sn−1. Both cones have nonempty interior, but letting α

go to zero, it is readily seen that σC→D (A) tends to ‖Ap‖,
while ‖A†‖D→C tends to ‖pT A†‖, which is in general not
equal to ‖Ap‖−1, unless AT A = In .

B. The biconic feasibility problem

The convex feasibility problem in the setting with two
nonzero closed convex cones C ⊆Rn , D ⊆Rm is given as:

∃x ∈C \ {0} s.t. Ax ∈ D◦, (P)

∃y ∈ D \ {0} s.t. − AT y ∈C ◦. (D)

Using Lemma II.1 and Proposition II.2 we obtain the
following characterizations of the primal feasible matrices
P (C ,D) := {A ∈Rm×n : (P) is feasible},

P (C ,D)
(II.1)= {

A ∈Rm×n : C ∩ (
AT D

)◦ 6= {0}
}

[Prop. II.2]= {A ∈Rm×n :σC→D (A) = 0}.
(II.3)

By symmetry, we obtain for the dual feasible matrices
D(C ,D) := {A ∈Rm×n : (D) is feasible},

D(C ,D) = {A ∈Rm×n : D ∩ (−AC )◦ 6= {0}}

= {A ∈Rm×n :σD→C (−AT ) = 0}.
(II.4)

In fact, we will see that σC→D (A) and σD→C (−AT ) can be
characterized as the distances to P (C ,D) and D(C ,D),
respectively. We defer the proofs for this section to
Appendix A.

In the following proposition we collect some general
properties of P (C ,D) and D(C ,D).

Proposition II.4. Let C ⊆Rn , D ⊆Rm be closed convex cones
with nonempty interior. Then
1) P (C ,D) and D(C ,D) are closed;
2) the union of these sets is given by

P (C ,D)∪D(C ,D) =
{

{A ∈Rm×n : det A = 0} C = D =Rn

Rm×n else;

3) the intersection P (C ,D)∩D(C ,D) is nonempty but has
Lebesgue measure zero.

Note that from (2) and the characterizations (II.3)
and (II.4) of P (C ,D) and D(C ,D), respectively, we obtain
for every A ∈ Rm×n: min{σC→D (A),σD→C (−AT )} = 0 or,
equivalently,

max
{
σC→D (A),σD→C (−AT )

}=σC→D (A)+σD→C (−AT ),
(II.5)

unless C = D =Rn .
In the following we simplify the notation by writing

P ,D instead of P (C ,D),D(C ,D). For the announced inter-
pretation of the restricted singular value as distance to
P ,D we introduce the following notation: for A ∈ Rm×n

define

dist(A,P ) := min{‖∆‖ : A +∆ ∈P }, dist(A,D) := min{‖∆‖ : A +∆ ∈D},

where as usual, the norm considered is the operator
norm. The proof of the following proposition, given in
Appendix A, follows along the lines of similar derivations
in the case with a cone and a linear subspace [31].

Proposition II.5. Let C ⊆Rn , D ⊆Rm nonzero closed convex
cones with nonempty interior. Then

dist(A,P ) =σC→D (A),

dist(A,D) =σD→C (−AT ).

We finish this section by considering the intersection
of P and D, which we denote by

Σ(C ,D) :=P (C ,D)∩D(C ,D),
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or simply Σ when the cones are clear from context. This
set is usually referred to as the set of ill-posed inputs.
As shown in Proposition II.4, the set of ill-posed inputs,
assuming C ⊆Rn and D ⊆Rm each have nonempty interior,
is a nonempty zero volume set. In the special case C =Rn ,
D =Rm ,

Σ(Rn ,Rm) = {rank deficient matrices in Rm×n}.

From (II.5) and Proposition II.5 we obtain, if (C ,D) 6=
(Rn ,Rn),

dist(A,Σ) = max
{

dist(A,P ),dist(A,D)
}

= dist(A,P )+dist(A,D).

The inverse distance to ill-posedness forms the heart of
Renegar’s condition number [32], [14]. We denote

RC ,D (A) := ‖A‖
dist(A,Σ(C ,D))

= min

{ ‖A‖
σC→D (A)

,
‖A‖

σD→C (−AT )

}
.

(II.6)

Furthermore, we abbreviate the special case D =Rm , which
corresponds to the classical feasibility problem, by the
notation

RC (A) :=RC ,Rm (A). (II.7)

Note that the usual matrix condition number is recovered
in the case C =Rn , D =Rm ,

RRn (A) =RRn ,Rm (A) = κ(A).

Another simple but useful property is the symmetry
RC ,D (A) = RD,C (−AT ). Finally, note that the restricted
singular value has the following monotonicity properties

C ⊆C ′ ⇒σC→D (A) ≥σC ′→D (A),

D ⊆ D ′ ⇒σC→D (A) ≤σC→D ′ (A).

This indicates that not necessarily RC (A) ≤RC ′ (A) if C ⊆C ′.
But in the case C ′ =Rn and m ≥ n this inequality does hold,
which we formulate in the following lemma.

Lemma II.6. Let C ⊆Rn closed convex cone with nonempty
interior and A ∈Rm×n with m ≥ n. Then

RC (A) ≤ κ(A). (II.8)

Proof. In the case C =Rn we have RRn (A) = κ(A). If C 6=Rn

then AC 6=Rm , as m ≥ n. It follows that Rm ∩ (−AC )◦ 6= {0},
and thus σRm→C (−AT ) = 0, cf. (II.4). Hence,

RC (A) = ‖A‖
σC→Rm (A)

≤ ‖A‖
σRn→Rm (A)

= κ(A).

To conclude this section, we state a useful bound on
the condition number of a product of matrices.

Lemma II.7. Let A ∈ Rm×n with m ≤ n and let B ∈ Rm×m

be nonsingular. Then

RC (B A) ≤ κ(B ) ·RC (A).

Proof. We need to bound the numerator from above and
the denominator from below in the definition of Regenar’s
condition number (II.6). For the norms we have ‖B A‖ ≤

‖B‖·‖A‖. If σC (B A) =σRm→C (−AT B T ) = 0, then clearly also
σC (A) = σRm→C (−AT ) = 0. Assume that σC (B A) 6= 0, and
let x ∈ C ∩Sn−1. Since B is non-singular, Ax 6= 0 and set
z = Ax/‖Ax‖. Then

‖B Ax‖ = ‖B z‖ ·‖Ax‖ ≥σ(B ) ·σC (Ax) 6= 0.

If σRm→C (−AT B T ) 6= 0, then if x ∈ Sm−1 and z = B T x/‖B T x‖,
then

‖ΠC (AT B T x)‖ = ‖ΠC (AT z)‖ ·‖B T x‖
≥σ(B ) ·σRm→C (−AT ) 6= 0.

The condition bound follows.

III. LINEAR IMAGES OF CONES

The norm of the projection is a special case of a cone-
restricted norm:

‖ΠC (g )‖ = ‖g‖R+→C , (III.1)

where on the right-hand side we interpret g ∈ Rn×1 as
linear map from R to Rn . In this section we relate these
norms for linear images of convex cones. The upper bound
in Theorem III.1 is a special case of a more general bound
for moment functionals [28, Proposition 3.9].

Theorem III.1. Let C ⊆ Rn be a closed convex cone, and
νr (C ) := E[‖ΠC (g )‖r ], with g ∈ Rn Gaussian. Then for A ∈
Rp×n , and r ≥ 1,

νr (AC ) ≤RC (A)rνr (C ). (III.2)

In particular, if p ≥ n and A has full rank, then

δ(C )

κ(A)2 ≤ δ(AC ) ≤ κ(A)2δ(C ). (III.3)

The proof of Theorem III.1 relies on the following
auxiliary result, Lemma III.2, and on a generalized form
of Slepian’s inequality, Theorem III.3.

Lemma III.2. Let C ⊆Rn be a closed convex cone and A ∈
Rp×n . Then

1

‖A‖ A(C ∩B n) ⊆ AC ∩B p ⊆ 1
λ A(C ∩B n), (III.4)

with λ := max
{
σC→Rp (A),σRp→C (−AT )

}
.

Proof. For the lower inclusion, note that any y ∈ A(C∩B n )
‖A‖

can be written as y = Ax
‖A‖ , with x ∈C∩B n . Since ‖Ax‖ ≤ ‖A‖,

we have y ∈ conv
{

0, Ax
‖Ax‖

}
⊂ (AC )∩B p . which was to be

shown.
For the upper inclusion, let λ1 := σC→Rp (A), λ2 :=

σRp→C (−AT ). We show in two steps that AC∩B p ⊆ 1
λ1

A(C∩
B n) if λ1 > 0 and AC ∩B p ⊆ 1

λ2
A(C ∩B n) if λ2 > 0.

(1) Let λ1 > 0. Since AC∩B p as well as A(C∩B n) contain
the origin, it suffices to show that AC ∩Sp−1 ⊆ 1

λ1
A(C ∩B n).

Every element in AC∩Sp−1 can be written as Ay0
‖Ay0‖ for some

y0 ∈ C ∩ Sn−1, and since σC→Rp (A) = miny∈C∩Sn−1 ‖Ay‖ ≤
‖Ay0‖, we obtain σC→Rp (A) Ay0

‖Ay0‖ ∈ conv{0, Ay0} ⊆ A(C ∩B n).
This shows AC ∩Sp−1 ⊆ 1

λ1
A(C ∩B n).
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(2) Let λ2 > 0. Recall from (II.4) that λ2 =σRp→C (−AT ) >
0 only if (AC )◦ = {0}, i.e., AC =Rp . Observe that

σRp→C (−AT ) = min
z∈Sp−1

max
y∈C∩B n

〈Ay , z〉
= max

{
r ≥ 0 : r B p ⊆ A(C ∩B n)

}
.

This shows B p ⊆ 1
λ2

A(C ∩B n) and thus finishes the proof.

The following generalization of Slepian’s inequality is
the special case of a generalized version of Gordon’s
inequality for Gaussian processes, [28, Theorem B.2],
when setting m = 1 in that theorem.

Theorem III.3. Let X j ,Y j , j ∈ {0, . . . ,n}, be centered Gaus-
sian random variables, and assume that for all j ,k ≥ 0 we
have

E |X j −Xk |2 ≤ E |Y j −Yk |2.

Then for any monotonically increasing convex function
f : R+ →R,

Emax
j

f+(X j −X0) ≤ Emax
j

f+(Y j −Y0), (III.5)

where f+(x) := f (x), if x ≥ 0, and f+(x) := f (0), if x ≤ 0.

Proof of Theorem III.1. Set λ :=
max

{
σC→Rp (A),σRp→C (−AT )

}
. For the upper bound,

note that by Lemma III.2 we have

E[‖ΠAC (g )‖r ] = E
[

max
x∈AC∩B p

〈g , x〉r
]
≤ 1

λr E

[
max

x∈C∩B n
〈g , Ax〉r

]
.

Let g be a standard Gaussian vector and consider the Gaus-
sian processes Xx = 〈g , Ax〉 and Yx = 〈g ,‖A‖x〉, indexed by
x ∈C ∩B n . For any x , y ∈C ∩B n we have

E(Xx −X y )2 = ‖Ax − Ay‖2 ≤ ‖‖A‖x −‖A‖y‖2 = E(Yx −Yy )2,

we get E(Xx − X y )2 ≤ E(Yx −Yy )2. From Theorem III.3 we
conclude that for any finite subset S ⊂C ∩B n containing
the origin,

E[max
x∈S

X r
x ] ≤ E[max

x∈S
Y r

x ].

By a standard compactness argument (see, e.g., [1, 8.6]),
this extends to the whole index set C ∩B n , which yields
the inequalities

νr (AC ) = E[‖ΠAC (g )‖r ]

≤ 1

λr E

[
max

x∈C∩B n
〈g , Ax〉r

]
≤ ‖A‖r

λr E

[
max

x∈C∩B n
〈g , x〉r

]
=RC (A)rνr (C ).

The upper bound in terms of the usual matrix condition
number follows courtesy of (II.8). The lower bound
proceeds along the lines, with the roles of ‖A‖ and λ

reversed. More specifically, from Lemma III.2 we get the
inequality

E[‖ΠAC (g )‖r ] ≥ 1

‖A‖r E

[
max

x∈C∩B n
〈g , Ax〉r

]
.

Define
σC−C (A) = min

z∈S(C−C )
‖Az‖,

where S(C−C ) := {(x−y)/‖x−y‖ : x ∈C∩B n , y ∈C∩B n , x 6= y}.
Consider the processes Yx = 〈g , Ax〉 and Xx = 〈g ,σC−C (A)x〉
indexed by x ∈C ∩B n . Then for distinct x , y ∈C ∩B n ,

E(Xx −X y )2 = ‖σC−C (A)x −σC−C (A)y‖2

≤ ‖Ax − Ay‖2 = E(Yx −Yy )2.

We can now apply Slepian’s inequality as we did for the
upper bound, and conclude that

E[‖ΠAC (g )‖r ] ≥ σC−C (A)r

‖A‖r νr (C ).

To finish the argument, note that we have σC−C (A) ≥σ(A).

IV. CONIC INTEGRAL GEOMETRY

In this section we use integral geometry to develop
the tools needed for deriving a preconditioned bound
in Theorem B. A comprehensive treatment of integral
geometry can be found in [33], while a self-contained
treatment in the setting of polyhedral cones, which uses
our language, is given in [34].

A. Intrinsic volumes

The theory of conic integral geometry is based on the
intrinsic volumes v0(C ), . . . , vn(C ) of a closed convex cone
C ⊆Rn . The intrinsic volumes form a discrete probability
distribution on {0, . . . ,n} that capture statistical properties
of the cone C . For a polyhedral cone C and 0 ≤ k ≤ n, the
intrinsic volumes can be defined as

vk (C ) =P{ΠC (g ) ∈ relint(F ), dimF = k},

where F is a face of C and relint denotes the relative
interior.

Example IV.1. Let C = L ⊆ Rn be a linear subspace of
dimension i . Then

vk (C ) =
{

1 if k = i ,

0 if k 6= i .

Example IV.2. Let C = Rn
≥0 be the non-negative orthant,

i.e., the cone consisting of points with non-negative
coordinates. A vector x projects orthogonally to a k-
dimensional face of C if and only if exactly k coordinates
are non-positive. By symmetry considerations and the
invariance of the Gaussian distribution under permutations
of the coordinates, it follows that

vk (Rn
≥0) =

(
n

k

)
2−n .

For non-polyhedral closed convex cones, the intrinsic
volumes can be defined by polyhedral approximation. To
avoid having to explicitly take care of upper summation
bounds in many formulas, we use the convention that
vk (C ) = 0 if C ⊆ Rn and k > n (that this is not just a
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convention follows from the fact that intrinsic volumes
are “intrinsic”, i.e., not dependent on the dimension of
the space in which C lives).

The following important properties of the intrinsic vol-
umes, which are easily verified in the setting of polyhedral
cones, will be used frequently:
(a) Orthogonal invariance. For an orthogonal transfor-

mation Q ∈O(n),

vk (QC ) = vk (C );

(b) Polarity.
vk (C ) = vn−k (C ◦);

(c) Product rule.

vk (C ×D) = ∑
i+ j=k

vi (C )v j (D). (IV.1)

In particular, if D = L is a linear subspace of dimension
j , then vk+ j (C ×L) = vk (C ).

(d) Gauss-Bonnet.

n∑
k=0

(−1)k vk (C ) =
{

0 if C is not a linear subspace,
1 else.

(IV.2)

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 3: Intrinsic volumes of the cone C = {x : x1 ≤ ·· · ≤ xn}.

B. The statistical dimension

In what follows it will be convenient to work with
reparametrizations of the intrinsic volumes, namely the
tail and half-tail functionals

tk (C ) = ∑
i≥0

vk+i (C ), hk (C ) = 2
∑

i≥0 even
vk+i (C ),

which are defined for 0 ≤ k ≤ n. Adding (or subtract-
ing) the Gauss-Bonnet relation (IV.2) to the identity∑

i≥0 vi (C ) = 1, we see that h0(C ) = h1(C ) = 1 if C is not
a linear subspace, so that the sequences 2v0(C ),2v2(C ), . . .
and 2v1(C ),2v3(C ), . . . are probability distributions in their
own right. Moreover, we have the interleaving property

ti+1(C ) ≤ hi (C ) ≤ ti (C ).

The intrinsic volumes can be recovered from the half-tail
functionals as

vi (C ) =
{

1
2 (hi (C )−hi+2(C )) for 0 ≤ i ≤ n −2,
1
2 hi (C ) else.

(IV.3)

An important summary parameter is the statistical dimen-
sion of a cone C , defined as the expected value of the
intrinsic volumes considered as probability distribution:

δ(C ) =
n∑

k=0
kvk (C ) = 1

2
h1(C )+ ∑

i≥2
hi (C ).

The statistical dimension coincides with the expected
squared norm of the projection of a Gaussian vector on
the cone, δ(C ) = E[‖ΠC (g )‖2

]
. Moreover, it differs from the

squared Gaussian width by at most 1,

w2(C ) ≤ δ(C ) ≤ w2(C )+1,

see [7, Proposition 10.2].
The statistical dimension reduces to the usual dimension

for linear subspaces, and also extends various properties
of the dimension to closed convex cones C ⊆Rn:
(a) Orthogonal invariance. For an orthogonal transfor-

mation Q ∈O(n),

δ(QC ) = δ(C );

(b) Complementarity.

δ(C )+δ(C ◦) = n; (IV.4)

This generalizes the relation dimL+dimL⊥ = n for a
linear subspace L ⊆Rn .

(c) Additivity.
δ(C ×D) = δ(C )+δ(D).

(d) Monotonicity.

δ(C ) ≤ δ(D) if C ⊆ D.

The analogy with linear subspaces will be taken further
when discussing concentration of intrinsic volumes, see
Section IV-D.

C. The kinematic formulas

The intrinsic volumes allow to study the properties of
random intersections of cones via the kinematic formulas.
A self-contained proof of these formulas for polyhedral
cones is given in [34, Section 5]. In what follows, when
we say that Q is drawn uniformly at random from the
orthogonal group O(d), we mean that it is drawn from the
Haar probability measure ν on O(n). This is the unique
regular Borel measure on O(n) that is left and right
invariant (ν(Q A) = ν(AQ) = ν(A) for Q ∈O(n) and a Borel
measurable A ⊆O(n)) and satisfies ν(O(n)) = 1. Moreover,
for measurable f : O(n) →R+, we write

EQ∈O(n)[ f (Q)] :=
∫

Q∈O(n)
f (Q) ν(dQ)

for the integral with respect to the Haar probability
measure, and we will occasionally omit the subscript
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Q ∈ O(n), or just write Q in the subscript, when there
is no ambiguity.

Theorem IV.3 (Kinematic Formula). Let C ,D ⊆ Rn be
polyhedral cones. Then, for Q ∈O(n) uniformly at random,
and k > 0,

E[vk (C ∩QD)] = vk+n(C ×D), E[v0(C ∩QD)] = t0(C ×D).

(IV.5)

If D = L is a linear subspace of dimension n −m, then

E[vk (C ∩QL)] = vk+m(C ), E[v0(C ∩QL)] =
m∑

j=0
v j (C ).

(IV.6)

Combining Theorem IV.3 with the Gauss-Bonnet rela-
tion (IV.2) yields the so-called Crofton formulas, which
we formulate in the following corollary. The intersection
probabilities are also know as Grassmann angles in the
literature (see [34, 2.33] for a discussion and references).

Corollary IV.4. Let C ,D ⊆Rn be polyhedral cones such that
not both of C and D are linear subspaces, and let L ⊂ Rn

be a linear subspace of dimension n−m. Then, for Q ∈O(n)
uniformly at random,

P{C ∩QD 6= 0} = hn+1(C ×D), P{C ∩QL 6= 0} = hm+1(C ).

Applying the polarity relation (C∩D)◦ =C ◦+D◦ (see [34,
Proposition 2.5]) to the kinematic formulas, we obtain a
polar version of the kinematic formula, for k > 0,

E[vn−k (C +QD)] = vn−k (C ×D), E[vn(C +QD)] = tn(C ×D).
(IV.7)

A convenient consequence of this polar form is a projec-
tion formula for intrinsic volumes, due to Glasauer [35].
Let Q ∈O(n) uniform at random and P ∈Rn×n a fixed or-
thogonal projection onto a linear subspace L of dimension
m. Then for 0 < k ≤ m,

E[vm−k (PQC )] = vm−k (C ), E[vm(PQC )] = tm(C ). (IV.8)

As we will see in Section IV-E, this results holds for any
full rank T ∈Rm×n , instead of just for projections P .

Remark IV.5. The astute reader may notice that the
projection PQC does not need to be a closed convex cone.
For random Q, however, the probability of this happening
can be shown to be zero.

D. Concentration of measure

It was shown in [7] (with a more streamlined and
improved derivation in [36]), that the intrinsic volumes
concentrate sharply around the statistical dimension. For a
closed convex cone C , let XC denote the discrete random
variable satisfying

P{XC = k} = vk (C ).

The following result is from [36].

Theorem IV.6. Let λ≥ 0. Then

P{|XC −δ(C )| ≥λ} ≤ 2exp

( −λ2/4

min{δ(C ),δ(C ◦)}+λ/3

)
.

Roughly speaking, the intrinsic volumes of a convex cone
in high dimensions approximate those of a linear subspace
of dimension δ(C ). The concentration result IV.6, used in
conjunction with the kinematic formula, gives rise to an
approximate kinematic formula, which in turn underlies
the phase transition results from [7]. We will only need
the following direct consequence of Theorem IV.6.

Corollary IV.7. Let η ∈ (0,1), let C be a closed convex cone,
and let 0 ≤ m ≤ n. Then

δ(C ) ≤ m −aη
p

m =⇒ tm ≤ η;

δ(C ) ≥ m +aη
p

m =⇒ tm ≥ 1−η,

with aη := 2
√

log(2/η).

Applying the above to the statistical dimension, we get
the following expression.

Corollary IV.8. Let η ∈ (0,1) and assume that m ≥ δ(C )+
aη

p
m, with aη = 2

√
log(2/η). Then

δ(C )− (n −m)η≤ EQ [δ(PQC )] ≤ δ(C ).

Proof. A direct application of the projection formulas (IV.8)
and the definition of the statistical dimension shows that

EQ [δ(PQC )] = δ(C )−
n−m∑
k=1

kvk+m(C ).

The bound then follows by bounding the right-hand side
in a straight-forward way and applying Corollary IV.7.

E. The TQC Lemma

The following generalization of the projection for-
mulas (IV.8), first observed by Mike McCoy and Joel
Tropp, may at first sight look surprising. While it can be
deduced from general integral-geometric considerations
(see, for example, [37]), we include a proof because it is
illustrative.

Lemma IV.9. Let T ∈ Rm×n be of full rank. Then for 0 ≤
k < m,

E[vk (T QC )] = vk (C ), E[vm(T QC )] = tm(C ) (IV.9)

Proof. In view of (IV.3), it suffices to show (IV.9) for the
half-tail functionals h j instead of the intrinsic volumes v j .
Let L ⊂Rn be a linear subspace of dimension dimL = k ≤ m.
From Proposition II.2 it follows that

QC ∩T −1L 6= {0} ⇐⇒ T QC ∩L 6= {0} or kerT ∩QC 6= {0},

where in this case, as before, T −1L denotes the pre-image
of L under T . Denoting by P the orthogonal projection
onto the complement (kerT )⊥, we thus get

PQC ∩ (T −1L∩ (kerT )⊥) 6= {0} ⇐⇒ T QC ∩L 6= {0},
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and taking probabilities,

P
{

PQC ∩ (T −1L∩ (kerT )⊥) 6= {0}
}=P{T QC ∩L 6= {0}}.

(IV.10)
To compute the probability on the left, let Q0 is a random
orthogonal transformation of the space (kerT )⊥. Restricting
to (kerT )⊥ as ambient space,

PQ
{

PQC ∩ (T −1L∩ (kerT )⊥) 6= {0}
}

=PQ
{

PQC ∩Q0(T −1L∩ (kerT )⊥) 6= {0}
}

= EQ0 PQ
{

PQC ∩Q0(T −1L∩ (kerT )⊥) 6= {0}
}

(1)= EQ PQ0

{
PQC ∩Q0(T −1L∩ (kerT )⊥) 6= {0}

}
(2)= EQ [hm−k+1(PQC )]

where for (1) we summoned Fubini on the representation
of the probability as expectation of an indicator variable
and for (2) the Crofton formula IV.4 with (kerT )⊥ as
ambient space. A similar argument on the right-hand side
of (IV.10) shows that

PQ {T QC ∩L 6= {0}} = EQ [hm−k+1(T QC )].

In summary, we have for shown that EQ [hm−k+1(T QC )] =
EQ [hm−k+1(PQC )] for 0 ≤ k ≤ m, and hence also
EQ [vi (T QC )] = EQ [vi (PQC )] for 0 ≤ i ≤ m. The claim now
follows by applying the projection formula (IV.8).

As with the case where T is a projection, applying the
above to the statistical dimension, we get the following
expression.

Corollary IV.10. Let η ∈ (0,1) and assume that m ≥ δ(C )+
aη

p
m, with aη = 2

√
log(2/η). Then under the conditions of

Lemma IV.9, we have

δ(C )− (n −m)η≤ EQ [δ(T QC )] ≤ δ(C )−η.

It remains to be seen whether the fact that the main
preconditionining results can be formulated with an
arbitrary matrix T , rather than just a projection P , can be
of use.

V. IMPROVED CONDITION BOUNDS

In this section we derive the improved condition number
bounds on the statistical dimension. We first derive
Corollary I.4, restated here as a proposition, which is
a simple consequence of the behaviour of the statistical
dimension under polarity.

Proposition V.1. Let C ⊆Rn be a closed convex cone, and
δ(C ) the statistical dimension of C . Then for A ∈Rn×n of full
rank,

δ(AC ) ≤ κ(A)−2 ·δ(C )+ (
1−κ(A)−2) ·n.

Proof. We have

δ(AC )
(1)= n −δ(A−T C ◦)
(2)≤ n −κ(A)−2δ(C ◦)
(3)= n −κ(A)−2(n −δ(C ))

= κ(A)−2 ·δ(C )+ (
1−κ(A)−2) ·n,

where for (1) we used (IV.4) and Lemma II.1, for (2) we
used Theorem A, and for (3) we used (IV.4) again.

We conclude this section by proving Theorem B, which
we restate for convenience.

Theorem V.2. Let C ⊆ Rn be a closed convex cone and
A ∈Rp×n have full rank. Let η ∈ (0,1) and assume that m ≥
δ(C )+2

√
log(2/η)m. Then

δ(AC ) ≤R
2
C ,m(A) ·δ(C )+ (n −m)η.

For the matrix condition number,

δ(AC ) ≤ κ2
m(A) ·δ(C )+ (n −m)η. (V.1)

Proof. The upper bound follows from

δ(AC ) ≤ EQ [δ(PmQ AC )]+ (n −m)η

≤ EQ

[
RC (PmQ A)2

]
δ(C )+ (n −m)η,

where we used Theorem A for the second inequality. The
upper bound in terms for the matrix condition number
follows as in the proof of Theorem A.

VI. APPLICATIONS

In this section we apply the results derived for convex
cones to the setting of convex regularizers. To give this
application some context, we briefly review some of the
theory.

A. Convex regularization, subdifferentials and the descent
cone

In practical applications the cones of interest often arise
as cones generated by the subgradient of a proper convex
function f : Rn → R∪ {∞}. The exact form of the general
convex regularization problem is

minimize f (x) subject to Ωx = b, (VI.1)

while the noisy form is

minimize f (x) subject to ‖Ωx −b‖2 ≤ ε. (VI.2)

Interchanging the role of the function f and the residual,
we get the generalized LASSO

minimize ‖Ωx −b‖2 subject to f (x) ≤ τ. (VI.3)

Finally, we have the Lagrangian form,

minimize ‖Ωx −b‖2
2 +λ f (x). (VI.4)

These last three problems are, in fact, equivalent (see [1,
Chapter 3] for a concise derivation in the case f (x) = ‖x‖1).
The practical problem consists in effectively finding the
parameters involved.

The first-order optimality condition states that x̂ is a
unique solution of (VI.1) if and only if

∃y 6= 0 : ΩT y ∈ ∂ f (x̂), (VI.5)

where ∂ f (x̂) denotes the subdifferential of f at x̂, i.e., the
set

∂ f (x̂) = {z ∈Rn : f (x̂ + z) ≥ f (x̂)+〈z , x〉}.
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If f is differentiable at x̂, then of course the subdifferential
contains only the gradient of f at x̂, and the vector y
in (VI.5) consists of the Lagrange multipliers.

Example VI.1. If f is a norm, with dual norm f ◦, then
the subdifferential of f at x̂ is

∂ f (x̂) =
{

{z ∈Rn : f ◦(z) = 1,〈z , x̂〉 = f (x̂)} x̂ 6= 0

{z ∈Rn : f ◦(z) ≤ 1} x̂ = 0.

Example VI.2. For the `1-norm at an s-sparse vector x̂,

∂‖x̂‖1 = {z ∈Rn : ‖z‖∞ = 1,〈z , x̂〉 = ‖x̂‖1},

or more explicitly,

∂‖x̂‖1 = {z ∈Rn : zi = sign (x̂i ) if x̂i 6= 0, z j ∈ [−1,1] if x̂ j = 0}.
(VI.6)

The descent cone of f at x̂ is defined as

D( f , x̂) = ⋃
τ>0

{
y ∈Rn : f (x̂ +τy) ≤ f (x̂)

}
.

The convex cone generated by the subdifferential of f at
x̂ is the closure of the polar cone of D( f , x̂),

cone
(
∂ f (x̂)

)=D( f , x̂)◦, (VI.7)

Condition (VI.5) is therefore equivalent to

kerΩ∩D( f , x̂) = {0},

namely, that the kernel of Ω does not intersect the descent
cone nontrivially.

An important class of regularizers are of the form
f (x) := g (Ax)+h(B x), with A and B linear maps. It follows
from [38, Theorems 23.8, 23.9] that the subdifferential is

∂ f (x) = AT ∂g (Ax)+B T ∂h(B x).

Example VI.3. In the `1-analysis, or cosparse, model, one
considers regularizers of the form ‖D x‖1, with D ∈ Rp×n

with typically p ≥ n. The interest is on vectors for which
D x0 is s-sparse. If D has full rank and x0 6= 0, then s ≥
p −n +1, as otherwise D would have a n ×n minor that
maps x0 to 0. The focus in this model has traditionally
been on the cosupport, i.e., the location of the entries
of D x0 that vanish. A typical example would be a shift
invariant wavelet transform. The subdifferential of ‖D · ‖1

is given by DT ∂‖D x0‖1. For invertible D, combining (VI.7)
with Lemma II.1 we get,

D(‖D · ‖1, x0) = D−1D(‖ ·‖1,D x0). (VI.8)

When working with the subdifferential cone rather than the
descent cone, we don’t need the invertibility requirement.

Example VI.4 (Finite differences). Let x ∈Rn and let

D =



−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1
0 0 0 · · · 0 −1


(VI.9)

be the discrete finite difference matrix. Thus

D x = (x2 −x1, x3 −x2, . . . , xd −xd−1,−xd )T .

Define g (x) := f (D x). Then for a fixed x̂, the subdifferential
is given by

∂g (x̂) = DT ∂ f (D x̂).

In the special case where f is the `1-norm and D x̂ is
s-sparse with support I ⊂ [n],

∂g (x̂) = {DT z : ‖z‖∞ = 1,〈z ,D x̂〉 = ‖D x̂‖1}.

One can think of such a vector x̂ as a signal with sparse
gradient.

Example VI.5. (Weighted `1 norm). Let ω ∈Rn be a vector
of weights and define the weighted `1-norm

‖x‖ω,1 =
n∑

j=1
ω j |x j |.

By extension from the `1 example, we have

∂‖x̂‖ω,1 = {z ∈Rn : zi =ωi sign (x̂i ) if x̂i 6= 0, z j ∈ [−ω j ,ω j ] if x̂ j = 0}

= diag(ω) ∂‖x̂‖1.

This example becomes interesting when considering
weighted s-sparse vectors, that is, vectors such that

‖x‖ω,0 =
∑

x j 6=0
ω2

j = s.

The use of composite regularizers to recover simultane-
ously structured models was studied in [39].

B. Performance bounds in convex regularization

As mentioned in the introduction, computing the sta-
tistical dimension of convex regularizers is in general a
difficult problem, with only few cases allowing for closed-
form expressions. Using the condition bounds for the
statistical dimension of linear images of convex cones, and
translating these to the setting of convex regularizers, we
get the corresponding statements in Corollary I.2, which
we restate here.

Corollary VI.6. Let f (x) = g (D x), where g is a proper
convex function and let D ∈Rn×n be non-singular. Then

δ( f , x0) ≤RD(g ,D x0)
(
D−1) ·δ(g ,D x0).

In particular,

δ(g ,D x0)

κ(D)2 ≤ δ( f , x0) ≤ κ(D)2 ·δ(g ,D x0).

Proof. Let C =D(g ,D x0). Then from (VI.8) we get that

δ( f , x0) = δ(D−1C ).

The claims then follows from Theorem A and Proposi-
tion I.4, noting that κ(D−1) = κ(D).

For convenience, we also recall the statement of Propo-
sition I.6.
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Proposition VI.7. Let D ∈ Rp×n , p ≥ n, be such that all
n×n minors of D have full rank, and Ω ∈Rm×n with m ≤ n.
Consider the problem

minimize ‖D x‖1 subject to Ωx = b. (VI.10)

Let x0 6= 0 be such that Ωx0 = b, and such that y0 = D x0

is s-sparse with support I ⊂ [p]. Let C ∈ Rn×p−s+1 be a
matrix whose first p − s columns consist of the columns
of DT that are indexed by I c , and the last column is
cp−s+1 = 1p

s

∑
j∈I sign((y0) j )d j , where the vectors d j denote

the columns of DT . Then

δ(‖D ·‖1, x0) ≤ κ(C )−2 ·δ(‖·‖1,D x0)+ (
1− (p/n)κ(C )−2) ·n

In particular, given η ∈ (0,1), Problem (VI.10) with Gaussian
measurement matrix succeeds with probability 1−η if

m ≥ κ(C )−2 ·δ(‖·‖1,D x0)+ (
1− (p/n)κ(C )−2) ·n +aη

p
n,

Proof. Set f (x) = ‖D x‖1 with D ∈ Rp×n and p ≥ n. Let x0

be given such that y0 = D x0 is s-sparse with support I .
Assuming that all the n ×n minors of D has rank n and
x0 6= 0, y0 has at most n −1 zero entries, and the support
therefore satisfies s ≥ p−n+1. As shown in Section VI, the
descent cone D( f , x0) is polar to the subdifferential cone
cone(∂ f (x0)). Moreover, the statistical dimension satisfies
δ(C )+δ(C ◦) = n, so that

δ(D( f , x0)) = n −δ(cone(∂ f (x0))) = n −δ(DT cone(∂‖y0‖1)).

The subdifferential of the 1-norm is given by (see (VI.6))

∂‖y0‖1 = {z ∈Rp : zi = sign ((y0)i ) if i ∈ I , z j ∈ [−1,1] if j 6∈ I },

and we denote by C := cone(∂‖y0‖1) the cone generated
by this subdifferential.

6 MARTIN LOTZ

Theorem 3.1. [1] Let η ∈ (0, 1), x̂ ∈ Rd and f : Rd → R ∪ {∞} a proper convex function. Let
A ∈ Rm×d by a standard Gaussian random matrix and b := Ax̂ for some x̂ ∈ Rd. Then

m ≤ δ(f, x̂)− aη
√
d =⇒ (1.1) recovers x̂ with probability ≤ η;

m ≥ δ(f, x̂) + aη
√
d =⇒ (1.1) recovers x̂ with probability ≥ 1− η,

with aη =
√

8 log(4/η).

The squared Gaussian width enters into estimates of the smallest restricted singular value, see for
example []. IfG ∈ Rm×d is a Gaussian matrix, then

P{σC(G) ≤ Em − w(C)− t} ≤ e−t2/2,
where Em =

√
2Γ((m+ 1)/2)/Γ(m/2). Other ways in which the Gaussian width enters are...

The following result provides a convenient way to estimate the statistical dimension of a regularizer.
The upper bound was used by Stojnic and others.

Lemma 3.2.
δ(f,x0) ≤ inf

τ>0

[
Edist2(g, τ∂f(x̂)

]
.

Todo: criteria for the error in this estimate.

4. SOME INTEGRAL GEOMETRY

For the following section, in particular the statement of the TQC Lemma, it will be convenient to
have some results from spherical/conic integral geometry at hand. References are [5] or the survey [] for
polyhedral cones. Crofton’s formula, intersection and projection formulas.

5. THE SUBDIFFERENTIAL CONE OF THE `1-NORM, REVISITED

Recall that the subdifferential cone C of the `1-norm at an s-sparse vector x̂ is the cone generated by
the subdifferential

∂‖x̂‖`1 = {z ∈ Rd : zi = sign (x̂i) if i ∈ supp(x̂), zj ∈ [−1, 1] if i 6∈ supp(x̂)}.
Geometrically, the subdifferential cone is spanned by a (d− s)-dimensional face of a hypercube, as shown
in Figure 1.

√
s Rp−s+1

C

1

FIGURE 1. Cone spanned by (d− s)-face of d-dimensional hypercube

The cone C is the conic hull of the 2d−s vectors

{z ∈ Rd : zi = sign (x̂i) if i ∈ supp(x̂), zj ∈ {−1, 1} if i 6∈ supp(x̂)}.
The cone C has (

d− s
k − 1

)
2d−s−k+1

Fig. 4: Cone spanned by (p − s)-face of d-dimensional
hypercube

It follows that the cone generated by this subdifferential
is contained in a subspace L of dimension dimL = p−s+1 ≤
n. An orthonormal basis of this subspace is given by the
columns of a matrix B = [b1, . . . ,bp−s+1], where for 1 ≤ i ≤
p − s, the bi are the unit vectors e j for j ∈ I c and bp−s+1 =

1p
s

∑
j∈I sign((y0) j )e j . A moment’s thought shows that C =

BC̃ , where C̃ ⊂ Rp−s+1 is the cone in Rp−s+1 spanned by
vectors of the form ±ei +

p
sep−s+1 for 1 ≤ i ≤ n −p (see

Figure 4). By the orthogonal invariance and the embedding
invariance of the statistical dimension (see Properties (a)
and (c) in Section IV-B), we get δ(C ) = δ(C̃ ). With this
setup, we have

DT C = DT BC̃ =CC̃ ,

with the matrix C := DT B ∈Rn×(p−s+1) is then given as in
the statement of the theorem. Applying the bounds from
Theorem A we thus get

δ(D( f , x0)) = n −δ(DT C )

= n −δ(CC̃ )

≤ n −κ−2(C )δ(C̃ )

= n −κ−2(C )δ(C )

= κ(C )−2 ·δ(‖·‖1,D x0)+ (
1− (p/n)κ(C )−2) ·n,

as was to be shown.

C. A note on the Stojnic method

A popular method [7, Recipe 4.1], going back to
Stojnic [5] and generalized in [6], is to approximate the
statistical dimension of the descent cone D( f , x0) by the
expected value

inf
τ≥0

E[dist2(g ,τ ·∂ f (x))]. (VI.11)

This approximation, however, does not work for all regular-
izers f for two reasons: it my not be tight, and computing
the quantity may not be feasible. In [7, Theorem 4.1], the
following error bound is derived:

0 ≤ inf
τ≥0

E[dist2(g ,τ ·∂ f (x))]−δ( f , x0) ≤ 2sup{‖s‖ : s ∈ ∂ f (x)}

f (x/‖x‖)
.

(VI.12)
In [19], the error (VI.12) was analyzed in the case of

TV minimization and it was shown to be bounded, so that
the approximation is asymptotically tight. If f (x) = ‖D x‖1

and assuming that y0 = D x0 is s-sparse, we can express
this bound in terms of the condition number of D. First
note that the subdifferential of the 1-norm is contained in
the unit cube:

∂‖y0‖1 ⊂ {z : ‖z‖∞ ≤ 1}.

Using the expression for the subdifferential of g at
x0, namely ∂g (x0) = DT ∂‖y0‖1, the error bound (VI.12)
translates to

2sup{‖x‖2 : x ∈ DT ∂‖y0‖1}

‖y0‖1/‖x0‖2
≤ 2

‖y0‖1/‖x0‖2
sup

‖x‖∞≤1
‖DT x‖.

Using the norm inequality ‖x‖2 ≤ p
n‖x‖∞, we get the

bound

sup
‖x‖∞≤1

‖DT x‖2 ≤
p

n sup
‖x‖2≤1

‖DT x‖2 =
p

n‖D‖2.

On the other hand, by the norm inequality ‖x‖2 ≤ ‖x‖1 we
have that

‖y0‖1

‖x0‖2
= ‖D x0‖1

‖x0‖2
≥ ‖D x0‖2

‖x0‖2
≥σ(D).

We therefore get the condition bound

0 ≤ inf
τ≥0

E[dist2(g ,τ ·∂ f (x))]−δ( f , x0) ≤p
nκ(D).

From this we see that we can guarantee good bounds on
the relative statistical dimension δ( f , x0)/n if the condition



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, SEPTEMBER 2019 15

number of D is small. The bound can actually be improved
when considering that we only need to maximize and
minimize over certain subspaces in the definition of the
singular values.

While this bound is not sharp (the derivation makes
use of norm inequalities), it is enlightening as it gives
sufficient conditions for the applicability of Bound (VI.12)
in terms of the condition number of A. It remains to be seen
whether randomized preconditioning can be incorporated
into this bound, and therefore whether this approach can
lead to bounds that would rival those derived in [19].

APPENDIX A
THE BICONIC FEASIBILITY PROBLEM - PROOFS

In this appendix we provide the proofs for Section II-B.
Recall that for C ⊆ Rn , D ⊆ Rm closed convex cones, the
biconic feasibility problem is given by

∃x ∈C \ {0} s.t. Ax ∈ D◦, (P)

∃y ∈ D \ {0} s.t. − AT y ∈C ◦, (D)

and the sets of primal feasible and dual feasible instances
can be characterized by

P (C ,D) = {
A ∈Rm×n : C ∩ (

AT D
)◦ 6= {0}

}
= {A ∈Rm×n :σC→D (A) = 0},

D(C ,D) = {A ∈Rm×n : D ∩ (−AC )◦ 6= {0}}

= {A ∈Rm×n :σD→C (−AT ) = 0},

respectively, cf. (II.3)/(II.4). The proof of Proposition II.4
uses the following generalization of Farkas’ Lemma.

Lemma A.1. Let C ,C̃ ⊆ Rn be closed convex cones with
int(C ) 6= ;. Then

int(C )∩ C̃ =; ⇐⇒ C ◦∩ (−C̃ ◦) 6= {0}. (A.1)

Proof. If int(C ) ∩ C̃ = ;, then there exists a separating
hyperplane H = v⊥, v 6= 0, so that 〈v , x〉 ≤ 0 for all x ∈ C
and 〈v , y〉 ≥ 0 for all y ∈ C̃ . But this means v ∈C ◦∩ (−C̃ ◦).
On the other hand, if x ∈ int(C )∩ C̃ then only in the case
C = Rn , for which the claim is trivial, can x = 0. If x 6= 0,
then C ◦ \ {0} lies in the open half-space {v : 〈v , x〉 < 0} and
−C̃ ◦ lies in the closed half-space {v : 〈v , x〉 ≥ 0}, and thus
C ◦∩ (−C̃ ◦) = {0}.

For the proof of the third claim in Proposition II.4 we
also need the following well-known convex geometric
lemma; a proof can be found, for example, in [33, proof
of Thm. 6.5.6]. We say that two cones C ,D ⊆ Rn , with
int(C ) 6= ;, touch if C ∩D 6= {0} but int(C )∩D =;.

Lemma A.2. Let C ,D ⊆Rn closed convex cones with int(C ) 6=
;. If Q ∈ O(n) uniformly at random, then the randomly
rotated cone QD almost surely does not touch C .

Proof of Proposition II.4. (1) The sets P (C ,D) and D(C ,D)
are closed as they are preimages of the closed set {0}
under continuous functions, c.f. (II.3)/(II.4). Indeed, for
any x, the function A 7→ ‖ΠD (Ax)‖ is continuous, and as a

minimum of such functions over the compact set C ∩Sm−1,
it follows that σC→D (A) is continuous. Hence, P (C ,D) =
{A ∈ Rn×m : σC→D (A) = 0} is closed. The same argument
applies to D(C ,D).

(2) For the claim about the union of the sets P (C ,D)
and D(C ,D) we first consider the case C 6= Rn , so that
0 6∈ int(C ). Using the generalized Farkas’ Lemma A.1, we
obtain

A 6∈P (C ,D) ⇐⇒ C ∩ (
AT D

)◦ = {0}

⇒ int(C )∩ (
AT D

)◦ =;
(A.1)=⇒ C ◦∩ (−AT D) 6= {0} ⇒ A ∈D(C ,D).

This shows P (C ,D) ∪ D(C ,D) = Rn×m . For D 6= Rn the
argument is the same. For C =Rn and D =Rm:

P (Rn ,Rm) = {
A ∈Rm×n : ker A 6= {0}

}
=

{
{rank deficient matrices} if n ≤ m

Rm×n if n > m,

D(Rn ,Rm) = {
A ∈Rm×n : ker AT 6= {0}

}
=

{
Rm×n if n < m

{rank deficient matrices} if n ≥ m.

In particular,this shows P (Rn ,Rn) ∪ D(Rn ,Rn) =
{rank deficient matrices}.

(3) If (C ,D) = (Rn ,Rm) then by the characterization
above Σ(Rn ,Rm) consists of the rank deficient matrices,
which is a nonempty set. If (C ,D) 6= (Rn ,Rn), then the union
of the closed sets P (C ,D) and D(C ,D) equals Rm×n , which
is an irreducible topological space, so that their intersection
Σ(C ,D) =P (C ,D)∩D(C ,D) must be nonempty.

As for the claim about the Lebesgue measure of Σ(C ,D),
we may use the symmetry between (P) and (D) to assume
without loss of generality m ≤ n. If A ∈Rm×n has full rank,
then AC has nonempty interior and from Proposition II.2
and Farkas’ Lemma,

σC→D (A) = 0 ⇐⇒ C ∩ (AT D)◦ 6= {0}

⇐⇒ AC ∩D◦ 6= {0} or ker A ∩C 6= {0},

σD→C (−AT ) = 0 ⇐⇒ D ∩ (−AC )◦ 6= {0}
(A.1)⇐⇒ D◦∩ int(AC ) =;.

Note that if Ax = 0 for some x ∈ int(C ), then A, being a
continuous surjection, maps an open neighborhood of x
to an open neighborhood of the origin, so that AC =Rm .
Hence, D ∩ (−AC )◦ 6= {0} implies ker A ∩ int(C ) = ;, since
otherwise AC =Rm , i.e., (AC )◦ = {0}.

If A ∈Σ(C ,D), i.e., σC→D (A) =σD→C (−AT ) = 0, and if A
has full rank, then AC∩D◦ 6= {0} implies that D◦ touches AC ,
while ker A ∩C 6= {0} implies that ker A touches C . Hence,
if A =G Gaussian, then G has almost surely full rank, and
Lemma A.2 implies that both touching events have zero
probability, so that almost surely G 6∈Σ(C ,D).

We next provide the proof for the characterization of
the restricted singular values as distances to the primal
and dual feasible sets. From now on we use again the
short-hand notation P :=P (C ,D) and D :=D(C ,D).
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Proof of Proposition II.5. By symmetry, it suffices to show
that dist(A,P ) = σC→D (A). If A ∈ P then dist(A,P ) = 0 =
σC→D (A), so assume that A 6∈P . Let ∆A ∈Rm×n such that
A+∆A ∈P and dist(A,P ) = ‖∆A‖. Since A+∆A ∈P , there
exists x0 ∈C ∩Sn−1 such that w0 := (A+∆A)x0 ∈ D◦. For all
y ∈ D

0 ≥ 〈w0, y〉 = 〈(A +∆A)x0, y〉 = 〈Ax0, y〉−〈−∆Ax0, y〉.
If y0 ∈ B m ∩D is such that ‖ΠD (Ax0)‖ = 〈Ax0, y0〉, then

dist(A,P ) = ‖∆A‖ ≥ ‖∆Ax0‖ ≥ ‖ΠD (−∆Ax0)‖
= max

y∈B m∩D
〈−∆Ax0, y〉

≥ 〈−∆Ax0, y0〉 ≥ 〈Ax0, y0〉 = ‖ΠD (Ax0)‖
≥ min

x∈C∩Sn−1
‖ΠD (Ax)‖ =σC→D (A).

For the reverse inequality dist(A,P ) ≤σC→D (A) we need
to construct a perturbation ∆A such that A +∆A ∈P and
‖∆A‖ ≤ σC→D (A). Let x0 ∈ C ∩Sn−1 and y0 ∈ D ∩B m such
that

σC→D (A) = min
x∈C∩Sn−1

max
y∈D∩B m

〈Ax , y〉 = 〈Ax0, y0〉.

Since A 6∈P we have σC→D (A) > 0, which implies ‖y0‖ = 1,
i.e., y0 ∈ D ∩Sm−1. We define

∆A :=−y0 y T
0 A.

Note that

‖∆A‖ = ‖AT y0‖ ≤ 〈AT y0, x0〉 =σC→D (A).

Furthermore,

(A +∆A)x0 = Ax0 − y0 y T
0 Ax0

= Ax0 −〈Ax0, y0〉y0

= Ax0 −ΠD (Ax0) =ΠD◦ (Ax0).

So x0 ∈C \ {0} and (A +∆A)x0 ∈ D◦, which shows that A +
∆A ∈P , and hence dist(A,P ) ≤ ‖∆A‖ ≤σC→D (A).

ACKNOWLEDGMENT

The authors would like to thank Mike McCoy and Joel
Tropp for fruitful discussions on integral geometry, and
in particular for suggesting the TQC Lemma, and Armin
Eftekhari for helpful discussions on random projections.
I would also like to thank the anonymous referees for
valuable feedback and suggestions.

REFERENCES

[1] S. Foucart and H. Rauhut, A mathematical introduction to compres-
sive sensing, ser. Applied and Numerical Harmonic Analysis. Basel:
Birkhäuser, 2013, vol. 336.

[2] M. Elad, P. Milanfar, and R. Rubinstein, “Analysis versus synthesis
in signal priors,” Inverse problems, vol. 23, no. 3, p. 947, 2007.

[3] E. Candes, Y. Eldar, D. Needell, and P. Randall, “Compressed
sensing with coherent and redundant dictionaries,” Applied and
Computational Harmonic Analysis, vol. 31, no. 1, pp. 59–73, 2011.

[4] S. Nam, M. E. Davies, M. Elad, and R. Gribonval, “The
cosparse analysis model and algorithms,” Appl. Comput. Harmon.
Anal., vol. 34, no. 1, pp. 30–56, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.acha.2012.03.006

[5] M. Stojnic, “Various thresholds for `1-optimization in compressed
sensing,” preprint, 2009, arXiv:0907.3666.

[6] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The
convex geometry of linear inverse problems,” Found. Comput.
Math., vol. 12, no. 6, pp. 805–849, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10208-012-9135-7

[7] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp, “Living on
the edge: phase transitions in convex programs with random data,”
Information and Inference, vol. 3, no. 3, pp. 224–294, 2014.

[8] D. L. Donoho and J. Tanner, “Counting faces of randomly projected
polytopes when the projection radically lowers dimension,” J. Amer.
Math. Soc., vol. 22, no. 1, pp. 1–53, 2009. [Online]. Available:
http://dx.doi.org/10.1090/S0894-0347-08-00600-0

[9] S. Oymak, C. Thrampoulidis, and B. Hassibi, “The squared-error of
generalized lasso: A precise analysis,” in Communication, Control,
and Computing (Allerton), 2013 51st Annual Allerton Conference
on. IEEE, 2013, pp. 1002–1009.

[10] D. L. Donoho, I. Johnstone, and A. Montanari, “Accurate prediction
of phase transitions in compressed sensing via a connection to
minimax denoising,” IEEE Trans. Inform. Theory, vol. 59, no. 6, pp.
3396–3433, June 2013.

[11] S. Oymak and B. Hassibi, “Sharp MSE bounds for proximal
denoising,” Foundations of Computational Mathematics, vol. 16,
no. 4, pp. 965–1029, 2016.

[12] V. Chandrasekaran and M. I. Jordan, “Computational and statis-
tical tradeoffs via convex relaxation,” Proceedings of the National
Academy of Sciences, vol. 110, no. 13, pp. E1181–E1190, 2013.

[13] Q. Han, T. Wang, S. Chatterjee, and R. J. Samworth, “Isotonic
regression in general dimensions,” arXiv preprint arXiv:1708.09468,
2017.

[14] J. Renegar, “Incorporating condition measures into the complexity
theory of linear programming,” SIAM J. Optim., vol. 5, no. 3, pp.
506–524, 1995.

[15] J. C. Vera, J. C. Rivera, J. Peña, and Y. Hui, “A primal-
dual symmetric relaxation for homogeneous conic systems,” J.
Complexity, vol. 23, no. 2, pp. 245–261, 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.jco.2007.01.002

[16] P. Bürgisser and F. Cucker, Condition: The geometry of numerical
algorithms, ser. Grundlehren der Mathematischen Wissenschaften.
Springer Verlag, 2013, no. 349.

[17] V. Roulet, N. Boumal, and A. d’Aspremont, “Computational com-
plexity versus statistical performance on sparse recovery problems,”
arXiv preprint arXiv:1506.03295, 2015.

[18] S. Becker, J. Bobin, and E. Candès, “NESTA: A fast and accurate
first-order method for sparse recovery,” SIAM Journal on Imaging
Sciences, vol. 4, no. 1, pp. 1–39, 2011.

[19] B. Zhang, W. Xu, J.-F. Cai, and L. Lai, “Precise phase transition
of total variation minimization,” in Acoustics, Speech and Signal
Processing (ICASSP), 2016 IEEE International Conference on. IEEE,
2016, pp. 4518–4522.

[20] M. Genzel, G. Kutyniok, and M. März, “`1-analysis minimization
and generalized (co-) sparsity: When does recovery succeed?” arXiv
preprint arXiv:1710.04952, 2017.

[21] M. Kabanava, H. Rauhut, and H. Zhang, “Robust analysis `1-
recovery from gaussian measurements and total variation mini-
mization,” European Journal of Applied Mathematics, vol. 26, no. 06,
pp. 917–929, 2015.

[22] M. Kabanava and H. Rauhut, “Analysis `1-recovery with frames
and gaussian measurements,” Acta Applicandae Mathematicae, vol.
140, no. 1, pp. 173–195, 2015.

[23] R. Kueng and D. Gross, “Ripless compressed sensing from
anisotropic measurements,” Linear Algebra and its Applications,
vol. 441, pp. 110–123, 2014.

[24] R. Vershynin, “Introduction to the non-asymptotic analysis of ran-
dom matrices,” in Compressed sensing, Y. C. Eldar and G. Kutyniok,
Eds. Cambridge: Cambridge University Press, 2012, pp. xii+544,
theory and applications.

[25] M. Rudelson and R. Vershynin, “Hanson-Wright inequality and
sub-gaussian concentration,” Electron. Commun. Probab, vol. 18,
no. 82, pp. 1–9, 2013.

[26] A. Eftekhari, 2017, private communication.
[27] D. Amelunxen and M. Lotz, “Average-case complexity without the

black swans,” Journal of Complexity, vol. 41, pp. 82–101, 2017.
[28] ——, “Gordon’s inequality and condition numbers in conic opti-

mization,” arXiv preprint arXiv:1408.3016, 2014.

http://dx.doi.org/10.1016/j.acha.2012.03.006
http://dx.doi.org/10.1007/s10208-012-9135-7
http://dx.doi.org/10.1090/S0894-0347-08-00600-0
http://dx.doi.org/10.1016/j.jco.2007.01.002


IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, SEPTEMBER 2019 17

[29] S. Oymak, B. Recht, and M. Soltanolkotabi, “Isometric sketching
of any set via the restricted isometry property,” Information and
Inference: A Journal of the IMA, 2015.

[30] S. Oymak and J. A. Tropp, “Universality laws for randomized
dimension reduction, with applications,” Information and Inference:
A Journal of the IMA, 2015.

[31] A. Belloni and R. M. Freund, “A geometric analysis of Renegar’s
condition number, and its interplay with conic curvature,” Math.
Program., vol. 119, no. 1, Ser. A, pp. 95–107, 2009.

[32] J. Renegar, “Some perturbation theory for linear programming,”
Math. Programming, vol. 65, no. 1, Ser. A, pp. 73–91, 1994.

[33] R. Schneider and W. Weil, Stochastic and integral geometry, ser.
Probability and its Applications (New York). Berlin: Springer-
Verlag, 2008. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-78859-1

[34] D. Amelunxen and M. Lotz, “Intrinsic volumes of polyhedral cones:
a combinatorial perspective,” Discrete & Computational Geometry,
vol. 58, no. 2, pp. 371–409, 2017.

[35] S. Glasauer, “Integralgeometrie konvexer Körper im sphärischen
Raum,” 1995, thesis, Univ. Freiburg i. Br.

[36] M. B. McCoy and J. A. Tropp, “From Steiner formulas for cones
to concentration of intrinsic volumes,” Discrete & Computational
Geometry, vol. 51, no. 4, pp. 926–963, 2014.

[37] D. Amelunxen, “Measures on polyhedral cones: characterizations
and kinematic formulas,” arXiv preprint arXiv:1412.1569, 2014.

[38] R. T. Rockafellar, Convex analysis, ser. Princeton Mathematical
Series, No. 28. Princeton, N.J.: Princeton University Press, 1970.

[39] S. Oymak, A. Jalali, M. Fazel, Y. C. Eldar, and B. Hassibi, “Simulta-
neously structured models with application to sparse and low-rank
matrices,” IEEE Transactions on Information Theory, vol. 61, no. 5,
pp. 2886–2908, 2015.

Dennis Amelunxen was Assistant Professor at the Mathematics Depart-
ment of City University of Hong Kong. Dennis Amelunxen received his
PhD from the University of Paderborn, Germany, in 2011. Before joining
City University in 2014, he worked as a postdoctoral fellow at Cornell
University, USA, and at The University of Manchester, UK.

Martin Lotz is Associate Professor of Mathematics at the University
of Warwick. Prior to joining Warwick, Martin Lotz was a Lecturer in
Numerical Analysis at the University of Manchester and held research
positions at the City University of Hong Kong, at the University of Oxford,
and at the University of Edinburgh, supported by a Leverhulme Trust
and Seggie Brown Fellowship. Martin Lotz received his undergraduate
degree from the ETH Zürich, and his PhD at the University of Paderborn,
with a thesis on Algebraic Complexity Theory.

Jake Walvin completed his PhD in Mathematics at the University of
Manchester in 2019.

http://dx.doi.org/10.1007/978-3-540-78859-1
http://dx.doi.org/10.1007/978-3-540-78859-1

	Introduction
	Performance measures for convex regularization
	Main results - deterministic bounds
	Main results - probabilistic bounds
	Scope and limits of reduction
	A note on applicability
	A note on distributions

	Organisation of the paper

	Conically restricted linear operators
	Restricted norm and restricted singular value
	The biconic feasibility problem

	Linear images of cones
	Conic integral geometry
	Intrinsic volumes
	The statistical dimension
	The kinematic formulas
	Concentration of measure
	The TQC Lemma

	Improved condition bounds
	Applications
	Convex regularization, subdifferentials and the descent cone
	Performance bounds in convex regularization
	A note on the Stojnic method

	Appendix A: The biconic feasibility problem - proofs
	References
	Biographies
	Dennis Amelunxen
	Martin Lotz
	Jake Walvin


