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Abstract—In this work, we perform a complete failure analysis
of the interval-passing algorithm (IPA) for compressed sensing.
The IPA is an efficient iterative algorithm for reconstructing a
k-sparse nonnegative n-dimensional real signal x from a small
number of linear measurements y. In particular, we show that
the IPA fails to recover x from y if and only if it fails to
recover a corresponding binary vector of the same support, and
also that only positions of nonzero values in the measurement
matrix are of importance to the success of recovery. Based on this
observation, we introduce termatiko sets and show that the IPA
fails to fully recover x if and only if the support of x contains a
nonempty termatiko set, thus giving a complete (graph-theoretic)
description of the failing sets of the IPA. Two heuristics to
locate small-size termatiko sets are presented. For binary column-
regular measurement matrices with no 4-cycles, we provide a
lower bound on the termatiko distance, defined as the smallest
size of a nonempty termatiko set. For measurement matrices
constructed from the parity-check matrices of array low-density
parity-check codes, upper bounds on the termatiko distance equal
to half the best known upper bound on the minimum distance are
provided for column-weight at most 7, while for column-weight
3, the exact termatiko distance and its corresponding multiplicity
are provided. Next, we show that adding redundant rows to
the measurement matrix does not create new termatiko sets,
but rather potentially removes termatiko sets and thus improves
performance. An algorithm is provided to efficiently search for
such redundant rows. Finally, we present numerical results for
different specific measurement matrices and also for protograph-
based ensembles of measurement matrices, as well as simulation
results of IPA performance, showing the influence of small-size
termatiko sets.

I. INTRODUCTION

T
HE reconstruction of a (mathematical) object from a

partial set of observations in an efficient and reliable

manner is of fundamental importance. Compressed sensing,

motivated by the ground-breaking work of Candès and Tao

[1], [2], and independently by Donoho [3], is a research area

in which the object to be reconstructed is a k-sparse signal

vector (there are at most k nonzero entries in the vector)

over the real numbers. The partial information provided is

a linear transformation of the signal vector, the measurement

vector, and the objective is to reconstruct the object from a
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small number of measurements. Compressed sensing provides

a mathematical framework which shows that, under some con-

ditions, signals can be recovered from far fewer measurements

than with conventional signal acquisition methods. The main

idea in compressed sensing is to exploit that most interesting

signals have an inherent structure or contain redundancy. The

compressed sensing problem is described in more details in

Section II-B below.

Iterative reconstruction algorithms for compressed sensing

have been considered, for instance, in [4]–[10] and references

therein. Among those, the interval-passing algorithm (IPA)

[6] is a low-complexity reconstruction algorithm for recon-

structing nonnegative sparse signals with binary measurement

matrices. The extension to nonnegative real measurement

matrices was considered in [5]. In [11], Wu and Yang proposed

to use the concept of verification [7] to enhance reconstruction

performance, and they showed that the enhanced algorithm

performs better than the plain IPA and also better than the

plain verification algorithm for measurement matrices equal

to parity-check matrices of low-density parity-check (LDPC)

codes. As a side note, there is a clear connection between the

IPA and the iterative message-passing algorithm proposed for

counter braids in [12] (see also [13]). A counter braid is a

counter architecture introduced by Lu et al. in [12] for per-

flow measurements on high-speed links. In fact, it can easily

be seen that the decoding algorithm for counter braids is a

special case of the IPA (see Section II-D below). Thus, the

results derived in this work apply immediately also to iterative

decoding of counter braids as described in [12].

In this work, we show that the IPA fails for a nonnegative

signal x = (x1, . . . , xn) ∈ R
n
≥0, R≥0 is the set of nonnegative

real numbers, if and only if it fails for a corresponding binary

vector z of the same support, and also that only positions of

nonzero values in the measurement matrix are of importance

to the success of recovery. Thus, failing sets as subsets of

[n] , {1, . . . , n} can be defined. It has previously been shown

that traditional stopping sets for belief propagation decoding

of LDPC codes are failing sets of the IPA, in the sense that if

the support of a signal x ∈ R
n
≥0 contains a nonempty stopping

set, then the IPA fails to fully recover x [5, Thm. 1]. In this

work, we extend the results in [5] and define termatiko sets

(which contain stopping sets as a special case) and show that

the IPA fails to fully recover a signal x ∈ R
n
≥0 if and only

if the support of x contains a nonempty termatiko set, thus

giving a complete (graph-theoretic) description of the failing

sets of the IPA. Analogously to the stopping distance, we

define the size of the smallest nonempty termatiko set as

the termatiko distance. Also, two heuristics to locate small-

size termatiko sets are presented. For binary column-regular

http://arxiv.org/abs/1806.05110v3
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matrices with no 4-cycles we provide a general lower bound on

the termatiko distance, and for matrices equal to parity-check

matrices of array LDPC codes [14] we provide an upper bound

equal to half the best known upper bound on the minimum

distance for column-weight at most 7. In the special case

of column-weight 3, the termatiko distance turns out to be

exactly 3 and a formula for the corresponding multiplicity

is derived. Adding redundant rows to improve performance

of iterative message-passing algorithms has been considered

previously in various scenarios, and we provide an algorithm

to search for redundant rows of the measurement matrix

and show that this can only reduce the number of termatiko

sets. Finally, we perform an extensive numerical study which

includes both specific binary parity-check matrices of LDPC

codes and parity-check matrices from LDPC code ensembles

as measurement matrices, as well as simulation results.

The remainder of this paper is organized as follows. Nota-

tion and background, including a detailed description of the

IPA, are introduced in Section II, while the failing sets of

the IPA are analyzed in Section III, introducing the concept

of termatiko sets and showing that the IPA fails to recover a

nonnegative real signal x ∈ R
n
≥0 if and only if the support of x

contains a nonempty termatiko set. Two heuristics to identify

small-size termatiko sets are also presented. In Section IV,

a lower bound on the termatiko distance for column-regular

measurement matrices is presented. Next, the exact termatiko

distance and a formula for its multiplicity for binary mea-

surement matrices obtained from the parity-check matrices of

column-weight 3 array LDPC codes are derived. For column-

weights 4 to 7, upper bounds on the termatiko distance of these

measurement matrices are presented by splitting minimum-

weight codewords into two equal parts. Adding redundant

rows to the measurement matrix in order to improve the

performance of the IPA is considered in Section V. Numerical

results for different specific measurement matrices and also

for ensembles of measurement matrices, as well as simulation

results of IPA performance are presented in Section VI.

Conclusions are drawn in Section VII.

II. NOTATION AND BACKGROUND

In this section, we introduce the problem formulation, revise

notation from [5], and describe the IPA in detail.

A. Notation

We denote the set difference of two arbitrary sets N and

M by N \M . We also use N1 \N2 \ · · · \Nt as a shorthand

for (· · · ((N1 \N2) \N3) \ · · · \Nt). The support of a vector

x ∈ R
n, where R is the field of real numbers, is the set of its

nonzero coordinates, i.e.,

supp(x) = {i | xi 6= 0} .

We also define the ℓ0- and ℓ1-norms as follows:

‖x‖0 = |supp(x)| and ‖x‖1 =
∑

i

|xi|.

Note that the ℓ0-norm (as defined here) is not a norm in a

strict mathematical sense.

B. Compressed Sensing

Let x ∈ R
n be an n-dimensional k-sparse signal (i.e., it

has at most k nonzero entries), and let A = (aji) ∈ R
m×n be

an m×n real measurement matrix. We consider the recovery

of x from measurements y = Ax ∈ R
m, where m < n and

k < n.

The reconstruction problem of compressed sensing is to

find the sparsest x (or the one that minimizes the ℓ0-norm)

under the constraint y = Ax, which in general is an NP-

hard problem [15], [16]. Basis pursuit is an algorithm which

reconstructs x by minimizing its ℓ1-norm under the constraint

y = Ax [2]. This is a linear program, and thus it can be

solved in polynomial time. The algorithm has a remarkable

performance, but its complexity is high, making it impracti-

cal for many applications that require fast reconstruction. A

fast reconstruction algorithm for nonnegative real signals and

measurement matrices is the IPA which is described below in

Section II-D.

C. Tanner Graph Representation

We associate with matrix A the bipartite Tanner graph G =
(V ∪ C,E), where V = {v1, v2, . . . , vn} is a set of variable

nodes, C = {c1, c2, . . . , cm} is a set of measurement nodes,

and E is a set of edges from C to V . We will often equate

V with [n] and C with [m]. There is an edge in E between

c ∈ C and v ∈ V if and only if acv 6= 0. We also denote the

sets of neighbors for each node v ∈ V and c ∈ C as

N (v) = {c ∈ C | (c, v) ∈ E} ,

N (c) = {v ∈ V | (c, v) ∈ E} ,

respectively. Furthermore, if T ⊂ V or T ⊂ C and w ∈ V ∪C,

then define

N (T ) =
⋃

t∈T

N (t) and NT (w) = N (w) ∩ T .

A stopping set [17] of the Tanner graph G is defined as a

subset S of V such that all its neighboring measurement nodes

are connected at least twice to S.

D. Interval-Passing Algorithm

The IPA is an iterative algorithm to reconstruct a nonneg-

ative real signal x ∈ R
n
≥0 from a set of linear measurements

y = Ax, introduced by Chandar et al. in [6] for binary mea-

surement matrices. The algorithm was extended to nonnegative

real measurement matrices in [5], and this is the case that

we will consider. The IPA iteratively sends messages between

variable and measurement nodes. Each message contains two

real numbers, a lower bound and an upper bound on the value

of the variable node to which it is affiliated. Let µ
(ℓ)
v→c (resp.

µ
(ℓ)
c→v) denote the lower bound of the message from variable

node v (resp. measurement node c) to measurement node c
(resp. variable node v) at iteration ℓ. The corresponding upper

bound of the message is denoted by M
(ℓ)
v→c (resp. M

(ℓ)
c→v). It

is a distinct property of the algorithm that at any iteration

ℓ, µ
(ℓ)
v→c ≤ xv ≤ M

(ℓ)
v→c and µ

(ℓ)
c→v ≤ xv ≤ M

(ℓ)
c→v, for all

v ∈ V and c ∈ N (v). Also, the messages from variable
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to measurement nodes, µ
(ℓ)
v→c and M

(ℓ)
v→c, are independent of

c ∈ N (v). Thus, we will often denote µ
(ℓ)
v→c by µ

(ℓ)
v→· and

M
(ℓ)
v→c by M

(ℓ)
v→·.

The detailed steps of the IPA are shown in Algorithm 1

below, where we denote by IPA(y, A) the output of the

algorithm, x̂, when provided with inputs y and A.

A counter braid is a counter architecture for per-flow

measurements on high-speed links introduced in [12]. Counter

braids address the problem of cheap high-speed memory-

efficient approximate counting. In particular, a single-layer

counter braid can be represented by a bipartite graph with

flow nodes and counter nodes. When a flow is encountered

(for instance, on a high-speed link), all counter nodes con-

nected to the flow node representing the encountered flow are

incremented. The decoding operation tries to recover the flow

sizes (the values of the flow nodes or the number of observed

flows of different types) from the values of the counter nodes,

and this can be achieved using message passing where upper

and lower bounds on the flow sizes are passed in an iterative

manner on the bipartite graph representing the counter braid.

See [12, Exhibit 2] for further details.

It can readily be seen that in the special case when setting

M
(0)
v→· = ∞ for all v ∈ V , the IPA reduces to the iterative

decoding algorithm outlined in [12, Exhibit 2] for counter

braids with one layer. In fact, due to this initialization, only

upper bounds need to be computed for odd iterations and only

lower bounds for even iterations (for both variable/flow nodes

and measurement/counter nodes). This is the case since either

the upper bound (for even iterations) or the lower bound (for

odd iterations) becomes trivial. The case of multiple layers is

a recursive application of the one-layer case and, therefore,

reduces to that. We refer the interested reader to [12, Sec. 4]

for further details.

Example 1. Suppose we are given the measurement matrix

A =







1 2 1 0 0 0
3 0 0 1 3 0
0 1 0 1 0 3
0 0 4 0 3 2







and the signal vector x = (1, 8, 3, 0, 0, 0)T , where (·)T

denotes the transpose of its argument. The measurement vector

is then y = Ax = (20, 3, 8, 12)T and Fig. 1 illustrates the

iterations of the IPA.

III. FAILING SETS OF THE INTERVAL-PASSING

ALGORITHM

In this section, we present several results related to the

failure of the IPA. In particular, in Section III-A, we show

that the IPA fails to recover x from y if and only if it fails to

recover a corresponding binary vector of the same support, and

also that only positions of nonzero values in the matrix A are

of importance for success of recovery (see Theorem 1 below).

Based on Theorem 1, we introduce the concept of termatiko

sets in Section III-B and give a complete (graph-theoretic)

description of the failing sets of the IPA in Section III-C. In

Section III-D, a counter-example to [5, Thm. 2] is provided,

Algorithm 1 Interval-Passing Algorithm (cf. [5, Alg. 1])

1: function IPA(y, A)

Initialization

2: for all v ∈ V do

3: µ
(0)
v→· ← 0 and M

(0)
v→· ← min

c∈N(v)
(yc/acv)

4: end for

Iterations

5: ℓ← 0
6: repeat

7: ℓ← ℓ+ 1
8: for all c ∈ C, v ∈ N (c) do

9: µ(ℓ)
c→v ←

1

acv



yc −
∑

v′∈N(c),v′ 6=v

acv′M
(ℓ−1)
v′→·





10: if µ
(ℓ)
c→v < 0 then

11: µ
(ℓ)
c→v ← 0

12: end if

13: M (ℓ)
c→v ←

1

acv



yc −
∑

v′∈N(c),v′ 6=v

acv′µ
(ℓ−1)
v′→·





14: end for

15: for all v ∈ V do

16: µ
(ℓ)
v→· ← max

c∈N(v)
µ(ℓ)
c→v

17: M
(ℓ)
v→· ← min

c∈N(v)
M (ℓ)

c→v

18: end for

19: until µ
(ℓ)
v→· = µ

(ℓ−1)
v→· and M

(ℓ)
v→· =M

(ℓ−1)
v→· , ∀v ∈ V

Result

20: for all v ∈ V do x̂v ← µ
(ℓ)
v→· end for

21: return x̂

22: end function

while two heuristic approaches to locate small-size termatiko

sets from a list of stopping sets is outlined in Section III-E.

A. Signal Support Recovery

Consider the two related problems IPA(y, A) and IPA(s,

B), where x ∈ R
n
≥0, A = (aji) ∈ R

m×n
≥0 , y = Ax, B =

(bji) ∈ {0, 1}m×n, s = Bz, and z ∈ {0, 1}n has support

supp(z) = supp(x), i.e., x and z have the same support. The

binary matrixB contains ones exactly in the positions where A
has nonzero values. We will show below (see Theorem 1) that

these two problems behave identically, namely, they recover

exactly the same positions of x and z. However, note that this

is true if the identical algorithm (Algorithm 1) is applied to

both problems, i.e., the binary nature of z is not exploited.

Theorem 1. Let A = (aji) ∈ R
m×n
≥0 , x ∈ R

n
≥0, B = (bji) ∈

{0, 1}m×n, and z ∈ {0, 1}n, where supp(z) = supp(x) and

bji =

{

0 , if aji = 0 ,

1 , otherwise .

Further, denote y = Ax, s = Bz, x̂ = IPA(y, A), and

ẑ = IPA(s, B). Then, for all v ∈ V ,

x̂v = xv if and only if ẑv = zv .
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Fig. 1. IPA reconstruction example. The original signal vector is x = (1, 8, 3, 0, 0, 0)T and the measurement vector is y = (20, 3, 8, 12)T . Numbers in
bold correspond to exact bounds. The last iteration is omitted because the signal has already been reconstructed.

Proof: Define subsets of V in which either the lower or

the upper bound of a variable-to-measurement message, at a

given iteration ℓ, is equal to xv or zv as follows:

γ(ℓ)x =
{

v ∈ V | µ
(ℓ)
v→· = xv

}

,

Γ(ℓ)
x =

{

v ∈ V |M
(ℓ)
v→· = xv

}

,

γ(ℓ)z =
{

v ∈ V | λ
(ℓ)
v→· = zv

}

,

Γ(ℓ)
z =

{

v ∈ V | Λ
(ℓ)
v→· = zv

}

,

where λ
(ℓ)
v→· and Λ

(ℓ)
v→· denote, respectively, the lower and the

upper bound of the variable-to-measurement message from

variable node v to any measurement node c ∈ N (v) at

iteration ℓ for IPA(s, B) (analogously to µ
(ℓ)
v→· and M

(ℓ)
v→· for

IPA(y, A)).

To prove the theorem, it is enough to show that at each

iteration ℓ, γ
(ℓ)
x = γ

(ℓ)
z and Γ

(ℓ)
x = Γ

(ℓ)
z . We demonstrate this

by induction on ℓ.

Base Case.

γ(0)x = {v ∈ V | xv = 0} = {v ∈ V | zv = 0} = γ(0)z ,

Γ(0)
x = {v ∈ V | ∃c ∈ N (v) s.t. yc = acvxv}

= {v ∈ V | ∃c ∈ N (v) s.t. sc = zv} = Γ(0)
z .

Inductive Step.

Consider iteration ℓ ≥ 1. First note that all v ∈ V with

xv = 0 (and hence zv = 0) belong to both γ
(ℓ)
x and γ

(ℓ)
z .

If xv > 0 (and hence zv = 1) then from Line 16 of

Algorithm 1 and the definition of γ
(ℓ)
x , we have v ∈ γ

(ℓ)
x if

and only if there exists c ∈ N (v) such that µ
(ℓ)
c→v = xv . More

precisely:

acvxv = yc −
∑

v′∈N(c)
v′ 6=v

acv′M
(ℓ−1)
v′→·

= acvxv +
∑

v′∈N(c)
v′ 6=v

acv′

(

xv′ −M
(ℓ−1)
v′→·

)

≤ acvxv .

Equality holds if and only if M
(ℓ−1)
v′→· = xv′ for all v′ ∈ N (c)\

{v} or, in our notation, N (c) \ {v} ⊂ Γ
(ℓ−1)
x . However, by

inductive assumption Γ
(ℓ−1)
z = Γ

(ℓ−1)
x and hence Λ

(ℓ−1)
v′→· = zv′

for all v′ ∈ N (c) \ {v}. This is equivalent to λ
(ℓ)
c→v = zv and

thus v ∈ γ
(ℓ)
z .

Hence, for all v ∈ V , v either belongs to both γ
(ℓ)
x and γ

(ℓ)
z ,

or to none of them.

Analogously, we can show that Γ
(ℓ)
x = Γ

(ℓ)
z . Details are

omitted for brevity.

Theorem 1 gives a powerful tool for analysis of IPA

performance. Instead of considering A ∈ R
m×n
≥0 and x ∈ R

n
≥0

we need only to work with binary A and x (although all
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v0 v1

v2 v3v4 v5v6

c0 c1 c2

T :

N :

S :

Fig. 2. Example of a termatiko set T with all measurement nodes in N
connected to both T and S (cf. Theorem 2). The rest of the Tanner graph is
drawn dotted.

v0

v5v1

v3 v4

v2

v6

c0 c1 c2

T :

N :

S :

Fig. 3. Example of a termatiko set T with a measurement node c1 connected
to T only (cf. Theorem 2). Highlighted is the connection to a measurement
node c0, which is connected to T only once.

operations are still performed over R). Thus, in the rest of

the paper, we assume that A is binary.

B. Termatiko Sets

We define termatiko sets through failures of the IPA.

Definition 1. We call T ⊂ V a termatiko set if and only if

IPA(AxT , A) = 0, where xT is a binary vector with support

supp(xT ) = T .

From Theorem 1, it follows that the IPA completely fails

to recover x ∈ R
n
≥0 if and only if supp(x) = T , where T is

a nonempty termatiko set.

Theorem 2. Let T be a subset of the set of variable nodes

V . We denote by N = N (T ) the set of measurement nodes

connected to T and also denote by S the other variable nodes

connected only to N as follows:

S = {v ∈ V \ T : NN (v) = N (v)} .

Then, T is a termatiko set if and only if for each c ∈ N one

of the following two conditions holds (cf. Figs. 2 and 3):

• c is connected to S (this implies S 6= ∅);

• c is not connected to S and
∣
∣
∣ {v ∈ NT (c) : ∀c′ ∈ N (v) , |NT (c′) | ≥ 2}

∣
∣
∣ ≥ 2 .

Proof: Consider the problem IPA(AxT , A), where xT is

a binary vector with support supp(xT ) = T and T satisfies

the conditions of the theorem.

We first note that measurement nodes in C \N have value

zero and hence all variable nodes connected to them (i.e., v ∈
V \ (T ∪S)) are recovered with zeros at the initialization step

of Algorithm 1. As a consequence, they can be safely pruned

and w.l.o.g. we can assume that C = N and V = T ∪ S.

We show by induction that for all v ∈ T∪S at each iteration

ℓ ≥ 0 it holds that µ
(ℓ)
v→· = 0 and M

(ℓ)
v→· ≥ 1. Moreover, each

measurement node c ∈ N that is not connected to S has at

least two different neighbors v1, v2 ∈ T with M
(ℓ)
v1→· ≥ 2 and

M
(ℓ)
v2→· ≥ 2.

We will use the fact that

xv =

{

1 , if v ∈ T ,

0 , if v ∈ S .

Also we note that yc = |NT (c) | for all c ∈ N .

Base Case.

For ℓ = 0 we immediately obtain from Algorithm 1 that

µ
(0)
v→· = 0 and, as each c ∈ N has at least one nonzero

neighbor, M
(0)
v→· ≥ 1. In addition, consider c ∈ N that is

not connected to S. It has at least two different neighbors

v1, v2 ∈ T , each connected only to measurement nodes with

not less than two neighbors in T . Therefore, M
(0)
v1→· ≥ 2 and

M
(0)
v2→· ≥ 2.

Inductive Step.

Consider ℓ ≥ 1. For all c ∈ N and all v ∈ N (c),

M (ℓ)
c→v = yc −

∑

v′∈N(c) ,v′ 6=v

µ
(ℓ−1)
v′→· = yc .

Hence, upper bounds are exactly the same as for l = 0 and

the same inequalities hold for them.

In order to find lower bounds, we consider two cases for

c ∈ N . If c is connected to S, then

yc −
∑

v′∈N(c)
v′ 6=v

M
(ℓ−1)
v′→· ≤ (|N (c) | − 1) −

∑

v′∈N(c)
v′ 6=v

1 = 0

and therefore µ
(ℓ)
c→v = 0. If c is connected to T only, then

yc−
∑

v′∈N(c)
v′ 6=v

M
(ℓ−1)
v′→· ≤ |NT (c) |−

(

1+
∑

v′∈NT (c)
v′ 6=v

1

)

= 0

and again µ
(ℓ)
c→v = 0. Here, the extra 1 inside the parenthesis

indicates the fact that for at least one v′ we have M
(ℓ−1)
v′→· ≥ 2.

Thus, at each iteration of the IPA for each v ∈ V the lower

bound is equal to zero, and the algorithm will return x̂ = 0.

We have demonstrated that if T satisfies the conditions of

the theorem, it is a termatiko set. What remains to be proven

is that if T does not satisfy the conditions of the theorem, the

IPA can recover at least some of the nonzero values.

Assume that there exists c∗ ∈ N connected to T only (i.e.,

NT (c∗) = N (c∗)) and such that

∣
∣
∣ {v ∈ NT (c∗) : ∀c′ ∈ N (v) , |NT (c′) | ≥ 2}

∣
∣
∣ ≤ 1 .

If this set has one element, denote it by v∗. If it is empty, let

v∗ be any element of NT (c∗).

A special case when |NT (c∗) | = 1 is trivial. Otherwise,

for any v ∈ NT (c∗) \ {v∗}, there exists c′v ∈ N (v) such that

|NT (c′v) | ≤ 1, which in truth means that NT (c′v) = {v}.
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T :

N :

v∗ v1 v2

c∗ c′v1 c′v2

[1
,y

c
∗
]

←
−
−
−−

[0
,1
]

←−
−− [0

,1
]

←−
−−

[0
,1
]

−−
−→

[0
,1
]

−−
−→

Fig. 4. Exact bounds propagation in a nontermatiko set. Here [µ,M ] denotes
sending a lower bound of µ and an upper bound of M in the direction given
by the corresponding arrow. Numbers in bold are exact bounds.

Hence, at the initialization step of the IPA, for all v ∈
NT (c∗) \ {v∗} we will have µ

(0)
v→· = 0 and M

(0)
v→· = 1.

Therefore, at iteration ℓ = 1:

µ
(1)
c∗→v∗ ← yc∗ −

∑

v∈NT (c∗)
v 6=v∗

M
(0)
v→· = yc∗ −

∑

v∈NT (c∗)
v 6=v∗

1 = 1 .

Thus, the IPA will output 1 for position v∗ ∈ T , which means

that T is not a termatiko set. See Fig. 4 for illustration.
Theorem 2 gives a precise graph-theoretic description of

termatiko sets. In fact, it defines two important subclasses of

termatiko sets; stopping sets and sets with all c ∈ N connected

to both T and S. Also, it is worth noting that T ∪ S is a

stopping set. Thus, a termatiko set is always a subset of some

stopping set. We define the size of the smallest nonempty

termatiko set as the termatiko distance.

C. General Failing Sets

In Section III-B, we defined termatiko sets as supports of

binary vectors that avert the IPA from recovering any of the

ones. However, the algorithm can recover only some of the

positions of ones.

Before proceeding further, we prove the following lemma.

Lemma 1. Let x,x′ ∈ {0, 1}n such that supp(x) ⊂ supp(x′)
and denote D = supp(x′) \ supp(x). Let µ(ℓ) and M (ℓ)

be respectively lower and upper bounds at the ℓ-th step

of Algorithm 1 on input (Ax, A). Also, let λ(ℓ) and Λ(ℓ)

be respectively lower and upper bounds at the ℓ-th step of

Algorithm 1 on input (Ax′, A). Then, the following holds:

λ
(ℓ)
v→· ≤ µ

(ℓ)
v→· ≤M

(ℓ)
v→· ≤ Λ

(ℓ)
v→· , ∀v /∈ D ,

λ
(ℓ)
v→· ≤ µ

(ℓ)
v→· + 1 ≤M

(ℓ)
v→· + 1 ≤ Λ

(ℓ)
v→· , ∀v ∈ D .

Proof: Denote y = Ax and y′ = Ax′. Obviously, for

any c ∈ C, y′c = yc + |N (c) ∩D| ≥ yc. In particular, for any

c ∈ N (D), y′c ≥ yc + 1, and for all c /∈ N (D), y′c = yc.
We prove the lemma by induction.

Base Case.

Obviously, λ
(0)
v→· = µ

(0)
v→· = 0 for all v ∈ V . Next, if v ∈

D, then c ∈ N (v) implies c ∈ N (D) and hence Λ
(0)
v→· ≥

minc∈N(v)(yc +1) =M
(0)
v→· +1. Analogously, if v /∈ D, then

Λ
(0)
v→· ≥M

(0)
v→·.

Inductive Step.

Consider step ℓ ≥ 1. From Line 9 of Algorithm 1 we have:

λ(ℓ)c→v = y′c −
∑

v′∈N(c)
v′ 6=v

Λ
(ℓ−1)
v′→·

= yc + |N (c) ∩D|

−
∑

v′∈N(c)∩D
v′ 6=v

Λ
(ℓ−1)
v′→· −

∑

v′∈N(c)\D
v′ 6=v

Λ
(ℓ−1)
v′→·

≤ yc + |N (c) ∩D| −
∑

v′∈N(c)∩D
v′ 6=v

(

M
(ℓ−1)
v′→· + 1

)

−
∑

v′∈N(c)\D
v′ 6=v

M
(ℓ−1)
v′→· =

{

µ
(ℓ)
c→v , v /∈ D ,

µ
(ℓ)
c→v + 1 , v ∈ D .

One can show in a similar manner that Λ
(ℓ)
c→v ≥ M

(ℓ)
c→v + 1

for v ∈ D and Λ
(ℓ)
c→v ≥M

(ℓ)
c→v for v /∈ D.

Finally, from Lines 16 and 17 of Algorithm 1 we obtain

λ
(ℓ)
v→· = max

c′∈N(v)
λ
(ℓ)
c′→v ≤ max

c′∈N(v)
µ
(ℓ)
c′→v = µ

(ℓ)
v→· , for v /∈ D ,

λ
(ℓ)
v→· = max

c′∈N(v)
λ
(ℓ)
c′→v ≤ µ

(ℓ)
v→· + 1 , for v ∈ D ,

Λ
(ℓ)
v→· = min

c′∈N(v)
Λ
(ℓ)
c′→v ≥M

(ℓ)
v→· , for v /∈ D ,

Λ
(ℓ)
v→· = min

c′∈N(v)
Λ
(ℓ)
c′→v ≥M

(ℓ)
v→· + 1 , for v ∈ D .

This concludes the proof.

The next theorem presents a connection between (partial)

failures of the IPA and termatiko sets. In particular, it shows

that the IPA fails on any signal in R
n
≥0 if and only if its support

contains a nonempty termatiko set.

Theorem 3. The IPA fails to recover a nonnegative real signal

x ∈ R
n
≥0 if and only if the support of x contains a nonempty

termatiko set.

Proof: Assume that x′ ∈ {0, 1}n is a binary signal and

T is a nonempty termatiko set such that T ⊂ supp(x′). We

also consider a binary x ∈ {0, 1}n with supp(x) = T .

Since T is a termatiko set, on each step of IPA(Ax, A)
lower bounds on variable nodes in T will be zeros. Further

application of Lemma 1 to x and x′ shows that lower bounds

on variable nodes in T will be zeros also on each step of

IPA(Ax′, A) and, therefore, these positions will be incorrectly

recovered as zeros.

D. Counter-Example to [5, Thm. 2]

In [5, Thm. 2], a condition for full recovery of x is stated.

For convenience, the result is stated below in Theorem 4 using

our notation.

Theorem 4 ([5, Thm. 2]). Let A ∈ {0, 1}m×n be a binary

measurement matrix and VS = {v1, v2, . . . , vk} be a subset of

variable nodes forming a minimal stopping set. Let x ∈ R
n
≥0

be a signal with at most k − 2 nonzero values, i.e., ‖x‖0 ≤
k− 2, such that supp(x) ⊂ VS . Then, the IPA can recover x
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v1

0

v2

0

v3

1

v4

1

v5

0

v6

0

c1

0

c2

1

c3

1

c4

2

Fig. 5. Counter-example to [5, Thm. 2]. The set of variable nodes is V =
{v1, . . . , v6} (circles) and the set of measurement nodes is C = {c1, . . . , c4}
(squares). The integer attached to a node is its corresponding value (xvi for
variable node vi and yci for measurement node ci). VS = {v1, v2, v3, v4} ⊂
V (shaded in gray) is a minimal stopping set and c1 is a zero-valued (yc1 = 0)
measurement node connected to VS . Note that v5 is not in VS , but exactly
because of it, the IPA cannot correctly recover v4.

if there exists at least one zero measurement node among the

neighbors of VS .

However, in Fig. 5, we provide a counter-example to this

theorem. Note that the Tanner graph of Fig. 5 is (2, 3)-regular

(only regular Tanner graphs with variable node degree at least

two were considered in [5]) and satisfies the conditions of

[5, Thm. 2]. In particular, there are at most |VS | − 2 = 2
nonzero-valued variable nodes which are both in VS (VS
is a minimal stopping set contained in V ); and there is at

least one zero-valued measurement node among the neighbors

of VS . However, it can be readily seen that the IPA will

output x̂ = (0, 0, 1, 0, 0, 0), i.e., it recovers only one nonzero

variable node (v4 and v5 are both connected to c2 and c4
and thus indistinguishable; hence, the IPA will definitely fail).

We believe that the main problematic issue in the proof

given in [5] is that variable nodes outside of the minimal

stopping set VS are not considered. Despite the fact that such

nodes will be recovered as zeros in the end (because of the

specific implementation of the IPA, see Algorithm 20), during

iterations they still can “disturb” the values inside of the

stopping set.

Finally, we remark that since the statement of [5, Thm. 2]

is used in the proof of [5, Thm. 3], the latter should be further

verified. The correctness of [5, Thm. 3] is left as an open

problem.

E. Heuristics to Find Small-Size Termatiko Sets

As shown above, stopping sets may contain termatiko sets

as proper subsets (and every stopping set is a termatiko

set by itself). Thus, one way to locate termatiko sets is to

first enumerate all stopping sets of size at most τ (for a

given binary measurement matrix and threshold τ ) and then

check which of their subsets are termatiko sets. For a given

binary measurement matrix A, small-size stopping sets can

be identified using the algorithm from [18], [19]. In the rest

of this paper, we refer to this method as Heuristic 1. Note

that termatiko sets of size smaller than τ can be missed by

Heuristic 1. This is the case when they are proper subsets

of stopping sets of size larger than τ (and such stopping

sets are not considered by the heuristic). To find the exact

number of termatiko sets of a given size one would have to run

exhaustively through all coordinate subsets of that particular

size.

Next, we present another heuristic approach that targets the

subclass of termatiko sets mentioned in Section III-B, namely,

the case when all c ∈ N are connected to both T and S.

This symmetry leads to the observation that both T and S are

termatiko sets. Therefore, we can try to split a stopping set

into two disjoint termatiko sets, T and S. We call stopping

sets that allow such a split splittable.

Consider a stopping set D ⊂ V . Our goal is to split the

variable nodes from D into two disjoint sets T and S such

that D = T ∪ S and each c ∈ N = N (D) is connected

to both T and S. The heuristic greedy algorithm outlined in

Algorithm 2 tries to find such a split by painting (green or red)

the variable nodes in D. The whole algorithm is based on the

following idea.1 If there is a c ∈ N such that all its neighbors

in D except exactly one have already been painted to the same

color, then the remaining node should be painted the color

opposite to other neighbors of c. In the algorithm, the color of

variable node v ∈ D is denoted by colv . It starts with a random

node, paints it green (Line 5), and puts it into a working set Q
of “freshly-painted” nodes. Further, at each iteration, it takes

a random variable node v from Q and constructs the set of

variable nodes Opp. A node u ∈ D is included in Opp if it

is not colored and also connected via some c to v and all the

neighbors of c in D except u have the same color (Line 15).

By our heuristic assumption, we paint all the variable nodes

in Opp the color opposite to the color of v (Line 16). Further,

all the elements of Opp are added to Q for further processing

(Line 17). If at some point Q becomes empty but not all the

variable nodes from D have been painted yet, the algorithm

has nothing better to do than just randomly guess a color of

some variable node that has not been painted yet (Line 19

to Line 22). Algorithm 2 finishes when Q becomes empty

and all the variable nodes from D have been painted. After

that, in Line 25 to Line 27, the algorithm verifies the obtained

solution for correctness to the stated goal, i.e., whether each

c ∈ N is connected both to T and S. In turn, from this it

follows that both T and S are termatiko sets. If so, it returns

the pair (T, S), otherwise it returns FAIL.

We remark that by changing the randomized steps of

Algorithm 2 into a branching step, one can get an exhaustive

search algorithm that outputs all the splits (T, S) with the

stated property (each c ∈ N is connected to both T and S).

IV. COLUMN-REGULAR MEASUREMENT MATRICES

In this section, we present some results for column-regular

measurement matrices, i.e., those having the same amount of

nonzero entires in each column. The first result is a lower

bound on the termatiko distance hmin.

Theorem 5. The termatiko distance of a column a-regular

measurement matrix with no cycles of length 4 is at least a.

1In some sense, this algorithm is similar to iterative decoding of LDPC
codes over the binary erasure channel (BEC), where the algorithm looks
for check nodes that have all-but-one neighboring variable node known, thus
making the recovery of such a variable node trivial.
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Algorithm 2 Splitting a Stopping Set D ⊂ V

1: function SPLIT(D ⊂ V )

Initialization

2: N ← N (D)
3: for all v ∈ D do colv ← ? end for

4: v
rnd
←−− D

5: colv ← GREEN

6: Q← {v}
Iterations

7: while Q 6= ∅ do

8: v
rnd
←−− Q

9: Q← Q \ {v}
10: if colv = GREEN then

11: OppCol ← RED

12: else

13: OppCol ← GREEN

14: end if

15: Opp ← {u ∈ D : colu = ? and ∃c ∈ N (u) ∩
N (v) s.t. ∀v′ ∈ ND (c) \ {u}, colv′ = colv}

16: for all u ∈ Opp do colu ← OppCol end for

17: Q← Q ∪Opp
18: if Q = ∅ and {u ∈ D : colu = ?} 6= ∅ then

19: v
rnd
←−− {u ∈ D : colu = ?}

20: OppCol
rnd
←−− {GREEN,RED}

21: colv ← OppCol
22: Q← {v}
23: end if

24: end while

Check if the result is correct

25: if ∃c ∈ N s.t. |{colv : v ∈ ND (c)}| = 1 then

26: return FAIL

27: end if

Result

28: T ← variable nodes painted GREEN

29: S ← variable nodes painted RED

30: return (T, S)
31: end function

Proof: Assume to the contrary that we have a termatiko

set T = {v1, v2, . . . , vt} of size t ≤ a − 1. Define N and S
as in Theorem 2.

First assume that S 6= ∅. Take any u ∈ S. Also, split

N into t nonintersecting subsets N1, . . . , Nt such that N =
N1 ∪N2 ∪ · · · ∪Nt, where

N1 = N (v1) ,
N2 = N (v2) \N1 ,
N3 = N (v3) \N2 ,
. . .

Nt = N (vt) \Nt−1 .

As the measurement matrix has no cycles of length 4, no

variable nodes can share more than one measurement node.

In particular, u cannot share more than one measurement

node with any of v1, v2, . . . , vt. Therefore, u is connected not

more than once to each of the sets N1, N2, . . . , Nt, and thus

|N (u) | ≤ t ≤ a−1, which contradicts the fact that the degree

of each variable node is a, and it follows that S = ∅.

Since S = ∅, each measurement node in N should be

connected to T at least twice. Furthermore, since the degree

of each variable node is a, we have |N | ≤ at/2. On

the other hand, by definition, we have |N (vj) | = a and

N (vj) does not share more than one element with each of

N (vj−1) ,N (vj−2) , . . . ,N (v1). Therefore,

|Nj | =
∣
∣
∣N (vj)\N (vj−1)\N (vj−2)\· · ·\N (v1)

∣
∣
∣ ≥ a−j+1 ,

and we get

|N | =

∣
∣
∣
∣
∣
∣

t⋃

j=1

Nj

∣
∣
∣
∣
∣
∣

≥ at−
t(t− 1)

2
.

It follows that

at−
t(t− 1)

2
≤ |N | ≤

at

2
,

from which we get that t ≥ a+1. This is a contradiction since

we have assumed that t ≤ a− 1.

As each stopping set is a termatiko set and each codeword

support is a stopping set, we have that hmin ≤ smin ≤ dmin

(for any measurement matrix). Hence, the following result can

be seen a corollary of Theorem 5.

Corollary 1. For a column a-regular parity-check matrix,

dmin ≥ smin ≥ a.

A. Measurement Matrices From Array Low-Density Parity-

Check Codes

Next, we consider a particular case of column a-regular

measurement matrices, namely, the parity-check matrices of

array LDPC codes [14]. For a prime q > 2 and an integer

a < q the array LDPC code C(q, a) has length q2 and can be

defined by the parity-check matrix

H(q, a) =










I I I · · · I
I P P 2 · · · P q−1

I P 2 P 4 · · · P 2(q−1)

...
...

...
. . .

...

I P a−1 P 2(a−1) · · · P (a−1)(q−1)










,

where I is the q×q identity matrix and P is a q×q permutation

matrix defined by

P =








0 0 · · · 0 1
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0







.

It is easy to see that C(q, a) is an (a, q)-regular code of

dimension q2 − qa + a − 1, and its minimum distance will

be denoted by d(q, a).
In [20], a new representation of H(q, a) was introduced.

In particular, since each column of the parity-check matrix

H(q, a) has a blocks and each block is a permutation of

(1, 0, 0, . . . , 0)T , we can represent each column as a length-

a column vector of elements from Fq , the field of integers
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modulo q. More precisely, i ∈ Fq is bijectively mapped to a

vector




i
︷ ︸︸ ︷

0, . . . , 0, 1,

q−i−1
︷ ︸︸ ︷

0, . . . , 0





T

,

and any column in H(q, a) is of the form

(i, i+ j, i + 2j, . . . , i+ (a− 1)j)T (mod q) (1)

for some i, j ∈ Fq . Note that in (1) the field elements i and

j are considered as integers and the operations (addition and

multiplication) are standard integer operations, while (mod q)
denotes integer reduction modulo q. In the following, with

some abuse of notation, a field element from Fq and its integer

representation are used interchangeably. Furthermore, addi-

tion, subtraction, and multiplication might be either standard

integer addition, integer subtraction, and integer multiplication,

or denote field operations. However, this will become clear

from the context. Also, note that since there are q2 distinct

columns in H(q, a), any pair (i, j) ∈ F
2
q specifies a valid

column. Therefore, the columns of H(q, a) (or variable nodes

V ) can be identified with pairs (i, j) ∈ F
2
q .

Further, as rows of the matrix can be split into a blocks of

q rows each, it is convenient to identify rows of H(q, a) (or

measurement nodes C) with pairs in Za×Fq, so that the j-th
row (1 ≤ j ≤ aq) is identified (or indexed) by2

〈⌊(j − 1)/q⌋ , (j − 1) (mod q)〉 .

In other words, row 1 is indexed by 〈0, 0〉, row 2 by 〈0, 1〉, up

to row q which is indexed by 〈0, q − 1〉, row q + 1 by 〈1, 0〉,
and so on. With this notation, variable node (i, j) ∈ V = F

2
q is

connected to each measurement node in the set {〈0, i〉, 〈1, i+
j〉, 〈2, i+2j〉, . . . , 〈a−1, i+(a−1)j〉} = {〈s, i+sj〉 | s ∈ Za}.

For s ∈ Za, we call the q consecutive rows (or, equivalently,

measurement nodes) indexed by {〈s, 0〉, 〈s, 1〉, . . . , 〈s, q− 1〉}
the s-th strip. We will extensively use the fact that every

variable node has exactly one neighboring measurement node

in each of the strips.

Define the permutations ϕ : F2
q 7→ F

2
q and ψ : Za × Fq 7→

Za × Fq, with parameters α ∈ Fq \ {0}, β1, β2 ∈ Fq, by3

ϕ(i, j) = (αi + β1, αj + β2) ,

ψ(s, t) = 〈s, αt+ (β1 + sβ2)〉 .

It is well-known (cf. [20, Lem. 2]) that C(q, a) is invariant

under the doubly transitive group of “affine” permutations

defined above. In other words, such a pair of transformations is

an automorphism on the Tanner graph of an array LDPC code,

i.e., 〈s, t〉 ∈ N ((i, j)) if and only if ψ(s, t) ∈ N (ϕ(i, j)) for

all choices of α, β1, β2. In particular, T = {v1, v2, . . . , v|T |} is

a termatiko set if and only if {ϕ(v1), ϕ(v2), . . . , ϕ(v|T |)} is a

termatiko set. The number of choices for α, β1, β2 is q2(q−1)
and this is the number of different automorphisms of this

particular type, one of them being the identity (when α = 1,

β1 = β2 = 0). Furthermore, it is also well-known that there

2
Za denotes the ring of integers modulo a, and we use angular brackets

for measurement nodes to clearly differentiate between C and V .
3ϕ(i, j) and ψ(s, t) are shorthand notations for ϕ((i, j)) and ψ(〈s, t〉),

respectively.

v1 v4 v6

v2 v3 v5

c1 c2 c3 c4 c5 c6 c7 c8 c9

T :

N :

S :

Fig. 6. Termatiko set of size 3 in H(q, 3). Measurement nodes c1, c2, . . . , c9
are grouped according to being in the first, second, and third strip in H(q, 3).

are no cycles of length 4 in the Tanner graph corresponding

to the parity-check matrix of an array LDPC code [14].

In the following, the support matrix of a subset of variable

nodes, U ⊂ V , will be the submatrix of H(q, a) consisting of

the columns indexed by U . Furthermore, the support matrix

of a codeword is the support matrix of the support of the

codeword. We will mostly write the support matrix in a

compact form using the representation in (1), i.e., as an a×|U |
matrix over Fq. For example, the support matrix of some

subset {(i1, j1), (i2, j2), (i3, j3)} ⊂ V of three variable nodes

is written as4









i1 i2 i3
i1 + j1 i2 + j2 i3 + j3
i1 + 2j1 i2 + 2j2 i3 + 2j3
· · · · · · · · ·

i1 + (a− 1)j1 i2 + (a− 1)j2 i3 + (a− 1)j3









.

B. Termatiko Distance Multiplicity of H(q, 3)

Consider the array LDPC code C(q, 3). It is (3, q)-reqular

and each column of its parity-check matrix H(q, 3) can be

represented by the vector (i, i+j, i+2j)T ∈ F
3
q , from which it

follows that if v ∈ V is connected to c1 = 〈0, s1〉, c2 = 〈1, s2〉,
and c3 = 〈2, s3〉, then 2s2 = s1 + s3 (i.e., s1, s2, s3 form an

arithmetic progression).

Theorem 6. There are q2(q − 1)(q − 2)/3 termatiko sets of

minimum size 3 in H(q, 3) for any q ≥ 5 and their support

matrices have (up to automorphisms) one of the forms





0 2 −2− 2j
0 2 + j 1
0 2 + 2j 4 + 2j



 or





0 2 4 + 2j
0 2 + j 1 + j
0 2 + 2j −2



 ,

for any j ∈ Fq \ {q − 1, q − 2}.

Proof: See the appendix.

We remark that this formula is similar to the formula for

the number of weight-6 codewords in C(q, 3) provided in [21,

Thm. 2]. In fact, we observe that the number of termatiko sets

of size 3 is twice the number of codewords of weight 6. Fig. 6

provides an illustration of a termatiko set of size 3 in H(q, 3).

4Recall that we equate V with F
2
q .
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C. Upper Bound on the Termatiko Distance of H(q, a)

For H(q, a), it follows from Theorem 5 that the termatiko

distance hmin ≥ a, and from Theorem 6 it follows that the

bound is indeed tight for a = 3. In this subsection, we derive

upper bounds on the termatiko distance when 4 ≤ a ≤ 7. The

approach is inspired by the following observation.
It was shown in [22] that d(q, 3) = 6, and in [20] the authors

derived the explicit support matrix




0 0 2i− 2j 2i− 2j −2i −2i

0 −2i+ j 0 −i −i −2i+ j

0 −4i+ 2j −2i+ 2j −4i+ 2j 0 −2i+2j





(up to equivalence under the aforementioned automorphisms)

for codewords of weight 6, where i ∈ Fq \ {0} and j ∈ Fq

with j 6= i, 2i. It is worth noting that the columns 1, 4, and 6
(marked in bold) of the support matrix above form a termatiko

set. The same is true for the columns 2, 3, and 5. Hence, the

support of each minimum-weight codeword in H(q, 3) can be

split into two size-3 termatiko sets.
Deriving upper bounds on the minimum distance of array

LDPC codes has attracted some attention, and tight bounds

have been derived for 4 ≤ a ≤ 7 in [23], [24]. In these works,

explicit support matrices of codewords have been tabulated. A

further exploration of these support matrices shows that a half-

and-half split into two termatiko sets is possible; the connected

measurement nodes are connected to both termatiko sets. We

can now successfully apply Algorithm 2 to some known cases.
1) H(q, 3): Applying Algorithm 2 to the aforementioned

support matrix we obtain the (correct) split, as depicted in

Fig. 7. Note that the columns there are reordered so that both

the first three and the last three form termatiko sets.
If we set i = −1, then we get the first general form from

Theorem 6 (with columns reordered) in the left part of Fig. 7.

Moreover, if we set i = −1, but also apply an automorphism

with α = 1, β1 = 0, β2 = −2− j, and finally substitute j 7→
−3− j, then we get the second general form from Theorem 6

(with columns reordered) in the right part of Fig. 7.
2) H(q, 4): In [23, Fig. 3], the authors presented the

support matrix of a weight-10 codeword for H(q, 4) for q > 7.

Since α = 12 is co-prime with any prime q > 4, each

matrix entry in the matrix from [23] can be multiplied by

α = 12, which is equivalent to applying a doubly transitive

automorphism. The resulting matrix becomes
[

0 0 −12 −24 −6 −6 −24 −12 −30 −30
0 3 0 −12 −4 3 −13 −4 −13 −12
0 6 12 0 −2 12 −2 4 4 6
0 9 24 12 0 21 9 12 21 24

]

.

Applying Algorithm 2 gives the split indicated in Fig. 8

where the columns have been re-ordered. For q = 11, we

exhaustively checked all the 4-subsets of F2
q and did not find

any termatiko sets among them, therefore h(11, 4) = 5. For the

special cases H(5, 4) and H(7, 4), weight-8 codeword support

matrices were presented in [20, Thms. 7 and 8]. These can be

split, and the results of the splits are shown in Figs. 9 and 10.
3) H(q, 5): In [23, Fig. 4], an explicit support matrix of

weight-12 codewords from H(q, 5) is presented for q 6= 11.5

5It seems the authors did not verify that the columns of the support matrix
are different. However, for q = 11, two columns are identical. Therefore, we
treat H(11, 5) as a special case.

Multiplying each entry of the matrix by α = 6, which is co-

prime with q > 5, and applying Algorithm 2 to the resulting

matrix results in a half-and-half split (see Fig. 11). For q = 7,

we verified exhaustively that the bound is tight, i.e., h(7, 5) =
6. Furthermore, for q = 11, there exists a weight-10 codeword

and the result of its split is shown in Fig. 12.

4) H(q, 6): In [24, Eq. (13)], the authors presented a

support matrix of codewords of weight 20 for H(q, 6). We

multiply its entries by α = 2 and apply Algorithm 2 to the

resulting matrix. The algorithm succeeds to create a half-and-

half split and the result is presented in Fig. 13. The authors

proved in [24] that there are no repetitive columns in the

matrix for q > 11. For the special cases H(7, 6) and H(11, 6),
they provided particular support matrices which we also are

able to split half-and-half with our algorithm (see Figs. 14

and 15). For H(11, 6), we also ran a brute-force exhaustive

search confirming that there are no termatiko sets of size less

than 8 and larger than or equal to the lower bound of 6 from

Theorem 5.

5) H(q, 7): Again, in [24, Eq. (17)], the authors presented

a support matrix for codewords of weight 24 for H(q, 7). We

multiply its entries by α = 4 and successfully split it using

Algorithm 2 (see Fig. 16). For H(11, 7), the stopping distance

is 15 (see [24]). We applied Heuristic 1 to all stopping sets of

size 15 in H(11, 7), but did not find any termatiko sets of size

smaller than 12. Hence, Heuristic 1 was not able to tighten the

upper bound of 12 computed from Algorithm 2. Moreover, we

also ran a brute-force exhaustive search confirming that there

are no termatiko sets of size less than 9 and larger than or

equal to the lower bound of 7 from Theorem 5.

6) H(q, a > 7): From the previous subsections it appears

(at least for small a and q) that the termatiko distance is half

the minimum distance for array LDPC codes, since the upper

bound obtained by splitting half-and-half a minimum-weight

codeword matches either the lower bound from Theorem 5

or a lower bound obtained by brute-force exhaustive search.

However, proving this in general might be difficult. Moreover,

not all stopping sets can be split half-and-half. For instance,

for q = 7 and a = 4 we have found a stopping set (which is

also a minimal codeword) of weight 20 that cannot be split

into two termatiko sets, each of size 10. We verified this by

exhaustive search. The support matrix of this codeword is
[

2 3 4 1 2 3 5 6 0 1 2 5 6 5 4 5 5 0 2 5
2 3 4 2 3 4 6 0 2 3 4 0 1 1 1 2 3 6 1 4
2 3 4 3 4 5 0 1 4 5 6 2 3 4 5 6 1 5 0 3
2 3 4 4 5 6 1 2 6 0 1 4 5 0 2 3 6 4 6 2

]

.

We gather the results for the termatiko distances of array

LDPC codes in Table I. We additionally put results for

measurement matrices H(5, 5) and H(7, 7), although usually

a < q is required for array LDPC codes.6 The exact termatiko

distances for these two cases where obtained by splitting

small-size stopping sets using Algorithm 2. This procedure

gave termatiko sets of size 5 and 7, respectively, and from

Theorem 5 it follows that these values give the exact termatiko

distance in these two cases. Alternatively, for a = 5, one can

remove the 5-th and the last column from the matrix in Fig. 11

6Having a = q gives array LDPC codes of strictly positive rate since
H(q, a) has redundant rows.
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[
0 2i− 2j −2i 0 2i− 2j −2i
0 −i −2i+ j −2i+ j 0 −i
0 −4i+ 2j −2i+ 2j −4i+ 2j −2i+ 2j 0

]

Fig. 7. Codeword support matrix of a weight-6 codeword of H(q, 3). The
vertical line illustrates how to split the codeword support into two distinct
termatiko sets each of half the size.

[
0 −6 −24 −12 −30 0 −12 −24 −6 −30
0 3 −13 −4 −12 3 0 −12 −4 −13
0 12 −2 4 6 6 12 0 −2 4
0 21 9 12 24 9 24 12 0 21

]

Fig. 8. Codeword support matrix of a weight-10 codeword of H(q, 4) for
q ≥ 11. The vertical line illustrates how to split the codeword support into
two distinct termatiko sets each of half the size.

[
0 3k + 3z 2k + 4z 2z 0 3k + 3z 2k + 4z 2z
0 3z k + 4z k + 2z k + 4z 0 k + 2z 3z
0 2k + 3z 4z 2k + 2z 2k + 3z 2k + 2z 0 4z
0 4k + 3z 4k + 4z 3k + 2z 3k + 2z 4k + 4z 4k + 3z 0

]

Fig. 9. Codeword support matrix of a weight-8 codeword of H(5, 4) for
z ∈ F5 \ {0} and k ∈ {0, 2z}. The vertical line illustrates how to split
the codeword support into two distinct termatiko sets each of half the size.

[
0 2k + 5z 2k + z 4z 0 2k + 5z 2k + z 4z
0 k + 2z 5z k + 4z k + 2z 0 k + 4z 5z
0 6z 5k + 2z 2k + 4z 2k + 4z 5k + 2z 0 6z
0 6k + 3z 3k + 6z 3k + 4z 3k + 6z 3k + 4z 6k + 3z 0

]

Fig. 10. Codeword support matrix of a weight-8 codeword of H(7, 4) for
z ∈ F7 \ {0} and k ∈ {0, 2z, 4z, 6z}. The vertical line illustrates how to
split the codeword support into two distinct termatiko sets each of half the
size.





0 −4 −18 −22 −6 −16 0 −6 −22 −18 −4 −16
0 1 −8 −12 −3 −11 1 0 −11 −12 −3 −8
0 6 2 −2 0 −6 2 6 0 −6 −2 0
0 11 12 8 3 −1 3 12 11 0 −1 8
0 16 22 18 6 4 4 18 22 6 0 16





Fig. 11. Codeword support matrix of a weight-12 codeword of H(q, 5).
The vertical line illustrates how to split the codeword support into two
distinct termatiko sets each of half the size.





0 5 4 7 6 7 4 0 5 6
1 0 10 8 3 1 3 10 8 0
2 6 5 9 0 6 2 9 0 5
3 1 0 10 8 0 1 8 3 10
4 7 6 0 5 5 0 7 6 4





Fig. 12. Codeword support matrix of a weight-10 codeword of H(11, 5).
The vertical line illustrates how to split the codeword support into two
distinct termatiko sets each of half the size.






0 −22 −2 −20 10 −8 12 −10 −32 22 −10 −2 10 −32 22 −20 0 −8 −22 12
0 −16 8 −8 9 −7 17 1 −15 16 −8 0 16 −16 17 −15 9 1 −7 8
0 −10 18 4 8 −6 22 12 2 10 −6 2 22 0 12 −10 18 10 8 4
0 −4 28 16 7 −5 27 23 19 4 −4 4 28 16 7 −5 27 19 23 0
0 2 38 28 6 −4 32 34 36 −2 −2 6 34 32 2 0 36 28 38 −4
0 8 48 40 5 −3 37 45 53 −8 0 8 40 48 −3 5 45 37 53 −8






Fig. 13. Codeword support matrix of a weight-20 codeword of H(q, 6). The vertical line illustrates how to split the codeword support into two distinct
termatiko sets each of half the size.






0 3 6 2 5 4 2 6 5 4 0 3
0 6 5 4 3 1 3 0 6 5 1 4
0 2 4 6 1 5 4 1 0 6 2 5
0 5 3 1 6 2 5 2 1 0 3 6
0 1 2 3 4 6 6 3 2 1 4 0
0 4 1 5 2 3 0 4 3 2 5 1






Fig. 14. Codeword support matrix of a weight-12 codeword of H(7, 6).
The vertical line illustrates how to split the codeword support into two
distinct termatiko sets each of half the size.






0 10 1 5 7 6 6 0 6 10 5 1 0 7 0 6
0 4 7 10 2 6 9 8 7 0 8 9 10 6 2 4
0 9 2 4 8 6 1 5 8 1 0 6 9 5 4 2
0 3 8 9 3 6 4 2 9 2 3 3 8 4 6 0
0 8 3 3 9 6 7 10 10 3 6 0 7 3 8 9
0 2 9 8 4 6 10 7 0 4 9 8 6 2 10 7






Fig. 15. Codeword support matrix of a weight-16 codeword of H(11, 6).
The vertical line illustrates how to split the codeword support into two
distinct termatiko sets each of half the size.







0 −18 −14 −20 −8 −4 8 2 6 −12 10 −22 6 0 −4 −22 8 −20 10 −12 −8 −18 2 −14
0 −14 −10 −12 −7 1 6 4 8 −6 9 −15 6 4 0 −14 9 −15 8 −10 −6 −12 1 −7
0 −10 −6 −4 −6 6 4 6 10 0 8 −8 6 8 4 −6 10 −10 6 −8 −4 −6 0 0
0 −6 −2 4 −5 11 2 8 12 6 7 −1 6 12 8 2 11 −5 4 −6 −2 0 −1 7
0 −2 2 12 −4 16 0 10 14 12 6 6 6 16 12 10 12 0 2 −4 0 6 −2 14
0 2 6 20 −3 21 −2 12 16 18 5 13 6 20 16 18 13 5 0 −2 2 12 −3 21
0 6 10 28 −2 26 −4 14 18 24 4 20 6 24 20 26 14 10 −2 0 4 18 −4 28







Fig. 16. Codeword support matrix of a weight-24 codeword of H(q, 7). The vertical line illustrates how to split the codeword support into two distinct
termatiko sets each of half the size.
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TABLE I
TERMATIKO DISTANCES OF ARRAY LDPC CODE MATRICESH(q, a).

a = 3 a = 4 a = 5 a = 6 a = 7

q = 5 3 4 5 – –
q = 7 3 4 6 6 7
q = 11 3 5 5 8 9..12
q ≥ 13 3 4 or 5 5 or 6 6..10 7..12

(they are identical for q = 5) and get a valid codeword support

matrix of a weight-10 codeword that also is splittable in two

termatiko sets of size 5.

V. ADDING REDUNDANT ROWS

It is well-known that for iterative (peeling) decoding over

the BEC one can add redundant rows to the parity-check

matrix in order to decrease the number of stopping sets [25].

This is also the case for relaxed linear programming decoding

of binary linear codes on any symmetric channel [26]. In

this section, we aim to improve the recovery performance

of the IPA by adding redundant rows to the measurement

matrix, inspired by the success on the BEC. However, there

is one fundamental difference in the sense that the real linear

combinations that are added to the measurement matrix should

contain nonnegative entries only. Furthermore, we would like

to stress that redundant rows that we add to the measure-

ment matrix are not used to provide new measurements, but

rather used in the recovery process, which means that also

measurements need to be linearly combined at the receiver.

Thus, this procedure does not decrease the compression rate

of the scheme, but rather potentially improve the recovery

performance.

The following lemma shows that adding redundant rows to

the measurement matrix does not harm the IPA reconstruction

performance, namely, that it does not create new termatiko

sets.

Lemma 2. Adding redundant measurements does not create

new termatiko sets.

Proof: Let the original measurement matrix be denoted

by A. Its extended version with nonnegative redundant rows

is denoted by A′. The matrix A′ is constructed such that the

first rows of A′ are exactly the rows of A and the remaining

rows are real-valued linear combinations of the rows of A
with nonnegative entries.7 Denote also by V ′, C′, E′, N ′, and

N ′
T the entities corresponding to A′, similarly to Section II-C.

Consider some signal vector x and two problems, IPA(y, A)
and IPA(y′, A′), where y = Ax and y′ = A′x.

The set of variable nodes is the same, i.e., V = V ′, but the

set of measurement nodes is now a superset of the original set,

i.e., C ⊂ C′. The same is true for the set of edges, E ⊂ E′.

Also, it holds for all v ∈ V thatN ′(v) = N ′
C(v)∪N

′
C′\C(v) =

N (v) ∪ N ′
C′\C(v) and N ′(c) = N (c) for all c ∈ C. This in

turn means that yc = y′c for c ∈ C.
Let µ′ and M ′ (with corresponding indices) be bounds in

the iterations of IPA(y′, A′). Then to prove the statement of

7Nonnegativity of matrix entries is important for the correctness of the
IPA.

the lemma, it is enough to show that for all iterations ℓ ≥ 0,

µ
′(ℓ)
v→· ≥ µ

(ℓ)
v→· and M

′(ℓ)
v→· ≤ M

(ℓ)
v→·. In other words, we show

that the intervals [µ′,M ′] are at least as tight as [µ,M ]. We

show this by induction on ℓ (the number of iterations).

Base Case.

µ
′(0)
v→· = 0 = µ

(0)
v→·

M
′(0)
v→· = min

c∈N ′(v)
(y′c/a

′
cv) ≤ min

c∈N(v)
(y′c/a

′
cv)

= min
c∈N(v)

(yc/acv) =M
(0)
v→· .

Inductive Step.

Consider iteration ℓ ≥ 1. At each step ℓ of the IPA and for

all c ∈ C and v ∈ N ′(c) = N (c), we have

µ′(ℓ)
c→v =

1

a′cv



y′c −
∑

v′∈N ′(c),v′ 6=v

a′cv′M
′(ℓ−1)
v′→·





=
1

acv



yc −
∑

v′∈N(c),v′ 6=v

acv′M
′(ℓ−1)
v′→·





≥
1

acv



yc −
∑

v′∈N(c),v′ 6=v

acv′M
(ℓ−1)
v′→·



 = µ(ℓ)
c→v .

In the same manner, we get that for all c ∈ C, M
′(ℓ)
c→v ≤

M
(ℓ)
c→v. We further apply these inequalities to Lines 16 and

17 of Algorithm 1 and, recalling properties of the operators

min(·) and max(·), we obtain the desired result.

From Lemma 2 it follows that adding redundant rows to

the measurement matrix cannot harm the IPA. The following

example shows that adding such rows can indeed improve the

performance of the IPA by removing termatiko sets.

Example 2. Consider the binary measurement matrix

A =









1 0 0 1 0
1 0 1 1 0
1 0 0 0 1
0 1 1 0 0
0 1 1 0 1









.

The corresponding Tanner graph is shown in Fig. 17(a). Note

that the set {v1, v2} is a termatiko set in this matrix (the

corresponding columns of A are marked in bold). However, if

we add a redundant row c∗ equal to the difference of rows c2
and c1, {v1, v2} is not a termatiko set for the extended matrix8

A′ =











1 0 0 1 0
1 0 1 1 0
1 0 0 0 1
0 1 1 0 0
0 1 1 0 1
0 0 1 0 0











,

since c4 violates conditions in Theorem 2 with the updated

matrix as explained below.

• c4 is not connected to S′, and

8Recall that operations are performed over R.
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v1 v2

v3 v4 v5

c1 c2 c3 c4 c5

T :

N :

S:

(a) T = {v1, v2}, N = {c1, c2, c3, c4, c5},
and S = {v3, v4, v5} are the sets defined in
Theorem 2. T is a termatiko set.

v1 v2

v3 v4 v5

c∗ c1 c2 c3 c4 c5

:T

:N

:S′

(b) S′ = {v4, v5} 6= S because of the new measurement node
c∗. T is not a termatiko set anymore.

Fig. 17. Adding a redundant measurement c∗ corresponding to the difference of rows c2 and c1 for the example matrix of Example 2.

• NT (c4) = {v2}, N (v2) = {c4, c5}, and each of c4, c5 is

connected to T only once – therefore
∣
∣
∣{v ∈ NT (c4) : ∀c′ ∈ N (v) , |NT (c′) | ≥ 2}

∣
∣
∣ = 0 .

Fig. 17(b) illustrates the differences.

Now, the question is which redundant rows to add in

order to remove the largest number of harmful small-size

termatiko sets. We propose the following heuristic approach.

First, fix some list of small-size termatiko sets for the original

measurement matrix A and generate a pool of redundant rows

which (hopefully) help to remove at least one termatiko set

from the list as follows.

Consider a termatiko set T from the list and its corre-

sponding set S. A redundant row r = (r1, r2, . . . , rn) for the

measurement matrix A can be defined uniquely by the coef-

ficients α1, α2, . . . , αm ∈ R by the linear combinations rv =
∑

c∈C acvαc. However, since in real calculations floating-point

numbers are effectively rational numbers, by multiplying all

α’s by some common multiplier of their denominators, we can

make them all integer, and they still give a redundant row r

with the same support. Therefore, w.o.l.g., we assume that the

α’s are integers. If original matrix A has integer entries, the

resulting extended matrix has integer entries as well, which

allows for a faster IPA in applications where the signal x is

over the integers.

There are two types of redundant rows that will be collected

in the pool. The first type “breaks” the termatiko set T for sure.

It has one nonzero entry in the positions in T and zeroes in

entries indexed by S. The other entries of r can be chosen

arbitrarily. More precisely, for a fixed v0 ∈ T we solve the

(integer) linear programming problem

minimize
∑

v∈V \{T∪S}

rv =
∑

v∈V \{T∪S}

∑

c∈C

acvαc

s.t. rv ≥ 0 , v /∈ T ∪ S ,

rv = 0 , v ∈ T ∪ S \ {v0} ,

rv0 ≥ 1 ,

where α1, α2, . . . , αm are integer variables. Minimization here

is not essential and is used just to get smaller coefficients

in a redundant row. In fact, for any feasible solution, the

corresponding redundant row eliminates the termatiko set T .

A redundant row can potentially be obtained for each v0 ∈ T .

As a final remark, relaxing the α’s to be real numbers turns

the program into a standard linear program that can be solved

using the simplex method. However, as noted above, having

integers (of moderate size) in the measurement matrix has

some potential benefits. Thus, when the size of the program

is not too large and can be solved using a standard solver in a

reasonable time (which is the case in our examples), we keep

the integer constraint on the α’s.

Redundant rows of the second type do not necessarily

“break” T always, but they have good chances for doing

exactly that. The basic idea is to try to make variable nodes

in S not satisfy Theorem 2, hence not being included in S
for the extended matrix and, hopefully, this eliminates T as a

termatiko set for the extended matrix. Note that having several

nonzero entries in positions in S is better, since all of them

will disappear from S (and we do not add new ones to S). This

will increase the probability of removing T . The corresponding

(integer) linear program is

rv ≥ 0 , v /∈ T ,

rv ≤ 1000 , v /∈ T ,

rv = 0 , v ∈ T ,
∑

v∈S

rv ≥ 10|S| ,

where the constants 10 and 1000 are chosen rather arbitrarily;

10 is used in order to make nonzero entries in rS more likely,

and the upper bounds of 1000 make sure the entries in r are

of limited size. Note that no objective function is specified,

since any feasible solution will do. For each termatiko set T ,

this approach produces at most one redundant row.

Finally, after constructing the pool of redundant rows as

described above, we start adjoining them to the matrix A one

by one in a greedy manner as follows. Let the list of termatiko

sets be denoted by LIST and the pool of redundant rows by

POOL. For each row r ∈ POOL, we calculate the score

score(r) =
∑

T∈RMV(LIST,r)

|T | ,

where RMV(LIST, r) is the subset of LIST consisting of

the termatiko sets that are not termatiko sets after adjoining

row r to the current measurement matrix. The row r∗ with
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TABLE II
ESTIMATED TERMATIKO SET SIZE SPECTRA (INITIAL PART) OF MEASUREMENT MATRICES FROM SECTION VI, WHERE ĥmin DENOTES THE ESTIMATED

TERMATIKO DISTANCE. T1 CORRESPONDS TO TERMATIKO SETS WITH ALL MEASUREMENT NODES IN N CONNECTED TO BOTH T AND S , AND T2

CORRESPONDS TO ALL THE REMAINING TERMATIKO SETS. ALSO SHOWN ARE THE EXACT STOPPING DISTANCES AND STOPPING SET SIZE SPECTRA

(INITIAL PART). ENTRIES IN BOLD ARE EXACT VALUES. FOR A(1) , HEURISTIC 1 GIVES A MULTIPLICITY OF 5875518 FOR SIZE 5, WHILE THE EXACT

NUMBER IS 6318378 (AN UNDERESTIMATION OF ABOUT 7.5%).

Measurement matrix ĥmin Initial estimated termatiko set size spectrum smin Initial stopping set size spectrum

A(1)
3 T1: (3630,93775,6318378,48548225, 71709440, 6 (1815,605,45375,131890,3550382,28471905)

36514170, 7969060, 856801, 41745)
T2: (0, 0, 0, 410190, 18610405, 71153445, 86844725,

58849681, 28430160)

A(2) 9 T1: (465, 3906, 12555, 8835, 0, 0, . . . ) 18 (465,2015,9548,23715,106175)
T2: (0, 0, 0, 1860, 5115, 10695, 2325, 5580, 2325, 6045

10850, 22103, 39990, 106175)

A(3) 8 T1: (228, 0, 0, . . . ) 9 (76, 0,0, 0, 76,76,304,1520)
T2: (0, 76, 0, 76, 684, 532, 152, 532, 1520)

A(4) 8 T1: (184, 598, 1242, 391, 0, 0) 15 (46,161,391,897,2093,5796)
T2: (0, 0, 0, 69, 23, 0, 23, 46, 161, 391, 1012, 2300, 5796)

A(5) 7 T1: (106, 0, 0, 53, 901, 3233, 954, 53, 0, 0, . . . ) 14 (53,0, 0,0, 0, 53,106,583,1484,3922,9964)
T2: (0, 0, 0, 0, 0, 0, 106, 265, 106, 636, 689, 477,

583, 371, 1325, 2915, 5830, 9964)

the maximum score is adjoined to the measurement matrix,

the termatiko sets in RMV(LIST, r) are removed from LIST,

and the scores are re-calculated for the updated LIST and

measurement matrix. The procedure is continued until LIST

is empty or all scores are zero (which means that no more

termatiko sets can be removed).

VI. NUMERICAL RESULTS

In this section, we present numerical results for different

specific measurement matrices and also for ensembles of

measurement matrices, as well as simulation results of IPA

performance.

A. Termatiko Distance for Specific Matrices

For all considered matrices we first find all stopping sets

of size less than some threshold using the algorithm from

[18], [19]. Then, we exhaustively search for termatiko sets

as subsets of these stopping sets according to Heuristic 1 (see

Section III-E). The results are tabulated in Table II for five

different measurement matrices, denoted by A(1), A(2), A(3),

A(4), and A(5), respectively. Due to the heuristic nature of

the approach, the estimated termatiko distance is a true upper

bound on the actual termatiko distance, while the estimated

multiplicities are true lower bounds on the actual multiplicities.

Measurement matrix A(1) is the 33× 121 parity-check matrix

H(11, 3) of the array-based LDPC code C(11, 3) of column-

weight 3 and row-weight 11 described in Section IV-A, A(2)

is the parity-check matrix of the (155, 64) Tanner code from

[27], A(3) is taken from the IEEE802.16e standard (it is the

parity-check matrix of a rate-3/4, length-1824 LDPC code;

using base model matrix A and the alternative construction,

see [18, Eq. (1)]), A(4) is a 276×552 parity-check matrix of an

irregular LDPC code, while A(5) is a 159× 265 parity-check

matrix of a (3, 5)-regular LDPC code built from arrays of

permutation matrices from Latin squares. For the matrix A(1),

we have also compared the results with an exact enumeration

of all termatiko sets of size at most 5 obtained by an exhaustive

search. When considering all stopping sets of size at most 11,

Heuristic 1 finds the exact multiplicities for sizes 3 and 4, but

it underestimates the number of termatiko sets of size 5 by

about 7.5% (the missing ones are subsets of stopping sets of

size 12 to 14), which indicates that higher order terms (for all

tabulated matrices) are likely strict lower bounds on the exact

multiplicities. As can be seen from the table, for all matrices

except A(3), the estimated termatiko distance is about half the

stopping distance. Also, the smallest-size termatiko sets all

correspond to termatiko sets with all measurement nodes in

N connected to both T and S (cf. Theorem 2).

B. Termatiko Distance for Protograph-Based Matrix Ensem-

bles

Now, consider the protograph-based (3, 6)-regular LDPC

code ensemble defined by the protomatrix H = (3, 3).
We randomly generated 200 parity-check matrices from this

ensemble using a lifting factor of 100 (the two nonzero entries

in the protomatrix are replaced by 100×100 binary matrices of

row-weight 3 in which all right-shifts of the first row (picked at

random) occur in some order). For each lifted matrix, we first

found all stopping sets of size at most 16 using the algorithm

from [18], [19]. Then, the termatiko distance was estimated

for each matrix using Heuristic 1. The results are depicted in

Fig. 18 as a function of the code index (the blue curve shows

the minimum distance dmin, the red curve shows the minimum

size of a noncodeword stopping set, denoted by s̃min, while the

green curve shows the estimated termatiko distance ĥmin). The

average dmin, smin, and ĥmin (over the 200 matrices) are 6.84,

5.92, and 3.90, respectively.9 We repeated a similar experiment

using a lifting factor of 200 in which case the average dmin,

smin, and ĥmin (again over 200 randomly generated matrices)

became 9.21, 7.75, and 5.80, respectively.

Next, we repeat the same calculations for 200 randomly

generated parity-check matrices from the protograph-based

(4, 8)-regular LDPC code ensemble. For each parity-check

matrix, we considered all stopping sets of size up to 14. For

9Note that here 5.92 is the average stopping distance, and not the average
size of the smallest noncodeword stopping sets.



15

1 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

Code index

d
m

in
/
s̃
m

in
/
ĥ
m

in

dmin

s̃min
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Fig. 18. Minimum distance dmin, minimum size of a noncodeword stopping set s̃min, and estimated termatiko distance ĥmin versus code index for randomly
generated binary measurement matrices from a protograph-based (3, 6)-regular LDPC code ensemble.
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Fig. 19. Minimum distance dmin, minimum size of a noncodeword stopping set s̃min, and estimated termatiko distance ĥmin versus code index for randomly
generated binary measurement matrices from a protograph-based (4, 8)-regular LDPC code ensemble.

some matrices, the minimum distances of the corresponding

codes were larger than 14, thus we calculated them separately.

Fig. 19 presents the results of the calculations. The average

dmin, smin, and ĥmin are 12.53, 9.75, and 8.41, respectively.

C. Performance of Algorithm 2

In order to see how Algorithm 2 performs, we applied it

to the stopping sets of size at most 14 for the protograph-

based matrices described in the Section VI-B, both (3, 6) and

(4, 8)-regular matrices.

Table III shows the average number of stopping sets of size

w, for w = 1, 2, . . . , 14 for the 200 randomly generated (3, 6)-

regular matrices (the numbers are exact). It also presents the

fraction of the matrices that have stopping sets of size w.

In particular, all the 200 matrices have stopping sets of size

w = 13 and w = 14. For a fixed w, we also considered the

total multiset of all stopping sets from all the matrices together

and calculated the fraction of them that are splittable in their

corresponding matrix. The last column of Table III displays

these numbers. Next, we built the total multiset of all splittable

stopping sets from all the matrices together and repeatedly

ran Algorithm 2 to estimate the average success probability

across the multiset. The resulting frequencies are depicted in

Fig. 20. The aforementioned calculations were repeated for the
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TABLE III
STOPPING SETS (INCL. CODEWORDS) DISTRIBUTION OVER 200

RANDOMLY GENERATED MATRICES FROM THE PROTOGRAPH-BASED

(3, 6)-REGULAR LDPC CODE ENSEMBLE. NUMBERS ARE EXACT.

w
average number of

size-w stopping sets
fraction of codes having

size-w stopping sets

fraction of size-w
stopping sets

allowing a (T, S)-split

1 0.000 0.000 -
2 0.080 0.075 1.000
3 0.010 0.010 0.000
4 0.150 0.125 0.267
5 0.320 0.215 0.094
6 1.350 0.485 0.222
7 5.365 0.690 0.070
8 10.860 0.925 0.174
9 33.695 0.995 0.083

10 105.935 1.000 0.099
11 298.085 1.000 0.079
12 953.220 1.000 0.082
13 3029.230 1.000 0.070
14 9887.395 1.000 0.076
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Fig. 20. Average success rate of Algorithm 2 on stopping sets that allow a
(T, S)-split for the 200 randomly generated matrices from the protograph-
based (3, 6)-regular LDPC code ensemble. Note that there were no splittable
stopping sets of size w = 3.

200 randomly generated (4, 8)-regular matrices. The results

are presented in Table IV and Fig. 21.

D. Adding Redundant Rows

To illustrate the efficiency of the heuristic algorithm from

Section V in removing small-size termatiko sets, we chose

three out of the 200 (3, 6)-regular matrices (with a lifting

factor of 100) in Section VI-B as example matrices. More

precisely, the matrices with indices 20, 72, and 172, denoted

by A
(20)
PG

, A
(72)
PG

, and A
(172)
PG

, respectively, were selected. These

matrices were chosen to demonstrate different behavior pat-

terns. As a side note, we remark that the Tanner graphs of the

matrices A
(20)
PG

, A
(72)
PG

, and A
(172)
PG

have 126, 22, and 13 cycles

of length 4, respectively (cf. Theorem 5). However, both A
(72)
PG

and A
(172)
PG

have a termatiko distance of at least 3. Therefore,

the requirement in Theorem 5 to have no cycles of length 4
is sufficient but not necessary.

For all three matrices we applied the algorithm from Sec-

tion V in order to remove termatiko sets by adding redundant

rows. The algorithm added 30 redundant rows to A
(20)
PG

, 55

rows to A
(72)
PG

, and 68 rows to A
(172)
PG

. Due to computing

limitations, we were able to tackle only a limited number

TABLE IV
STOPPING SETS (INCL. CODEWORDS) DISTRIBUTION OVER 200

RANDOMLY GENERATED MATRICES FROM THE PROTOGRAPH-BASED

(4, 8)-REGULAR LDPC CODE ENSEMBLE. NUMBERS ARE EXACT.

w
average number of

size-w stopping sets
fraction of codes having

size-w stopping sets

fraction of size-w
stopping sets

allowing a (T, S)-split

1 0.000 0.000 -
2 0.010 0.010 1.000
3 0.000 0.000 -
4 0.125 0.005 0.000
5 0.210 0.020 0.000
6 0.295 0.045 0.051
7 0.185 0.085 0.243
8 3.415 0.190 0.013
9 4.720 0.335 0.010

10 20.525 0.545 0.014
11 70.705 0.720 0.012
12 305.780 0.910 0.029
13 827.665 1.000 0.064
14 2219.780 1.000 0.128
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Fig. 21. Average success rate of Algorithm 2 on stopping sets that allow a
(T, S)-split for the 200 randomly generated matrices from the protograph-
based (4, 8)-regular LDPC code ensemble. Note that there were no splittable
stopping sets of sizes w = 3, 4, 5.

of termatiko sets. A
(20)
PG

originally had the highest numbers

of termatiko sets, and because of that we only processed all

termatiko sets of size up to 5 (including). For A
(72)
PG

, we

processed all termatiko sets of size up to 7, and for A
(172)
PG

sizes up to 8 were considered. Accordingly, we will occa-

sionally denote the extended matrices by A
(20)

EPG(5) , A
(72)

EPG(7) ,

and A
(172)

EPG(8) . The numbers of termatiko sets decreased for all

matrices. Moreover, for A
(72)
PG

and A
(172)
PG

we were also able to

increase their termatiko distances. Table V shows the estimated

termatiko set size spectra (initial part) for the original and

extended matrices.

In order to see how changes in the termatiko set size

spectra influence performance under the IPA, simulations were

performed to estimate the frame-error rate (FER), i.e., the

probability of failing to recover the original signal correctly

for different values of its Hamming weight w. The results

are presented in Fig. 22(a). The three matrices A
(20)
PG

, A
(72)
PG

,

and A
(172)
PG

represent different behavior after adding redun-

dant rows. A
(20)
PG

is intrinsically bad and cannot be fixed as

illustrated in Fig. 23. In particular, since both v19 and v130
are connected to {c13, c30, c88} only, their values cannot be

recovered. The reason being that if v19 = α, v130 = β, and
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Fig. 22. FER performance of the IPA versus the weight of the signal vector for several protograph-based measurement matrices.

TABLE V
ESTIMATED TERMATIKO SET SIZE SPECTRA (INITIAL PART) FOR THREE

PROTOGRAPH-BASED MATRICES FROM FIG. 18 BEFORE AND AFTER

ADDING REDUNDANT ROWS. NUMBERS IN ANGLE BRACKETS STAND FOR

TERMATIKO DISTANCE hmin , SIZE OF THE SMALLEST NONCODEWORD

STOPPING SET s̃min , AND MINIMUM DISTANCE dmin , RESPECTIVELY, FOR

THE ORIGINAL NONEXTENDED MEASUREMENT MATRICES. NUMBERS IN

BOLD ARE EXACT. WE TRIED TO “REMOVE” TERMATIKO SETS OF SIZE UP

TO ℓ (INCLUDING).

A
(20)

PG
〈1, 4, 2〉 A

(72)

PG
〈3, 7, 10〉 A

(172)

PG
〈6, 8, 6〉

w
original
(ℓ = 0)

extended
(ℓ = 5)

original
(ℓ = 0)

extended
(ℓ = 7)

original
(ℓ = 0)

extended
(ℓ = 8)

1 2 2 0 0 0 0

2 4 1 0 0 0 0

3 11 0 1 0 0 0

4 82 0 3 0 0 0

5 837 16 19 2 0 0

6 7860 265 83 0 23 0

7 84059 5214 794 0 263 0
8 670146 61519 5204 98 1780 5
9 1885358 182366 6904 109 2134 10

. . . . . . . . . . . . . . . . . . . . .

α + β > 0, each of c13, c30, c88 keeps only the sum α + β,

and there are infinitely many solutions for α and β. It is

worth noting that this is not a failure of the IPA, since strictly

speaking information has just been lost in the compression

process (even an optimal recovery algorithm would fail here).

v19

v130

c13 c30 c88

Fig. 23. {v19} and {v130} are both size-1 termatiko sets in A
(20)
PG

.

On the other hand, both A
(72)

EPG(7) and A
(172)

EPG(8) have increased

termatiko distance (compared to A
(72)
PG

and A
(172)
PG

, respec-

tively), and show a significant improvement in the sparse

region which shows the importance of designing measurement

matrices with a high termatiko distance.

To better understand the curves, we also added lower bounds

based on the principle of inclusion-exclusion. The following

is a well-known result (see, e.g., [28, p. 55]).

Lemma 3 (Principle of Inclusion-Exclusion (PIE)). Assume

that A1,A2, . . . ,AM are some arbitrary events and P{·} is a
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probability measure. Then

P

{
M⋃

i=1

Ai

}

=
M∑

k=1

(−1)k−1







∑

I⊂[M ]
|I|=k

P

{
⋂

i∈I

Ai

}






.

More precisely, we take into consideration only the 30–50
smallest termatiko sets of a matrix, and then build a theoretical

curve as if the matrix would contain only these termatiko sets

and hence reconstruction fails if and only if the support of a

signal contains any of these 30–50 termatiko sets as a subset.

Assume that the termatiko sets of the matrix are T1, T2, . . . ,
and let Ai denote the event that a weight-w subset of [n]
chosen uniformly at random is a superset of Ti. We remark that

if Ti ⊂ Tj , then Ai ⊃ Aj and Ai∪Aj = Ai. Therefore, if we

include Ti into the list of consideration, then there is no point

to also include Tj . This pre-filtering can save computation

time, as many termatiko sets are in fact subsets of others.

Next, we consider only M termatiko sets which we denote by

T1, T2, . . . , TM . Note that it is not required that the chosen

termatiko sets are the M smallest; any M termatiko sets can

be chosen and the result below will still be a correct lower

bound. However, in our simulations, we took the M smallest

ones, for some M . This is also because we are particularly

interested in a negative effect of the smallest termatiko sets.

With the aforementioned notation, the true FER is lower-

bounded as

FER(w) = P

{
⋃

i

Ai

}

≥ P

{
M⋃

i=1

Ai

}

PIE
=

M∑

k=1

(−1)k−1







∑

I⊂[M ]
|I|=k

P

{
⋂

i∈I

Ai

}







=
1
(
n
w

)

M∑

k=1

(−1)k−1







∑

I⊂[M ]
|I|=k

(
n−

∣
∣
⋃

i∈I Ti
∣
∣

w −
∣
∣
⋃

i∈I Ti
∣
∣

)






,

where
(
a
b

)
denotes the binomial coefficient of a over b and by

convention
(
a
b

)
= 0 if b < 0.

If the number of terms in the sum above becomes too large,

we can use the truncated lower bound

FER(w) ≥
1
(
n
w

)

2L∑

k=1

(−1)k−1







∑

I⊂[M ]
|I|=k

(
n−

∣
∣
⋃

i∈I Ti
∣
∣

w −
∣
∣
⋃

i∈I Ti
∣
∣

)







for some 2L < M (the so-called Bonferroni inequality).

This truncated expression becomes equal to the full inclusion-

exclusion formula for weight w if
∣
∣
⋃

i∈I Ti
∣
∣ > w for all

I ⊂ [M ], |I| > 2L. This simple fact allows to calculate

better FER lower bounds for sparse signals faster. FER curves

together with lower bounds are depicted in Figs. 22(b) to

22(d).

Finally, we remark that the performance of the IPA and its

comparison with other algorithms for efficient reconstruction

of sparse signals have been investigated in [5] (see Figs. 4

and 8), and we refer the interested reader to that work for

such results.

VII. CONCLUSION

In this work, we have analyzed the failing patterns of the

IPA by introducing the concept of termatiko sets. We have

shown that the IPA fails to fully recover a nonnegative real

signal x ∈ R
n
≥0 if and only if the support of x contains

a nonempty termatiko set. Two heuristics to locate small-

size termatiko sets were presented and analyzed. Furthermore,

a lower bound on the termatiko distance of column-regular

binary measurement matrices with no 4-cycles was derived.

For the special case of measurement matrices equal to the

parity-check matrices of array LDPC codes an upper bound

on the termatiko distance equal to half of the best known

upper bound on the minimum distance was given for column-

weight at most 7. For column-weight 3 codes it was shown

that the exact termatiko distance is 3 and an explicit formula

for the multiplicity was provided. Adding redundant rows to

the measurement matrix to improve IPA performance was

considered as well, and an algorithm to efficiently search for

such rows was outlined. The influence of small-size termatiko

sets on IPA performance was illustrated through simulations

and several numerical results for both specific and protograph-

based ensembles of measurement matrices were presented,

showing that having a termatiko distance strictly smaller than

the stopping distance is not uncommon. In some cases, the

termatiko distance can be as low as half the stopping distance.

Thus, a measurement matrix (for the IPA) should be designed

to avoid small-size termatiko sets, which is considered as

future work.

APPENDIX

PROOF OF THEOREM 6

To prove Theorem 6, we need the following lemma.

Lemma 4. Assume T = {v1, v2, v3} is a termatiko set of

size 3 in H(q, 3). Define N and S analogously to Theorem 2.

Then, S 6= ∅, and for each c ∈ N , it holds that |NT (c) | = 1
and |NS (c) | > 0.

Proof: Assume first that some c0 ∈ N is not connected

to S (including the case S = ∅). Then, from Theorem 2,

c0 is connected to T at least twice (w.l.o.g. let v1 and v2 be

these two variable nodes) and for any c ∈ N (v1) ∪ N (v2)
(including c = c0) it holds that |NT (c) | ≥ 2. See Fig. 24(a)

for illustration. As any two variable nodes share not more than

one measurement node, we have N (v1) ∩ N (v2) = {c0}.
Therefore, since |N (v1) | = |N (v2) | = 3, we have |N (v1) ∪
N (v2) | = 5. Now, count number of edges between T and N .

On one hand, it is |N (v1) |+|N (v2) |+|N (v3) | = 3+3+3 =
9. On the other hand, it is not less than

∑

c∈N(v1)∪N(v2)

|NT (c) | ≥ 2 |N (v1) ∪ N (v2) | = 10 .

This contradiction shows that S 6= ∅ and that each c ∈ N is

connected to both T and S.



19

v1 v2

c0

T :

N :

(a) Scenario under the assumption that there exists a
measurement node c0 ∈ N not connected to S.

v1 v2 v3

u

c0
d1 d2 d3 d′1 d′2 d′3

T :

N :

S :

(b) Scenario under the assumption that there exists a measurement node
c0 ∈ N connected to T twice. Measurement nodes are grouped according
to the three different strips as {c0}, {d1, d2, d2}, and {d′1, d

′

2, d
′

3}.

Fig. 24. Illustration for Lemma 4.

Now, we prove that each c ∈ N is connected to T only once.

Again, assume to the contrary that some c0 ∈ N is connected

to T at least twice, w.l.o.g. to v1 and v2, and let u ∈ S be

connected to c0 (as we have just shown, such a u exists).

Recall that N (u) ⊂ N by definition of S from Theorem 2.

Since v1 and v2 are both connected to c0, they do not share any

other measurement node. Also, recall that each variable node

is connected to three measurement nodes, each from a different

strip. Hence, v1 and v2 are connected to different measurement

nodes d1, d2 ∈ N in another strip (different from the strip of

c0), and also to two different measurement nodes d′1, d
′
2 ∈ N

in the remaining strip. See Fig. 24(b) for illustration. Now, u
cannot be connected to any of d1, d2, d

′
1, d

′
2 as it already shares

one measurement node with each of v1 and v2. Therefore,

there exists a measurement node d3 ∈ N (u) in the same strip

that contains d1 and d2. However, d3 should be also connected

to T . Thus, the only possibility left is that d3 is connected to

v3. The same argument can be used for the strip that contains

d′1 and d′2; it contains a node d′3, and d′3 is connected to

both u and v3. We have a contradiction, as u and v3 share

two different measurement nodes (meaning that there should

exist a cycle of length 4 in the corresponding Tanner graph).

Therefore, every c ∈ N is connected to T exactly once.

From Lemma 4 it follows that |N | = 9 and that v1, v2, v3
do not share any measurement nodes.

Now, we turn to the proof of Theorem 6. From Theorem 5

we know that hmin ≥ 3; thus, we only need to prove the

multiplicity result. Assume we have a termatiko set T =
{v1, v2, v2}, and denote N (v1) = {c11, c21, c31}, where c11,

c21, c31 belong to the first, second, and third strip, respectively.

Analogously, denote N (v2) = {c12, c22, c32} and N (v3) =
{c13, c23, c33}. As shown above, |N | = |{c11, . . . , c33}| = 9
(all these measurement nodes are different). As usual, we

define the set S as in Theorem 2.

In order not to share any two (or more) measurement nodes

with any of v1, v2, v3, each u ∈ S should be connected to

c1π1 , c2π2 , and c3π3 , where π = π(u) = (π1, π2, π3) is

v1 v2 v3

u213

c11 c12 c13 c21 c22 c23 c31 c32 c33

Fig. 25. Illustration for the proof of Theorem 6 for π = (2, 1, 3) and hence
u213. Vertices c11, c12, . . . , c33 are grouped according to the three different
strips.

some permutation of {1, 2, 3}. Thus, we will denote candidates

for the set S as uπ1π2π3 . In other words, N (uπ1π2π3) =
{c1π1 , c2π2 , c3π3}, from which it follows that there are 6
candidates for S and |S| ≤ 6. Turn to Fig. 25 for illustration.

Also, as each cxy ∈ N (for all x, y ∈ {1, 2, 3}) should be

connected to S, S should include some uπ with πx = y. For

example, c11 should be connected to S, and thus either u123
or u132 (or both) should be present in S.

Now, by applying the corresponding automorphism, we can

set v1 = (0, 0) and v2 = (2, j) for some j ∈ Fq.10 With this

notation, the support matrix of T becomes




0 2 ·
0 2 + j ·
0 2 + 2j ·



 ,

where the dots stand for entries which are currently unknown.
For the remainder of the proof, we exhaustively check

all the cases and sub-cases, based on the assumption that

some uπ1π2π3 ∈ S. As we noted before, since c11 should

be connected to S, either u123 or u132 (or both) should be in

S.

1) First, assume that u123 ∈ S, which means that c11, c22,

and c33 are connected to the same variable node (u123),

and thus the corresponding values in the support matrix

will form an arithmetic progression. More precisely, the

values {0, 2 + j, ·} should form an arithmetic progres-

sion, and we immediately obtain the support matrix




0 2 ·
0 2 + j ·
0 2 + 2j 4 + 2j



 .

Further, c12 should also be connected to S, and thus

either u213 or u231 (or both) should be in S.

• Assuming that u213 ∈ S, we get that c12, c21, and

c33 should be connected to the same variable node

u213 ∈ S, and hence the values {2, 0, 4+2j} should

form an arithmetic progression. From this we get

that 4 + 2j = −2 and then j = −3. The updated

support matrix is




0 2 ·
0 −1 ·
0 −4 −2



 .

10Note that we have chosen the integer 2 to make further numbers look
“prettier”, although any nonzero value from Fq would work here.
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• Assuming that u231 ∈ S, we get that {2, ·, 0} should

form an arithmetic progression and then we can

replace · by 1. However, the values in the column of

any support matrix should also form an arithmetic

progression. Hence, the support matrix becomes




0 2 −2− 2j
0 2 + j 1
0 2 + 2j 4 + 2j



 .

Other sub-cases are omitted for brevity.

2) On the other hand, if we assume u132 ∈ S, then the

values corresponding to c11, c23, and c32 (i.e., {0, ·, 2+
2j}) should form an arithmetic progression. From this

we immediately obtain the updated support matrix




0 2 ·
0 2 + j 1 + j
0 2 + 2j ·



 .

Again, we omit further sub-cases for brevity.

The different cases can be represented as nodes in a search

tree (see Fig. 26). Note that the branches in the tree are

not mutually exclusive; but they cover all cases. This means

that the same termatiko set can be obtained more than once.

The two cases marked in bold in Fig. 26 are general cases.

Moreover, by setting j = 0 or j = −3, we can obtain other

particular cases (these relations are shown by dotted arrows).

Note that branching stops at these general cases, as even

these general forms already ensure that {v1, v2, v3} is a valid

termatiko set. Other branches need to go one level deeper.

Since the set of equations






−2− 2j = 4 + 2j ,

1 = 1 + j ,

4 + 2j = −2

do not have a solution for q ≥ 5, these two general cases

do not intersect. However, we still need to check that the

three columns are different in each of these two cases. The

corresponding requirement for the first bold case is






0 6= 2 + j ,

0 6= 2 + 2j ,

0 6= −2− 2j ,

0 6= 4 + 2j ,

2 6= −2− 2j ,

2 + j 6= 1 ,

⇔

{

j 6= −2 ,

j 6= −1 .

For the second bold case we get the requirement






0 6= 2 + j ,

0 6= 2 + 2j ,

0 6= 4 + 2j ,

0 6= 1 + j ,

2 6= 4 + 2j ,

2 + 2j 6= −2 ,

⇔

{

j 6= −2 ,

j 6= −1 .

Therefore, in total there are q− 2 choices for j in each of the

cases. This means that there are exactly 2(q − 2) termatiko

[ 0 2 ·
0 2+j ·
0 2+2j ·

]

[ 0 2 ·
0 2+j ·
0 2+2j 4+2j

]

u
123 ∈

S

[ 0 2 ·
0 2+j 1+j
0 2+2j ·

]

u13
2
∈
S

[
0 2 ·
0 −1 ·
0 −4 −2

]

u
2
1
3
∈

S

[
0 2 4
0 −1 1
0 −4 −2

]

u
3
1
2
∈

S

[
0 2 −2
0 −1 −2
0 −4 −2

]

u 3
2
1
∈
S

[
0 2 −2−2j
0 2+j 1

0 2+2j 4+2j

]

u
2
3
1
∈
S

[
0 2 4+2j
0 2+j 1+j
0 2+2j −2

]
u
2
1
3
∈

S

[
0 2 ·
0 2 1
0 2 ·

]

u
2
3
1
∈

S

[
0 2 −2
0 2 1
0 2 4

]

u
3
1
2
∈
S

[
0 2 4
0 2 1
0 2 −2

]

u
3
2
1
∈

S

j
=
−
3 j

=
0

j
=
−
3 j

=
0

Fig. 26. Different cases for the proof of Theorem 6. Dotted arrows show
special cases for particular values of the variable j.

sets with fixed v1 = (0, 0) and v2 = (2, ·). Any other

termatiko set of size 3 in H(q, 3) can be obtained by applying

an automorphism (there are q2(q − 1) such automorphisms).

However, in this manner, we count each termatiko set 3! = 6
times. Thus, the total number of distinct size-3 termatiko sets

in H(q, 3) is q2(q − 1)(q − 2)/3.

REFERENCES

[1] E. J. Candes and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies?” IEEE Trans. Inf. Theory,
vol. 52, no. 12, pp. 5406–5425, Dec. 2006.

[2] ——, “Decoding by linear programming,” IEEE Trans. Inf. Theory,
vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[3] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[4] F. Zhang and H. D. Pfister, “Verification decoding of high-rate LDPC
codes with applications in compressed sensing,” IEEE Trans. Inf. Theory,
vol. 58, no. 8, pp. 5042–5058, Aug. 2012.

[5] V. Ravanmehr, L. Danjean, B. Vasić, and D. Declercq, “Interval-passing
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