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Noisy Non-Adaptive Group Testing:
A (Near-)Definite Defectives Approach

Jonathan Scarlett and Oliver Johnson

Abstract—The group testing problem consists of determining
a small set of defective items from a larger set of items
based on a number of possibly-noisy tests, and is relevant in
applications such as medical testing, communication protocols,
pattern matching, and more. We study the noisy version of this
problem, where the outcome of each standard noiseless group
test is subject to independent noise, corresponding to passing
the noiseless result through a binary channel. We introduce a
class of algorithms that we refer to as Near-Definite Defectives
(NDD), and study bounds on the required number of tests
for asymptotically vanishing error probability under Bernoulli
random test designs. In addition, we study algorithm-independent
converse results, giving lower bounds on the required number of
tests under Bernoulli test designs. Under reverse Z-channel noise,
the achievable rates and converse results match in a broad range
of sparsity regimes, and under Z-channel noise, the two match
in a narrower range of dense/low-noise regimes. We observe that
although these two channels have the same Shannon capacity
when viewed as a communication channel, they can behave quite
differently when it comes to group testing. Finally, we extend our
analysis of these noise models to a general binary noise model
(including symmetric noise), and show improvements over known
existing bounds in broad scaling regimes.

Index Terms—Group testing, performance bounds, sparsity, Z
channel, information-theoretic limits

I. INTRODUCTION

The group testing problem consists of determining a small
subset of “defective” items within a larger set of items, based
on a number of possibly-noisy tests. As described in more
detail in the survey monograph [1], this problem has a history
in medical testing [2], and has regained significant attention
with subsequent applications in areas such as communication
protocols [3], DNA sequencing [4], data forensics [5], pattern
matching [6], and database systems [7], as well as new
connections with compressive sensing [8], [9]. The general
setup involves a sequence of tests, each of which acts on a
particular subset (or “pool”) of items and produces an outcome
Y that can be a deterministic or random function of the
defectivity status of the items in the pool.

In recent years, the information-theoretic limits and per-
formance limits of practical algorithms for noiseless group
testing have become increasingly well-understood [10]–[16].

Jonathan Scarlett is with the Department of Computer Science, Na-
tional University of Singapore, Singapore, and also with the Department
of Mathematics, National University of Singapore, Singapore (e-mail: scar-
lett@comp.nus.edu.sg).

Oliver Johnson is with the School of Mathematics, University of Bristol,
UK (e-mail: maotj@bristol.ac.uk).

Copyright (c) 2021 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

By comparison, random noise settings are somewhat less well-
understood despite ongoing advances [13], [17]–[20]. In par-
ticular, the algorithm that gives the best known noiseless per-
formance guarantees in most sparsity regimes (among practical
algorithms), known as Definite Defectives (DD) [12], [15], has
no previous noisy counterpart. In this paper, we address this
gap by introducing and studying noisy variants of DD, and
showing that they provide the best known performance bounds
in a wide range of settings depending on the sparsity and noise
level.

A. Overview of Noiseless Group Testing

Let p denote the number of items, and let S ⊆ {1, . . . , p}
denote the set of defective items. In the standard noiseless
setting first introduced in [2], the outcome of each test takes
the form

Y =
∨
j∈S

Xj , (1)

where the test vector X = (X1, . . . , Xp) ∈ {0, 1}p indicates
which items are included in the test. That is, the resulting
outcome Y = 1 if and only if at least one defective item was
included in the test. We refer to tests with Y = 1 as positive,
and tests with Y = 0 as negative.

Given the tests and their outcomes, a decoder forms an
estimate Ŝ of S. One wishes to design a sequence of tests
X(1), . . . , X(n), with n ideally as small as possible, such that
the decoder recovers S with probability arbitrarily close to
one. The error probability is given by

Pe := P[Ŝ 6= S], (2)

and is taken over the randomness of the defective set S, the
tests X(1), . . . , X(n) (if randomized), and the test outcomes
Y (1), . . . , Y (n) (if noisy). For convenience, we represent the
tests as a matrix X ∈ {0, 1}n×p, where the i-th row is X(i)

and represents the i-th test.
In this paper, we consider the case that, for a given sparsity

level k, the defective set S is chosen uniformly on the
(
p
k

)
subsets of {1, . . . , p} of cardinality k. Following recent works
such as [11], we define the rate (in bits/test) of a group-testing
algorithm using n tests to be1

R :=
log2

(
p
k

)
n

, (3)

which we can think of as the number of bits of information
about the defective set learned per test. We consider the
asymptotic regime where p → ∞ with k � pθ for some

1Throughout the paper, log refers to natural logarithms taken to base e,
and we write log2 for base 2 logarithms.
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θ ∈ (0, 1),2 so we will often use the equivalent limiting
definition that

R ∼ k log2(p/k)

n
, (4)

where ∼ denotes asymptotic equality up to a multiplicative
1 + o(1) term.

It is well known from standard information-theoretic argu-
ments (e.g., [11]) that no algorithm with rate above 1 bit/test
can have vanishing error probability. For noiseless adaptive
group testing (where the choice of test X(i+1) can depend
on the previous tests X(1), . . . , X(i) and their outcomes
Y (1), . . . , Y (i)), Hwang’s algorithm [21] has error probability
tending to zero with rate approaching one in any regime where
k = o(p), and is therefore asymptotically optimal.

In this paper, we study non-adaptive group testing, where
the entire collection of tests X ∈ {0, 1}n×p is fixed in advance.
We focus in particular on Bernoulli testing, where the entries
of X are independently drawn at random from Bernoulli

(
ν
k

)
for some parameter ν > 0.

In the noiseless case, it is known that the non-adaptive
definite defectives (DD) algorithm [22] is both practically
implementable (in terms of storage and processing require-
ments) and performs well in terms of rate. Specifically, under
Bernoulli testing in the regime k � pθ, the DD algorithm
achieves Pe → 0 when [12, Theorem 12]

R <
1

e log 2
min

{
1,

1− θ
θ

}
. (5)

Furthermore, the DD algorithm is known to be rate-optimal
for sufficiently dense problems (specifically, for θ > 1/2)
under Bernoulli testing, in the sense that any algorithm has
Pe bounded away from zero if the rate satisfies [12], [14]

R >
1

e log 2

1− θ
θ

. (6)

The contribution of this paper is to extend the bounds of the
form (5) and (6) to noisy group testing models, by introducing
and referring to a class of algorithms which we refer to as
noisy DD (NDD). For clarity, we first review both (noiseless)
DD [22] and a related algorithm called COMP [23], which
forms the first stage of DD.

Definition 1. The Combinatorial Orthogonal Matching Pur-
suit (COMP) and Definite Defectives (DD) algorithms for
noiseless non-adaptive group testing are defined as follows:

1. Since Y = 1 if and only if the test pool contains a
defective item, we can be sure that each item that appears
in a negative test is not defective. We can form a list of
such items formed from all tests, which we refer to as
ND; the rest of the items PD := {1, . . . , p}\ND are
considered “possibly defective”. The COMP algorithm
simply estimates S using the set of possible defective
items, Ŝ = PD.

2. The DD algorithm starts with the possible defective items
PD. Since every positive test must contain at least one
defective item, if a test with Y = 1 contains exactly

2Here and subsequently, k � pθ means that k
pθ

is bounded away from
both 0 and ∞ in the limit as p→∞.
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Figure 1: General binary channel, Z-channel, reverse Z-
channel, and binary symmetric channel.

one item from PD, then we can be certain that the item
in question is defective. The DD algorithm outputs Ŝ
equaling the set of PD items that appear in a positive test
with no other PD item.

B. Noisy Group Testing

Generalizing (1), we consider noisy models that correspond
to passing the quantity U = ∨j∈SXj through a noisy channel
PY |U . We focus in particular on the following special cases,
each of which depends on one or two noise parameters that
can be set to zero to recover the noiseless model.

Definition 2. We define the following noise models, illustrated
in Figure 1:

1. The general binary channel model is given by

PY |U (0|0) = 1− ρ01, PY |U (1|0) = ρ01,

PY |U (0|1) = ρ10, PY |U (1|1) = 1− ρ10 (7)

for some noise levels ρ01 and ρ10 both in [0, 1].
2. The Z-channel model is obtained by taking ρ01 = 0 and
ρ10 = ρ in the general model, yielding so that

PY |U (0|0) = 1, PY |U (1|0) = 0,

PY |U (0|1) = ρ, PY |U (1|1) = 1− ρ (8)

for some noise level ρ ∈ [0, 1]. Hence, if Y = 1, then the
test must contain a defective item.

3. The reverse Z-channel (RZ-channel) model, also known
as the addition noise model [10], is obtained by taking
ρ01 = ρ and ρ10 = 0, yielding

PY |U (0|0) = 1− ρ, PY |U (1|0) = ρ,

PY |U (0|1) = 0, PY |U (1|1) = 1 (9)

for some noise level ρ ∈ [0, 1]. Hence, if Y = 0, then the
test must contain no defective items.

4. The symmetric noise model is obtained by taking ρ01 =
ρ10 = ρ in the general model, yielding

PY |U (y|u) =

{
1− ρ y = u

ρ y 6= u
(10)

for some noise level ρ ∈ [0, 1].

In this paper, we will focus primarily on the Z and reverse
Z-channel models, applications of which are discussed in
Section I-D. As well as being important in their own right
for applications, these models serve as useful stepping stones
towards the general binary model (including the symmetric
model), which is handled in Appendix I.

Note that for the general binary channel model, we can
assume without loss of generality that ρ01 + ρ10 ≤ 1. This is
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because (as for a standard binary symmetric channel) if this
were not true, we could flip the outcome of all tests as a pre-
processing step, producing a new channel with ρ̃01 = 1− ρ01

and ρ̃10 = 1 − ρ10 satisfying ρ̃01 + ρ̃01 ≤ 1. Additionally,
observe that the case ρ01 +ρ10 = 1 is a degenerate one, under
which the conditional distribution PY |U (y|u) does not depend
on u, meaning that U and Y are independent, so we cannot
hope to recover useful information about the defective set from
Y .

When considered to define a standard noisy communica-
tion channel, both the Z-channel and reverse Z-channel have
Shannon capacity (in bits/use) given by [24]

CZ(ρ) = log2

(
1 + (1− ρ)ρρ/(1−ρ)

)
, (11)

and the symmetric noise model has Shannon capacity (in
bits/use) given by

CBSC(ρ) = 1− h(ρ) (12)

where h(ρ) = −ρ log2 ρ − (1 − ρ) log2(1 − ρ) is the binary
entropy in bits. Since the Z-channel and reverse Z-channel
have the same Shannon capacity, the information-theoretic
results of [13], [25] suggest that they may require the same
asymptotic number of tests, at least for sufficiently sparse
settings. On the other hand, when adopting an NDD approach,
it is unclear a priori which model requires more tests. See
Section II-E for further discussion.

Except where stated otherwise, we assume that the noise
levels ρ10, ρ01 and number of defectives k are known; our
analysis can also be applied to cases where only bounds are
known, but the details become more tedious. Our main goal
is to provide explicit achievable rates and converse bounds for
noisy group testing under Bernoulli designs.

Remark 1. While the general binary model (7) captures
several symmetric and non-symmetric noise models, there
are other noise models of interest that it does not capture.
As discussed in [1, Sec. 3.1], some noise models of interest
depend on the number of defectives in the test, and not just the
presence vs. absence of any defectives. A prominent example
is dilution noise [10], in which each defective item in the test
is independently “diluted” (and hence behaves as though it
were non-defective) with some probability u. Hence, if there
are ` defectives in the test, the probability they are all diluted
is u`. While it may be possible to handle noise models of this
kind using our techniques, the analysis appears to become
significantly more complicated. This is primarily due to the
different conditional distribution of Y for all different values
of the number of defectives in the test, ` ∈ {0, 1, . . . , k}, in
contrast with (7) in which only need to distinguish between
` = 0 and ` ≥ 1. Due to these complications, we leave these
further generalizations for future work.

C. Related Work

The information-theoretic limits of noiseless and noisy non-
adaptive group testing were initially studied in the Russian
literature [25], [26], and have recently become increasingly
well-understood [10], [13], [14], [22], [27], [28]. Among the

existing works, the results most relevant to the present paper
are as follows:
• For both the adaptive and non-adaptive settings, it was

shown by Baldassini et al. [11] that if the outcome
Y is produced by passing the noiseless outcome U =
∨j∈SXj through a channel PY |U , then any group testing
achieving Pe → 0 the must have rate R ≤ C, where
R is defined in (3) and C is the Shannon capacity of
PY |U . Equivalently, the number of tests must satisfy
n ≥

(
1
C k log2

p
k

)
(1 − o(1)). For instance, under the

symmetric noise model (10), this yields

n ≥ k log2
p
k

1− h(ρ)
(1− o(1)). (13)

It has recently been shown that under the RZ and sym-
metric noise models, this converse is not tight (i.e., it can
be improved) when θ ∈ (0, 1) is sufficiently close to one,
even in the adaptive setting [20].

• In the non-adaptive setting with symmetric noise, it
was shown in [13], [27] that an information-theoretic
threshold decoder attains the bound (13) when k � pθ for
sufficiently small θ > 0. The analysis of [20, Appendix
A] shows that analogous findings also hold for the Z and
RZ noise models.

Several non-adaptive noisy group testing algorithms have been
shown to come with rigorous guarantees.
• The Noisy Combinatorial Orthogonal Matching Pursuit

(NCOMP) algorithm checks, for each item, the proportion
of tests it was included in that returned positive, and
declares the item to be defective if this number exceeds
a suitably-chosen threshold. This is known to provide
optimal scaling laws for the regime k � pθ (θ ∈ (0, 1))
[17], [23], albeit with somewhat suboptimal constants.
That is, in the terminology of (3), NCOMP has a non-
zero but suboptimal rate under symmetric noise. Similar
results are also obtained for the general binary noise
channel using a linear programming based algorithm in
[17, Thm. 7].

• The method of separate decoding of items, also known
as separate testing of inputs [19], [25], also considers the
items separately, but uses all of the tests. Specifically, a
given item’s status is selected via a binary hypothesis test.
This method was studied for k = O(1) in [25], and for
k � pθ in [19]. In particular, it was shown that for the
symmetric noise model, the number of tests is within a
factor log 2 of the optimal information-theoretic threshold
as θ → 0. However, the rate quickly become weaker as θ
increases away from zero; see Appendix I for an example.

Since other works on noisy group testing are less related to the
present paper, we only provide a brief outline. Some heuristic
algorithms have been proposed for noisy settings without
theoretical guarantees, including belief propagation [29] and
a noisy linear programming relaxation [30]. Sublinear-time
algorithms with guarantees on the number of samples and
runtime have been proposed [31]–[34] (see also the earlier
works of [35]–[37]), but the constants (and sometimes loga-
rithmic factors) in the sample complexity bounds are far from
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optimal. The complementary viewpoint of adversarial noise
has also been explored [35], [36], [38].

D. Applications of Noise Models
Group testing has been applied in a wide range of contexts,

including biology, communications, information technology
and data science, as outlined in [1, Section 1.7]. While the
noiseless model has been widely studied from a theoretical
point of view, in many of these applications it is unrealistic to
assume that all tests will return a perfectly accurate answer.
Many papers have dealt with this issue by studying the
symmetric noise model described in (10).

However, we believe that in many applications, this assump-
tion of symmetry is itself also unrealistic. Since there are
often different mechanisms operating that may “flip” positive
tests to negative and vice versa, there is no a priori reason to
believe that these two types of error should be equally likely.
This argument motivates the general binary channel model of
Definition 2. In addition, to motivate the study of the RZ and
Z channels in their own right, we proceed by giving examples
where these models naturally arise.

In the file comparison problem, we wish to carry out data
forensics to determine which out of a collection of computer
files have been changed. One way to do this, described in [5],
is to store a number of hashes of various concatenated collec-
tions of files. By comparing the hashes before and after any
possible tampering, if the hash has changed, we know that at
least one file in the group has been altered. This can be thought
of as a group testing scenario: An altered file corresponds
to a defective item, the collection of files corresponds to the
testing pool, and a changed hash corresponds to a positive
test. However, as discussed in [39], it is possible that the files
may be altered in a way that does not change the value of the
hash. In this sense, a test that should be positive may fail to be
detected as such with a certain probability – this is exactly the
Z-channel of Definition 2. While [39] argues that this effect
can be minimized by taking arbitrarily long hashes, it may be
that from an efficiency point of view it is preferable to store
shorter hashes and take into account the effect of the Z channel
noise in identifying the modified files.

An application for which the RZ-channel can serve as a
natural model is that of multiple-access communication, e.g.,
see [3], [40], [41]. Roughly speaking, group testing permits
the detection of a small subset of active users by requesting
each user to transmit a signal at the times corresponding to
1’s in the group testing matrix. Then, obtaining the group
testing outcomes only requires detecting whether or not there
is any signal present at each time instant. If this detection
procedure is reliable, then there should be no false negatives;
however, in the presence of an interfering signal, one is prone
to false positives, in agreement with the RZ channel model
of Definition 2. Alternatively, if the detection procedure is not
perfectly reliable, then we may be subject to the general binary
noise model with suitably-chosen values of ρ01 and ρ10.

II. SUMMARY OF MAIN RESULTS

As mentioned above, we will provide achievable rates for
noisy group testing using noisy variants of the COMP and

DD algorithms, as well as providing algorithm-independent
converse bounds. We summarize our main results in the
following subsections.

A. Highlights

Since the statements of our main results are somewhat
technical, we begin by highlighting some key special cases,
focusing primarily on scenarios in which our bounds are tight
in a certain sense. The relevant rates are plotted in Figures 3
and 5 for the RZ- and Z-channel models respectively, and in
Figure 7 in Appendix I for the symmetric noise model. We
have the following:
• For the RZ-channel model, in Theorem 1 we establish

an achievable rate and an algorithm-independent con-
verse (for Bernoulli testing) that match in broad scaling
regimes, e.g., for all θ > 0.212 in the case that ρ = 0.1.
As the noise level ρ increases, the bounds match for a
broader range of θ.

• Also for the RZ-channel model, in Appendix H we show
that for θ close to zero and ρ close to one (i.e., the noisy
and sparse setting), the achievable rate is approximately
1−ρ
e log 2 ; according to a simple capacity-based converse
[11], this cannot be improved by any arbitrary and
possibly adaptive algorithm.

• For the Z-channel model, in Theorem 2 we establish an
achievable rate and an algorithm-independent converse
(for Bernoulli testing) that match in certain dense scaling
regimes when ρ is small enough, e.g., for all θ > 0.729
in the case that ρ = 0.001. However, as the noise level ρ
increases, the bounds in fact match for a narrower range
of θ (and eventually for no θ).

• For each noise model, we show that we recover the rate
of [12] for the noiseless setting in the limit as the noise
parameters tend to zero; this rate is known to be tight for
Bernoulli testing whenever θ > 1

2 .

B. Preliminaries

Notation. First, we establish some additional notation.

Definition 3. For any γ > 0, we define the function

Dγ(t) = t log

(
t

γ

)
− t+ γ for t ≥ 0. (14)

Note that Dγ(γ) = D′γ(γ) = 0, and that D′′γ (t) = 1/t ≥ 0,
so Dγ is convex. Hence, Dγ(t) ≥ 0 for all t ≥ 0, and Dγ(t)
is strictly increasing for t > γ. Note further that

Da(t) = aD1(t/a) for all a > 0 and t ≥ 0. (15)

At several points in the paper, we require explicit values
for the intersection of two functions related to the Dγ(t)
function (for different choices of γ). This intersection is
found in Lemma 7 of Appendix A, and can be expressed in
terms of the Lambert W -function (see for example [42]). This
function gives the solution to the equation W (x)eW (x) = x
for x ≥ −1/e, and has two real branches at the point
(−1/e,−1); see Figure 2. We shall write W0 and W−1

respectively for the principal branch (W0(x) ≥ −1) and lower
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Figure 2: Upper and lower branches of the Lambert W -
function.

branch (W−1(x) ≤ −1). The key properties of W that we
shall require are the derivative [42, Eq. (3.2)]

W ′(x) =
W (x)

x(1 +W (x))
for x /∈ {0,−1/e} (16)

(which holds on either branch), and the following asymptotic
expansions, [42, Section 4]:

W0(x) = log x− log log x+ o(1), x→∞ (17)

W−1(x) = log(−x)− log(− log(−x)) + o(1), x→ 0−,
(18)

where x → 0− means approaching zero from below. Some
intuition behind these expansion is as follows: Direct cal-
culation using the fact that W (x)eW (x) = x means we can
deduce that when W (x) ≥ 1, we have x ≥ eW (x), and hence
W0(x) ≤ log x for x ≥ e. Similarly, when W (x) ≤ −1, we
have eW (x) ≤ −x, and hence W−1(x) ≤ log(−x) for all x.

Concentration Bounds. We consider Dγ of Definition 3
because it naturally arises in tail bounds on binomial random
variables. Specifically, we will use the following [43, Ch. 4]:
For Z ∼ Binomial(N, q), we have that for any ε > 0 that

P[Z ≤ Nq(1− ε)] ≤ exp
(
−NqD1(1− ε)

)
, (19)

P[Z ≥ Nq(1 + ε)] ≤ exp
(
−NqD1(1 + ε)

)
. (20)

The bounds of (19) and (20) are asymptotically tight in certain
regimes. To establish this fact, we will make use of the
following binomial coefficient bound [44, Lemma 4.7.1]:(

N

δN

)
≥ 1√

8Nδ(1− δ)
exp(Nhe(δ)),

where he is the binary entropy function in nats. Using this
bound, we deduce that for given φ ∈ (0, 1) such that Nqφ is

an integer, we have

P[Z = Nqφ]

=

(
N

Nqφ

)
qNqφ(1− q)N(1−qφ) (21)

≥ 1√
8Nqφ(1− qφ)

exp

(
−NqD1(φ)

+N

(
q(1− φ) + (1− qφ) log

( 1− q
1− qφ

)))
(22)

≥ exp
(
−N(1− φ)2q2/(1− q)

)√
8Nqφ(1− qφ)

exp (−NqD1(φ)) , (23)

where (22) uses qD1(φ) = qφ log φ + q(1 − φ), and (23)
follows from substituting the value u = 1−q

1−qφ in the bound
log u ≥ 1− 1

u and rearranging.
We refer to the term preceding the exponential in (23) as

the “sharpness factor”. Observe that if φ is constant and we
have Nq =

(
a log p

)
(1 + o(1)), q = b

k (1 + o(1)), and k � pθ
for some positive constants a, b, θ, then for any ε′ > 0 this
sharpness factor is lower bounded by p−ε

′
for p sufficiently

large. By picking φ = 1 ± ε, and bounding the tail by the
respective point probability, we deduce that (19) and (20) are
each tight to within this sharpness factor.

C. Reverse Z-Channel

Our main result for the reverse Z-channel is written in terms
of the following technical definitions. First, we define

κ = κ(θ) := −W−1

(
−e−1ρθ/(1−θ)

)
, (24)

where W−1 denotes the lower branch of the Lambert W -
function; that is, κ > 0 is a solution to the equation κe−κ =
e−1ρθ/(1−θ). Moreover, we write

θ
(RZ)
crit := θ

(RZ)
crit (ρ) = 1 +

ρ log ρ

1− ρ (25)

θopt := θopt(ρ) =
t(ρ)

log ρ+ t(ρ)
, (26)

where t(ρ) := − log(1− ρ) + log(− log(ρ)) + log(ρ)
1−ρ + 1.

Theorem 1. (Reverse Z-Channel) For noisy group testing
under reverse Z-channel noise with parameter ρ ∈ (0, 1), in
the regime where k � pθ with θ ∈ (0, 1), we have the following
under Bernoulli testing:

1. [Achievability] Under the Bernoulli testing parameter
ν = 1, there exists a practical algorithm achieving error
probability Pe → 0 with rate

R(RZ)(θ, ρ) =


1−ρ
e log 2 , θ ≤ θopt,
− log ρ

κ(θ)e log 2 , θopt ≤ θ ≤ θ(RZ)
crit ,

(1−θ)(1−ρ)
e log 2 , θ ≥ θ(RZ)

crit .
(27)
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Figure 3: Achievable rate and algorithm-independent lower
bound under reverse Z-channel noise and Bernoulli testing.
The dots indicate the thresholds θopt and θ(RZ)

crit .

2. [Converse] Under any Bernoulli testing parameter ν >
0, if ρ < 1/2, then no algorithm can achieve Pe → 0
with a rate higher than

R(RZ)(θ, ρ)

=

{
min

{
CZ(ρ), − log ρ

κ(θ)e log 2

}
, θ ≤ θ(RZ)

crit ,
(1−θ)(1−ρ)
e log 2 , θ ≥ θ(RZ)

crit .
(28)

where CZ(ρ) is the Shannon capacity of the channel,
given by (11).

Proof. See Section III.

These rates are illustrated for three different noise levels in
Figure 3.

Remark 2.
1. As in the noiseless case, for sufficiently dense problems

(i.e., for θ ≥ θopt), we obtain a sharp result, with the
achievable and converse rates coinciding. In this case,
this optimal performance is achieved by either a noisy
version of the DD algorithm (for θopt ≤ θ ≤ θ(RZ)

crit ) or a
trivial extension of the COMP algorithm (for θ ≥ θ(RZ)

crit ).
See Section III for details.

2. As ρ → 0, we have θopt(ρ) → 1/2, and we recover the
fact that the optimal performance is achieved by practical
algorithms for θ ≥ 1/2 [12]. However, as soon as we
increase the noise level even slightly, the achievability
and converse match over a noticeably wider parameter
range. For example, for ρ = 0.001, this is the case for
θ ≥ θopt(ρ) = 0.3656, and for ρ = 0.1 this widens to
θ ≥ θopt(ρ) = 0.2119.

3. As ρ→ 0, we have θ(RZ)
crit → 1, and so for any fixed θ the

final case in (27) does not apply in this limit. Furthermore,
as ρ→ 0, (18) gives − log ρ

κ(θ) → 1−θ
θ , and we recover the

noiseless results (5)–(6).
4. Both the achievable rate and converse provide a curve

which is continuous in θ. We can establish continuity at

Noise level ;
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0.8

0.9

1
Channel capacity
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Figure 4: Reverse Z-channel model: Limiting achievable rate
and algorithm-independent converse as θ → 0, plotted as a
function of the noise level ρ.

θ
(RZ)
crit using the fact that κ(θ

(RZ)
crit ) = 1

ρ . This, in turn,

follows because we can verify that ρθ
(RZ)
crit /(θ

(RZ)
crit −1)e =

ρe1/ρ (as (25) gives θ
(RZ)
crit

θ
(RZ)
crit −1

= 1−ρ
ρ log ρ +1 and in addition

we have ρ
1−ρ
ρ log ρ = e1/ρ−1), and the choice κ = 1

ρ makes

κe−κ =
(
ρe1/ρ

)−1
in agreement with the definition

κe−κ = e−1ρθ/(1−θ).

In the appendices, we provide two further claims pertaining
to converse results under RZ noise:

1. (Appendix G) When the noisy DD algorithm is used in
conjunction with Bernoulli testing, no rate higher than
1−ρ
e log 2 can be achieved. Therefore, one cannot hope to
improve on the first case in (27) (nor on the other cases
where an algorithm-independent converse holds) without
moving to a different test design and/or a different
decoding algorithm. To our knowledge, this result is new
even when specialized to the noiseless case.

2. (Appendix H) In the limit θ → 0, the achievable rate
approaches 1−ρ

e log 2 , which is also the first-order term in the
Z-channel capacity as ρ→ 1. Therefore, under the order
of limits n → ∞, θ → 0, and then ρ → 1, the limiting
behavior of the noisy DD rate cannot be improved on
even by an adaptive algorithm (since the capacity-based
converse holds even for adaptive algorithms [11]). We
support this claim with the rate plot in Figure 4 for θ = 0,
where we observe nearly tight bounds for ρ close to one.

D. Z-Channel

Our rates for the Z-channel are written in terms of the
following. For given values of ν and ρ, define s = (1 −
ρ)e−ν/ρ > 0 and for θ 6= 1

2 write the ratio

g(s, θ) =
1 + θ

2θ−1s

(1 + s)θ/(2θ−1)
, (29)
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and introduce

λ := λ(θ) =

{
W0

(
−e−1g(s, θ)

)
, for θ < 1

2 ,
W−1

(
−e−1g(s, θ)

)
, for θ > 1

2 .
(30)

Moreover, define

α∗(θ) = ρ s
log(1+s) for θ = 1

2 ,
α∗(θ) = − ρ

λ(θ)

(
1 + θs

2θ−1

)
for θ 6= 1

2 .
(31)

In the two cases θ < 1
2 and θ > 1

2 , the value of θ
2θ−1 is

below 0 and above 1, respectively. Since these are the two
ranges of values of r for which the Bernoulli inequality (1 +
rs) ≤ (1+s)r holds, in each case we can deduce that g(s, θ) ≤
1, which implies that the Lambert functions in (30) are well-
defined (see Figure 2).

Theorem 2. (Z-Channel) For noisy group testing under Z-
channel noise with parameter ρ, in the regime where k � pθ

with θ ∈ (0, 1), we have the following under Bernoulli testing
with parameter ν > 0:

1. [Achieveable rate] There exists a practical algorithm
with error probability Pe → 0 with

R(Z)(θ, ρ) =
(1− θ)(1− ρ)νe−ν

θ log 2

×min

{
θ

2θ − 1

(
α∗(θ)

α∗(1/2)
− 1

)
, 1

}
if θ 6= 1

2
,

(32a)

and

R(Z)(θ, ρ)

=
(1− ρ)νe−ν

log 2
min

{
1

log(1 + s)
log

s

log(1 + s)

− 1

log(1 + s)
+

1

s
, 1

}
if θ =

1

2
. (32b)

2. [Converse] If ρ < 1/2, then no algorithm can achieve
Pe → 0 with a rate higher than

R(Z)(θ, ρ) = min

{
CZ(ρ),

(1− θ)(1− ρ)

θe log 2

}
. (33)

Proof. See Section IV.

These rates are illustrated for two different noise levels in
Figure 5. The noisy DD algorithm used for the achievability
part is described in Section IV. We proceed by giving some
properties of these rates; see Remark 5 in the proof for more
details.

Remark 3.
1. It can be shown that both the achievable and converse

rates are continuous and non-increasing in θ.
2. There exists some θ(Z)

crit (which may be equal to 1) such
that the first term achieves the min{·, 1} in (32) if and
only if θ ≤ θ

(Z)
crit. For ν = 1 and θ > θ

(Z)
crit, the

achievability and converse bounds coincide. As we see
in Figure 5, this is indeed observed for small ρ; however,
even for ρ = 0.1, the bounds do not match for any value
of θ < 1, due to the fact that θ(Z)

crit = 1.
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Figure 5: Achievable rate and algorithm-independent lower
bound under Z-channel noise and Bernoulli testing. The dots
indicate the threshold θ(Z)

crit (see Remark 3).

3. As θ → 1, we have g(s, θ)→ 1, so that λ(θ)→ −1 and
α∗(θ)→ ρ(1 + s). The implies that the first term inside
the minimum in (32a) converges to ((1 + s) log(1 + s)−
s)/s, which is less than 1 if and only if s > 3.922. In
the case ν = 1, this corresponds to the fact that the first
term in (32) always gives the minimum (i.e., θ(Z)

crit = 1)
for ρ < 0.0858.

4. As ρ → 0, the converse result (33) clearly tends to
the noiseless converse result of (6). The corresponding
argument for the achievability rate is more delicate.
However, as described in Remark 5 in the proof, we
indeed recover the noiseless achievable rate of (5) as
ρ→ 0.

5. The achievability result includes the Bernoulli testing pa-
rameter ν > 0, which can be optimized. Since s depends
on ν, there appears to be no closed form expression
for the optimal choice. However, our numerical findings
suggest that the value ν = 1 is near-optimal, particularly
for small ρ. Comparing the achievability and converse
parts, we see that ν = 1 is certainly optimal when
θ ≥ θ(Z)

crit.

E. Comparison of the Channels

In Figure 6, we compare the rates for the Z and reverse
Z-channel noise models. For θ close to one, we observe that
the former is provably easier to handle: The Z achievability
curve lies above the RZ converse curve. On the other hand,
RZ noise appears to be easier to handle for small to moderate
θ (though we cannot say this conclusively, as we have not yet
verified whether the Z achievability curve is the best possible).

Some intuition behind this behavior can be obtained by
noting that, like the noiseless version, the noisy DD algorithms
first use negative tests to find a set of “possible defectives”
(PD), and then estimate the defective set based on positive
tests containing a single PD. The rate turns out to be dictated
by the first step for small θ, and by the second step for large
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Figure 6: Comparison of rates under Z and reverse Z-channel
noise.

θ. Given that this is the case, the behavior in Figure 6 is to
be expected:

• The first step is easier under RZ noise, since negative test
outcomes are perfectly reliable.

• The second step is easier under Z noise, since positive
test outcomes are perfectly reliable.

The fact that Z noise is preferable for θ close to one was also
observed in the adaptive setting in [20].

F. General Binary Noise and Symmetric Noise

Our techniques can be extended to general binary channels
(cf., (7)), including the widely-considered symmetric model
(cf., (10)). However, for such channels, we have not yet proved
a matching achievability and converse in any regime, other
than the low-noise limit. We therefore defer our results on
these models to Appendix I.

III. PROOF OF THEOREM 1 (REVERSE Z-CHANNEL)

A. Achievability via Noisy DD and COMP

Recall the reverse Z-channel of Definition 2. We first
describe a noisy DD algorithm for this model, exploiting the
fact that if an item appears in a test with Y = 0 then we can
be certain that it is non-defective.

Noisy DD algorithm for RZ channel noise:
1. For each j ∈ [p], let Nneg,j be the number of negative

tests in which item j is included. In the first step, we
construct the following set of items that are definitely
non-defective:

N̂D =

{
j ∈ [p] : Nneg,j > 0

}
. (34)

The remaining items, P̂D = [p] \ N̂D, are called
“possibly defective”.

2. For each j ∈ P̂D, let N ′pos,j be the number of positive
tests that include item j and no other item from P̂D.
In the second step, we fix a constant β ∈ (ρ, 1), and
estimate the defective set as follows:

Ŝ =

{
j ∈ P̂D : N ′pos,j ≥

βnνe−ν

k

}
. (35)

In addition to this noisy variation of DD, we can directly
apply the noiseless COMP algorithm (e.g., see [23]) to the
reverse Z-channel model. As in the noiseless case, we know
that even if reverse Z-channel noise is present, an item
appearing in a negative test is definitive proof that it is not
defective. Therefore, we can consider taking P̂D above to
be the estimate of S. We analyze the performance of this
algorithm using essentially the same argument as in [23].
We wish to ensure that each non-defective item has some
test where it is tested with no defective present, and that the
resulting test outcome is not changed by the reverse Z-channel
(we say that the non-defective item survives this test).

Lemma 1. (COMP under RZ noise) Consider the reverse
Z-channel noisy group testing setup with parameter ρ ∈
(0, 1), number of defectives k � pθ (where θ ∈ (0, 1)),
and i.i.d. Bernoulli testing with parameter ν > 0. Under
the COMP algorithm, we have Pe → 0 as long as n ≥
nCOMP(1 + η) for arbitrarily small η > 0, where

nCOMP =
1

(1− ρ)νe−ν
k log p. (36)

Proof. The probability that any particular non-defective item
(is included in and) survives any particular test is (1 −
ρ)ν/k(1 − ν/k)k. Using n = γk log p tests, we can control
Pe using the union bound by

Pe ≤ P

 ⋃
j∈Sc
{item j doesn’t survive any test}

 (37)

≤ pP (item j doesn’t survive any test) (38)

= p

(
1− (1− ρ)

ν

k

(
1− ν

k

)k)n
(39)

≤ p exp
((
−(1− ρ)ν(1− ν/k)kγ

)
log p

)
(40)

≤ exp
((

1− (1− ρ)ν(1− ν/k)kγ
)

log p
)
, (41)

where (40) uses 1 − z ≤ e−z . Since
(
1 − ν

k

)k
= e−ν(1 +

o(1)), we deduce that if n ≥ nCOMP(1 + η) (or equivalently
(1− ρ)νe−νγ ≥ 1 + η), then (1− ρ)ν(1− ν/k)kγ ≥ 1 + η/2
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for k sufficiently large, so Pe ≤ p−η/2, which converges to
0.

The main step towards proving the achievability part of
Theorem 1 is to establish the following.

Theorem 3. (NDD under RZ noise) Consider the reverse
Z-channel noisy group testing setup with parameter ρ ∈
(0, 1), number of defectives k � pθ (where θ ∈ (0, 1)),
and i.i.d. Bernoulli testing with parameter ν > 0. For any
β ∈ (ρ, 1) and ξ ∈ (0, θ), the noisy DD algorithm achieves
Pe → 0 as long as n ≥ nDD(1 + η) for arbitrarily small
η > 0, where

nDD = max
{
n

(ND)
1 , n

(D)
2 , n

(ND)
2

}
, (42)

and where

n
(ND)
1 =

1− ξ
(1− ρ)νe−ν

· k log p, (43)

n
(D)
2 =

1

νe−νD1(β)
· k log k, (44)

n
(ND)
2 =

ξ

νe−νρD1(β/ρ)
· k log p. (45)

Once this result and Lemma 1 are in place, proving the
achievability of the rate (27) boils down to algebraic manip-
ulations. Since these are somewhat tedious, they are deferred
to Appendix B. In the remainder of this subsection, we focus
on the proof of Theorem 3.

Let Nneg and Npos respectively denote the number of
negative and positive tests. Both of these quantities follow
a binomial distribution; the probability of a given test i being
positive is given by

P[Yi = 1] =

(
1−

(
1− ν

k

)k)
+ ρ
(

1− ν

k

)k
(46)

=
(

(1− e−ν) + ρe−ν
)

(1 + o(1)), (47)

since
(
1− ν

k

)k → e−ν as k →∞, and we similarly have

P[Yi = 0] = (1− ρ)e−ν · (1 + o(1)). (48)

Hence, and using (19)–(20), we have with probability ap-
proaching one that

Nneg = n · (1− ρ)e−ν · (1 + o(1)), (49)

Npos = n ·
(

(1− e−ν) + ρe−ν
)
· (1 + o(1)). (50)

It will be useful to split the Npos positive tests into two types:
those that contain a defective item and whose noise does not
flip the outcome, and those that contain no defective items but
whose noise flips the outcome. The number of such tests are
denoted by N (D)

pos and N (ND)
pos , respectively. A given test falls

into the first category with probability (1 − e−ν)(1 + o(1)),
and the second category with probability ρe−ν(1 + o(1)).
Therefore, the concentration bounds (19)–(20) yield

N (D)
pos = n · (1− e−ν) · (1 + o(1)), (51)

N (ND)
pos = n · ρe−ν · (1 + o(1)). (52)

with probability approaching one.

Throughout the remainder of the analysis, we implicitly
condition on the defective set S taking a fixed value, say
S = {1, . . . , k}. By the symmetry of the random test design,
the conditional error probability is the same for any such
realization of cardinality k.

Analysis of First Step. Since negative tests can never
include a defective item for the reverse Z-channel, the set
P̂D = [p] \ N̂D contains all of the defective items. We
proceed by establishing a sufficient condition such that with
high probability, it also contains at most pξ non-defectives,
for some constant ξ ∈ (0, θ). We denote the complement
of this event by P

(ND)
e,1 , where the subscript and superscript

respectively denote the step number and the consideration of
non-defective items.

Analysis of non-defective items. Let P (ND)
e,1 (nneg) be defined

similarly to P
(ND)
e,1 , but conditioned on Nneg taking a given

value nneg. It suffices to establish that P (ND)
e,1 (nneg) → 0 for

all nneg satisfying the concentration bound (49), since this
bound holds with probability approaching one.

Since the test outcomes depend only on the defective items,
one can envision the non-defective items as being placed in
each test with probability ν

k after the test outcomes have
been produced. As a result, given Nneg = nneg, the number
of negative tests Nneg,j including a given item j /∈ S is
distributed as (Nneg,j |nneg) ∼ Binomial

(
nneg,

ν
k

)
. Hence, for

any j /∈ S, we have

P[j /∈ N̂D |nneg] = P
[
Nneg,j = 0

∣∣∣nneg

]
(53)

=

(
1− ν

k

)nneg

(54)

≤ e−
nnegν

k , (55)

where we have applied 1 − ζ ≤ e−ζ . As a result, letting G
denote the number of non-defective items in P̂D = [p] \ N̂D,
we find that E[G |nneg] is upper bounded by p − k times
the right-hand side of (55). Applying Markov’s inequality, we
obtain

P[G ≥ pξ |nneg] ≤ p1−ξe−
nnegν

k . (56)

Since nneg satisfies (49), we find that we can achieve P (ND)
e,1 →

0 under the condition

n ≥
(

1− ξ
(1− ρ)νe−ν

· k log p

)
(1 + o(1)). (57)

Analysis of Second Step. Recall that the final estimate
includes all j ∈ P̂D for which N ′pos,j ≥ βnνe−ν

k , where N ′pos,j

is the number of tests containing item j and no other item from
P̂D. To characterize the distribution of N ′pos,j , we make use of
a multinomial conditioning argument analogous to that used
in the noiseless DD algorithm [12]. Since this is used multiple
times throughout the paper, we first state the relevant result in
generic notation.

Lemma 2. [12, Lemma C.1] Fix a positive integer m, and
let (W0,W1,W2) have a multinomial distribution with m
trials and probabilities (r0, r1, r2). Associate an observation
(W0,W1,W2) = (w0, w1, w2) with an unordered list of
m class labels (class 0, 1, or 2), and suppose that each
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label in class 1 is independently changed to some sub-class
1′ with probability γ ∈ [0, 1], and to some sub-class 1′′

with probability 1 − γ (where γ may depend on w0). Then,
conditioned on W0 = w0, the corresponding random variables
(W ′1,W

′′
1 ,W2) counting the transformed class labels have a

multinomial distribution with m−w0 trials and the following
probability parameters:(

r1γ

1− r0
,
r1(1− γ)

1− r0
,

r2

1− r0

)
. (58)

Analysis of defective items. To apply Lemma 2, we first fix a
defective j ∈ S and consider the triplet (Nneg, Ñpos,j , Nother),
where:
• Nneg is the number of negative tests; recall from (48)

that the probability of a negative test is qneg =
(
(1 −

ρ)e−ν
)
(1 + o(1)).

• Ñpos,j is the number of tests containing j but no other
defective item; the probability of a given test satisfying
this condition is q̃j = ν

k

(
1− ν

k

)k−1
=
(
νe−ν

k

)
(1 + o(1)).

• Nother is the number of remaining tests, with associated
probability qother = 1− qneg − q̃j .

Hence, (Nneg, Ñpos,j , Nother) has a multinomial distribution
with n trials and parameters (qneg, q̃j , qother).

We now consider conditioning on the negative tests, and
consequently on Nneg = nneg, P̂D = p̂d, and G = g, which
are determined from the first step using only these tests. We
assume that p̂d contains all defective items and g ≤ pξ non-
defectives, and that nneg satisfies the concentration bound (49);
recall that these events all occur with probability approaching
one.

Conditioned on (p̂d, g, nneg), we consider “splitting” the
Ñpos,j tests mentioned above into two sub-classes with counts
(N ′pos,j , Ñpos,j − N ′pos,j). By the definitions of Ñpos,j and
N ′pos,j , each test will fall in the second sub-class if it contains a
non-defective from p̂d, and in the first class otherwise. Hence,
the associated conditional probability of falling in the first sub-
class is3

γ =

(
1− ν

k

)g
= 1− o(1), (59)

where we used the fact that g = o(k) (since g ≤ pξ with
ξ < θ, whereas k � pθ).

Combining the above observations and applying Lemma
2, we find that the joint distribution of (N ′pos,j , Ñpos,j −
N ′pos,j , Nother) given (p̂d, g, nneg) is multinomial with n −
nneg trials, with the first probability parameter being

q′pos,j =
q̃jγ

1− qneg
(60)

=

(
νe−ν

k(1− qneg)

)
(1 + o(1)) (61)

3In Lemma 2 we only condition on W0 = w0, which plays the role of
Nneg = nneg here. Since the tests are independent and the conditioning
on P̂D = p̂d and G = g only depends on the negative tests, this
additional conditioning does not affect the conditional joint distribution of
(Ñpos,j , Nother) given Nneg = nneg; it only affects the probability γ
appearing in Lemma 2.

by the above calculations of q̃j and γ. Since the marginal of
a multinomial distribution is binomial and n− nneg = n(1−
qneg)(1 + o(1)) (see (49)), we deduce that

(N ′pos,j | p̂d, g, nneg) ∼ Binomial

(
n(1− qneg)(1 + o(1)),

νe−ν

k(1− qneg)
(1 + o(1))

)
. (62)

Observe that the mean µ̃(D)
1 of this distribution satisfies

µ̃
(D)
1 =

(
n

k
νe−ν

)
(1 + o(1)). (63)

Recall from (35) that a given item j is included in the final
estimate Ŝ if N ′pos,j ≥ βnνe−ν

k . Under the definition ε
(D)
2 =

1 − β, we find that the threshold βnνe−ν

k equals n
k νe

−ν(1 −
ε
(D)
2 ), and hence, the probability that a given defective item j

is incorrectly excluded from Ŝ satisfies

P[j /∈ Ŝ | p̂d, g, nneg]

= P
[
N ′pos,j <

n

k
νe−ν(1− ε(D)

2 )
∣∣∣ p̂d, g, nneg

]
(64)

≤ exp

(
− n

k
νe−ν ·D1(1− ε(D)

2 ) · (1 + o(1))

)
(65)

by (62)–(63) and the concentration bound in (19).
By the union bound, the probability of there existing some

j ∈ S failing to be included in Ŝ is at most k times the right-
hand side of (65). By re-arranging, we deduce that P (D)

e,2 → 0
as p→∞ under the condition

n ≥
(

1

νe−ν
· 1

D1(β)
· k log k

)
(1 + o(1)), (66)

where we have substituted the choice ε(D)
2 = 1− β.

Analysis of non-defective items. To characterize the proba-
bility of a non-defective incorrectly being included in the final
estimate, we apply a similar argument to the one following
Lemma 2. Due to the level of similarity, we omit some details
and focus on the main differences.

We consider the triplet (Nneg, Ñpos,j , Nother) defined in the
same way as above, but now with Ñpos,j being the number of
positive tests containing a given non-defective j and none of
the defective items. The associated probability is q̃j = ρνk

(
1−

ν
k

)k
=
(
ρνe−ν

k

)
(1 + o(1)), and the probability qother = 1 −

qneg − q̃j changes accordingly.
We again condition on (p̂d, g, nneg), and consider the

splitting the Ñpos,j tests into two sub-classes with counts
(N ′pos,j , Ñpos,j − N ′pos,j). The same argument as (59) gives
γ = 1− o(1), and we obtain the following analog of (62):

(N ′pos,j |nneg, p̂d, g) ∼ Binomial

(
n(1− qneg)(1 + o(1)),

ρνe−ν

k(1− qneg)
(1 + o(1))

)
, (67)

with the mean satisfying

µ̃
(ND)
1 =

(
n

k
ρνe−ν

)
(1 + o(1)). (68)
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Defining ε
(ND)
2 = β−ρ

ρ , we find that the threshold βnνe−ν

k

equals n
k ρνe

−ν(1+ε
(ND)
2 ), and hence, the probability of j /∈ S

incorrectly being included in Ŝ satisfies

P[j ∈ Ŝ | Ec1 , g, n(D)
pos ]

= P
[
N ′pos,j ≥

n

k
ρνe−ν(1 + ε

(ND)
2 )

∣∣∣ Ec1 , g, n(D)
pos

]
(69)

≤ exp

(
− n

k
ρνe−ν ·D1(1 + ε

(ND)
2 ) · (1 + o(1))

)
(70)

by (67)–(68) and the concentration bound in (20).
By the union bound, the probability of any j ∈ P̂D \ S

incorrectly being included in Ŝ is at most g ≤ pξ times
the right-hand side of (70). By re-arranging, we deduce that
P

(ND)
e,2 → 0 as p→∞ under the condition

n ≥
(

ξ

ρνe−ν
· 1

D1(β/ρ)
· k log p

)
(1 + o(1)), (71)

where we have substituted ε(ND)
2 = β−ρ

ρ = β
ρ − 1.

Wrapping up. Combining the conditions in (57), (66), and
(71), we deduce Theorem 3.

B. Algorithm-Independent Converse

We will prove a converse that holds for all algorithms under
Bernoulli testing. Since S is assumed to be uniform over the
subsets of cardinality k, the decoding rule that minimizes Pe

is maximum likelihood:

ŜML(y,X) = arg max
S : |S|=k

P[Y = y|X, S]. (72)

Hence, it suffices to lower bound the number of tests required
for vanishing error probability under this decoding rule. We
first define two families of random variables:

1. Given a defective item i ∈ S, as in [12], we write Mi

for the number of tests containing defective item i but no
other defective.

2. We consider the set T of intruding possible defectives,
defined as follows: j ∈ T if item j is non-defective and
does not appear in any negative tests. Given an intruding
possible defective j ∈ T , we write Nj for the number of
false positive tests containing j.

Let N (ND)
pos denote the overall total number of false positive

tests introduced by the reverse Z-channel. The key idea is
to look for a defective item i ∈ S with Mi ≤ c (for some
c to be determined), and an intruding possible defective item
j ∈ T with Nj > c. If we can find such items, then the set S\
{i}∪{j} explains the outcomes better than S (since it requires
at most c + (N

(ND)
pos − Nj) < N

(ND)
pos errors to be made by

the reverse Z-channel, yielding a higher likelihood assuming
ρ < 1/2). As a result, the optimal maximum likelihood (ML)
algorithm will make a mistake.

Suppose that n = γk log p, which equates to a rate of 1−θ
γ log 2 .

We first argue that there exists a defective item that is not the
unique one in too many tests.

Lemma 3. Fix γ > 0 and Φ < 1, and let c = Φνe−νγ log p
and n = γk log p. If θ > D1(Φ)νe−νγ, then with probability

approaching one there exists a defective item i ∈ S such that
Mi ≤ c.
Proof. As in [12], the Mi (together with other random vari-
ables corresponding to there being no defectives and multiple
defectives in a test) are jointly multinomially distributed.
Writing r = ν(1−ν/k)k−1 ≤ νe−ν , the marginal distribution
of each Mi is Binomial(n, r/k), so E[Mi] = rγ log p. In
addition, we have

P [Mi ≤ c] = P
[
Mi ≥ Φνe−νγ log p

]
≤ P [Mi ≥ Φrγ log p] . (73)

Using the concentration bound (19) (with N = n = γk log p,
q = r/k, and ε = 1 − Φ, also implying Nq = rγ log p), we
deduce that

P [Mi ≤ c] ≤ p−D1(Φ)rγ . (74)

Next, we use the key fact (see [45, Section 3.1]) that multi-
nomial random variables satisfy the so-called negative asso-
ciation property, which implies for any c that [45, Property
P3]

P
[
min
i∈S

Mi ≥ c+ 1

]
= P

[⋂
i∈S
{Mi ≥ c+ 1}

]
≤
∏
i∈S

P[Mi ≥ c+ 1]

= (1− P[Mi ≤ c])k . (75)

Using (73) and (75), we deduce that

P
[
min
i∈S

Mi ≤ c
]

= 1− P
[
min
i∈S

Mi ≥ c+ 1

]
(76)

≥ 1− (1− P[Mi ≤ c])k (77)
≥ 1− exp(−kP[Mi ≤ c]) (78)

= 1− exp(−pθ−D1(Φ)rγ). (79)

Recalling that r = ν(1 − ν/k)k−1 =
(
νe−ν

)
(1 + o(1)), we

deduce that if θ > D1(Φ)νe−νγ, then P [mini∈SMi ≤ c] →
1.

Similarly, we can find an intruding possible defective that
appears in sufficiently many false positive tests.

Lemma 4. Fix γ > 0 and Φ > ρ, and let c = Φνe−νγ log p
and n = γk log p. If γνe−ν(Dρ(Φ) + 1 − ρ) < 1, then with
probability tending to 1 there exists a non-defective item j
such that Nj > c.

Proof. The probability of a particular test containing no de-
fectives is (1 − ν/k)k; hence, the probability that a test is
negative is (1−ρ)(1− ν/k)k and the probability that a test is
a false positive is ρ(1 − ν/k)k. The total number of such
tests (which we refer to as Nneg and N

(ND)
pos respectively)

both have a binomial marginal distribution, due to the in-
dependence among tests. Hence, since (1 − ν/k)k → e−ν

from below, using concentration results of the form (19)
and (20), for arbitrarily small ε′ > 0 we may assume that
Nneg ≤ E[Nneg](1 + ε′) ≤ n(1− ρ)e−ν(1 + ε′) and N (ND)

pos ≥
E[N

(ND)
pos ](1− ε′/2) ≥ nρe−ν(1− ε′) for p sufficiently large.
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Conditioned on any such Nneg = nneg, the probability of
a given j ∈ Sc belonging to T (i.e., being an intruding non-
defective) is

(1− ν/k)nneg

≥ (1− ν/k)ne
−ν(1−ρ)(1+ε′) (80)

= exp
(
−νe−ν(1− ρ)(1 + ε′)γ log p(1− o(1))

)
, (81)

where we recall that n = γk log p. Hence, again applying
binomial concentration (with p−k trials), we have with prob-
ability tending to one that the expected number of intruding
possible defectives satisfies |T | ≥ pτ/2, where

τ = 1− νe−ν(1− ρ)(1 + 2ε′)γ. (82)

We seek to find a possible defective item lying in at least
c of the N

(ND)
pos false positive tests. Since (conditioned on

N
(ND)
pos = n

(ND)
pos ) it holds that Nj ∼ Binomial(n

(ND)
pos , ν/k),

and since by assumption n
(ND)
pos ≥ nρe−ν(1 − ε′), we know

that Nj is stochastically dominated by N†j , defined to be
Binomial(nρe−ν(1 − ε′), ν/k). Since ρ < Φ, by a similar
argument to the proof of Lemma 3, we have

P
[
max
j∈T

Nj > c

]
≥ P

[
max
j∈T

N†j > c

]
≥ 1− exp

(
−1

2
pτP[N†j > c]

)
. (83)

Taking N = ne−νρ and q = ν/k and ε = Φ/ρ − 1, we
know from the discussion following (23) that (20) has a
matching lower bound up to a p−ε

′
pre-factor. Combining this

observation with (15) gives

pτP[N†j > c]

≥ pτ−ε′ exp
(
−γνe−νρ log pD1(Φ/ρ)

)
(84)

= exp
(
log p

(
τ − ε′ − γe−ννDρ(Φ)

))
(85)

= exp
(

log p
(
1− ε′ − γνe−ν(Dρ(Φ)

+ (1− ρ)(1 + 2ε′)
))
, (86)

where (85) uses (15), and (86) substitutes the definition of τ
in (82). Hence, if γνe−ν(Dρ(Φ) + 1 − ρ) < 1, then we can
choose ε′ sufficiently small such that in (83), the probability
P [maxj∈T Nj > c] tends to one.

We now put Lemmas 3 and 4 together. Suppose that there
exists γ > 0 and Φ ∈ (ρ, 1) such that the rate R = 1−θ

γ log 2
satisfies

1− θ
γ log 2

≥ max

{(
(1− θ)νe−ν

log 2

)
D1(Φ)

θ
,(

(1− θ)νe−ν
log 2

)
(Dρ(Φ) + 1− ρ)

}
. (87)

Then, with probability approaching one, by Lemma 3 there
exists a defective item i in fewer than c tests with no other
defective, and by Lemma 4 a non-defective item j which
appears in more than c false positive tests. In this case, the
set S \ {i} ∪ {j} is preferred by the ML decoder to the true
defective set S, and an error occurs.

If we perform too few tests, then γ will be small, and so 1
γ

will be large, meaning (87) eventually holds. We would like

to find the largest value for γ that allows such a Φ to exist.
Similarly to the achievability proof, this final step amounts
to somewhat tedious algebra, so the details are deferred to
Appendix C.

IV. PROOF OF THEOREM 2 (Z-CHANNEL)

While the achievability and converse proofs below use
similar ideas to those of the previous section, the details differ
enough that we consider it worthwhile to include most steps.

A. Achievability via Noisy DD

Recall the Z-channel of Definition 2. We first describe a
noisy DD algorithm for this model.

Noisy DD algorithm for Z-channel noise:
1. For each j ∈ [p], let Nneg,j be the number of negative

tests in which item j is included. In the first step, we
fix a constant α ∈ (ρ, 1) and construct the following
set of items that are believed to be non-defective:

N̂D =

{
j ∈ [p] : Nneg,j ≥

αnν

k

}
. (88)

The remaining items, P̂D = [p] \ N̂D, are believed to
be “possibly defective”.

2. For each j ∈ P̂D, let N ′pos,j be the number of positive
tests that include item j and no other item from P̂D.
In the second step, we estimate the defective set as
follows:

Ŝ =

{
j ∈ P̂D : N ′pos,j > 0

}
. (89)

Since positive tests must contain a defective item under the
Z-channel model, we deduce that as long as the first step is
correct (in the sense that S ⊆ P̂D), the second step will never
add a defective item to Ŝ.

Theorem 4. Consider the Z-channel noisy group testing setup
with parameter ρ ∈ (0, 1), number of defectives k � pθ (where
θ ∈ (0, 1)), and i.i.d. Bernoulli testing with parameter ν > 0.
For any α ∈ (ρ, 1), the noisy DD algorithm achieves Pe → 0
as long as

n ≥ max
{
n

(D)
1 , n

(ND)
1 , n

(D)
2

}
(1 + η) (90)

for arbitrarily small η > 0, where defining ζ = e−ν + ρ(1 −
e−ν), we have

n
(D)
1 =

1

νρD1(α/ρ)
· k log k, (91)

n
(ND)
1 =

1

νζD1(α/ζ)
· k log

p

k
, (92)

n
(D)
2 =

1

(1− ρ)νe−ν
· k log k. (93)

Similarly to the previous section, the remaining details in
proving the achievability part of Theorem 2 using Theorem
4 amount to tedious algebra. We therefore defer these to
Appendix D, and focus on proving Theorem 4.
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Let Nneg and Npos respectively denote the number of
negative and positive tests. Both of these quantities follow
a binomial distribution; the probability of a given test i being
positive is given by

P[Yi = 1] = (1− ρ)

(
1−

(
1− ν

k

)k)
(94)

=
(

(1− ρ)(1− e−ν)
)

(1 + o(1)), (95)

since
(
1− ν

k

)k → e−ν as k →∞, and we similarly have

P[Yi = 0] =
(
e−ν + ρ(1− e−ν)

)
(1 + o(1)). (96)

Hence, and using (19)–(20), we have with probability ap-
proaching one that

Nneg = n
(
e−ν + ρ(1− e−ν)

)
(1 + o(1)), (97)

Npos = n
(

(1− ρ)(1− e−ν)
)

(1 + o(1)). (98)

We again henceforth condition on the defective set S taking a
fixed value, say S = {1, . . . , k}.

Analysis of First Step. For the first step, we seek to ensure
that, with probability approaching one, P̂D = [p]\N̂D contains
all of the defective items, and at most pξ non-defectives, for
some ξ ∈ (0, θ) (this will later be taken arbitrarily close to
θ). We denote the complements of these events by P (D)

e,1 and
P

(ND)
e,1 respectively.
Analysis of defective items. For any defective item j ∈ S, the

number of negative tests in which j is included is distributed
as Nneg,j ∼ Binomial

(
n, ρνk

)
. Moreover,

P
(D)
e,1 = P

[ ⋃
j∈S
{j ∈ N̂D}

]
(99)

≤ kP
[
Nneg,j ≥

αnν

k

]
(100)

= kP
[
Nneg,j ≥

(
1 +

α− ρ
ρ

)
· E[Nneg,j ]

]
, (101)

where (100) holds for an arbitrary fixed j ∈ S by the union
bound and the definition of N̂D (cf., (88)), and (101) follows
since E[Nneg,j ] = nρν

k and 1 + α−ρ
ρ = α

ρ . Applying the
binomial concentration bound (20) to (101), we deduce that

P
(D)
e,1 ≤ k exp

(
− nρν

k
·D1(1 + ε

(D)
1 )

)
, (102)

where ε(D)
1 = α−ρ

ρ . As a result, we can achieve P (D)
e,1 → 0

with a number of tests satisfying

n ≥
(

1

ρν
· 1

D1(α/ρ)
· k log k

)
(1 + o(1)), (103)

since 1 + ε
(D)
1 = α

ρ .

Analysis of non-defective items. Let P (ND)
e,1 (nneg) be defined

similarly to P
(ND)
e,1 , but conditioned on Nneg taking a given

value nneg. It suffices to establish that P (ND)
e,1 (nneg) → 0 for

all nneg satisfying (97).
Since the test outcomes depend only on the defective items,

one can envision the non-defective items as being placed in
each test with probability ν

k after the test outcomes have

been produced. As a result, given Nneg = nneg, the number
of negative tests Nneg,j including a given item j /∈ S is
distributed as (Nneg,j |nneg) ∼ Binomial

(
nneg,

ν
k

)
. Hence, for

any j /∈ S, we have

P[j /∈ N̂D |nneg]

= P
[
Nneg,j <

αnν

k

∣∣∣nneg

]
(104)

≤ P
[
Nneg,j ≤ (1− ε(ND)

1 )

× E[Nneg,j |nneg](1 + o(1))
∣∣∣nneg

]
, (105)

where ε
(ND)
1 is defined in such a way that αnν

k ≤ (1 −
ε
(ND)
1 )

nnegν
k (1 + o(1)) for all nneg satisfying (97). By some

simple re-arrangements, we find that we can choose ε(ND)
1 =

1− α
e−ν+ρ(1−e−ν) . Applying the concentration bound (19) to

(105), we find that

P[j /∈ N̂D |nneg]

≤ exp

(
nnegν

k
·D1(1− ε(ND)

1 ) · (1 + o(1))

)
. (106)

As a result, letting G denote the number of non-defective items
in P̂D = [p] \ N̂D, we find that E[G |nneg] is upper bounded
by p−k times the right-hand side of (106). Applying Markov’s
inequality, we obtain

P[G ≥ pξ |nneg]

≤ p1−ξ exp

(
nnegν

k
·D1(1− ε(ND)

1 ) · (1 + o(1))

)
. (107)

Since nneg satisfies (97), we find that we can achieve P (ND)
e,1 →

0 under the condition

n ≥
(

1− ξ
ν
· 1

e−ν + ρ(1− e−ν)
· 1

D1(α/ζ)
· k log p

)
× (1 + o(1)), (108)

since by definition ε(ND)
1 = 1− α

ζ .
Analysis of Second Step. We follow a similar argument to

the one following Lemma 2; due to these similarities, we omit
some details and focus on the differences. Note that here we
only need to focus on defective items: As long as P̂D contains
all defectives, the the second step will never include a non-
defective item in Ŝ (cf., (89)), as positive tests must always
contain a defective item.

Fix a defective j ∈ S and consider the triplet
(Nneg, Ñpos,j , Nother), defined similarly to the RZ-channel
case:
• Nneg is the number of negative tests; for the Z-channel,

the associated probability is qneg =
(
e−ν + ρ(1 −

e−ν)
)
(1 + o(1)) (see (96)).

• Ñpos,j is the number of positive tests containing j but
no other defective item; the probability of a given test
satisfying this condition is q̃j = (1 − ρ)νk

(
1 − ν

k

)k−1
=( (1−ρ)νe−ν

k

)
(1 + o(1)).
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• Nother is the number of remaining tests, with associated
probability qother = 1− qneg − q̃j .

Hence, (Nneg, Ñpos,j , Nother) has a multinomial distribution
with n trials and parameters (qneg, q̃j , qother).

We condition on (p̂d, g, nneg) with nneg satisfying the
concentration bound (97), p̂d containing all of the defective
items, and g ≤ pξ, in accordance with the first step. Similarly
to the RZ-channel case, we consider splitting the Ñpos,j

tests into sub-classes with counts (N ′pos,j , Ñpos,j − N ′pos,j).
Similarly to (59), the associated conditional probability of the
first sub-class is γ = 1− o(1).

Applying Lemma 2, we deduce that given (p̂d, g, nneg), the
triplet (N ′pos,j , Ñpos,j − N ′pos,j , Nother) is multinomial with
n− nneg trials, with the first probability being

q′pos,j =
q̃jγ

1− qneg
(109)

=

(
(1− ρ)νe−ν

k(1− qneg)

)
(1 + o(1)). (110)

This gives the following analog of (62):

(N ′pos,j |nneg, p̂d, g) ∼ Binomial

(
n(1− qneg)(1 + o(1)),

(1− ρ)νe−ν

k(1− qneg)
(1 + o(1))

)
. (111)

Recall from (89) that a given item j is included in the final
estimate Ŝ if N ′pos,j > 0. Consequently, we deduce from (111)
that any defective item j ∈ S yields

P[j /∈ Ŝ |nneg, p̂d, g]

=

(
1− (1− ρ)νe−ν

k(1− qneg)
(1 + o(1))

)n(1−qneg)(1+o(1))

(112)

≤ exp

(
− n

k
(1− ρ)νe−ν · (1 + o(1))

)
, (113)

where we have applied 1− ζ ≤ e−ζ . By the union bound, the
probability of there existing some j ∈ S failing to be included
in Ŝ is at most k times the right-hand side of (113). By re-
arranging, we deduce that P (D)

e,2 → 0 as p → ∞ under the
condition

n ≥
(

1

(1− ρ)νe−ν
· k log k

)
(1 + o(1)). (114)

Wrapping up. Combining the conditions in (103), (108), and
(114), and noting that ξ can be arbitrarily close to θ in (108)
(yielding the logarithmic term (1 − θ) log p =

(
log p

k

)
(1 +

o(1))), we deduce Theorem 5.

B. Algorithm-Independent Converse

The proof of the converse part of Theorem 2 proceeds along
similar lines to the corresponding argument for Theorem 1. We
consider the optimal ML decoder of the form (72), identify
the suitable error event, analyze the error probability using
concentration inequalities, and studying the intersection of
relevant Dγ functions.

Let Ñpos,i denote the number of positive tests containing
i ∈ S and no other defectives, and Ñneg,i denote the

number of negative tests containing i ∈ S and no other
defectives. The probability of a test containing no defectives
is (1−ν/k)k, so we write N (ND)

neg ∼ Binomial(n, (1−ν/k)k)
for the number of tests that contain no defectives (rightfully
negative). By binomial concentration, we can assume that
N

(ND)
neg = ne−ν(1 + o(1)), as this occurs with probability

approaching one.
The argument used to prove a converse is the following:

1. We look for a defective item i ∈ S with Ñpos,i = 0

and Ñneg,i ≥ d = Ψνe−νγ log p (for some Ψ to be
determined). We call such a defective item “strongly
masked”.

2. Given a strongly masked item i, we look for an non-
defective item that appears in fewer than d of the N (ND)

neg +
Ñneg,i of the tests that would be rightfully negative if i
were removed from the defective set. We call such an
item “weakly intruding”.

If there exists such a strongly masked item i ∈ S and a
weakly intruding item j /∈ S, then since d ≤ Ñneg,i the ML
decoder will prefer the set S \ {i} ∪ {j} to the true defective
set (assuming ρ < 1/2), and hence will make a mistake. We
first argue that there exists a strongly masked defective item.

Lemma 5. Fix γ > 0, ρ ≤ Ψ < 1, and d = Ψνe−νγ log p =
Ψνe−νn/k with n = γk log p. If θ > e−ννγ(Dρ(Ψ) + 1−ρ),
then with probability tending to one there exists a strongly
masked item i ∈ S (with Ñpos,i = 0 and Ñneg,i ≥ d).

Proof. For each defective i ∈ S, we write Vi for the indicator
of the event that it is strongly masked, and V =

∑
i∈S Vi for

the total number of strongly masked items. As in [12], we
know that (Ñpos,i, Ñneg,i) are components of a multinomial
distribution, with respective parameters (n, q+, q−), where
q+ = (1−ν/k)k−1(ν/k)(1−ρ) and q− = (1−ν/k)k−1(ν/k)ρ
are the probabilities of a particular test containing defective
i and no other defectives, and being positive or negative
respectively. Further, observe that

(Ñneg,i | Ñpos,i = 0) ∼ Binomial(n, q−/(1− q+)) (115)

by a simpler version of Lemma 2 with γ = 1.
We will apply the binomial concentration bound (20) and

its matching lower bound (23) to Ñneg,i conditioned on
Ñpos,i = 0. Since we consider the event Ñneg,i ≥ d and
we have assumed d = Ψνe−νn/k, we introduce a constant εp
defined to satisfy

(1 + εp)
nq−

1− q+
= d = Ψνe−ν

n

k
, (116)

so that the left hand side is slightly above the conditional mean
of Ñneg,i. Since kq+ → e−νν(1 − ρ) and kq− → e−ννρ by
definition, we readily deduce from (116) that 1 + εp → Ψ/ρ
as p → ∞, which is in the range

[
1, 1

ρ

]
by the assumption

Ψ ∈ [ρ, 1].
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Combining the above and using binomial concentration, we
obtain

E[Vi] = P[Ñpos,i = 0, Ñneg,i ≥ d] (117)

= P[Ñpos,i = 0]P[Ñneg,i ≥ d|Ñpos,i = 0] (118)

= (1− q+)
n P
[
Binomial

(
n, q−/(1− q+)

)
≥ d
]

(119)

≤ (1− q+)
n

exp

(
− nq−

1− q+
D1(1 + εp)

)
(120)

≤ exp

(
−n
(
q+ +

q−
1− q+

D1(1 + εp)
))

(121)

= exp
(
− n

k
(e−νν) (1− ρ+ ρD1(Ψ/ρ))

× (1 + o(1))
)

(122)

= p−γe
−νν(1−ρ+Dρ(Ψ))·(1+o(1)), (123)

where (119) follows from (115), (120) follows from the
concentration bound (20),(121) uses 1 − q+ ≤ e−q+ , (122)
applies the above-mentioned asymptotics of (q+, q−, εp), and
(123) follows since n = γk log p.

We can apply the same argument to lower bound E[Vi]
via (23). As in the proof of Lemma 4 above the sharpness
factor is at least p−ε

′
for any ε′ > 0 and p sufficiently large;

in other words, it behaves as po(1). Combining this lower
bound with the upper bound (123), we conclude that E[Vi] =
p−γe

−νν(1−ρ+Dρ(Ψ))·(1+o(1))+o(1). Hence, since k � pθ, the
expectation E[V ] = kE[Vi] tends to infinity under the assumed
condition θ > γe−νν(1− ρ+Dρ(Ψ)).

Furthermore, we can bound the variance of V by a negative
association argument (using [45, Property P3] as above) to
deduce that for any two defectives i 6= j:

E[ViVj ]

= P[Ñpos,i = 0, Ñneg,i ≥ d, Ñpos,j = 0, Ñneg,j ≥ d] (124)

≤ (1− q+)2n (P[Binomial(n, q−/(1− 2q+)) ≥ d])
2
.
(125)

Here the factor of 1− 2q+ can by understood as multinomial
conditioning (cf., Lemma 2) on both Ñpos,i = 0 and Ñpos,j =
0. Continuing, we write

Var(V )

(E[V ])2
=
kVar[Vi] + k(k − 1)Cov[Vi, Vj ]

k2(E[Vi])2
(126)

=
1

kE[Vi]
+

E[ViVj ]

(E[Vi])2
− 1, (127)

where we used Var[Vi] = E[Vi] − (E[Vi])
2 for binomial

random variables, and the fact that Cov[Vi, Vj ] = E[ViVj ] −
E[Vi]E[Vj ] = E[ViVj ]− (E[Vi])

2. We have already established
that kE[Vi] → ∞, so the first term in (127) tends to zero as
p→∞. In addition, from (119) and (125), we have

E[ViVj ]

(E[Vi])2
≤
(P
[
Binomial

(
n, q−

1−2q+

)
≥ d
]

P
[
Binomial

(
n, q−

1−q+

)
≥ d
] )2

(128)

≤ 1 + o(1), (129)

where (129) is proved in Appendix F.

Combining the preceding observations with (127) gives
Var(V )
(E[V ])2 → 0. This implies that V is sufficiently concentrated
around its mean to deduce (via Chebyshev’s inequality) that
there exists a strongly masked defective (i.e., V > 0) with
probability approaching one, as desired.

We now argue that there exists a weakly intruding non-
defective. First note that the analysis so far has only considered
the columns of the test matrix corresponding to defective
items, and the i.i.d. design of the test matrix means that
columns corresponding to non-defectives are independent of
those. Recall that an item is weakly intruding if it appears
in fewer than d of the N

(ND)
neg + Ñneg,i tests that would be

rightfully negative if i were removed, and that N (ND)
neg =

ne−ν(1 + o(1)) (cf., start of this subsection). Again using the
binomial concentration bound in (20) along with Ñneg,i ∼
Binomial(n, q−/(1 − q+)) (cf., proof of Lemma 5), we can
also assume that Ñneg,i ≤ Ce−ννn/k for fixed C > ρ, as this
holds with probability approaching one.

Lemma 6. Fixing γ > 0, Ψ < 1, and C > ρ, and setting
d = Ψνe−νγ log p and n = γk log p, conditioned on there
existing a strongly masked i ∈ S with Ñneg,i ≤ Ce−ννn/k,
there also exists a weakly intruding non-defective item with
probability tending to one if 1 > γνe−νD1(Ψ).

Proof. Conditioned on N
(ND)
neg and Ñneg,i, the number of

rightfully negative tests that each non-defective item appears
in is distributed as Binomial(N

(ND)
neg + Ñneg,i, ν/k) (note

that the relevant columns of X for non-defective items are
independent of those that determine N (ND)

neg and Ñneg,i). By
the above-mentioned assumptions N (ND)

neg = ne−ν(1 + o(1))
and Ñneg,i ≤ Ce−ννn/k, the probability of this binomial
random variable being less than d is lower bounded by that of
Z ∼ Binomial(ne−ν(1 + δp + C/k), ν/k), where δp = o(1).

Defining ε′p to be such that

(1− ε′p)
n

k
e−νν(1 + δp + C/k) = d = Ψνe−ν

n

k
, (130)

we observe that 1 − ε′p → Ψ. Hence, we have (1 + δp +
C/k)D1(1 − ε′p) = D1(Ψ)(1 + o(1)). In addition, when
bounding P[Z < d], the discussion following (23) reveals
that the concentration bound (19) has a matching lower bound
with a p−ε

′
pre-factor. Combining the above observations, we

obtain for any j /∈ S that

P[ item j is weakly intruding ]

≥ P[Z < d] (131)

≥ p−ε′ exp
(
−n
k
e−νν(1 + δp + C/k)D1(1− ε′p)

)
(132)

≥ p−ε′ exp
(
−γ(log p)e−ννD1(Ψ) · (1 + o(1))

)
, (133)

where and (133) uses n = γk log p in addition to the above
observations.

By (133), the expected number of weakly intruding non-
defective items is at least

(p− k) · p−ε′ · p−γνe−νD1(Ψ)·(1+o(1)),

which grows to infinity as Ω(pτ ) for some τ > 0, due to
the assumption 1 > γνe−νD1(Ψ) and the fact that ε′ may be
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arbitrarily small. Finally, the i.i.d. design of the matrix means
that non-defective items are weakly intruding independently of
one another, so by binomial concentration, the actual number
of of weakly intruding items is positive with probability
approaching one.

By the definition of rate in (4) along with n = γk log p and
k � pθ, we can rephrase Lemma 5 to say that there exists a
strongly masked defective with high probability when the rate
R ∼ 1−θ

γ log 2 satisfies

1− θ
γ log 2

>

(
(1− θ)νe−ν

log 2

)
Dρ(Ψ) + 1− ρ

θ
. (134)

Similarly, Lemma 6 states that there exists a weakly intruding
item with high probability if

1− θ
γ log 2

>

(
(1− θ)νe−ν

log 2

)
D1(Ψ). (135)

Combining (134) and (135), we see that the error event will
occur if the rate is bigger than

(1− θ)νe−ν
log 2

max

{
Dρ(Ψ) + 1− ρ

θ
,D1(Ψ)

}
. (136)

We optimize this expression with respect to Ψ in Appendix E
to complete the proof of Theorem 2.

V. CONCLUSION

We have introduced and analyzed variants of the definite
defectives (DD) algorithm for noisy group testing, with an
emphasis on the Z-channel and reverse Z-channel models.
Under RZ noise, our achievability result (part of which also
uses the COMP algorithm) matches an algorithm-independent
converse for Bernoulli testing for a broad range of dense
scaling regimes, and matches a converse specific to DD for
Bernoulli testing in sparse regimes. While more significant
gaps remain for the Z-channel and general binary channel (see
Appendix I), the bounds are still matching or near-matching in
several low-noise high-sparsity regimes. Further closing these
gaps, either by improved achievability or improved converse
bounds (or both), poses an interesting direction for further
research.

APPENDIX

A. Technical Lemma Regarding Intersection of Dγ Functions

We present a result giving an explicit formula for the
intersection of the Dγ functions introduced in (14), i.e.,
Dγ(t) = t log t

γ − t+ γ.

Lemma 7. Fixing 0 ≤ γ1 ≤ γ2, c ≥ 0, and d ≥ 0, we have
the following:

1. The equation

ϕ(t) := Dγ1(t)− cDγ2(t) + d = 0 (137)

has a unique solution for t ∈ [γ1, γ2] if and only if

d ≤ cDγ2(γ1). (138)

2. If (138) fails, the smallest value of ϕ(t) is achieved by
t = γ1, and equals −cDγ2(γ1) + d > 0.

3. If (138) holds, the solution to (137) is given by

t∗ =
γ2 − γ1 − d
log(γ2/γ1)

for c = 1 (139)

t∗ = γ
1/(1−c)
1 γ

−c/(1−c)
2 ez

∗+1 for c 6= 1 (140)

= −γ1 + d− cγ2

(1− c)z∗ , (141)

where z∗ is a solution to

zez = −1

e

1

1− c

(
1 +

d− cγ2

γ1

)(
γ2

γ1

)c/(1−c)
. (142)

This can be found using the appropriate branch of the
Lambert W -function.

Proof. We have the following:
1. Observe that Dγ1(t) is strictly increasing for t ∈ (γ1, γ2)

and Dγ2(t) is strictly decreasing for t in this range, so
ϕ(t) is strictly increasing in t ∈ (γ1, γ2). Furthermore,
ϕ(γ2) = Dγ1(γ2) + d ≥ 0 by definition, and ϕ(γ1) =
−cDγ2(γ1)+d, which is non-positive if and only if (138)
holds. In other words, (138) is equivalent to the existence
of a change of sign of ϕ at some point in [γ1, γ2].

2. If (138) fails then ϕ(γ1) > 0, so since ϕ is increasing
we know that it is minimized at this point.

3. For c = 1, we can solve directly using the fact that

ϕ(t) = Dγ1(t)−Dγ2(t) + d

= t log

(
γ2

γ1

)
+ γ1 − γ2 + d, (143)

yielding (139). For c 6= 1, we consider reparameterizing
t = γ

1/(1−c)
1 γ

−c/(1−c)
2 ez+1 by another variable z to

obtain

Dγ1(t) = t log

(
γ

1/(1−c)
1 γ

−c/(1−c)
2 ez

γ1

)
+ γ1 (144)

Dγ2(t) = t log

(
γ

1/(1−c)
1 γ

−c/(1−c)
2 ez

γ2

)
+ γ2. (145)

Since 1
1−c − 1 = c

1−c and − c
1−c − 1 = − 1

1−c , we find
that evaluating Dγ1(t)− cDγ2(t) leads to a cancellation
of powers of γ1 and γ2 inside the logarithm, and hence

ϕ(t) = Dγ1(t)− cDγ2(t) + d (146)
= tz(1− c) + γ1 − cγ2 + d (147)

= e(1− c)γ1/(1−c)
1 γ

−c/(1−c)
2 · zez
+ (d+ γ1 − cγ2), (148)

and (142) follows. We deduce (140) from the definition
of t, and (141) by equating (147) with zero.

B. Proving Theorem 1 (achievability part, RZ noise) via
Theorem 3

We consider the rates achievable by COMP and NDD sepa-
rately (cf., Lemma 1 and Theorem 3). Since k log2(p/k)

k log p ∼ 1−θ
log 2 ,
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Lemma 1 tells us that the limiting rate in (4) for COMP
becomes

R ∼ k log2
p
k

nCOMP
=
k log2

p
k

k log p

k log p

nCOMP

∼ (1− θ)
log 2

(1− ρ)νe−ν =
(1− θ)(1− ρ)

e log 2
, (149)

taking the choice of ν = 1 that maximizes νe−ν .
To find the rate achievable by NDD, we rewrite (43), (44)

and (45) respectively, using (15) in the third case, to obtain

k log p

n
(D)
1

= νe−ν
1− ρ
1− ξ (150)

k log p

n
(D)
2

= νe−ν
D1(β)

θ
(151)

k log p

n
(ND)
2

= νe−ν
ρD1(β/ρ)

ξ
= νe−ν

Dρ(β)

ξ
, (152)

since k log2(p/k) =
(
(1− θ)k log2 p

)
(1 + o(1)).

Note that (150) is increasing in ξ, (152) is decreasing in ξ,
(151) is decreasing in β ∈ (ρ, 1) and (152) is increasing in
β ∈ (ρ, 1), so we need to choose the parameters ξ and β to
balance these terms. Using a similar argument to (149) above,
and again making the optimal choice ν = 1, the limiting rate
in (4) becomes

R ∼ k log2(p/k)

n

∼ (1− θ)
e log 2

min

{
1− ρ
1− ξ ,

D1(β)

θ
,
Dρ(β)

ξ

}
. (153)

Since D1 and Dρ in (153) are continuous in their arguments,
we can consider choosing β ∈ [ρ, 1] and ξ ∈ [0, θ],4 where
previously we excluded the endpoints. If there exists a value
β∗ ∈ [ρ, 1] that makes

D1(β∗)

θ
= Dρ(β

∗) + 1− ρ, (154)

then taking ξ = ξ∗ :=
Dρ(β∗)

Dρ(β∗)+1−ρ (if valid, i.e., in [0, θ])
would make all bracketed terms in (153) become equal to
Dρ(β

∗) + 1− ρ, suggesting that a putative rate of

(1− θ)(Dρ(β
∗) + 1− ρ)

e log 2
(155)

might be possible. We can consider whether there exists a
solution to (154) by taking γ1 = ρ, γ2 = 1, c = 1

θ and
d = 1−ρ in Lemma 7. Examining (138), there exists a solution
β∗ ∈ (ρ, 1) if and only if (1−ρ)θ ≤ D1(ρ) = ρ log ρ+ 1−ρ,
or equivalently if θ ≤ θ(RZ)

crit = 1 + ρ log ρ
1−ρ (cf., (25)).

Case 1 (θ ≤ θ(RZ)
crit ). Equation (140) in Lemma 7 shows that

β∗ = ρ1/(1−1/θ)ez+1 = ρθ/(θ−1)ez+1, where z is a solution
to zez = −e−1ρθ/(1−θ) (see (142), and observe that 1

1−c
(
1 +

d−cγ2
γ1

)
= 1

1−1/θ

(
1 + 1−ρ−1/θ

ρ

)
= 1

ρ ), i.e., z = −κ in the

4As ξ → 0, the third term in (153) grows unbounded, so for ξ = 0 we
simply lower bound the minimum of three terms by that of the first two terms.

notation of (24). Substituting the value of β∗ into the definition
of Dρ and applying some algebra,5 we obtain

(1− θ)(Dρ(β
∗) + 1− ρ) =

− log ρ

κ(θ)
. (156)

We need to verify whether the corresponding parameter ξ∗

satisfies ξ∗ < θ, which is equivalent to 1− ξ∗ > 1− θ and in
turn (recalling ξ∗ =

Dρ(β∗)
Dρ(β∗)+1−ρ ) to

(1− θ)(Dρ(β
∗) + 1− ρ) < 1− ρ, (157)

or equivalently − log ρ < κ(1 − ρ) (cf., (156)). Direct cal-
culation shows that this is satisfied if and only if θ > θopt,
where θopt is defined in (26); this is deduced by substituting
the “endpoint” value κ = − log ρ

1−ρ into κe−κ = −e−1ρθ/(1−θ).6

Hence for θopt < θ ≤ θ
(RZ)
crit , using the fact that (1 −

θ)(Dρ(β
∗) + 1 − ρ) = − log ρ

κ(θ) as per (155), we obtain a rate
of − log ρ

κ(θ)e log 2 as claimed.
For θ ≤ θopt, ξ∗ is not a legitimate choice, but we can

obtain a rate of 1−ρ
e log 2 by picking β = β∗ and ξ = θ. In this

case, the first term (i.e., 1−ρ
1−θ ) provides the minimum in (153)

since the reverse of (157) holds, implying

1− ρ
1− θ ≤ Dρ(β

∗) + 1− ρ =
D1(β∗)

θ
, (158)

1− ρ
1− θ ≤

Dρ(β
∗)

θ
, (159)

where the equality in the first expression applies (154), and the
second expression follows by rewriting the reverse of (157) as
(1− θ)Dρ(β

∗) ≥ (1− ρ)− (1− θ)(1− ρ) = θ(1− ρ).
Case 2 (θ > θ

(RZ)
crit ). In this case, the second part of Lemma

7 tells us that the optimal choice is to take β = ρ and ξ
arbitrarily close to zero (to keep the third term in (153) zero
while maximizing the first term). However, in analogy with
(154), for θ > θ

(RZ)
crit it holds that D1(ρ)

θ < 1 − ρ, so the
minimum in (153) is strictly smaller than the first term. In
other words, the optimized NDD rate is strictly less than
(1−θ)(1−ρ)
e log 2 , which we know from (149) above is achievable

by COMP. In other words, for sufficiently dense problems,
the NDD rate bound of Theorem 3 is worse than that attained
by COMP. Therefore, in this regime, we get the required rate
in Theorem 3 from COMP instead of NDD.

C. Proving Theorem 1 (converse part, RZ noise) via (87)

By the discussion following (87), we want to find the value
of Φ that gives the smallest value of

max

{
D1(Φ)

θ
,Dρ(Φ) + 1− ρ

}
. (160)

5Write zez = −e−1ρθ/(1−θ) as ez+1ρθ/(θ−1) = − 1
z

, or equivalently
β∗ = 1

κ
. Then Dρ(β∗)+1− ρ = β∗ log β

∗

ρ
−β∗ +1 = β∗ log β

∗

ρe
+1 =

β∗ − log ρ
1−θ − β

∗κ+ 1 = β∗ − log ρ
1−θ , since β∗

ρe
= ρ−1/(1−θ)e−κ.

6In more detail, this choice gives log
(
κe−κ

)
= log ρ

1−ρ + log
(− log ρ

1−ρ
)
,

and we can also rewrite κe−κ = −e−1ρθ/(1−θ) as θ =
(
1 −

log ρ
1+log(κe−κ)

)−1
=

1+log
(
κe−κ

)
1+log

(
κe−κ

)
−log ρ

by applying θ
1−θ = 1

1/θ−1
and

re-arranging. Combining these two facts gives θ = θopt.
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This is precisely the problem considered in (154) (without any
need to consider constraints on ξ) and recall the following
observations that we established via Lemma 7.

Case 1 (θ ≤ θ
(RZ)
crit ). We know that the smallest value is

given by the intersection of the two curves. In accordance
with (156), if

R >
− log ρ

κ(θ)e log 2
(161)

then the success probability of the ML algorithm tends to zero
(again making the optimal choice ν = 1)

Case 2 (θ ≥ θ
(RZ)
crit ). Recall from the arguments following

(154) that the maximum of D1(Φ)
θ and Dρ(Φ) + 1 − ρ is

achieved by Dρ(Φ) + 1 − ρ, and the smallest such value is
attained when Φ = ρ. Therefore, if the rate satisfies

R ≥
(

1− θ
e log 2

)
(1− ρ), (162)

then the success probability of the ML algorithm tends to zero
(again using the fact that ν = 1 maximizes νe−ν).

Finally, the presence of the (reverse) Z-channel capacity
CZ(ρ) in Theorem 1 needs no further justification, as such
a bound was proved in [11].

D. Proving Theorem 2 (achievability part, Z noise) via Theo-
rem 4

In the following, recall that ζ = e−ν + ρ(1− e−ν) ≥ ρ. In
a similar way to the proof of Theorem 1, we can rewrite (91),
(92) and (93) as

k log k

n
(D)
1

= νDρ(α) (163)

k log p
k

n
(ND)
1

= νDζ(α) (164)

k log k

n
(D)
2

= νe−ν(1− ρ). (165)

Using the fact that k log2(p/k)
k log k = 1−θ

θ log 2 (1 + o(1)), we deduce
that for any choice of parameters ν and α, an achievable rate
is given by

1

log 2
min

{
(1− θ)νDρ(α)

θ
,

νDζ(α),
(1− θ)(1− ρ)νe−ν

θ

}
. (166)

Again, we maximize (166), first equating the first two terms
using Lemma 7 with γ1 = ρ, γ2 = ζ, c = θ

1−θ and d =
0, for which (138) trivially holds and so a unique α solving
(1−θ)νDρ(α)

θ = νDζ(α) exists. If θ = 1
2 , then (139) gives

α∗(1/2) =
ζ − ρ

log(ζ/ρ)
=

ρs

log(1 + s)
,

since s = ζ
ρ − 1 by the definitions of s and ζ. Note that

the required7 bound ρ ≤ α∗(1/2) ≤ ζ holds because it is
equivalent to log(1 + s) ≤ s ≤ (1 + s) log(1 + s). We obtain

7We may again include the endpoints α = ρ and α = ζ due to the
continuity of Dρ and Dζ , similarly to the reverse Z-channel model.

(32b) by substituting this value in Dρ(α) in (166) (note that
Dρ(α

∗(1/2)) = ρs
log(1+s) · log s

log(1+s)−
ρs

log(1+s) +ρ and ρs =

ζ − ρ = (1− ρ)e−ν).
In the case θ 6= 1

2 , (142) can be expressed in the form8

ez
∗
z∗ = −1

e
g(s, θ), (167)

for the function g given in (29). This is solved by taking z∗ =
λ(θ) with λ(θ) given in (30). Our choice of branch of the
Lambert W -function is justified in Remark 4 below. The value
of α∗ given in (31) then follows via (141).9

Next, note the following two facts:

• By (140), we have α∗

ρe =
(

1
1+s

)c/(1−c)
ez
∗

(this is
established via ρ

1
1−c = ρ · ρ c

1−c and ρ
ζ = 1

1+s ).
• By (141), we have α∗z∗ = −ρ− ρsθ

2θ−1 (this is established

via −ρ−
θ

1−θ ζ

1− θ
1−θ

= −ρ(1−2θ)−(ζ−ρ)
1−2θ and ζ − ρ = ρs).

Using the definition of Dρ followed by these two facts, the
first (and therefore also the second) bracketed term in (166)
equates to

(1− θ)νDρ(α
∗)

θ

=
(1− θ)ν

θ

(
α∗ log

(
α∗

ρe

)
+ ρ

)
(168)

=
(1− θ)ν

θ

(
(α∗z∗ + ρ)− α∗ c

1− c log(1 + s)

)
(169)

=
(1− θ)ν

θ

(
− ρsθ

2θ − 1
+ α∗

θ

2θ − 1
log(1 + s)

)
(170)

=
(1− θ)(1− ρ)νe−ν

2θ − 1

(
−1 +

α∗ log(1 + s)

ρs

)
, (171)

where (171) uses ρs = ζ − ρ = (1 − ρ)e−ν . We obtain the
desired rate in (32a) upon substituting into (166) and noting
that log(1+s)

ρs = α∗(1/2)−1.

Remark 4. The choice of branch of the Lambert W -function
in (30) follows from the fact that (using the parametriza-
tion t = γ

1/(1−c)
1 γ

−c/(1−c)
2 ez+1) we require ρ ≤ ρ(1 +

s)θ/(2θ−1)ez+1 ≤ ζ in Lemma 7. Rearranging, and using
ζ
ρ = 1 + s, the lower bound is equivalent to the fact that

z ≥ −1− θ

2θ − 1
log(1 + s), (172)

and the upper bound is equivalent to the fact that

z ≤ −1− 1− θ
2θ − 1

log(1 + s). (173)

Hence, for θ < 1
2 , (172) tells us that z ≥ −1, so we need to

take the W0 branch. Similarly, for θ > 1
2 , (173) tells us that

z ≤ −1, so we take the W−1 branch.

8The relevant terms are evaluated as follows: (i) 1
1−c = 1−θ

1−2θ
, (ii)

(
1 +

d−cγ2
γ1

)
= 1 − θ

1−θ
ζ
ρ

, (iii)
( γ2
γ1

)c/(1−c)
=
( ζ
ρ

) θ
1−2θ . The latter two of

these are further simplified using ζ
ρ
= 1 + s.

9In more detail, − γ1+d−cγ2
(1−c)z∗ evaluates to −

ρ− θ
1−θ ζ

(1− θ
1−θ )λ

. Multiplying and

dividing by ρ and using ζ
ρ

= 1 + s, this simplifies to − ρ
λ

( 1−θ−θ(1+s)
1−2θ

)
and in turn to (31).
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We can now justify in more detail some of the claims made
earlier in Remark 3 regarding the behavior of the achievable
rate.

Remark 5. 1. For given s, the function α∗(θ) is continuous
at θ = 1

2 . This follows because as θ → 1
2 from below,

−e−1g(s, θ) → ∞, and (17) gives W0(x) ∼ log x for x
large, yielding

λ(θ) ∼ log(−e−1g)

= − θ

2θ − 1
log(1 + s)− 1 + log

(
θs

1− 2θ
− 1

)
(174)

by the definition of g. (Here ∼ means that the ratio of
the terms tends to 1). Similarly, as θ → 1

2 from above,
−e−1g(s, θ)→ 0, and (18) gives W−1(x) ∼ log(−x) for
x close to zero, yielding

λ(θ) ∼ log(e−1g)

= − θ

2θ − 1
log(1 + s)− 1 + log

(
θs

2θ − 1
+ 1

)
.

(175)

In either case, we deduce that (2θ−1)λ(θ)→ − log(1+s)
2 ,

and α∗(θ)→ ρs
log(1+s) so the definition in (31) is contin-

uous at this point. Since α∗(θ) is continuous at θ = 1/2,
the definition of the rate R(Z)(θ, ρ) given in (32) is also
continuous at θ = 1/2 (since R(Z) is obtained by sub-
stituting α∗ into a continuous function Dρ(α)). By (17),
we know that W0(x) ≤ log x for x sufficiently large, and
hence α∗(θ) < α∗(1/2) for θ in some left-neighborhood
of 1/2. Similarly, W1(x) ≤ log(−x) for all x sufficiently
large (and negative), and hence α∗(θ) > α∗(1/2) for θ
in some right-neighborhood of 1/2.

2. In the limit as ρ tends to zero, a sub-optimal but useful
choice of α is

α =
e−νθ

1− θ
1

(− log ρ)
, (176)

which is greater than ρ (as required for α > ρ) when ρ
is sufficiently small. Using aDb(t) = Dab(at) (a simple
generalization of (15)), the first two bracketed terms of
(166) simplify to

νe−ν

log 2
min

{
(1− θ)eν

θ
Dρ(α), eνDζ(α)

}
=
νe−ν

log 2
min

{
Dρ(1−θ)eν/θ

(
α(1− θ)eν

θ

)
,

Deνζ(αe
ν)

}
and under the above choice of α, both D(·) terms tend
to 1 as ρ → 0.10 Setting ν = 1, we obtain 1

e log 2 , and
taking into account the third term of (166) we recover
the noiseless rate of (5) in the limit as ρ→ 0.

10For the first term, this is established by substituting (176) into the
definition of D(·) to obtain a ratio of the form − log ρ+o(log ρ)

− log ρ+o(log ρ)
. For the

second term, simply note that ζeν → 1 and α→ 0.

E. Proving Theorem 2 (converse part, Z noise) via (136)

Recall from (136) that the error probability cannot vanish
when the rate is above

(1− θ)νe−ν
log 2

max

{
Dρ(Ψ) + 1− ρ

θ
,D1(Ψ)

}
. (177)

The analysis of this term is simpler than in the reverse Z-
channel case. We again use Lemma 7, taking γ1 = ρ, γ2 = 1,
c = θ and d = 1− ρ. In this case, we find that (138) does not
hold, since

1− ρ ≥ θ(1− ρ) ≥ θ(1− ρ+ ρ log ρ) = cD1(ρ). (178)

In other words, the maximum in (177) is always provided by
the first term, and by choosing Ψ arbitrarily close to ρ, we
deduce (also using Dρ(ρ) = 0) that any rate above

(1− θ)νe−ν
log 2

(1− ρ)

θ
(179)

will ensure the error probability Pe does not converge to zero.
Finally, using the fact that νe−ν ≤ 1/e, we deduce that using
any rate larger than

(1− θ)(1− ρ)

θe log 2
(180)

will ensure that Pe does not converge to zero.

F. Proof of Equation (129) in Lemma 5

It suffices to show that

P
[
Binomial

(
n, q−

1−q+

)
≥ d
]

P
[
Binomial

(
n, q−

1−2q+

)
≥ d
] ≥ 1 + o(1). (181)

To simplify the notation, we write P and Q for binomial PMFs
(with n trials) with probabilities p = q−

1−q+ and q = q−
1−2q+

.

We are interested in lower bounding
∑
x≥d P (x)∑
x≥dQ(x) . To do this,

we write
∑
x≥dQ(x) =

∑
x≥d P (x) +

∑
x≥d

(
Q(x)−P (x)

)
and seek to show that∑

x≥d

(
Q(x)− P (x)

)
�
∑
x≥d

P (x), (182)

in the sense that the left-hand side is upper bounded by a
vanishing fraction of the right-hand side.

Towards establishing (182), note that∑
x≥d

(
Q(x)− P (x)

)
=
∑
x≥d

P (x)

(
Q(x)

P (x)
− 1

)
(183)

=
∑
x≥d

P (x)

((q
p

)x(1− q
1− p

)n−x
− 1

)
. (184)

Observe that under the choices p = q−
1−q+ and q = q−

1−2q+
, we

have
p

q
=

1− 2q+

1− q+
= 1− q+

1− q+
< 1. (185)
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We also have 1−p
1−q > 1 (since p < q), so we can upper bound(

1−q
1−p
)n−x

in (184) by one. Combining these findings gives∑
x≥d

(
Q(x)− P (x)

)
≤
∑
x≥d

P (x)

((q
p

)x
− 1

)
(186)

=
∑
x≥d

P (x)

(( 1

1− q+
1−q+

)x
− 1

)
(187)

=
∑
x≥d

P (x)
(
exq+(1+o(1)) − 1

)
, (188)

since q− and q+ are both o(1).
To complete the proof, recall that d = O(log p), whereas

q+ = O
(

1
k

)
with k � pθ and θ > 0. We fix ξ < θ and split

the summation in (188) as follows:∑
x≥d

P (x)
(
exq+(1+o(1)) − 1

)
=

∑
d≤x≤pξ

P (x)
(
exq+(1+o(1)) − 1

)
+

∑
pξ≤x≤n

P (x)
(
exq+(1+o(1)) − 1

)
. (189)

The first summation behaves as o
(∑

x≥d P (x)
)
, since the

conditions x ≤ pξ, q+ = O
(

1
k

)
, k � pθ, and ξ ∈

(0, θ) collectively imply exq+(1+o(1)) = 1 + o(1). For the
second summation, we recall that P (x) is the PMF of a
Binomial(n, q−/(1 − q+)) random variable, and make use
of the concentration bound (19). Equating x with nq−/(1 −
q+)(1 + ε) gives ε = x(1−q+)

nq−
− 1, which yields ε = Ω

(
pξ

log p

)
due to the fact that nq− � log p and x ≥ pξ. The concentration
bound in (19) gives an exponent of nq−

1−q+D1(1 + ε), and we
have D1(1 + ε) � ε log ε when ε → ∞; combining these
observations yields an exponent on the order of x log ε, or
equivalently, on the order of x log p. Substituting P (x) ≤
e−Ω(x log p) into the second summation of (189), we readily
obtain

∑
pξ≤x≤n P (x)

(
exq+(1+o(1))− 1

)
≤ e−Ω(pξ log p). This

is much faster decay than the p−O(1) decay of
∑
x≥d P (x)

shown following (119).
Recalling that (189) is equal to (188), we deduce that (182)

holds with p = q−
1−q+ and q = q−

1−2q+
, as desired.

G. DD-Specific Converse Under RZ Noise

Consider the reverse Z-channel with parameter ρ. We claim
that under i.i.d. Bernoulli testing with parameter ν > 0, if the
number of tests satisfies

n =
k log p

k

νe−ν(1− ρ)
(1− η) (190)

for some fixed η ∈ (0, 1), then the error probability of DD
tends to one. We proceed by proving this claim.

First step. Recall that the first step removes all items that
appear in any negative test. Given that there are nneg =(
ne−ν(1− ρ)

)
(1 + o(1)) negative tests (cf., (49)), the proba-

bility of a given non-defective j being kept is

ψ :=

(
1− ν

k

)nneg

= e−
(
n
k νe
−ν(1−ρ)

)
(1+o(1)). (191)

Given nneg, the number of intruding non-defectives (i.e.,
non-defectives appearing in no negative tests) is distributed
as G ∼ Binomial(p − k, ψ), so if ψp → ∞ then we
have by the binomial concentration bounds (19)–(20) that
G = pψ(1 + o(1)) with probability approaching one. Using
(190) and (191), we obtain

ψ = e−(1−η) log p
k ·(1+o(1)) =

(k
p

)(1−η)(1+o(1))

, (192)

and hence

pψ = k(1−η)(1+o(1)) · pη(1+o(1)). (193)

Since k � pθ with θ ∈ (0, 1), we deduce that pψ ≥ 2k1+ε

for sufficiently large p and some ε > 0 depending only on θ.
Then, since G = pψ(1 + o(1)) with probability approaching
one, we conclude that G ≥ k1+ε with probability approaching
one.

Second step. We proceed similarly to the argument fol-
lowing Lemma 2, but now the key probability γ analyzed in
(59) behaves very differently due to the fact that g ≥ k1+ε.
Specifically, we have

γ =

(
1− ν

k

)g
(194)

=

((
1− ν

k

) k
ν

) νg
k

(195)

=
((
e−1
)
(1 + o(1))

) νg
k

(196)

≤ e−νkε(1+o(1)), (197)

where we have applied g ≥ k1+ε. Hence, in the binomial
distribution found in (62), the associated probability decreases
by this factor accordingly:

(N ′pos,j | p̂d, g, nneg) ∼ Binomial

(
n(1− qneg)(1 + o(1)),

νe−νγ

k(1− qneg)
(1 + o(1))

)
. (198)

By (197), the mean of this distribution is at most
νn
k e
−νkε(1+o(1)), which vanishes under the choice of n in

(190) due to the fact that k � pθ with θ > 0. By Markov’s
inequality, it follows that the probability of the given defective
item being the unique element from p̂d in any positive test
vanishes as p → ∞, and hence the probability that the DD
algorithm successfully identifies a given defective item also
vanishes.

H. High-ρ Low-θ Optimality Result for Reverse Z-Channel

In this appendix, we consider the alternative formulation of
the achievability part of Theorem 1 given in Theorem 3. We
let ξ be arbitrarily close to θ, and set β = 1+ρ

2 ∈ (ρ, 1). The
conditions (44) and (45) both have a dependence on (k, p, θ)
scaling as O(k log k) = O(θk log p), which is dominated by
the k log p term in (43) for sufficiently small θ. Hence, the
condition (43) dominates for sufficiently small θ.
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When (43) dominates, the required number of tests simpli-
fies to

n =

(
e

1− ρ · k log p

)
(1 + o(1)), (199)

which yields a rate of 1−ρ
e log 2 bits per test. By performing a

Taylor expansion of (11) at ρ = 1, we find that the reverse
Z-channel capacity also behaves as C = 1−ρ

e log 2 +O
(
(1− ρ)2

)
as ρ → 1, so in fact we have asymptotic optimality in this
high-noise regime.

Stated more precisely, the rate of Theorem 3 is asymptot-
ically optimal when the order of limits is first n → ∞, then
θ → 0, and finally ρ→ 1.

I. Results for the General Binary Noise Model

Achievability. Under the general binary noise model (which
includes symmetric noise as a special case), we consider the
following noisy version of the DD algorithm.

Noisy DD algorithm for general binary noise:
1. For each j ∈ [p], let Nneg,j be the number of negative

tests in which item j is included. In the first step, we
fix a constant α ∈ (ρ10, 1 − ρ01) and construct the
following set of items that are believed to be non-
defective:

N̂D =

{
j ∈ [p] : Nneg,j ≥

αnν

k

}
. (200)

The remaining items, P̂D = [p] \ N̂D, are believed to
be “possibly defective”.

2. For each j ∈ P̂D, let N ′pos,j be the number of positive
tests that include item j and no other item from P̂D. In
the second step, we fix a constant β ∈ (ρ01, 1− ρ10),
and estimate the defective set as follows:

Ŝ =

{
j ∈ P̂D : N ′pos,j ≥

βnνe−ν

k

}
. (201)

Theorem 5. (General binary noise achievability) Consider the
general binary noisy group testing setup with crossover prob-
abilities ρ01 and ρ10 (cf., (7)), number of defectives k � pθ

(where θ ∈ (0, 1)), and i.i.d. Bernoulli testing with parameter
ν > 0. For any α ∈ (ρ10, 1 − ρ01), β ∈ (ρ01, 1 − ρ10), and
ξ ∈ (0, θ), we have Pe → 0 if

n ≥ max
{
n

(D)
1 , n

(ND)
1 , n

(D)
2 , n

(ND)
2

}
(1 + η) (202)

for arbitrarily small η > 0, where defining w = (1−ρ01)e−ν+
ρ10(1− e−ν), we have

n
(D)
1 =

1

νρ10D1(α/ρ10)
· k log k, (203)

n
(ND)
1 =

1− ξ
νwD1(α/w)

· k log p, (204)

n
(D)
2 =

1

νe−ν(1− ρ10)D1(β/(1− ρ10))
· k log k, (205)

n
(ND)
2 =

ξ

νe−νρ01D1(β/ρ01)
· k log p. (206)
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Figure 7: Achievable and converse rates under the symmetric
noise model and i.i.d. Bernoulli testing with noise level ρ =
0.001.

Proof. The first step of the algorithm is analyzed in the same
way as the proof of Theorem 4, and the second step is
analyzed in the same way as the proofs of Theorems 3 and
4. For the former, P̂D contains all k defective items and o(k)
non-defective items under the conditions (203)–(204), and for
the latter, Ŝ contains all of the defective items and no non-
defective items under the conditions (205)–(206). The details
are omitted to avoid repetition.

As before, we can rephrase Theorem 5 to give a statement
in terms of rates. That is, we can rewrite (203), (204), (205)
and (206) using (15) to show that for given α, β, ξ, and ν an
achievable rate is:

1− θ
log 2

min

{
ν

θ
Dρ01(α),

ν

1− ξDw(α),

νe−ν

θ
D1−ρ10(β),

νe−ν

ξ
Dρ01(β)

}
. (207)

We claim that in the limit as ρ01 → 0 and ρ10 → 0 for fixed
θ ∈ (0, 1), we recover the noiseless DD guarantee given in
[12]. To see this, we let both α and β equal an arbitrarily small
constant c > 0. We observe that D1(α/ρ) and D1(β/ρ) both
scale as 1

ρ log 1
ρ , which implies that n(D)

1 and n
(ND)
2 behave

as o(k log k), and their contributions are insignificant. On the
other hand, α/w and β/(1−ρ10) can be made arbitrarily close
to zero by suitable choice of c, which means (using D1(0) = 1

and w|ρ01=ρ10=0 = e−ν) that n(ND)
1 and n

(D)
2 can be made

arbitrarily close to (1−ξ)k log p
νe−ν and k log k

νe−ν , respectively. Since
ξ can be chosen arbitrarily close to θ and (1 − θ)k log p =(
k log p

k

)
(1 + o(1)), the final condition on n is

n ≥ max

{
k log p

k

νe−ν
,
k log k

νe−ν

}
(1 + η) (208)

for arbitrarily small η > 0. This bound is minimized by the
choice ν = 1, which recovers the bound in [12].
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Converse. We can construct a general binary channel with
noise levels ρ01 + ρ10 ≤ 1 by the composition of a reverse Z-
channel followed by a Z-channel. To be precise, analyzing the
relevant conditional probabilities, using a reverse Z-channel
with noise level ρ01/(1 − ρ10) ≤ 1 followed by a Z-channel
with noise level ρ10 gives an general binary channel with noise
levels ρ01 and ρ10.

Hence, a standard genie argument shows that any converse
that applies to the reverse Z-channel must also apply to the
general binary channel. In particular, evaluating the converse
bound R(RZ) (θ, ρ01/(1− ρ10)) of Theorem 1 gives a converse
that applies to the general binary channel.

We can use a similar argument based on taking a Z-channel
with noise level ρ10/(1 − ρ01) ≤ 1 followed by a reverse
Z-channel with noise level ρ01. The same genie argument
shows that we can bound the rate of the general binary channel
by R(Z) (θ, ρ10/(1− ρ01)). Putting these bounds together, we
deduce the following.

Corollary 1. For the general binary noisy group testing
problem with noise levels ρ01 +ρ10 ≤ 1, in the regime k � pθ
with θ ∈ (0, 1), no algorithm can achieve Pe → 0 under
Bernoulli testing with a rate higher than

R(gen)(θ, ρ01, ρ10)

= min

{
R(RZ)

(
θ,

ρ01

1− ρ10

)
, R(Z)

(
θ,

ρ10

1− ρ01

)}
. (209)

In the degenerate case of ρ01 + ρ10 = 1 the initial reverse
Z-channel has a noise level of 1, meaning that all inputs are
deterministically mapped to 1 by this step. In this case, as
expected, the converse bound (209) is given by R(RZ)(θ, 1) =
0 (where this value follows by (28)).

For comparison purposes, we discuss the symmetric case
ρ01 = ρ10 = ρ. In this case, while Corollary 1 does not exactly
match Theorem 5 for any θ ∈ (0, 1) and ρ ∈ (0, 1), the two
become increasingly close for high θ and low ρ; see Figure
7 for an example with ρ = 0.001. In this figure, we also
observe a strict improvement over the best previously known
rate attained by separate decoding of items [19] unless θ is
very small.

The difficulty in establishing a tight bound when both ρ01

and ρ10 are positive appears to stem from the requirement of
handling all four possible error types (false positive vs. false
negative, and first stage vs. second stage); in contrast, for the
Z and RZ models, only a strict subset of these is relevant.
The fact that these error events do not occur independently of
one another poses a significant challenge for a tight analysis.
Similarly, in the converse proof, constructing a set S\{i}∪{j}
with a higher likelihood than S is complicated by the fact that
the likelihood depends on all four combinations of PY |U (y|u)
with u, y ∈ {0, 1}. Further closing the remaining gaps remains
an interesting direction for future research.
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