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Learning to Detect an Odd Markov Arm
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Abstract— A multi-armed bandit with finitely many arms is
studied when each arm is a homogeneous Markov process on an
underlying finite state space. The transition law of one of the
arms, referred to as the odd arm, is different from the common
transition law of all other arms. A learner, who has no knowledge
of the above transition laws, has to devise a sequential test to
identify the index of the odd arm as quickly as possible, subject
to an upper bound on the probability of error. For this problem,
we derive an asymptotic lower bound on the expected stopping
time of any sequential test of the learner, where the asymptotics
is as the probability of error vanishes. Furthermore, we propose
a sequential test, and show that the asymptotic behaviour of
its expected stopping time comes arbitrarily close to that of the
lower bound. Prior works deal with independent and identically
distributed arms, whereas our work deals with Markov arms.
Our analysis of the rested Markov setting is a key first step in
understanding the difficult case of restless Markov setting, which
is still open.

Index Terms— Multi-armed bandits, rested bandits, Markov
rewards, odd arm identification, anomaly detection, forced
exploration.

I. INTRODUCTION

WE STUDY a multi-armed bandit problem with finitely
many arms in which each arm is identified with a time

homogeneous, irreducible and aperiodic discrete time Markov
process on a finite state space. We assume that the state space
is common to all the arms, and that the Markov process
of any given arm is independent of the Markov process of
every other arm. The state evolution on one of the arms is
governed by a probability transition matrix P1, while those on
each of the other arms is governed by a probability transition
matrix P2, where P2 �= P1, hence making one of the arms
anomalous (hereinafter referred to as the odd arm). A learner
seeks to identify the index of the odd arm as quickly as
possible, subject to an upper bound on the probability of error.
We assume that the learner knows neither P1 nor P2, but
knows that one of the arms is anomalous. We further assume
that the learner can only devise sequential arm selection
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schemes in which, at each time, he may choose any one of the
arms and observe the current state of the chosen arm. During
this time, the unobserved arms do not undergo state transitions
and remain frozen at their last observed states. We refer to this
as the rested arms setting, borrowing the terminology from
Gittins [1]. Thus, our problem is one of odd arm identification
in a multi-armed bandit setting with rested Markovian arms.

A. Prior Works That Deal With Rested and Markov Arms

One of the earliest works to consider the setting of rested
and Markov arms is that of Gittins’ [1] in which it is assumed
that each arm yields a random ‘reward’ when selected, and
that successive rewards from any given arm constitute a
Markov process. In this reward setting, the central problem
is one of maximising the infinite horizon average discounted
reward. For this problem, Gittins proposed and demonstrated
the optimality of a simple index-based policy that, at each
time, involves constructing an index for every arm based on
the knowledge of the transition laws of the arms and selecting
an arm with the largest index.

Agarwal et al. [2] consider a similar setting as Gittins’,
where each arm yields Markov rewards. However, unlike in
[1], the authors of [2] do not assume the knowledge of the
transition laws of the arms. Instead, they assume that the
transition law of each arm is parameterised by an unknown
parameter belonging to a known, finite, parameter space.
Define ‘regret’ as the difference between the infinite time
horizon expected sum of rewards generated by any policy
and that generated by a policy which knows the parameters
of the arms. The goal of the authors of [2] is to design
policies whose regret, in the asymptotic limit as time n→ ∞,
is o(nα) for every α > 0. For this problem, the authors
of [2] provide a lower bound in which the long-term regret
grows asymptotically as logn times a multiplicative constant
that captures the hardness of the problem. Furthermore, they
propose a policy and demonstrate that it achieves the lower
bound in the limit as n→ ∞.

While the aforementioned works deal with reward
maximisation, and the associated regret minimisation in the
unknown parameters setting, our problem is one of optimal
stopping. Our motivation to study the setting of rested and
Markov arms in the context of odd arm identification comes
from the fact that the lower bound in [2], although quantifying
the asymptotic growth rate of regret, does not reflect the
quickness of learning the underlying parameters of the arms.
That is, the results in [2] do not shed light on the minimum
number of arm selections that are needed, on the average,
in order to learn the parameters of the arms up to a desired
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level of accuracy. In this paper, we answer this question when
one of the Markov arms is anomalous and the asymptotics
is one of vanishing probability of error. In doing so, we treat
the state of any selected arm as merely a Markov observation
from the arm and not as a reward, since our objective is
one of optimal stopping and not of regret minimisation.
We note here that policies which are optimal in the context
of the problem studied here may not necessarily be optimal
in the context of regret minimisation, and vice-versa (we
refer the reader to Bubeck et al. [3] for a discussion on
this). Finally, the unknown parameters of our problem are the
transition laws of the odd arm and the non-odd arm Markov
processes, and the index of the odd arm, thus making our
parameter set a continuum, unlike the finite parameter set
considered in [2].

B. Prior Works on Odd Arm Identification

The problem of odd arm identification is not new, and has
been studied in the recent works of Vaidhiyan and Sundaresan
[4] for the case of independent and identically distributed
(iid), indeed Poisson, observations from each arm, and of
Prabhu et al. [5] for the case of iid observations belonging
to a generic exponential family. The works [4] and [5] can
be embedded within the classical works of Chernoff [6] and
Albert [7], and provide a general framework for the analysis
of lower bounds on expected number of samples required for
identifying the index of the odd arm. In addition, they also
provide explicit policies that achieve these lower bounds in
the asymptotic regime as error probability vanishes. We refer
the reader to also [8]–[15] for other related works on iid
observations. While the aforementioned works deal with iid
arms, the novelty in this paper is that we consider Markov
arms. To the best of our knowledge, we believe that this work
is the first to consider Markov arms in the context of odd arm
identification.

C. Our Motivation to Study the Rested
Odd Markov Arm Problem

Vaidhiyan et al. [16] modeled visual search for locating
an oddball image in a sea of distracter images, as quickly as
possible, as an odd arm identification problem with Poisson
observations. The Poisson observations stemmed from the
Poisson point process model for the neuron firings when the
learner focuses on a particular image, the analogue of pulling
an arm. They showed that dissimilarity in neural responses
to the oddball and the distracter images predicted the time
taken by human subjects in detecting the location of the
oddball image. The analysis was extended to the case when
the parameters of the process were unknown, but had to be
learnt during search, in Vaidhiyan and Sundaresan [4]. The
oddball and distracter images in the experiments analysed
in Vaidhiyan and Sundaresan [4], Vaidhiyan et al. [16]
and in Sripati and Olson [17] were static images. Similar
experiments, but with dynamic drifting-dots images, as in
Krueger et al. [18], were conducted by Vaidhiyan et al.. to
see how evidence is accumulated in slow perceptual decision
making. In these experiments, the dots executed Brownian

motions with a fixed drift at each location. Moreover, the drifts
were identical in the distracter locations and were different
from the drift in the oddball location. Subjects had to identify
the oddball location as quickly as possible. A proper analysis
of this visual search, along the lines of [16] and [4], requires
an understanding of the so-called restless odd Markov arm
problem where the unobserved arms continue to undergo
state evolution. Indeed, in the aforementioned drifting-dots
experiment, the state (positions of the dots) will have changed
when the subject returns to observe a particular location after
a decision to look at another location.

There are other applications that can be modeled as the
restless odd Markov arm problem, e.g., dynamic spectrum
access in cognitive radio networks [19], single transmis-
sion line outages in power grids [20] but with limited
observations, etc.

The restless setting presents many analytical difficulties.
As a key first step towards an understanding of the restless
setting, our goal in this paper is to provide an analysis of the
more tractable rested Markov arms setting. The rested case has
its own interesting features. For example, as we shall see later
in the paper, the asymptotically optimal arm selection strategy
does not explicitly depend on the last observed states of the
arms. This, at first glance, is surprising.

Finally, a recent and independent work of Moulos [21]
studies a closely related problem of best arm identification
in rested Markov multi-armed bandits, where the goal is
to identify the arm with the largest stationary mean. The
results presented in [21] are in terms of an asymptotic and a
non-asymptotic lower bound, where the asymptotics is as the
probability of error vanishes, and a policy for best arm iden-
tification whose asymptotic upper bound is four times larger
than the asymptotic lower bound. In this paper, we present
the first known asymptotic lower bound for the problem of
odd arm identification, and an asymptotically optimal policy
that meets the lower bound. This is in contrast with the gap
between the upper bound and the lower bound in [21] for
the best arm identification. We anticipate that a policy similar
to ours should close the gap between the upper and lower
bounds in [21].

D. Contributions

Below, we highlight the key contributions of our work.
Further, we mention the similarities and differences of our
work with the aforementioned ones, and also bring out the
challenges that we need to overcome in the analysis for the
Markov setting.

1) In Section III, we derive an asymptotic lower bound
on the expected number of arm selections required
by any policy that the learner may use to identify the
index of the odd arm. Here, the asymptotics is as the
error probability vanishes. Similar to the lower bounds
appearing in [2]- [5], our lower bound has a problem-
instance (or arms configuration) dependent constant
that quantifies the effort required by any policy to
identify the true index of the odd arm by guarding itself
against identifying the nearest, incorrect alternative.
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This constant is a function of the transition probability
matrices of the odd arm and the non-odd arms.

2) We characterise the growth rate of the expected number
of arm selections required by any policy as a function of
the maximum acceptable error probability, and show that
in the regime of vanishingly small error probabilities,
this growth rate is logarithmic in the inverse of the
error probability. The analysis of the lower bounds in
[4] and [5] uses the familiar data processing inequality
presented in the work of Kaufmann et al. [9] that is
based on Wald’s identity [22] for iid processes. However,
the Markov setting in our problem does not permit the
use of Wald’s identity. Therefore, we derive results for
our Markov setting generalising those appearing in [9],
and subsequently use these generalisations to arrive at
the lower bound. See Section III for the details.

3) In the analysis of the lower bound, we bring out the
key idea that any two successive selections of an arm
result in the learner observing a transition from the state
corresponding to the arm’s first selection to the state
corresponding to the arm’s second selection. As a con-
sequence, for each state in the state space, the empirical
proportion of times an arm occupies the state prior to
a transition is equal, in the long run, to the empirical
proportion of times the arm occupies the state after a
transition. We then replace these common proportions
by the probability of the arm occupying this state
under its stationary distribution. Such a replacement by
stationary probabilities is possible mainly due to the
rested nature of the arms, and may not be possible in
more general settings such as when the arms are restless.

4) In Section IV, we propose a sequential arm selection
scheme that takes as inputs two parameters, one of which
may be chosen appropriately to meet the acceptable error
probability, while the other may be tuned to ensure that
the performance of our scheme comes arbitrarily close to
the lower bound, thus making our scheme near-optimal.
We now contrast the near-optimality of our scheme
with the near-optimality of the scheme proposed by
Vaidhiyan and Sundaresan [4], and highlight a key
simplification that our scheme entails. The scheme of
Vaidhiyan et al. is built around the important fact that
each arm is sampled at a non-trivial, strictly positive and
optimal rate that is bounded away from zero, as given
by the lower bound, thereby allowing for exploration of
the arms in an optimal manner. This stemmed from their
specific Poisson observations. However, the lower bound
presented in Section III may not have this property
in the context of Markov observations. Therefore,
recognising the requirement of sampling the arms at a
non-trivial rate for good performance of our scheme,
in this paper, we use the idea of “forced exploration”
proposed by Albert [7]. In particular, we propose a
simplified way of sampling the arms by considering a
mixture of uniform sampling and the optimal sampling
given by the lower bound in Section III. We do this
by introducing an appropriately tuneable parameter that
controls the probability of switching between uniform

sampling and optimal sampling, the latter being given
by the lower bound. While this ensures that our policy
samples each arm with a strictly positive probability
at each step, it also gives us the flexibility to select an
appropriate value for this parameter so that the upper
bound on the performance of our scheme may be made
arbitrarily close to our lower bound. We refer the reader
to Section IV for the details.

E. Organisation

The rest of the paper is organised as follows. In Section II,
we set up some of the basic notations that will be used
throughout the paper. In Section III, we present a lower
bound on the performance of any policy. In Section IV,
we present a sequential arm selection policy and demonstrate
its near optimality. We present the main result of this paper
in Section V, combining the results of Sections III and IV.
In Section VI, we provide some simulation to support the
theoretical development, and provide concluding remarks in
Section VIII. We present the proofs of the main results in
Section VII.

II. NOTATIONS AND PRELIMINARIES

In this section, we set up the notations that will be used
throughout the rest of this paper. Let K ≥ 3 denote the number
of arms, and let A = {1, 2, . . . ,K} denote the set of arms.
We associate with each arm an irreducible, aperiodic, time
homogeneous discrete-time Markov process on a finite state
space S, where the Markov process of each arm is independent
of the Markov processes of the other arms. We denote by
|S| the cardinality of S. Without loss of generality, we take
S = {1, 2, . . . , |S|}. Hereinafter, we use the phrase ‘Markov
process of arm a’ to refer to the Markov process associated
with arm a ∈ A.

At each discrete time instant, one out of the K arms is
selected and its state is observed. We let An denote the arm
selected at time n, and let X̄n denote the state of arm An,
where n ∈ {0, 1, 2, . . .}. We treat A0 as the zeroth arm
selection and X̄0 as the zeroth observation. Selection of an
arm at time n is based on the history (X̄n−1, An−1) of past
observations and arms selected; here, X̄k (resp. Ak) is a short-
hand notation for the sequence X̄0, . . . , X̄k (resp.A0, . . . , Ak).
We shall refer to such a sequence of arm selections and
observations as a policy, which we generically denote by π.
For each a ∈ A, we denote the Markov process of arm a by the
collection (Xa

k )k≥0 of random variables. Further, we denote
by Na(n) the number of times arm a is selected by a policy
up to (and including) time n, i.e.,

Na(n) =
n�
t=0

1{At=a}. (1)

Then, for each n ≥ 0, we have the observation

X̄n = XAn

NAn(n)−1. (2)

We consider a scenario in which the Markov process of one
of the arms (hereinafter referred to as the odd arm) follows a
probability transition matrix P1 = (P1(j|i))i,j∈S , while those
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of rest of the arms follow a probability transition matrix P2 =
(P2(j|i))i,j∈S , where P2 �= P1; here, P (j|i) denotes the entry
in the ith row and jth column of the matrix P . Further, we let
μ1 and μ2 denote the unique stationary distributions of P1 and
P2 respectively. We denote by ν the common distribution for
the initial state of each Markov process. In other words, for
arm a ∈ A, we have Xa

0 ∼ ν, and this is the same distribution
for all arms. We operate in a setting where the probability
transition matrices and their associated stationary distributions
are unknown to the learner.

For each a ∈ A and state i ∈ S, we denote by Na(n, i) the
number of times up to (and including) time n the Markov
process of arm a is observed to occupy state i prior to a
transition, i.e.,

Na(n, i) =
Na(n)−1�
m=1

1{Xa
m−1=i}. (3)

Similarly, for each i, j ∈ S, we denote by Na(n, i, j) the
number of times up to (and including) time n the Markov
process of arm a is observed to make a transition from state
i to state j, i.e.,

Na(n, i, j) =
Na(n)−1�
m=1

1{Xa
m−1=i, X

a
m=j}. (4)

Clearly, then, the following hold:
1) For each a ∈ A and i ∈ S,�

j∈S
Na(n, i, j) = Na(n, i). (5a)

2) For each a ∈ A,�
i∈S

Na(n, i) = Na(n) − 1. (5b)

3) For each n, �
a∈A

Na(n) = n+ 1. (5c)

We note here that the upper index of the summation in (3) is
Na(n) − 1, and not Na(n), since the last observed transition
on arm a would be from the state Xa

Na(n)−2 to the state
Xa
Na(n)−1. This is further reflected by the summation in (5b).
Fix probability transition matrices P1 and P2, where P2 �=

P1, and let Hh denote the hypothesis that h is the index of
the odd arm. The probability transition matrix of arm h is P1;
all other arms have P2. We refer to the triplet C = (h, P1, P2)
as a configuration. Our problem is one of detecting the true
hypothesis among all possible configurations given by

C = {C = (h, P1, P2) : h ∈ A, P1 and P2 are

transition probability matrices on S, P2 �= P1},

when P1 and P2 are unknown. Let C = (h, P1, P2) denote
the underlying configuration of the arms. For each a ∈ A,
we denote by (Zah(n))n≥0 the log-likelihood process of arm
a under configuration C, with h being the true index of the

odd arm. Using the notations introduced above, we may then
express Zah(n) as

Zah(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, Na(n) = 0,
log ν(Xa

0 ), Na(n) = 1,
log ν(Xa

0 )

+
Na(n)−1�
m=1

logP ah (Xa
m|Xa

m−1), Na(n) ≥ 2,

(6)

where P ah (j|i) denotes the conditional probability under
hypothesis Hh of observing state j on arm a given that state i
was observed on arm a at the previous sampling instant, and
is given by

P ah (j|i) =

�
P1(j|i), a = h,

P2(j|i), a �= h.
(7)

Then, since the Markov processes of all the arms are inde-
pendent of one another, for a given sequence (An, X̄n) of
arm selections and observations under a policy π and a con-
figuration C = (h, P1, P2), denoting by (Zh(n))n≥0 the log-
likelihood process under hypothesis Hh of all arm selections
and observations up to time n, we have

Zh(n) =
K�
a=1

Zah(n), (8)

where Zah(n) is as given in (6). On similar lines, for any
two configurations C = (h, P1, P2) and C� = (h�, P �

1, P
�
2),

where P �
2 �= P �

1 and h� �= h, for each a ∈ A, we define the
log-likelihood process (Zahh�(n))n≥0 of configuration C with
respect to configuration C� for arm a as

Zahh�(n) = Zah(n) − Zah�(n)

=

⎧⎪⎨
⎪⎩

0, Na(n) = 0, 1,
Na(n)−1�
m=1

log
P ah (Xa

m|Xa
m−1)

P ah�(Xa
m|Xa

m−1)
, Na(n) ≥ 2.

(9)

We note that in the above equation, for P ah , we should use
(7), and for P ah� , we shall use, for all a ∈ A and i, j ∈ S,

P ah�(j|i) =

�
P �

1(j|i), a = h�,
P �

2(j|i), a �= h�.
(10)

Finally, we denote by (Zhh�(n))n≥0 the log-likelihood process
of configuration C with respect to C� as

Zhh�(n) =
K�
a=1

Zahh�(n), (11)

which includes all arm selections and observations.
The observation process (X̄n)n≥0 and the arm selection

process (An)n≥0 are assumed to be defined on a com-
mon probability space (Ω,F , P ). We define the filtration
(Fn)n≥0 as

Fn = σ(An, X̄n), n ≥ 0. (12)

We use the convention that the zeroth arm selection A0 is
measurable with respect to the sigma algebra {φ,Ω}, whereas
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for all n ≥ 1, the nth arm selection An is Fn−1-measurable.
For any stopping time τ with respect to the filtration in (12),
we denote by Fτ the σ-algebra

Fτ = {E ∈ F : E ∩ {τ = n} ∈ Fn for all n ≥ 0}. (13)

Our focus will be on policies π that identify the index of the
odd arm by sequentially sampling the arms, one at every time
instant, and learning from the arms selected and observations
obtained in the past. Specifically, at any given time, a policy
π prescribes one of the following alternatives:

1) Select an arm, based on the history of past observations
and arms selected, according to a fixed distribution λ
independent of the underlying configuration of the arms,
i.e., for each n ≥ 1,

P (An = a|An−1, X̄n−1) = λ(a). (14)

2) Stop selecting arms, and declare the index I(π) as the
odd arm.

Given a maximum acceptable error probability 	 > 0,
we denote by Π(	) the family of all policies whose probability
of error at stoppage for any underlying configuration of the
arms is at most 	. That is,

Π(	) =
	
π : P π(I(π) �= h|C) ≤ 	 ∀ C = (h, P1, P2),

where h ∈ A and P2 �= P1



. (15)

For a policy π, we denote its stopping time by τ(π). Further,
we write Eπ[·|C] and P π(·|C) to denote expectations and
probabilities given that the underlying configuration of the
arms is C. In this paper, we characterise the behaviour of
Eπ[τ(π)|C] for any policy π ∈ Π(	), as 	 approaches zero.
We re-emphasise that π cannot depend on the knowledge of
P1 or P2, but could attempt to learn these along the way.

Remark 1: Fix an odd arm index h, and consider the simpler
case when P1, P2 are known, P2 �= P1. Let Π(	|P1, P2) denote
the set of all policies whose probability of error at stoppage
is within 	. From the definition of Π(	) in (15), it follows that

Π(	) =
�

P1,P2:P2 �=P1

Π(	|P1, P2). (16)

That is, policies in Π(	) work for any P1, P2, with P2 �= P1.
It is not a priori clear whether the set Π(	) is nonempty. That
it is nonempty for the case of iid observations was established
in [6]. In this paper, we show that Π(	) is nonempty even for
the setting of rested and Markov arms.

Remark 2: The distribution λ appearing in (14) may,
in general, be a function of time index n.

In the next section, we provide a configuration dependent
lower bound on Eπ[τ(π)|C] for any policy π ∈ Π(	).
In Section IV, we propose a sequential arm selection policy
that achieves the lower bound asymptotically as the probability
of error vanishes. We present the proofs in Section VII.

III. LOWER BOUND

For any two transition probability matrices P and Q of
dimension |S| × |S|, and a probability distribution μ on S,

define D(P�Q|μ) as

D(P�Q|μ) :=
�
i∈S

μ(i)
�
j∈S

P (j|i) log
P (j|i)
Q(j|i) , (17)

with the convention 0 log 0 = 0 log 0
0 = 0. The quantity

in (17) is known as conditional informational divergence,
and the notation used above for representing the same is
standard in the literature. See, for instance, Csiszár and
Körner [23, (2.4)].

The following proposition gives an asymptotic lower bound
on the expected stopping time of any policy π ∈ Π(	), as 	 ↓ 0.

Proposition 1: Let C = (h, P1, P2) denote the underlying
configuration of the arms. Then,

lim
�↓0

inf
π∈Π(�)

Eπ[τ(π)|C]
log(1/	)

≥ 1
D∗(h, P1, P2)

, (18)

where D∗(h, P1, P2) is a configuration-dependent constant
that is a function only of P1 and P2, and is given by

D∗(h, P1, P2) =

max
0≤λ1≤1

	
λ1D(P1�P |μ1) + (1−λ1)

(K − 2)
(K − 1)

D(P2�P |μ2)


.

(19)

In (19), P is a probability transition matrix whose entry in the
ith row and jth column is given by

P (j|i) =
λ1μ1(i)P1(j|i) + (1 − λ1)

(K−2)
(K−1)μ2(i)P2(j|i)

λ1μ1(i) + (1 − λ1)
(K−2)
(K−1)μ2(i)

.

(20)

�
The proof of Proposition 1 broadly follows the outline of the

proof of the lower bound in [9], with necessary modifications
for the setting of Markov rewards. We now outline some of
the key steps in the proof. For an arbitrary choice of error
probability 	 > 0, we first show that for any policy π ∈ Π(	),
the expected value of the total sum of log-likelihoods up to
the stopping time τ(π) can be lower bounded by the binary
relative entropy function

d(	, 1 − 	) := 	 log
	

1 − 	
+ (1 − 	) log

1 − 	

	
. (21)

Next, we express the expected sum of log-likelihoods up
to the stopping time τ(π) in terms of the expected value
of the stopping time. It is in obtaining such an expression
that works such as [9], [4] and [5] that are based on iid
observations use Wald’s identity, which greatly simplifies
their analysis of the lower bound. Our setting of Markov
rewards does not permit us to use Wald’s identity. Therefore,
we first obtain a generalisation of [9, Lemma 18], a change
of measure based argument, to the setting of Markov rewards,
and subsequently use this generalisation to obtain the desired
relation.

We then show that for any arm a ∈ A, the long run
frequency of observing the arm occupying state i ∈ S prior
to a transition is equal to that of arm a occupying state i
after a transition, and note that this common frequency is the
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stationary probability of observing the arm in state i. This
explains the appearance of the unique stationary distributions
μ1 and μ2 of the odd arm and the non-odd arms respectively
in the expression (19). We wish to emphasise that this step in
the proof is possible due to the rested nature of the arms.
The lower bound in the more general setting of “restless”
arms in which the unobserved arms continue to undergo state
transitions is still open.

Finally, combining the above steps and using d(	, 1 − 	)/
log 1

� → 1 as 	 ↓ 0, we arrive at the lower bound in (18). The
details may be found in Section VII-A.

Remark 3: The right-hand side of (19) is a function only
of the probability transition matrices P1 and P2, and does not
depend on the index h of the odd arm. This is due to symmetry
in the structure of arms, and we deduce that D∗(h, P1, P2)
does not depend on h. However, we include the index h of
the odd arm for the sake of consistency with the notation
C = (h, P1, P2) used to denote arm configurations. Further,
it reminds us that D∗ may depend on all the parameters
of the underlying configuration in more general composite
hypothesis testing settings.

Going further, we let λ∗ ∈ [0, 1] denote the value of
λ1 that achieves the maximum in (19). We then define
λopt(h, P1, P2) = (λopt(h, P1, P2)(a))a∈A as the probability
distribution on A given by

λopt(h, P1, P2)(a) :=

�
λ∗, a = h,
1−λ∗
K−1 , a �= h.

(22)

In the next section, we construct a policy that, at each
time step, chooses arms with probabilities that match with
those in (22) in the long run, in an attempt to reach the
lower bound. While it is not a priori clear that this yields
an asymptotically optimal policy, we show that this is indeed
the case.

IV. ACHIEVABILITY

In this section, we propose a scheme that asymptotically
achieves the lower bound of Section III, as the probability
of error vanishes. Our policy is a modification of the policy
proposed by Prabhu et al. [5] for the case of K iid processes.
We denote our policy by π�(L, δ), where L ≥ 1 and δ ∈ (0, 1)
are the parameters of the policy.

Our policy is based on a modification of the classical
generalised likelihood ratio (GLR) test in which we replace
the maximum that appears in the numerator of the classical
GLR statistic by an average computed with respect to a
carefully constructed artificial prior over the space P(S) of
all probability distributions on the state space S. We describe
this modified GLR statistic in the next section.

A. Modified GLR Statistic

We revisit (8), and suppose that each arm is selected once in
the first K time slots. Note that this does not affect the asymp-
totic performance. Then, under configuration C = (h, P1, P2),
the log-likelihood process Zh(n) may be expressed for any

n ≥ K as

Zh(n) =
K�
a=1

log ν(Xa
0 ) +

�
i,j∈S

Nh(n, i, j) logP1(j|i)

+
�
i,j∈S

⎛
⎝�
a�=h

Na(n, i, j)

⎞
⎠ logP2(j|i), (23)

from which the likelihood process under C, denoted by
f(An, X̄n|C), may be written as

f(An, X̄n|C) =
K�
a=1

ν(Xa
0 )

�
i,j∈S

(P1(j|i))Nh(n,i,j) ·
�
i,j∈S

(P2(j|i))
�

a�=h

Na(n,i,j)

.

(24)

We now introduce an artificial prior on the space of all
transition probability matrices for the state space S. Our
choice of the prior is motivated by the requirement of having
an appropriate conjugate prior for the likelihood in (24).
We therefore construct the Dirichlet distribution-based prior,
noting that it meets our requirement. Let Dir(1, . . . , 1) denote
the Dirichlet distribution with |S| parameters α1, . . . , α|S|,
where αj = 1 for all j ∈ S. Then, denoting by P(S)
the space of all transition probability matrices of size |S| ×
|S|, we specify a prior on P(S) using the above Dirichlet
distribution as follows: for any P = (P (j|i))i,j∈S ∈ P(S),
P (·|i) is chosen according to the above Dirichlet distribution,
independently of P (·|j) for all j �= i. Further, for any two
matrices P,Q ∈ P(S), the rows of P are independent of
those of Q. Then, it follows that under this prior, the joint
density at (P1, P2) for P1, P2 ∈ P(S) is

D(P1, P2) :=
�
i∈S

�
j∈S

(P1(j|i))αj−1

B(1 . . . , 1)

�
i∈S

�
j∈S

(P2(j|i))αj−1

B(1 . . . , 1)

=
1

B(1, . . . , 1)2|S| , (25)

where B(1, . . . , 1) denotes the normalisation factor for the
distribution Dir(1, . . . , 1), and the second line above follows
by substituting αj = 1, j ∈ S.

By a minor abuse of notation, we denote by f(An, X̄n|Hh)
the average of the likelihood in (24) computed with respect
to the prior in (25). From the property that the Dirichlet dis-
tribution is the appropriate conjugate prior for the observation
process,

f(An, X̄n|Hh) =
K�
a=1

ν(Xa
0 ) ·

�
i∈S

B((Nh(n, i, j) + 1)j∈S)
B(1, . . . , 1)

·
�
i∈S

B

⎛
⎝� �

a�=h
Na(n, i, j) + 1

�
j∈S

⎞
⎠

B(1, . . . , 1)
, (26)

where in the above expression, B((Nh(n, i, j) + 1)j∈S)
denotes the normalisation factor for a Dirichlet distribution
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with parameters (Nh(n, i, j) + 1)j∈S . It can be shown that
f(An, X̄n|Hh) is also the expected value of the likelihood in
(24) computed with respect to the prior in (25), i.e.,

f(An, X̄n|Hh) =
K�
a=1

ν(Xa
0 )

�
i∈S

E

⎡
⎣�
j∈S

X
Nh(n,i,j)
ij · Y

�

a�=h

Na(n,i,j)

ij

⎤
⎦ (27)

where in the above set of equations, the random vectors
(Xij)i,j∈S and (Yij)i,j∈S are independent with independent
components, and jointly distributed according to (25), and the
expectation is also with respect to this joint density.

Let P̂nh,1 and P̂nh,2 denote the maximum likelihood estimates
of probability transition matrices P1 and P2 respectively, under
hypothesisHh. Taking partial derivatives of the right-hand side
(24) with respect to P1(j|i) and P2(j|i) for each i, j ∈ S, and
setting each of these derivatives to zero, we get

P̂nh,1(j|i) =
Nh(n, i, j)
Nh(n, i)

, P̂nh,2(j|i) =

�
a�=h

Na(n, i, j)�
a�=h

Na(n, i)
. (28)

Plugging the estimates in (28) back into (24), we get the
maximum likelihood of all observations and actions under
hypothesis Hh:

f̂(An, X̄n|Hh) := max
C=(h,·,·)

f(An, X̄n|C)

=
K�
a=1

ν(Xa
0 )

�
i,j∈S

	�
Nh(n, i, j)
Nh(n, i)

�Nh(n,i,j)

⎛
⎜⎝

�
a�=h

Na(n, i, j)�
a�=h

Na(n, i)

⎞
⎟⎠
�

a�=h

Na(n,i,j) 

. (29)

We now define our modified GLR statistic. Let Hh and
Hh� be any two hypotheses, with h� �= h. Let π be a policy
whose sequence of arm selections and observations up to
(and including) time n is (An, X̄n). Then, the modified GLR
statistic of Hh with respect to Hh� up to time n is denoted by
Mhh�(n), and is defined as

Mhh�(n) = log
f(An, X̄n|Hh)
f̂(An, X̄n|Hh�)

= T1 + T2(n) + T3(n) + T4(n) + T5(n), (30)

where the terms appearing in (30) are as follows.
1) The term T1 is given by

T1 = 2|S| log
�

1
B(1, . . . , 1)

�
. (31)

2) The term T2(n) is given by

T2(n) =
�
i∈S

logB((Nh(n, i, j) + 1)j∈S). (32)

3) The term T3(n) is given by

T3(n) =
�
i∈S

logB

⎛
⎝

⎛
⎝�
a�=h

Na(n, i, j) + 1

⎞
⎠
j∈S

⎞
⎠ .

(33)

4) The term T4(n) is given by

T4(n) = −
�
i,j∈S

Nh�(n, i, j) log
Nh�(n, i, j)
Nh�(n, i)

. (34)

5) The term T5(n) is given by

T5(n) = −
�
i,j∈S

�
a�=h�

Na(n, i, j) log

�
a�=h�

Na(n, i, j)�
a�=h�

Na(n, i)
.

(35)

Note that ν, the distribution of the initial state of any arm,
is irrelevant since it appears in both (26) and (29), and thus
cancels out in writing (30). Let us emphasise that our modified
GLR statistic is one in which the maximum in the numerator
of the usual GLR statistic is replaced by an average in (26)
computed with respect to the artificial prior over the space
P(S) introduced in (25).

Remark 4: We wish to mention here that the expression on
the right-hand side of (24) for f(An, X̄n|C) represents the
likelihood of all observations up to (and including) time n
“conditioned on” the actions An up to (and including) time n.
In other words, a more precise expression for f(An, X̄n|C)
is as follows:

f(An, X̄n|C) =
� n�
t=0

Ph(At|At−1, X̄t−1)
�
·
K�
a=1

ν(Xa
0 )

·
�
i,j∈S

(P1(j|i))Nh(n,i,j) ·
�
i,j∈S

(P2(j|i))
�

a�=h

Na(n,i,j)

, (36)

where Ph(At|At−1, X̄t−1) represents the probability of select-
ing arm At at time t when the true hypothesis is Hh (i.e.,
when h is the index of the odd arm), with the convention that
at time t = 0, this term represents Ph(A0). Note that for any
policy (see description in the paragraph containing (14) and
(15)), this must be independent of the true hypothesis Hh,
and is thus the same for any two hypotheses Hh and Hh� ,
where h� �= h.

As a consequence of this, the first term within square
brackets on the right-hand side of (36) appears in both the
numerator and the denominator terms of the modified GLR
statistic of (30), and thus cancels out. Hence, we omit writing
this term in the expressions of (24), (26) and (29).

B. Policy π�(L, δ)

With the above ingredients in place, we now describe our
policy based on the modified GLR statistic of (30). Let

Mh(n) := min
h� �=h

Mhh�(n) (37)

denote the modified GLR of hypothesis Hh, h ∈ A, with
respect to its nearest alternative.

Policy π�(L, δ):
Fix parameters L ≥ 1 and δ ∈ (0, 1). Let (Bn)n≥1 be
a sequence of iid Bernoulli(δ) random variables such that
Bn+1 is independent of the sequence (An, X̄n) for all n ∈
{0, 1, 2, . . .}. We choose each of the K arms once in the first
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K time steps n = 0, . . . ,K − 1. For each n ≥ K − 1, at time
n, we follow the procedure described below:

1) Let h∗(n) = arg max
h∈A

Mh(n) be the index with the

largest modified GLR after n time steps. We resolve
ties uniformly at random.

2) If Mh∗(n)(n) < log((K − 1)L), then we choose the
next arm An+1 based on the sequence (An, X̄n) of
observations and arms selected until time n as per the
following rule:

a) If Bn+1 = 1, then we choose an arm uniformly at
random.

b) If Bn+1 = 0, then we choose An+1 according to
the distribution λopt(h∗(n), P̂nh∗(n),1, P̂

n
h∗(n),2).

3) If Mh∗(n)(n) ≥ log((K − 1)L), then we stop selecting
arms and declare h∗(n) as the true index of the odd arm.

In the above policy, h∗(n) provides the best estimate of
the odd arm at time n. If the modified GLR statistic of arm
h∗(n) is sufficiently larger than that of its nearest incorrect
alternative (≥ log((K − 1)L)), then this indicates that the
policy is confident that h∗(n) is the odd arm. At this stage,
the policy stops taking further samples and declares h∗(n) as
the index of the odd arm. If not, the policy continues to obtain
further samples.

We refer to the rule in item (2) above as forced exploration
with parameter δ. A similar rule also appears in [7]. Based on
the description in items (2(a)) and (2(b)) above, it follows that
for each a ∈ A,

P (An+1 = a|An, X̄n)

=
δ

K
+ (1 − δ)λopt(h∗(n), P̂nh∗(n),1, P̂

n
h∗(n),2)(a)

≥ δ

K
> 0. (38)

As we will see, the strictly positive lower bound in (38)
will ensure that the policy selects each arm at a non-trivial
frequency so as to allow for sufficient exploration of all arms.
Also, we will show that the parameters L and δ may be
selected so that our policy achieves a desired target error
probability, while also ensuring that the normalised expected
stopping time of the policy is arbitrarily close to the lower
bound in (18).

Remark 5: Evaluating the distribution λopt(h∗(n),
P̂nh∗(n),1, P̂

n
h∗(n),2) in step (2(a)) of the policy involves

solving the maximisation problem in (19) with the probability
transition matrices P1 and P2 replaced by their corresponding
ML estimates P̂nh∗(n),1 and P̂nh∗(n),2 respectively at each time
n ≥ K − 1 until stoppage. In the event when any of the
rows of the estimated matrices has all its entries as zero,
we substitute the corresponding zero row by a row with a
single ‘1’ in one of the |S| positions picked uniformly at
random. Since the ML estimates converge to their respective
true values as more observations are accumulated, we note
that such a substitution operation (or any modification thereof
that replaces the all-zero rows by an arbitrary probability
vector) needs to be carried out only for finitely many time
slots, and does not affect the asymptotic performance of
the policy.

C. Performance of π�(L, δ)
In this subsection, we show that the expected number of

samples required by policy π�(L, δ) to identify the index of
the odd arm can be made arbitrarily close to that in (18) in
the regime of vanishing error probabilities. We show that this
can be achieved by choosing the parameters L and δ carefully.
We organise this subsection as follows:

1) First, we show that when the true index of the odd arm
is h, the modified GLR Mh(n) of hypothesis Hh with
respect to its nearest alternative has a strictly positive
drift under our policy. We then use this to show that our
policy stops in finite time with probability 1.

2) For any fixed target error probability 	 > 0, we show that
for an appropriate choice of the threshold parameter L,
our policy belongs to the family Π(	), i.e., its probability
of error at stoppage is within 	.

3) We obtain an upper bound on the expected stopping time
of our policy, and demonstrate that this upper bound may
be made arbitrarily close to the lower bound in (18) by
choosing an appropriate value of δ ∈ (0, 1).

1) Strictly Positive Drift of the Modified GLR Statistic: The
main result on the strictly positive drift of the modified GLR
statistic is as described in the following proposition.

Proposition 2: Fix L ≥ 1, δ ∈ (0, 1), and consider a version
of the policy π�(L, δ) that never stops. Let C = (h, P1, P2) be
the underlying configuration of the arms. Then, for all h� �= h,
under the non-stopping version of our policy, we have

lim inf
n→∞

Mhh�(n)
n

> 0. (39)

�
The proof is based on the key idea that forced exploration

with parameter δ ∈ (0, 1) (see items (2(a)) and (2(b)) of
policy π�(L, δ)) results in sampling each arm with a strictly
positive rate that grows linearly. It is in showing an analogue
of Proposition 2 for iid Poisson observations that the authors
of [4] use their result of [4, Proposition 3] on guaranteed
exploration at a strictly positive rate. Since it is not clear if
the analogue of [4, Proposition 3] holds in general, we use
the idea in [7] of forced exploration. We present the details in
Section VII-B. We refer the reader to [8] on how to make do
with forced exploration at a sublinear rate.

As an immediate consequence of the above proposition,
we have the following: suppose C = (h, P1, P2) is the
underlying configuration of the arms. Then, a.s.,

lim inf
n→∞ Mh(n) = lim inf

n→∞ min
h� �=h

Mhh�(n) > 0. (40)

The result in (40) has the following implication. For any h� �=
h, we have the following set of inequalities holding a.s.:

lim sup
n→∞

Mh�(n) = lim sup
n→∞

min
a�=h�

Mh�a(n)

≤ lim sup
n→∞

Mh�h(n)

= lim sup
n→∞

−Mhh�(n)

= − lim inf
n→∞ Mhh�(n)

≤ − lim inf
n→∞ Mh(n)

< 0. (41)
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From the above set of inequalities, it follows that under policy
π�(L, δ),

h∗(n) = arg max
h∈A

Mh(n) = h a.s. (42)

for all sufficiently large values of n.
We note here that when C = (h, P1, P2) is the underlying

configuration of the arms, (42) seems to suggest that policy
π�(L, δ) a.s. outputs h as the true index of the odd arm at the
time of stopping, thereby implying that it commits no error
a.s. However, we wish to remark that this is not true, and
recognise the possibility of the event that h∗(n) = h� �= h
and Mh∗(n)(n) ≥ log((K − 1)L) for some n, in which
case the policy stops at time n and outputs h� as the index
of the odd arm, thereby making error. While we shall soon
demonstrate that the probability of occurrence of such an error
event under our policy is small, we leverage the implication
of (42) to define a version of our policy that, under the
underlying configurationC = (h, P1, P2), waits until the event
Mh(n) ≥ log((K − 1)L) occurs, at which point it stops and
declares h as the index of the odd arm. We denote this version
by π�h(L, δ). Thus, π�h(L, δ) stops only at declaration h.

It then follows that the stopping times of policies π�(L, δ)
and π�h(L, δ) are a.s. related as τ(π�h(L, δ)) ≥ τ(π�(L, δ)),
as a consequence of which we have the following set of
inequalities holding a.s.:

τ(π�(L, δ)) ≤ τ(π�h(L, δ))
= inf{n ≥ 1 : Mh(n) ≥ log((K − 1)L)}
≤ inf

	
n ≥ 1 : Mhh�(n�) ≥ log((K − 1)L)

for all n� ≥ n and for all h� �= h



<∞, (43)

where the last line follows as a consequence of Proposition 2.
This establishes that a.s. policy π�(L, δ) stops in finite time.

2) Probability of Error of Policy π�(L, δ): We now show
that for policy π�(L, δ), the threshold parameter L may be
chosen to achieve any desired target error probability. This is
formalised in the proposition below.

Proposition 3: Fix 	 > 0. Then, for L = 1/	, we have
π�(L, δ) ∈ Π(	) for all δ ∈ (0, 1). �

The proof uses Proposition 2 and the fact that policy
π�(L, δ) stops a.s. in finite time. Further, the average in the
numerator of the modified GLR statistic, in place of the
maximum in the classical GLR statistic, plays a role. For
details, see Section VII-C.

3) Upper Bound on the Expected Stopping Time of Policy
π�(L, δ): We conclude this section by presenting an upper
bound on the expected stopping time of the policy π�(L, δ).
We show that this upper bound may be made arbitrarily close
to the lower bound in (18) by tuning δ appropriately.

As a first step, we show that under the non-stopping version
of policy π�(L, δ), when C = (h, P1, P2) is the underlying
configuration of the arms, the modified GLR process has an
asymptotic drift that is close to D∗(h, P1, P2) that appears in
the lower bound (18).

Proposition 4: Let C = (h, P1, P2) denote the underlying
configuration. Fix L ≥ 1 and δ ∈ (0, 1). Then, under the non-
stopping version of policy π�(L, δ), for any h� �= h, we have

lim
n→∞

Mhh�(n)
n

= D∗
δ (h, P1, P2) a.s., (44)

where the quantity D∗
δ (h, P1, P2) is given by

D∗
δ (h, P1, P2) =

λ∗δ D(P1�Pδ|μ1) + (1 − λ∗δ)
(K − 2)
(K − 1)

D(P2�Pδ|μ2), (45)

with λ∗δ = δ
K + (1 − δ)λ∗ ∈ [0, 1], and for each i, j ∈ S,

Pδ(j|i) is as in (20) with λ1 replaced by λ∗δ . �
We note that the policy π∗(L, δ) works with only estimated

P̂nh∗(n),1 and P̂nh∗(n),2. To show (44), we must therefore ensure
that the estimates approach the true values and a property akin
to continuity holds, that is, taking actions based on P̂nh∗(n),1

and P̂nh∗(n),2, which are only approximately close to P1 and
P2, adds only o(1) to the driftD∗

δ (h, P1, P2). This is the notion
of certainty equivalence in control theory. The details of the
proof may be found in Section VII-D.

We now state the main result of this section.
Proposition 5: Let C = (h, P1, P2) denote the underlying

configuration of the arms. Fix parameters L ≥ 1 and δ ∈
(0, 1). Then, under policy π = π�(L, δ), we have

lim sup
L→∞

Eπ[τ(π)|C]
logL

≤ 1
D∗
δ (h, P1, P2)

. (46)

�
The proof uses Proposition 4 and involves showing that

(a) the stopping time τ(π) satisfies an asymptotic almost sure
upper bound that matches with the right-hand side of (46),
and (b) the family {τ(π�(L, δ))/ logL : L ≥ 1} is uniformly
integrable. The almost sure convergence together with uniform
integrability then yields the relation (46). The details may be
found in Section VII-E.

It is clear that D∗
δ (h, P1, P2) is a continuous function of δ,

with the property that

lim
δ↓0

D∗
δ (h, P1, P2) = D∗(h, P1, P2), (47)

where D∗(h, P1, P2) on the right-hand side of (47) is the
same the constant that appears in the lower bound of (18).
Thus, we note that δ may be tuned to make D∗

δ (h, P1, P2)
as close as desired to D∗(h, P1, P2), hence establishing the
near-optimality of the policy π�(L, δ).

V. MAIN RESULT

We now present the main result of this paper, combining the
lower and upper bounds stated in Section III and Section IV
respectively.

Theorem 1: Consider K ≥ 3 independent Markov
processes on a common finite state space that are irre-
ducible, aperiodic and time homogeneous. Suppose that
C = (h, P1, P2) is the underlying configuration of the arms,
where h denotes the index of the odd arm, and P2 �= P1. Let
(	n)n≥1 denote a sequence of error probability values with
the property that 	n → 0 as n → ∞. Then, for each n and
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Fig. 1. Plots of average stopping time of policy π�(L, δ), as function of
log L, for δ = 0.01, 0.1, 0.25.

δ ∈ (0, 1), the policy π�(Ln, δ) with Ln = 1/	n belongs to
the family Π(	n). Furthermore, we have

lim inf
n→∞ inf

π∈Π(�n)

E[τ(π)|C]
logLn

= lim
δ↓0

lim
n→∞

E[τ(π�(Ln, δ))|C]
logLn

=
1

D∗(h, P1, P2)
. (48)

�
Proof: From Proposition 1, it follows that the expected

stopping time of any policy π ∈ Π(	n) grows as
logLn

D∗(h,P1,P2)
for large values of n. Also, from Proposi-

tion 3, policy π�(Ln, δ) belongs to the family Π(	n) and,
from Proposition 5, achieves an asymptotic growth of at
most (logLn)/D∗

δ (h, P1, P2). Since lim
δ↓0

D∗
δ (h, P1, P2) =

D∗(h, P1, P2), we may approach the lower bound by choos-
ing an arbitrarily small value of δ. This establishes the
theorem. �

While those familiar with such stopping problems may
easily guess the form of D∗(h, P1, P2), the proof is not a
straighforward extension of the iid case. To re-emphasise the
challenges posed by the setting of Markov rewards, Wald’s
identity is not available for the converse and a generalisa-
tion is needed, while a forced exploration approach provides
achievability.

VI. SIMULATION RESULTS

Fix K = 8 and C = (h, P1, P2), with h = 1 and

P1 =
�
0.5 0.5
0.5 0.5

�
, P2 =

�
0.1 0.9
0.9 0.1

�
.

Fig. 1 depicts the average stopping time of policy π�(L, δ) as
a function of logL, averaged over 100 rounds of iterations,
for δ = 0.01, 0.1, 0.25. For the aforementioned values of P1

and P2, numerical evaluation yields D∗(h, P1, P2) 
 0.094,
thus resulting in a lower bound of 1/D∗(h, P1, P2) 
 10.635.
Since (18) is a statement about the slope of the growth rate
of average stopping time of policy π�(L, δ) as a function of
logL, the top 3 plots in the figure respect the lower bound in
(18), with the slopes in these plots only marginally higher than
that given by the lower bound. Theory predicts that as δ ↓ 0

and L→ ∞, the slopes will approach the lower bound. Also
included in the figure are the plots of (a) the lower bound
for the case when P1 and P2 are known, and (b) a policy
similar to that of π�(L, δ) that uses the knowledge of P1 and
P2 to identify the index of the odd arm. Such a policy clearly
takes lesser time than π�(L, δ) to identify the index of the
odd arm. The figure shows that the performance of this policy
also matches in slope to that given by its lower bound for large
values of L.

VII. PROOFS OF THE MAIN RESULTS

A. Proof of Proposition 1

We first present below 3 lemmas that will be used in the
proof of the proposition. The first of these, given below,
is an analogue of the change of measure argument of
Kaufmann et al. [9, Lemma 18] for the case of Markov obser-
vations from each arm.

Recall the definition of Fτ in (13):

Fτ = {E ∈ F : E ∩ {τ = n} ∈ Fn for all n ≥ 0},
where for each n, Fn is as defined in (12). Further, for
any h� �= h, define Zhh�(τ) := Zh(τ) − Zh�(τ), where
Zh(τ) =

�K
a=1 Z

a
h(τ).

Lemma 1: Fix 	 > 0 and probability transition matrices
P1 and P2, and let τ be the stopping time of a policy π ∈
Π(	). Then, for any event E ∈ Fτ and configuration triplets
C = (h, P1, P2) and C� = (h�, P �

1, P
�
2), with h� �= h, we have

P π(E|C�) = Eπ[1E exp(−Zhh�(τ))|C]. (49)

�
Proof: The proof follows the outline in [9], with crucial

modifications needed for the Markov problem at hand. We use
the shorthand notations Eh[·] and Eh� [·] to denote respec-
tively the quantities Eπ[·|C] and Eπ[·|C�]; similarly, Ph(·)
and Ph�(·) denote the respective probabilities. We begin by
showing that for all n ≥ 0, the following statement is true:
for any measurable function g : An+1 × Sn+1 → R, we have

Eh� [g(An, X̄n)] = Eh[g(An, X̄n) exp(−Zhh�(n))]. (50)

Assuming that the above statement is true, for any E ∈ Fτ ,
we have

Ph�(E) = Eh� [1E ]

(a)
=

∞�
n=0

Eh� [1E1{τ=n}]

(b)
=

∞�
n=0

Eh[1E1{τ=n} exp(−Zhh�(n))]

= Eh[1E exp(−Zhh�(τ))], (51)

hence proving the lemma. In the above set of equations, (a) is
due to monotone convergence theorem, and (b) follows from
the application of (50) to the function g(An, X̄n) = 1E ·
1{τ=n} by noting that E ∈ Fτ , and therefore E ∩ {τ = n} ∈
Fn for all n.

We now proceed to prove (50) by induction on n. From (11)
and (9), it follows that Zhh�(0) = 0. Then, for any measurable
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function g : An+1 × Sn+1 → R, the proof of (50) for n = 0
follows from the following set of equations.

Eh� [g(A0, X̄0)]

=
K�
a=1

�
i∈S

Ph�(A0 = a) · Ph�(X̄0 = i|A0 = a) · g(a, i)

=
K�
a=1

�
i∈S

Ph�(A0 = a) · Ph�(Xa
0 = i) · g(a, i)

=
K�
a=1

�
i∈S

Ph�(A0 = a) · ν(i) · g(a, i)

(a)
=

K�
a=1

�
i∈S

Ph(A0 = a) · Ph(Xa
0 = i) · g(a, i)

= Eh[g(A0, X̄0)]
= Eh[g(A0, X̄0) exp(−Zhh�(0))], (52)

where in writing (a), we use

• the fact that Ph(A0 = a) = Ph�(A0 = a) since the
manner in which A0 is selected is not a function of either
h or h�. For instance, we may assume that each of the
arms is picked once in the first K time instants, and note
that this does not affect the asymptotic performance of the
policy. In such a case, Ph(A0 = 1) = 1 = Ph�(A0 = 1).

• the fact that Xa
0 ∼ ν under hypotheses Hh and Hh� .

We now assume that (50) holds for some positive integer
n, and show that it also holds for n+ 1. We have

Eh� [g(An+1, X̄n+1)]=Eh�
�
Eh�

�
g(An+1, X̄n+1)|An, X̄n

��
.

(53)

Since the inner conditional expectation term on the right-hand
side of (53) is a measurable function of (An, X̄n), using the
induction hypothesis, we get

Eh� [g(An+1, X̄n+1)]
= Eh

�
Eh�

�
g(An+1, X̄n+1)|An, X̄n

�
exp(−Zhh�(n))

�
=

�
an∈An

�
x̄n∈Sn+1

Ph(An = an, X̄n = x̄n) · exp(−zhh�(n))

· Eh� [g(An+1, X̄n+1)|An = an, X̄n = x̄n],
(54)

where zhh�(n) denotes the value of Zhh�(n) when An = an

and X̄n = x̄n. Then, we have

Eh� [g(An+1, X̄n+1)|An = an, X̄n = x̄n]

=
K�
a�=1

�
j∈S

g(an, a�, x̄n, j) · P a�h� (Xa�
Na� (n) = j|Xa�

Na�(n)−1)

· Ph�(An+1 = a�|An = an, X̄n = x̄n)

=
K�
a�=1

�
j∈S

g(an, a�, x̄n, j) · P a�h� (Xa�
Na� (n) = j|Xa�

Na�(n)−1)

· Ph(An+1 = a�|An = an, X̄n = x̄n),
(55)

where in writing the last line above, we use the fact that
the probability of selecting an arm at any time, based on the
history of past arm selections and observations, is independent
of the underlying configuration of the arms, and is thus the
same under hypotheses Hh and Hh� . We now write (55) as

Eh� [g(An+1, X̄n+1)|An = an, X̄n = x̄n]

=
K�
a�=1

�
j∈S

	
g(an, a�, x̄n, j)

· Ph(An+1 = a�|An = an, X̄n = x̄n)

·
P a

�
h� (Xa�

Na�(n)−1 = j|Xa�
Na�(n)−1)

P a
�

h (Xa�
Na� (n) = j|Xa�

Na� (n)−1)

· P a�h (Xa�
Na�(n) = j|Xa�

Na�(n)−1)


. (56)

Plugging back (56) in (54), and using

zhh�(n+ 1) = zhh�(n) + log
P a

�
h (Xa�

Na� (n) = j|Xa�
Na� (n)−1)

P a
�

h� (Xa
Na� (n) = j|Xa�

Na� (n)−1)
,

(57)

we get

Eh� [g(An+1, X̄n+1)] =
�

an∈An

�
x̄n∈Sn+1

K�
a�=1

�
j∈S

	

g(an, a�, x̄n, j) · exp(−zhh�(n+ 1))
· Ph(An = an, X̄n = x̄n)

· Ph(An+1 = a�, X̄n+1 = j|An = an, X̄n = x̄n)



= Eh[g(An+1, X̄n+1) exp(−Zhh�(n+ 1))], (58)

hence proving (49). �
The second lemma below relates the expected number of

i to j transitions Eπ[Na(τ, i, j)|C] observed on the Markov
process of arm a to Eπ[Na(τ, i)|C], the expected number of
exits out of state i observed on the Markov process of arm a.

Lemma 2: Fix 	 > 0, a policy π ∈ Π(	), and a configuration
C = (h, P1, P2). For each i, j ∈ S and a ∈ A, we have

Eπ[Na(τ, i, j)|C] = Eπ[Na(τ, i)|C] · P ah (j|i), (59)

where P ah (j|i) is as given in (7). �
Proof: We use the shorthand notation Eh[·] to denote

Eπ[·|C]. We demonstrate that for each i, j ∈ S and a ∈ A,

Eh[Eh[Na(τ, i, j)|Xa
0 ]|Na(τ)]

= Eh[Eh[Na(τ, i)|Xa
0 ]|Na(τ)] · P ah (j|i). (60)

Towards this, we note that

Eh[Eh[Na(τ, i, j)|Xa
0 ]|Na(τ)]

= Eh

⎡
⎣Na(τ)−1�

m=1

Eh[1{Xa
m−1=i, X

a
m=j}|Xa

0 ]
    Na(τ)

⎤
⎦ . (61)

We now simplify the inner conditional expectation term in (61)
by considering the cases m = 1 and m ≥ 2 separately.
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1) Case m = 1: In this case, we get

Eh[1{Xa
0 =i,Xa

1 =j}|Xa
0 ]

= 1{Xa
0 =i} ·Eh[1{Xa

1 =j}|Xa
0 ]

= 1{Xa
0 =i} · P ah (Xa

1 = j|Xa
0 = i)

= 1{Xa
0 =i} · P ah (j|i). (62)

2) Case m ≥ 2: Here, we get

Eh[1{Xa
m−1=i, X

a
m=j}|Xa

0 = k]

= P ah (Xa
m−1 = i, Xa

m = j|Xa
0 = k)

(a)
= P ah (Xa

m−1 = i|Xa
0 = k) · P ah (Xa

1 = j|Xa
0 = i)

= Eh[1{Xa
m−1=i}|Xa

0 = k] · P ah (j|i), (63)

from which it follows that Eh[1{Xa
m−1=i,Xa

m=j}|Xa
0 ] =

Eh[1{Xa
m−1=i}|Xa

0 ] · P ah (j|i). In the above set of equa-
tions, (a) follows from the fact that the Markov process
of arm a is time homogeneous.

From the aforementioned cases, it follows that the relation

Eh[1{Xa
m−1=i, X

a
m=j}|Xa

0 ] = Eh[1{Xa
m−1=i}|Xa

0 ] · P ah (j|i)
(64)

holds for all m ≥ 1. Substituting (64) in (61) and simplifying,
we arrive at (60). The lemma then follows by applying
expectation Eh[·] to both sides of (60). �

The third lemma presented below will be used to simplify
a minimisation term later in the proof of the proposition.

Lemma 3: Denote by P(S) the set of all probability
distributions on the set S, and let ν1 and ν2 be any two distinct
elements of P(S). Then, for all w1, w2 ∈ [0, 1] such that
w1 + w2 = 1, we have

min
ψ∈P(S)

[w1D(ν1�ψ) + w2D(ν2�ψ)]

= w1D(ν1�ν∗) + w2D(ν2�ν∗),
(65)

where ν∗ ∈ P(S) is given by ν∗ = w1ν1 + w2ν2. �
Proof: This is well known with ν∗ viewed as a root of

“information centre” and the right-hand side of (65) viewed
as a mutual information. Here is the proof for completeness.

Let ν∗ be as defined in the statement of the lemma. For any
ψ ∈ P(S), we have

w1D(ν1�ψ) + w2D(ν2�ψ)
= w1D(ν1�ν∗) + w2D(ν2�ν∗) +D(ν∗�ψ)
≥ D(ν1�ν∗) + w2D(ν2�ν∗), (66)

with equality in the last line above if and only if ψ = ν∗.
This completes the proof of the lemma. �

Proof of Proposition 1: Fix an arbitrary 	 > 0, and let
π ∈ Π(	) be a policy whose stopping is τ = τ(π). Without
loss of generality, we assume that Eπ [τ(π)|C] < ∞, for
otherwise the inequality (18) holds trivially. We organise the
proof of the proposition into various sections. In the first of
these sections presented below, we lower bound the expected
value of Zhh�(τ) in terms of the error probability 	. This uses
the above Lemma 1, Lemma 2 and the result of [9, Lemma 19].

1) A Lower Bound on The Expected Value of Zhh�(τ):
Let π ∈ Π(	), with stopping time is τ = τ(π). For any
h� �= h, let Zhh�(τ) be as defined in the statement of
Lemma 1. Then, Lemma 1 in conjunction with [9, Lemma 19]
yields the following: conditioned on the underlying config-
uration C = (h, P1, P2), for any alternative configuration
C� = (h�, P �

1, P
�
2), where h� �= h, under the assumption that

Eπ[τ |C] <∞, we have

Eπ[Zhh�(τ)|C] ≥ sup
E∈Fτ

d(P π(E|C), P π(E|C�)), (67)

where

d(p, q) := p log
�
p

q

�
+ (1 − p) log

�
1 − p

1 − q

�

denotes the binary KL divergence, with the convention that
d(0, 0) = 0 = d(1, 1). We now note the following points:

1) We may minimise both sides of (67) over all alternative
configurations C� to obtain

min
C�=(h�,P �

1,P
�
2)
Eπ[Zhh�(τ)|C] ≥

min
C�=(h�,P �

1,P
�
2)

sup
E∈Fτ

d(P π(E|C), P π(E|C�)). (68)

2) For each alternative configuration C�, by taking E =
{I(π) = h} and recognising that π ∈ Π(	), we have
P π(E|C) > 1− 	 and P π(E|C�) ≤ 	. Using this, along
with the fact that the mapping x �→ d(x, y) is monotone
increasing for x < y and the mapping y �→ d(x, y) is
monotone decreasing for any fixed x, we obtain

d(P π(E|C), P π(E|C�)) ≥ d(1 − 	, P π(E|C�))
≥ d(1 − 	, 	). (69)

Combining the points noted above, and using d(1− 	, 	) =
d(	, 1 − 	), we obtain

min
C�=(h�,P �

1,P
�
2)
Eπ [Zhh�(τ)|C] ≥ d(	, 1 − 	). (70)

2) A Relation Between Eπ[Zhh�(τ)|C] and Eπ[τ |C]: As
our next step, we obtain an upper bound for Eπ[Zhh�(τ)|C]
in terms of Eπ[τ |C]. Towards this, we have

Eπ[Zhh�(τ)|C]

=
K�
a=1

Eπ
�Na(τ)−1�

m=1

log
�
P ah (Xa

m|Xa
m−1)

P ah�(Xa
m|Xa

m−1)

�     C
�
, (71)

where we take inner summation term to be zero whenever
Na(τ) < 2. Focus on the expectation term in (71). This term
may be written as

Eπ
�Na(τ)−1�

m=1

log
�
P ah (Xa

m|Xa
m−1)

P ah�(Xa
m|Xa

m−1)

�     C
�

(a)
= Eπ

�Na(τ)−1�
m=1

�
i,j∈S

1{Xa
m−1=i,X

a
m=j} log

�
P ah (j|i)
P ah�(j|i)

�     C
�

=
�
i,j∈S

Eπ [Na(τ, i, j)|C] fahh�(j|i), (72)
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where (a) above follows from the fact that the Markov process
of arm a is time homogeneous, and

fahh�(j|i) := log
�
P ah (j|i)
P ah�(j|i)

�
.

Using the result of Lemma 2 in (72), we get

Eπ[Zhh�(τ)|C]

=
K�
a=1

�
i,j∈S

Eπ[Na(τ, i)|C] · P ah (j|i) · fahh�(j|i)

=
K�
a=1

�
i∈S

E[Na(τ, i)|C]D(P ah (·|i)�P ah�(·|i)), (73)

where D(P ah (·|i)�P ah�(·|i)) =
�
j∈S

P ah (j|i)fahh�(j|i) denotes

the KL divergence between the probability distributions
P ah (·|i) and P ah�(·|i). We now express (73) by introducing some
additional terms as below:

Eπ[Zhh�(τ)|C]

= (Eπ[τ + 1|C] −K) ·
� K�
a=1

�
Eπ[Na(τ)|C] − 1
Eπ[τ + 1|C] −K

�

·
�
i∈S

�
Eπ[Na(τ, i)|C]
Eπ[Na(τ)|C]−1

�
D(P ah (·|i)�P ah�(·|i))

�

= (Eπ[τ + 1|C] −K) ·
� K�
a=1

�
Eπ[Na(τ)|C] − 1
Eπ[τ + 1|C] −K

�

·
�
i∈S

pah(i) ·D(P ah (·|i)�P ah�(·|i))
�
, (74)

where pah(i) := Eπ[Na(τ,i)|C]
Eπ[Na(τ)|C]−1 represents the average (com-

puted with respect to Eπ[·|C]) fraction of times a transition
out of state i is observed on the Markov process of arm a.

3) Asymptotics of Vanishing Error Probability: Since�
i∈S

pah(i) = 1, the inner summation term over i in (74) rep-

resents the average of the numbers (D(P ah (·|i)�P ah�(·|i)))i∈S
with respect to (pah(i))i∈S . Suppose that at some time, arm a
is selected, and it makes a transition from state i to state j, for
some i, j ∈ S. Then, the next time arm a is selected, it makes
a transition from state j to state k for some k ∈ S. For a ∈ A
and i ∈ S, let

Na(τ, i) :=
Na(τ)�
m=2

1{Xa
m−1=i} (75)

denote the number of times arm a is observed to occupy state
i after a transition. In conjunction with (3), it is easy to see
that for each i ∈ S, we have

Na(τ, i) = Na(τ, i) − 1{Xa
Na(τ)−1=i} + 1{Xa

0 =i}, (76)

which implies that Na(τ, i) − 1 ≤ Na(τ, i) ≤ Na(τ, i) + 1
a.s. Thus, we notice that for the Markov process of each arm,
for each i ∈ S, the number of times the arm is observed to

occupy state i prior to a transition is at most one more than
the number of times it is observed to occupy state i after a
transition. We then have

Eπ[Na(τ, i)|C] − 1
Eπ[Na(τ)|C] − 1

≤ pah(i) ≤
Eπ[Na(τ, i)|C] + 1
Eπ[Na(τ)|C] − 1

. (77)

Using (77) in (74), we arrive at the form

u− Δ ≤ Eπ[Zhh�(τ)] ≤ u+ Δ, (78)

where the terms u and Δ are as below:

u = (Eπ [τ + 1|C] −K) ·
� K�
a=1

�
Eπ[Na(τ)|C] − 1
Eπ[τ + 1|C] −K

�

·
�
i∈S

�
Eπ[Na(τ, i)|C]
Eπ[Na(τ)|C] − 1

�
D(P ah (·|i)�P ah�(·|i))

�
,

Δ =
K�
a=1

�
i∈S

D(P ah (·|i)�P ah�(·|i))

=
�
i∈S

D(P1(·|i)�P �
2(·|i)) +

�
i∈S

D(P2(·|i)�P �
1(·|i))

+
�
a�=h

�
i∈S

D(P2(·|i)�P �
2(·|i)). (79)

We shall soon show that the regime of vanishing error
probabilities, i.e., 	 ↓ 0, necessarily means that for each a ∈ A,
Eπ[Na(τ)|C] → ∞, which in turn implies that Eπ[τ |C] →
∞. In this asymptotic regime, for each a ∈ A, the limiting
probabilities of arm a occupying a state i ∈ S prior to and after
a transition are equal, and invariant to the one step transitions
on arm a. Since the Markov process of arm a is irreducible
and positive recurrent, its probability transition matrix admits
a unique stationary distribution. Therefore, by the Ergodic
theorem, the aforementioned probabilities must converge to
those given by the stationary distribution associated with arm
a. We shall denote this stationary distribution by μah(·) under
configuration C = (h, P1, P2), given by

μah(i) =

�
μ1(i), a = h,

μ2(i), a �= h.
(80)

Then, as 	 ↓ 0, we have that both the lower and upper bounds
in (77) converge to μah(i). We shall soon exploit this fact below
to arrive at the lower bound. Going further, we denote by
(qah(i))i∈S the probability distribution given by

qah(i) =
Eπ[Na(τ, i)|C]
Eπ [Na(τ)|C] − 1

, i ∈ S. (81)

Using the upper bound in (78) in combination with (70),
we have the following chain of inequalities:

d(	, 1 − 	) ≤ min
C�=(h�,P �

1,P
�
2)
Eπ[Zhh�(τ)|C]

≤ min
C�=(h�,P �

1,P
�
2)

(u+ Δ)

≤ min
C�=(h�,P �

1,P
�
2)
u+ min

C�=(h�,P �
1,P

�
2)

Δ. (82)
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The first term in (82) may be upper bounded as follows:

min
C�=(h�,P �

1,P
�
2)
u

= (Eπ [τ + 1|C] −K) ·

min
C�=(h�,P �

1,P
�
2)

� K�
a=1

�
Eπ[Na(τ)|C] − 1
Eπ[τ + 1|C] −K

�

�
i∈S

qah(i)D(P ah (·|i)�P ah�(·|i))
�

(a)
= (Eπ[τ + 1|C] −K) ·

min
C�=(h�,P �

1,P
�
2)

� K�
a=1

�
Eπ[Na(τ)|C] − 1
Eπ[τ + 1|C] −K

�

·D(P ah (·|·)�P ah�(·|·)|qah)
�

(b)

≤ (Eπ[τ + 1|C] −K) ·

max
λ∈P(A)

min
C�=(h�,P �

1,P
�
2)

K�
a=1

λ(a)D(P ah (·|·)�P ah�(·|·)|qah), (83)

where, in (a) above,

D(P ah (·|·)�P ah�(·|·)|qah) :=
�
i∈S

qah(i) ·D(P ah (·|i)�P ah�(·|i)),

while (b) follows by noting that maximising over the set P(A)
of all probability distributions on the set of arms A only
increases the right-hand side. The second term in (82) may
be simplified as

min
C�=(h�,P �

1,P
�
2)

Δ

= min
P �

1,P
�
2:P

�
1 �=P �

2

	�
i∈S

D(P1(·|i)�P �
2(·|i))

+
�
i∈S

D(P2(·|i)�P �
1(·|i)) +

�
a�=h

�
i∈S

D(P2(·|i)�P �
2(·|i))




(a)
= min

P �
2

	�
i∈S

D(P1(·|i)�P �
2(·|i))

+
�
a�=h

�
i∈S

D(P2(·|i)�P �
2(·|i))




= min
	�
i∈S

D(P1(·|i)�P2(·|i)),

(K − 1)
�
i∈S

D(P2(·|i)�P1(·|i))


, (84)

where (a) above follows by noting that P �
1 appears only in

the term D(P2(·|i)�P �
1(·|i)), and that for the choice P �

1 = P2,
we get D(P2(·|i)�P �

1(·|i)) = 0 for all i ∈ S. For ease of
notation, we shall denote the quantity in (84) by Δ�, which
we note is a constant.

Combining (83) with (82), we get the following relation
after rearrangement:

d(	, 1 − 	) ≤ Δ� + (Eπ[τ + 1|C] −K)·
	

max
λ∈P(A)

min
C�=(h�,P �

1,P
�
2)

� K�
a=1

λ(a)D(P ah (·|·)�P ah�(·|·)|qah)
�

.

(85)

Since (85) is valid for any arbitrary choice of 	 > 0 and for
all π ∈ Π(	), letting 	 ↓ 0 and using d(	, 1− 	)/ log 1

� → 1 as
	 ↓ 0, along with the fact that qah(i) → μah(i) for all i ∈ S in
the regime of vanishing error probabilities, we get

lim
�↓0

inf
π∈Π(�)

Eπ[τ(π)|C]
log 1

�

≥ 1
D∗(h, P1, P2)

, (86)

where the quantity D∗(h, P1, P2) depends on the underlying
configuration of the arms, and is given by

D∗(h, P1, P2)

= max
λ∈P(A)

min
C�=(h�,P �

1,P
�
2)

� K�
a=1

λ(a)D(P ah (·|·)�P ah�(·|·)|μah)
�
.

(87)

We now show that the quantities in (87) and (19) are the
same.

4) The Final Steps: Using (7) and (80), and using the short-
hand notation D(P ah �P ah� |μah) to denote the KL divergence
term inside the summation in (87), we get

D∗(h, P1, P2)

= max
λ∈P(A)

min
h� �=h, P �

1, P
�
2

�
λ(h)D(P1�P �

2|μ1)

+ λ(h�)D(P2�P �
1|μ2) + (1 − λ(h) − λ(h�))D(P2�P �

2|μ2)
�
.

(88)

Since P �
1 appears only in the second term on right-hand side of

the above expression, the minimum over all P �
1 of the quantity

D(P2�P �
1|μ2) is equal to zero, which is attained for P �

1 = P2.
Thus, we have

D∗(h, P1, P2)

= max
λ∈P(A)

min
h� �=h, P �

2

�
λ(h)D(P1�P �

2|μ1)

+ (1 − λ(h) − λ(h�))D(P2�P �
2|μ2)

�
. (89)

We now note that

min
h� �=h

(1 − λ(h) − λ(h�)) = 1 − λ(h) − max
h� �=h

λ(h�)

(a)

≤ 1 − λ(h) − 1 − λ(h)
K − 1

= (1 − λ(h))
(K − 2)
(K − 1)

, (90)
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where (a) above follows by lower bounding the maximum of
a set of numbers by their arithmetic mean. We then have

D∗(h, P1, P2)

= max
0≤λ(h)≤1

min
P �

2

�
λ(h)D(P1�P �

2|μ1)

+ (1 − λ(h))
(K − 2)
(K − 1)

D(P2�P �
2|μ2)

�
. (91)

Using Lemma 3 in (91), and recognising that the hand side of
(91) is not a function of h, we write

D∗(h, P1, P2)

= max
0≤λ1≤1

�
λ1D(P1�P |μ1)

+ (1 − λ1)
(K − 2)
(K − 1)

D(P2�P |μ2)
�
, (92)

where P is a probability transition matrix whose entry in the
ith row and jth column is given by

P (j|i) =
λ1μ1(i)P1(j|i) + (1 − λ1)

(K−2)
(K−1)μ2(i)P2(j|i)

λ1μ1(i) + (1 − λ1)
(K−2)
(K−1)μ2(i)

.

(93)

Noting that the right-hand sides of (92) and (19) are identical,
this completes the proof of the proposition. �

B. Proof of Proposition 2

Let C = (h, P1, P2) be the underlying configuration of the
arms. We first show in the following lemma that under the non-
stopping version of policy π�(L, δ), the maximum likelihood
estimates P̂n1,h and P̂nh,2 converge to their respective true values
P1 and P2.

Lemma 4: Let C = (h, P1, P2) denote the underlying con-
figuration of the arms. Then, under the non-stopping version
of policy π�(L, δ), as n → ∞, the following convergences
hold a.s. for all i, j ∈ S:

Na(n, i, j)
Na(n, i)

−→
�
P1(j|i), a = h,

P2(j|i), a �= h,
,

�
a�=h

Na(n, i, j)�
a�=h

Na(n, i)
−→ P2(j|i). (94)

�
Proof: Fix i, j ∈ S and a ∈ A. Let Sa(n) denote the

quantity

Sa(n) =
n−1�
t=0

!
1{At+1=a} − P (At+1 = a|At, X̄t)

"
, (95)

where P (At+1 = a|At, X̄t) is given by

P (At+1 = a|At, X̄t)

=
δ

K
+ (1 − δ)λ∗(h∗(t), P̂ th∗(t),1, P̂

t
h∗(t),2)(a). (96)

Letting dt+1 = 1{At+1=a} −P (At+1 = a|At, X̄t), we note
that P (|dt+1| ≤ 2|At, X̄t) = 1 for all t ≥ 0, implying

that {dt}t≥0 is bounded uniformly a.s.. Since {dt+1}t≥0 is a
martingale difference sequence, it follows from [24, Th. 1.2A]
that for every 	 > 0, there exists c� > 0 such that
P (Sa(n)

n > 	) ≤ e−nc� . From this, it follows that
Sa(n)/n→ 0 a.s.. This implies that the following is true a.s.
for sufficiently large values of n:

δ

2K
<
Na(n) − 1

n
< 1 +

δ

2K
. (97)

Thus, we have lim inf
n→∞

Na(n)
n > δ

2K > 0 a.s.. By the ergodic
theorem, it then follows that as n → ∞, the following
convergences hold a.s.:

Na(n, i)
Na(n)

−→ μah(i),
Na(n, i, j)/Na(n)
Na(n, i)/Na(n)

−→ P ah (j|i);
(98)

here, μah(i) and P ah (j|i) are as defined in (80) and (7)
respectively. This establishes the convergence in the first line
of (94) under the assumption that C = (h, P1, P2) is the
underlying configuration of the arms.

We then note that a.s.,�
a�=h

Na(n, i, j)�
a�=h

Na(n, i)
=

�
a�=h

Na(n,i,j)
Na

h(n,i)
Na

h(n,i)
Na

h(n)
Na

h (n)
n�

a�=h
Na(n,i)
Na

h(n)

Na
h
(n)

n

n→∞−→ P2(j|i), (99)

where the convergence in the last line above follows from
(98) by noting that for a �= h, when C = (h, P1, P2) is
the underlying configuration of the arms, μah(i) = μ2(i)
and P ah (j|i) = P2(j|i). This establishes the convergence in
the second line of (94), thus completing the proof of the
lemma. �

Proof of Proposition 2: We now use Lemma 4 to show
that (39) holds for any h� �= h. Towards this, we show
that the quantity on the right-hand side of (30) is strictly
positive.

For any choice of 	� > 0, we have the following:
1) Since T1 is a constant that does not grow with n, we

have

lim
n→∞

T1

n
= 0, (100)

and therefore it follows that there exists a positive integer
M1 = M1(	�) such that T1/n ≥ −	� for all n ≥M1.

2) From (32), we have

T2(n)
n

=
1
n

�
i∈S

logB((Nh(n, i, j) + 1)j∈S). (101)

Fix i ∈ S. Then, we have

logB((Nh(n, i, j) + 1)j∈S) = logE

⎡
⎣�
j∈S

X
Nh(n,i,j)
ij

⎤
⎦,

(102)

where the random vector (Xij)j∈S follows Dirichlet
distribution with parameters αj = 1 for all j ∈ S.
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We now write (102) as follows:

1
Nh(n)

logB((Nh(n, i, j) + 1)j∈S)

=

logE

#
exp

�
Nh(n)

�
j∈S

Nh(n,i,j)
Nh(n) logXij

�$

Nh(n)
.

(103)

When C = (h, P1, P2) is the underlying configu-
ration of the arms, from Lemma 4, we have that
Nh(n, i, j)/Nh(n) converges a.s. as n → ∞ to
μ1(i)P1(j|i). Thus, there exists a positive integerM21 =
M21(	�) such that for all n ≥M21, we have

1
Nh(n)

logB((Nh(n, i, j) + 1)j∈S) ≥

logE

#
exp

�
Nh(n)

�
j∈S

(μ1(i)P1(j|i) + 	�) logXij

�$

Nh(n)
.

(104)

Noting that Nh(n) converges a.s. to +∞ as n → ∞,
by Varadhan’s integral lemma [25, Theorem 4.3.1], there
exists a positive integer M22 = M22(	�) such that for
all n ≥M2 = max{M21,M22}, we have

1
Nh(n)

logB((Nh(n, i, j) + 1)j∈S)

(a)

≥ sup
{zj≥0,

�

j∈S
zj=1}

�
j∈S

(μ1(i)P1(j|i) + 	�) log zj − 	�

|S|

=
�
j∈S

(μ1(i)P1(j|i) + 	�) log
μ1(i)P1(j|i) + 	�

μ1(i) + 	�|S| − 	�

|S| ,

(105)

where the supremum on the right-hand side of (a) above
is computed over all vectors (zj)j∈S such that zj ≥ 0
for all j ∈ S, and

�
j∈S

zj = 1. Plugging (105) into (101),

we get

T2(n)
n

≥
Nh(n)
n

	� �
i∈S

�
j∈S

(μ1(i)P1(j|i) + 	�)

log
μ1(i)P1(j|i) + 	�

μ1(i) + 	�|S|
�
− 	�



(106)

for all n ≥M2.
3) From (33), we have

T3(n)
n

=
1
n

�
i∈S

logB

⎛
⎝

⎛
⎝�
a�=h

Na(n, i, j) + 1

⎞
⎠
j∈S

⎞
⎠ .

(107)

Using the same arguments as those used to simplify
(101), we obtain the following: there exists a positive

integer M3 = M3(	�) such that for all n ≥M3, we have

T3(n)
n

≥
�
a�=h

Na(n)

n

	� �
i∈S

�
j∈S

(μ2(i)P2(j|i) + 	�)

log
μ2(i)P2(j|i) + 	�

μ2(i) + 	�|S|
�
− 	�



. (108)

4) From (34), we have

T4(n)
n

= − 1
n

�
i,j∈S

Nh�(n, i, j) log
Nh�(n, i, j)
Nh�(n, i)

. (109)

If Nh(n, i) = 0 for some state i ∈ S (in which case
it follows that Nh(n, i, j) = 0 for all j ∈ S), or if
Nh(n, i, j) = 01 for some pair of states i, j ∈ S, then the
corresponding terms in the summation in (109) will be
of the form 0 log 0

0 or 0 log 0 respectively, which we treat
as zero by convention. Thus, without loss of generality,
we assume that Nh(n, i, j) > 0 for all i, j ∈ S.
Noting that h� �= h, when the underlying configuration is
C = (h, P1, P2), from Lemma 4, we have the following
almost sure convergences (as n→ ∞):

Nh�(n, i, j)
n

→ μ2(i)P2(j|i),

Nh�(n, i, j)
Nh�(n, i)

→ P2(j|i). (110)

Using these in (109), we get that there exists a positive
integer M4 = M4(	�) such that for all n ≥M4, we have

T4(n)
n

≥
�
i,j∈S

(μ2(i)P2(j|i) − 	�) log
1

P2(j|i) + 	�
.

(111)

5) Lastly, we present a simplification of the term T5(n)/n.
From (35), we have

T5(n)
n

= − 1
n

�
i,j∈S

�
a�=h�

Na(n, i, j) log

�
a�=h�

Na(n, i, j)�
a�=h�

Na(n, i)
.

(112)

For each n and each i, j ∈ S, we define Pn(j|i) as the
following quantity:

Pn(j|i) =

�
a�=h�

Na(n, i, j)�
a�=h�

Na(n, i)
. (113)

Note that Pn = (Pn(j|i))i,j∈S constitutes a valid
probability transition matrix. From Lemma 4, under the

1This may be the case if, for instance, P2(j|i) = 0 for some pair of states
i, j ∈ S .
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underlying configuration C = (h, P1, P2), we note the
following almost convergences as n→ ∞:�

a�=h,h�
Na(n, i, j)�

a�=h,h�
Na(n, i)

−→P2(j|i),
�

a�=h,h�
Na(n, i)�

a�=h,h�
Na(n)

−→μ2(i). (114)

The above convergences then imply that there exists a
positive integer M5 = M5(	�) such that for all n ≥M5,
we have

T5(n)
n

≥ Nh(n)
n

�
i,j∈S

(μ1(i)P1(j|i) − 	�) log
1

Pn(j|i)

+

�
a�=h,h�

Na(n)

n

�
i,j∈S

(μ2(i)P2(j|i) − 	�) log
1

Pn(j|i) .

(115)

Combining the results in (100), (106), (108), (111) and
(115), we get that for all n ≥ M(	�) = max{M1, . . . ,M5},
we have

Mhh�(n)
n

≥ fn(	�), (116)

where fn(	�) denotes the sum of the terms of the right-hand
sides of (100), (106), (108), (111) and (115).

We now define fn(0) as the following quantity:

fn(0) :=
Nh(n)
n

D(P1�Pn|μ1)+

�
a�=h,h�

Na(n)

n
D(P2�Pn�μ2).

(117)

Then, by continuity, we have that for any choice of 	 > 0, there
exists 	� > 0 such that fn(	�) > fn(0) − 	 for all sufficiently
large values of n. From (116), this implies that

Mhh�(n)
n

> fn(0) − 	 (118)

for all sufficiently large values of n, from which it follows
that

lim inf
n→∞

�
Mhh�(n)

n
− fn(0)

�
≥ −	. (119)

Since the above equation is true for an arbitrary choice of 	,
letting 	 ↓ 0, we get

lim inf
n→∞

Mhh�(n)
n

− lim sup
n→∞

fn(0) ≥ 0, (120)

from which it follows that

lim inf
n→∞

Mhh�(n)
n

≥ lim sup
n→∞

fn(0)

≥ lim inf
n→∞ fn(0)

≥ lim inf
n→∞

	
Nh(n)
n

D(P1�Pn|μ1)

+

�
a�=h,h�

Na(n)

n
D(P2�Pn|μ2)




≥ lim inf
n→∞

	
Nh(n)
n

D(P1�Pn|μ1)



+ lim inf
n→∞

	 �
a�=h,h�

Na(n)

n
D(P2�Pn|μ2)



. (121)

We now claim that sup
n≥0

D(P1�Pn|μ1) < ∞ a.s.. Indeed,

we note that

Pn(j|i)

=

�
a�=h�

Na(n, i, j)�
a�=h�

Na(n, i)

≥

�
a�=h�

Na(n, i, j)

n

≥
�
Nh(n)
n

� �
Nh(n, i)
Nh(n)

� �
Nh(n, i, j)
Nh(n, i)

�

+

⎛
⎜⎝

�
a�=h,h�

Na(n)

n

⎞
⎟⎠

⎛
⎜⎝

�
a�=h,h�

Na(n, i)�
a�=h,h�

Na(n)

⎞
⎟⎠

⎛
⎜⎝

�
a�=h,h�

Na(n, i, j)�
a�=h,h�

Na(n, i)

⎞
⎟⎠

(a)

≥
�

δ

2K

��
μ1(i)P1(j|i)

2

�
+

�
(K − 2)δ

2K

��
μ2(i)P2(j|i)

2

�
(b)

≥
�

δ

2K

� �
μ1(i)P1(j|i) + μ2(i)P2(j|i)

2

�

≥
�

δ

2K

�
·
�

min
	

min
i∈S

μ1(i), min
i∈S

μ2(i)

�

·
�
P1(j|i) + P2(j|i)

2

�
a.s. (122)

for all sufficiently large values of n, where (a) follows from
(97) and Lemma 4, and (b) follows by using the fact that the
number of arms K ≥ 3. It then follows that

D(P1�Pn|μ1)

=
�
i∈S

μ1(i)
�
j∈S

P1(j|i) log
P1(j|i)
Pn(j|i)

≤
�
i,j∈S

μ1(i)P1(j|i) log
P1(j|i)

P1(j|i)+P2(j|i)
2

+
�
i,j∈S

μ1(i)P1(j|i) logP1(j|i)

+ log
1!

δ
2K

" �
min

	
min
i∈S

μ1(i), min
i∈S

μ2(i)

�

= D

�
P1

%%%%P1 + P2

2

    μ1

�
+

�
i∈S

μ1(i)(−H(P1(·|i))

+ log
1!

δ
2K

" �
min

	
min
i∈S

μ1(i), min
i∈S

μ2(i)

�

<∞ a.s.. (123)
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On similar lines, it can be shown that D(P2�Pn|μ1) is
bounded uniformly a.s. for all n ≥ 0. Using the uniform
boundedness property just proved, we may express (121) as

lim inf
n→∞

Mhh�(n)
n

≥
	

lim inf
n→∞

Nh(n)
n


	
lim inf
n→∞ D(P1�Pn|μ1)




+
	

lim inf
n→∞

�
a�=h,h�

Na(n)

n


	
lim inf
n→∞ D(P2�Pn|μ2)




≥
�

δ

2K

� �
lim inf
n→∞ D(P1�Pn|μ1)

+ (K − 2) lim inf
n→∞ D(P2�Pn|μ2)

�
a.s., (124)

where the last line follows from (97).
Finally, we show that the first limit infimum term in (124)

is strictly positive, and note that an exactly parallel argument
may be used to show that the second limit infimum term is
also strictly positive. Suppose that lim inf

n→∞ D(P1�Pn|μ1) =
0 a.s.. By the property that KL divergence is zero if and
only if the argument probability distributions are identical,
it follows that there exists a subsequence (nk)k≥1 such that
Pnk

(j|i) → P1(j|i) as k → ∞ a.s. for all i, j ∈ S. We now fix
attention to this subsequence, and note that by the property that
the sequences (Nh(nk)/nk)k≥1 and (

�
a�=h,h�

Na(nk)/nk)k≥1

are bounded, there exists a further subsequence (nkl
)l≥1 of

(nk)k≥1 such that the aforementioned bounded sequences
admit limits, say α and β respectively. From Lemma 4,
we then have the following convergence a.s. as l → ∞:

Pnkl
(j|i) → αμ1(i)P1(j|i) + β μ2(i)P2(j|i)

αμ1(i) + β μ2(i)
. (125)

However, we note that the right-hand side of (125) is not
equal to P1(j|i) whenever P2(j|i) > 0, thus resulting in a
contradiction. This completes the proof of the proposition. �

C. Proof of Proposition 3

The policy π�(L, δ) commits error if one of the following
events is true:

1) The policy never stops in finite time.
2) The policy stops in finite time and declares h� �= h as

the true index of the odd arm.

The event in item 1 above has zero probability as a con-
sequence of Proposition 2. Thus, the probability of error
of policy π = π�(L, δ), which we denote by P πe , may
be evaluated as follows: suppose C = (h, P1, P2) is the
underlying configuration of the arms. Then,

P πe

= P π(I(π) �= h|C)

= P π
�
∃ n and h� �= h such that

I(π) = h� and τ(π) = n

    C
�
. (126)

We now let

Rh�(n) := {ω : τ(π)(ω) = n, I(π)(ω) = h�} (127)

denote the set of all sample paths for which the policy stops
at time n and declares h� as the true index of the odd arm.
Clearly, the collection {Rh�(n) : h� �= h, n ≥ 0} is a
collection of mutually disjoint sets. Therefore, we have

P πe = P π

⎛
⎝ &
h� �=h

∞&
n=0

Rh�(n)
    C

⎞
⎠

=
�
h� �=h

∞�
n=0

P π(τ(π) = n, I(π) = h�|C)

=
�
h� �=h

∞�
n=0

'
Rh� (n)

dP π(ω|C)

(a)
=

�
h� �=h

∞�
n=0

'
Rh� (n)

	
d(An(ω), X̄n(ω))

· f(An(ω), X̄n(ω)|Hh) ·
� n�
t=0

Ph(At|At−1, X̄t−1)
�


(b)

≤
�
h� �=h

∞�
n=0

'
Rh� (n)

	
d(An(ω), X̄n(ω))

· f̂(An(ω), X̄n(ω)|Hh) ·
� n�
t=0

Ph(At|At−1, X̄t−1)
�


(c)
=

�
h� �=h

∞�
n=0

'
Rh� (n)

	
d(An(ω), X̄n(ω)) · e−Mh�h(n)

· f(An(ω), X̄n(ω)|Hh�) ·
� n�
t=0

Ph�(At|At−1, X̄t−1)
�


≤
�
h� �=h

∞�
n=0

	 '
Rh� (n)

1
(K − 1)L

dP π(ω|C�)



=
�
h� �=h

1
(K − 1)L

P π

� ∞&
n=0

Rh�(n)
    C�

�
≤ 1
L
, (128)

where in (a) above, Ph(At|At−1, X̄t−1) denotes the proba-
bility of selecting arm At at time t when the index of the odd
arm is h, with the convention that at time t = 0, this term
represents Ph(A0); (b) above follows by the definition of f̂
in (29), and (c) follows by using the fact that the probability
of selecting an arm at any time t, based on the history of past
arm selections and observations, is independent of the odd arm
index, and is thus the same when the arm indexed by either
h or h� is the odd arm. Setting L = 1/	 gives P πe ≤ 	, thus
proving that π = π�(L, δ) ∈ Π(	). This completes the proof
of the proposition. �

D. Proof of Proposition 4

Before we present the proof of Proposition 4, we show that
the odd arm chosen by the non-stopping version of policy
π�(L, δ) is indeed the correct one. Further, we show that the
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arm selection frequencies under the same policy converge to
the respective optimal values given in (22).

Proposition 6: Let C = (h, P1, P2) denote the underlying
configuration of the arms. Fix L ≥ 1 and δ ∈ (0, 1), and
consider the non-stopping version of policy π�(L, δ). For any
h� �= h and i, j ∈ S, let Pn(j|i) be defined as in (113), Then,
the following convergences hold a.s. as n→ ∞.

h∗(n) → h, (129)

λopt(h∗(n), P̂nh∗(n),1, P̂
n
h∗(n),2) → λopt(h, P1, P2), (130)

Na(n)
n

→ λ∗δ(h, P1, P2)(a) for all a ∈ A, (131)

Pn(j|i) → Pδ(j|i) for all i, j ∈ S, (132)

where for each a ∈ A and each i, j ∈ S, the quantity
λ∗δ(h, P1, P2)(a) and the term Pδ(j|i) in (132) are as defined
in the statement of Proposition 4. �

Proof: We already established that (41) holds for all
sufficiently large n. This establishes (129), which in turn
implies that

λopt(h∗(n), P̂nh∗(n),1, P̂
n
h∗(n),2) → λopt(h, P1, P2), (133)

because of the convergence of the maximum likelihood esti-
mates shown in (94), and the fact that λ∗(h, P,Q) is jointly
continuous in the pair (P,Q), a fact that follows from Berge’s
Maximum Theorem [26]. This establishes (130).

We now proceed to show (131). Towards this, we observe
that from (38) and the convergence in (130), we have

P (An+1 = a|An, X̄n)

=
δ

K
+ (1 − δ)λopt(h∗(n), P̂nh∗(n),1, P̂

n
h∗(n),2)(a)

→ δ

K
+ (1 − δ)λopt(h, P1, P2)(a). (134)

We revisit the quantity Sa(n) defined in (95), and use the fact
that Sa(n)

n → 0 a.s. as n→ ∞ to obtain

Na(n)
n

→ 1
n

n−1�
t=0

P (At+1 = a|At, X̄t)

→ δ

K
+ (1 − δ)λopt(h, P1, P2)(a). (135)

This establishes (131).
Defining

αn :=
Nh(n)
n

, βn :=

�
a�=h,h�

Na(n)

n
, (136)

we note that the convergence in (131) implies in particular
that

αn → λ∗δ(h, P1, P2)(h) =
δ

K
+ (1 − δ)λ∗ = λ∗δ ,

βn → (K − 2)
�
δ

K
+ (1 − δ)

1 − λ∗

K − 1

�

=
(K − 2)
(K − 1)

(1 − λ∗δ). (137)

Taking limits as n→ ∞ on both sides of (113), and using the
above limits for αn and βn, we get the convergence in (132),
hence completing the proof of the proposition. �

Proof of Proposition 4: We recall from (121) and (117)
that

lim inf
n→∞

Mhh�(n)
n

≥ lim inf
n→∞ αnD(P1�Pn|μ1) + lim inf

n→∞ βnD(P2�Pn|μ2)

= λ∗δD(P1�Pδ|μ1) +
(K − 2)
(K − 1)

(1 − λ∗δ)D(P2�Pδ�μ2),

(138)

where the terms αn and βn are as given in (136). Using
Varadhan’s integral lemma [25, Theorem 4.3.1] to write

lim sup
n→∞

1
n

logB((Nh(n, i, j) + 1)j∈S)

≤ lim sup
n→∞

Nh(n)
n

μ1(i) sup
{zj≥0,

�

j∈S
zj=1}

�
j∈S

P1(j|i) log zj

= lim
n→∞

Nh(n)
n

μ1(i)(−H(P1(·|i))), (139)

and following similar steps leading to (106), we obtain

lim sup
n→∞

Mhh�(n)
n

≤ lim
n→∞αnD(P1�Pn|μ1) + lim

n→∞βnD(P2�Pn|μ2)

= λ∗δD(P1�Pδ|μ1) +
(K − 2)
(K − 1)

(1 − λ∗δ)D(P2�Pδ�μ2).

(140)

Combining (138) and (140), we get the desired result. �

E. Proof of Proposition 5

This section is organised as follows. We first show in
Lemma 5 that the stopping time of policy π�(L, δ) goes to
infinity as the error probability vanishes (or as L → ∞).
We then exploit this to show that under policy π�(L, δ),
the modified GLR statistic has the correct drift (see Lemma 6).
That is, we build on the result of Proposition 2 and obtain the
explicit limit for the modified GLR statistic for the regime of
vanishing error probability. We then use the result of Lemma 6
to show in Lemma 7 that the stopping time of policy π∗(L, δ)
satisfies an asymptotic almost sure upper bound that matches
with the right-hand side of (46). Finally, we establish that for
any fixed δ ∈ (0, 1), the family {τ(π�(L, δ))/ logL : L ≥ 1}
is uniformly integrable, and as an intermediate step towards
this, we establish in Lemma 8 an exponential upper bound for
a certain probability term. Combining the almost sure limit
of Lemma 7 along with the uniform integrability result then
yields the desired upper bound in (46).

Lemma 5: Let C = (h, P1, P2) denote the underlying
configuration of the arms. Fix δ ∈ (0, 1). Then, under policy
π�(L, δ), we have

lim inf
L→∞

τ(π�(L, δ)) = ∞ a.s. (141)

�
Proof: Since policy π = π�(L, δ) selects each of the K

arms in the first K slots, in order to prove the lemma, we note
that it suffices to prove the following statement:

for each m ≥ K , lim
L→∞

P π(τ(π) ≤ m|C) = 0. (142)
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Fix m ≥ K , and note that

lim sup
L→∞

P π(τ(π) ≤ m|C)

= lim sup
L→∞

P π
�
∃ K ≤ n ≤ m and h̃ ∈ A such that

Mh̃(n) > log((K − 1)L)
    C

�

≤ lim sup
L→∞

�
h̃∈A

m�
n=K

P π(Mh̃(n) > log((K − 1)L)|C)

≤ lim sup
L→∞

1
log((K − 1)L)

�
h̃∈A

m�
n=K

Eπ [Mh̃(n)|C], (143)

where the first inequality above follows from the union bound,
and the second inequality follows from Markov’s inequality.

We now show that for each m ∈ {K, . . . , n}, the expec-
tation term inside the summation in (143) is finite. Towards
this, we have

Mh̃(n) = log

⎛
⎜⎝ f(An, X̄n|Hh̃)

max
h� �=h̃

f̂(An, X̄n|Hh�)

⎞
⎟⎠

≤ log

�
f̂(An, X̄n|Hh̃)

f̂(An, X̄n|Hh�)

�
for all h� �= h̃. (144)

Fix an arbitrary h� �= h̃. We recognise that the logarithmic
term in (144) is the classical GLR test statistic of hypothesis
Hh̃ with respect to hypothesis Hh� , given by

log

�
f̂(An, X̄n|Hh̃)

f̂(An, X̄n|Hh�)

�
= S1(n) + S2(n) + S3(n) + S4(n),

(145)

where the terms S1(n), . . . , S4(n) appearing in (145) are as
below.

1) The term S1(n) is given by

S1(n) =
�
i,j∈S

Nh̃(n, i, j) log
Nh̃(n, i, j)
Nh̃(n, i)

. (146)

2) The term S2(n) is given by

S2(n) =
�
i,j∈S

�
a�=h̃

Na(n, i, j) log

�
a�=h̃

Na(n, i, j)�
a�=h̃

Na(n, i)
.

(147)

3) The term S3(n) is given by

S3(n) = −
�
i,j∈S

Nh�(n, i, j) log
Nh�(n, i, j)
Nh�(n, i)

. (148)

4) The term S4(n) is given by

S4(n) = −
�
i,j∈S

�
a�=h�

Na(n, i, j) log

�
a�=h�

Na(n, i, j)�
a�=h�

Na(n, i)
.

(149)

We now obtain an a.s. upper bound for (145). We recognise
that S1(n) and S2(n) are non-positive, and thus upper bound
each of these terms by zero. Let

A(i) = (Nh�(n, i, j)/Nh�(n, i))j∈S

denote the probability vector corresponding to state i. Then,
denoting the Shannon entropy of A(i) by H(A(i)), we may
express S3(n) as

S3(n) = (Nh�(n) − 1)
�
i∈S

�
Nh�(n, i)
Nh�(n) − 1

�
H(A(i))

≤ (Nh�(n) − 1) H

��
i∈S

�
Nh�(n, i)
Nh�(n) − 1

�
A(i)

�

≤ Nh�(n) log |S|, (150)

where the first inequality above follows from the concavity of
the entropy function H(·), and the second inequality follows
by noting that the Shannon entropy of a probability distribution
on an alphabet of size R is upper bounded by logR. On similar
lines, we get

S4(n) ≤
⎛
⎝ �
a�=h�

Na(n)

⎞
⎠ log |S|. (151)

Using in (145) the results of (150) and (151), along with the
zero upper bound for the non-positive terms in (146) and (147)
and the relation (5c), we get

Mh̃(n) ≤ (n+ 1) log |S| a.s., (152)

from which it follows that

lim sup
L→∞

P π(τ(π) ≤ m|C)

≤ lim sup
L→∞

1
log((K − 1)L)

�
h̃∈A

m�
n=K

(n+ 1) log |S|

= 0. (153)

This completes the proof of the lemma. �
Lemma 6: Let C = (h, P1, P2) denote the underlying

configuration of the arms. Fix δ ∈ (0, 1). Then, under policy
π = π�(L, δ), for any h� �= h, we have

lim
L→∞

Mhh�(τ(π))
τ(π)

= D∗
δ (h, P1, P2) a.s. (154)

�
Proof: The proof follows as a consequence of Proposi-

tion 4 and Lemma 5. �
Lemma 7: Let C = (h, P1, P2) denote the underlying

configuration of the arms. Fix δ ∈ (0, 1). Then, under policy
π = π∗(L, δ), we have

lim sup
L→∞

τ(π)
logL

≤ 1
D∗
δ (h, P1, P2)

a.s. (155)

Proof: We first show that for any h� �= h and n ≥ 1,
the increment Mhh�(n) − Mhh�(n − 1) is bounded. Fix an
arbitrary h� �= h, and consider the following cases.

1) Case 1: Suppose that arm h is selected at time n. Then,
noting that in the expression for Mhh�(n), the only terms
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that depend on the arm index h are those in (32) and
(35), we have

Mhh�(n) −Mhh�(n− 1)
= T2(n) − T2(n− 1) + T5(n) − T5(n− 1). (156)

Suppose that at time n, the Markov process of arm h
undergoes a transition from state i to state j, where
i, j ∈ S are such that max{P1(j|i), P2(j|i)} > 02.
Then, noting that

Na(n, i�, j�) = Na(n− 1, i�, j�) ∀a ∈ A, i� �= i, j� �= j,

Nh(n, i, j) = Nh(n− 1, i, j) + 1,
Na(n, i�) = Na(n− 1, i�) ∀a ∈ A, i� �= i,

Nh(n, i) = Nh(n− 1, i) + 1, (157)

it can be shown after some simplification that

T2(n) − T2(n− 1) =

log
B(Nh(n− 1, i, j) + 2, (Nh(n− 1, i, j�) + 1)j� �=j)

B(Nh(n− 1, i, j�) + 1)j�∈S
(a)
=

Nh(n− 1, i, j)�
j�∈S

Nh(n− 1, i, j�)

≤ 1 a.s., (158)

where (a) above follows by using the relation

B(α1, . . . , α|S|) =

⎛
⎝ |S|�
k=1

Γ(αk)

⎞
⎠ (

Γ

⎛
⎝ |S|�
k=1

αk

⎞
⎠.
(159)

Also, we have

T5(n) − T5(n− 1)

=

⎛
⎝�
a�=h�

Na(n− 1, i, j)

⎞
⎠ log

�
a�=h�

Na(n− 1, i, j)�
a�=h�

Na(n− 1, i)

−
	⎛

⎝1 +
�
a�=h�

Na(n− 1, i, j)

⎞
⎠

log

1 +
�
a�=h�

Na(n− 1, i, j)

1 +
�
a�=h�

Na(n− 1, i)




≤ log

�
a�=h�

Na(n− 1, i)�
a�=h�

Na(n, i, j)

→ log
1

Pδ(j|i) a.s., (160)

where the convergence in the last line follows from
(132). Thus, it follows that the increment Mhh�(n) −
Mhh�(n− 1) is bounded for all n ≥ 1.

2) Case 2: Suppose that arm h� is sampled at time n. Noting
that the only terms that depend on the arm index h� are
those in (33) and (34), the analysis for this case proceeds

2Otherwise, a jump from i to j is not observed on arm h.

on the exactly same lines as that of Case 1 presented
above, and is omitted.

3) Case 3: Suppose that arm a� is sampled at time n, where
a� ∈ A\{h, h�}. Noting that the only terms that depend
on the arm index a� are those in (33) and (35), the
analysis for this case proceeds on the exactly same lines
as that of Case 1 presented above, and is omitted.

This establishes that the increments of the modified GLR
process are bounded at all times.

Fix an arbitrary h� �= h. By the definition of stopping time
τ(π), we have that Mhh�(τ(π) − 1) < log((K − 1)L). Using
this, we have

lim sup
L→∞

Mhh�(τ(π))
logL

(a)
= lim sup

L→∞

Mhh�(τ(π) − 1)
logL

≤ lim sup
L→∞

log((K − 1)L)
logL

= 1 a.s., (161)

where (a) above is due to boundedness of the increments
of the modified GLR process established above. Then, using
Lemma 6 along with the relation (161) yields

lim sup
L→∞

τ(π)
logL

= lim sup
L→∞

	�
τ(π)

Mhh�(τ(π))

� �
Mhh�(τ(π))

logL

� 


=
�

lim
L→∞

τ(π)
Mhh�(τ(π))

� �
lim sup
L→∞

Mhh�(τ(π))
logL

�

≤ 1
D∗
δ (h, P1, P2)

a.s., (162)

thus completing the proof of the lemma. �
Proof of Proposition 5: For any fixed δ ∈ (0, 1), we now

establish that under policy π = π�(L, δ), the family
{τ(π)/ logL : L ≥ 1} is uniformly integrable. In order to
do so, we note that it suffices to show that

lim sup
L→∞

Eπ
�

exp
�
τ(π)
logL

�    C
�
<∞. (163)

Towards this, let l(L, δ) denote the quantity

l(L, δ) :=
3 log((K − 1)L)

δ
2K

�
D(P1�Pδ|μ1) +D(P2�Pδ|μ2)

� . (164)

Let C = (h, P1, P2) be the underlying configuration of the
arms. Further, let π�h = π�h(L, δ) denote the version of policy
π�(L, δ) that stops only upon declaring h as the index of the
odd arm. Let

u(L) := exp
�

1 + l(L, δ)
logL

�
(165)

Clearly, we have τ(π�h) ≥ τ(π) a.s.. Then,

lim sup
L→∞

Eπ
�

exp
�
τ(π)
logL

�    C
�

= lim sup
L→∞

∞'
0

P π
�
τ(π)
logL

> log x
    C

�
dx
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≤ lim sup
L→∞

∞'
0

P π
�
τ(π�h) ≥ �(log x)(logL)�

    C
�
dx

(a)

≤ lim sup
L→∞

	
u(L)

+

∞'
u(L)

P π
�
τ(π�h) ≥ �(log x)(logL)�

    C
�
dx




≤ exp
�

3
δ

2K (D(P1�Pδ|μ1) +D(P2�Pδ|μ2))

�

+ lim sup
L→∞

�
n≥l(L,δ)

�
exp

�
n+ 1
logL

�

· P π(Mh(n) < log((K − 1)L)|C)
�
,

(166)

where (a) above follows by upper bounding the probability
term by 1 for all x ≤ u(L).

We now show that for all n ≥ l(L, δ), the probability term
in (166) decays exponentially in n. This is a strengthening of
the result in Proposition 2 which only establishes that when
C = (h, P1, P2) is the underlying configuration of the arms,
Mh(n) → ∞ as n→ ∞.

Lemma 8: Let C = (h, P1, P2) denote the underlying
configuration of the arms. Fix L ≥ 1, δ ∈ (0, 1), and consider
the policy π = π�(L, δ). There exist constants θ > 0 and
0 < B < ∞ independent of L such that for all sufficiently
large values of n, we have

P π(Mh(n) < log((K − 1)L)|C) ≤ Be−θn. (167)

�
Proof: Since

P π(Mh(n) < log((K − 1)L)|C)

= P π
�

min
h� �=h

Mhh�(n) < log((K − 1)L)
    C

�

≤
�
h� �=h

P π
�
Mhh�(n) < log((K − 1)L)

    C
�
, (168)

in order to prove the lemma, it suffices to show that each
term inside the summation in (168) is exponentially bounded.
Going further, we drop the superscript π and the conditioning
on configuration C in P π(·|C) for ease of notation. For all
i, j ∈ S, let

P̃n(j|i) :=
αnμ1(i)P1(j|i) + βnμ2(i)P2(j|i)

αnμ1(i) + βnμ2(i)
, (169)

where αn and βn are as in (136). Fix h� �= h and 	 > 0
arbitrarily. Then, using (30) and triangle inequality, we have

P (Mhh�(n) < log((K − 1)L))
≤ U1 + U2 + U3 + U4 + U5 + U6 + U7, (170)

where the terms U1, . . . , U7 in (170) are as below.
1) The term U1 is given by

U1 = P

�
T1(n)
n

< −	
�
, (171)

where T1 is given by (31).
2) The term U2 is given by

U2 =

P

�
T2(n)
n

− Nh(n)
n

�
i∈S

μ1(i)(−H(P1(·|i))) < −	
�
,

(172)

where T2(n) is given by (32).
3) The term U3 is given by

U3 =

P

�
T3(n)
n

−

�
a�=h

Na(n)

n

�
i∈S

μ2(i)(−H(P2(·|i)))<−	
�
,

(173)

where T3(n) is given by (33).
4) The term U4 is given by

U4 = P

�
T4(n)
n

−Nh�(n)
n

�
i∈S

μ2(i)H(P2(·|i))<−	
�
,

(174)

where T4(n) is given by (34).
5) The term U5 is given by

U5 =

P

�
T5(n)
n

−
�
i∈S

(αnμ1(i)+βnμ2(i))H(P̃n(·|i))<−	
�
,

(175)

where T5(n) is given by (35).
6) The term U6 is given by

U6 = P

�
αn

�
D(P1�P̃n|μ1) −D(P1�Pδ|μ1)

�

+ βn

�
D(P2�P̃n|μ2)−D(P2�Pδ|μ2)

�
<−	

�
,

(176)

where Pδ is the probability transition matrix described
in the statement of Proposition 4.

7) The term U7 is given by

U7 = P

�
αnD(P1�Pδ|μ1) + βnD(P2�Pδ|μ2) − 6	

<
log((K − 1)L)

n

�
.

(177)

In (172), the term H(P1(·|i)) refers to the Shannon
entropy of the probability distribution (P1(j|i))j∈S on
set S; the terms H(P2(·|i)) and H(P̃n(·|i)) are defined
similarly.

We now obtain a bound for the terms in (171)-(177).

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 21,2021 at 11:40:55 UTC from IEEE Xplore.  Restrictions apply. 



4346 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

1) We begin by showing an exponential upper bound for
(177). We choose 0 < 	� < 2

3 , and then select 	 > 0
such that the following holds:

δ

2K
(1 − 	�)

�
D(P1�Pδ|μ1) +D(P2�Pδ|μ2)

�
− 6	

>
1
3
· δ

2K

�
D(P1�Pδ|μ1) +D(P2�Pδ|μ2)

�
. (178)

Then, for all n ≥ l(L, δ), we have

P

�
αnD(P1�Pδ|μ1) + βnD(P2�Pδ|μ2) − 6	

<
log((K − 1)L)

n
,

Na(n)
n

>
δ

2K
(1 − 	�) for all a ∈ A

�
= 0.

(179)

Writing the probability term in (177) as a sum of the
probability term in (179) and a second probability term
given by

P

�
αnD(P1�Pδ|μ1) + βnD(P2�Pδ|μ2) − 6	

<
log((K − 1)L)

n
,

Na(n)
n

≤ δ

2K
(1 − 	�) for some a ∈ A

�
,

(180)

and upper bounding (180) by

P

�
Na(n)
n

≤
�

δ

2K

�
(1 − 	�) for some a ∈ A

�
,

an application of the union bound yields

P

�
αnD(P1�Pδ|μ1) + βnD(P2�Pδ|μ2) − 6	

<
log((K − 1)L)

n

�

≤
K�
a=1

P

�
Na(n)
n

≤ δ

2K
(1 − 	�)

�
. (181)

Noting that for each a ∈ A, the sequence!
Na(n) − n δ

2K

"
n≥0

is a submartingale, with the
absolute value of the difference between any two succes-
sive terms of the submartingale sequence being of value
at most 1, we use the Azuma-Hoeffding inequality to
obtain

P

�
Na(n)
n

≤ δ

2K
(1 − 	�)

�

= P

�
Na(n) − n

δ

2K
≤ −n	� δ

2K

�

= P

��
Na(n)−n δ

2K

�
−Na(0) ≤ −n	� δ

2K
−Na(0)

�

≤ P

��
Na(n) − n

δ

2K

�
−Na(0) ≤ −n	� δ

2K

�

≤ exp
�
−n(	�)2δ2

8K2

�
. (182)

Plugging (182) back in (181), we arrive at

P

�
αnD(P1�Pδ|μ1) + βnD(P2�Pδ|μ2) − 6	

<
log((K − 1)L)

n

�

≤ K exp
�
−n(	�)2δ2

8K2

�
. (183)

2) We now turn attention to (174), which we upper bound
as follows:

P

�
T4(n)
n

− Nh�(n)
n

�
i∈S

μ2(i)H(P2(·|i)) < −	
�

= P

�
Nh�(n)
n

	�
i∈S

Nh�(n, i)
Nh�(n)

H

�
Nh�(n, i, ·)
Nh�(n, i)

�

−
�
i∈S

μ2(i)H(P2(·|i))


< −	

�

≤ P

�
Nh�(n)
n

	�
i∈S

Nh�(n, i)
Nh�(n)

H

�
Nh�(n, i, ·)
Nh�(n, i)

�

−
�
i∈S

μ2(i)H(P2(·|i))


< −	,

Na(n)
n

>
δ

2K
(1 − 	�) for all a ∈ A

�

+
K�
a=1

P

�
Na(n)
n

≤ δ

2K
(1 − 	�)

�
. (184)

From the analysis using the Azuma-Hoeffding inequality
for bounded difference submartingales presented earlier,
we know that each term inside the summation in (184)
is exponentially bounded. The first term in (184) may
be written as

P

�
Nh�(n)
n

	�
i∈S

Nh�(n, i)
Nh�(n)

H

�
Nh�(n, i, ·)
Nh�(n, i)

�

−
�
i∈S

μ2(i)H(P2(·|i))


< −	,

Na(n)
n

>
δ

2K
(1 − 	�) for all a ∈ A

�

≤ P

�	�
i∈S

Nh�(n, i)
Nh�(n)

H

�
Nh�(n, i, ·)
Nh�(n, i)

�

−
�
i∈S

μ2(i)H(P2(·|i))


< −	,

Na(n)
n

>
δ

2K
(1 − 	�) for all a ∈ A

�
.

(185)
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From Lemma 4, we have the following almost sure
convergences as n→ ∞:

Nh�(n, i, j)
Nh�(n, i)

→ P2(j|i), for all i, j ∈ S,
Nh�(n, i)
Nh�(n)

→ μ2(i), for all i ∈ S. (186)

Using the above convergences and the continuity of
the Shannon entropy functional H(·), we get that there
exist constants δ1 = δ1(	) and δ2 = δ2(	) such that
the probability in (185) may be upper bounded by the
probability

P

�
∃ i, j ∈ S such that

    Nh�(n, i, j)
Nh�(n, i)

− P2(j|i)
    > δ1,

    Nh�(n, i)
Nh�(n)

− μ2(i)
    > δ2,

Na(n)
n

>
δ

2K
(1 − 	�) for all a ∈ A

�
.

(187)

Noting that (Nh�(n, i, j) − Nh�(n, i)P2(j|i))n≥0

and (Nh�(n, i) − Nh�(n)μ2(j|i))n≥0 are martingale
sequences for all i, j ∈ S, we may then express (187)
as a probability of deviation of martingale sequences
from zero, which may be exponentially bounded by
using results from [24, Theorem 1.2A].

3) We now upper bound the term in (172). Towards this,
we first pick 	1 > 0 satisfying

0 < 	1 ≤ 	

1 + 2
�
i∈S

μ1(i)H(P1(·|i)) . (188)

Then, the following almost sure convergences hold for
all i, j ∈ S:

Nh(n)
n

→ λ∗δ ,

Nh(n, i, j)
Nh(n)

→ μ1(i)P1(j|i). (189)

Following the steps leading up to (106), we note that for
every choice of 	� > 0, there exists M = M(	�) such
that (106) holds. We now choose 	� such that

T2(n)
n

≥ Nh(n)
n

	��
i∈S

�
j∈S

(μ1(i)P1(j|i) + 	�)

log
μ1(i)P1(j|i) + 	�

μ1(i) + 	�|S|
�
− 	�




≥ Nh(n)
n

� �
i∈S

μ1(i)(−H(P1(·|i)))
�
− 	1 (190)

holds for all sufficiently large values of n, where the
last line above follows from the continuity of the term

within braces as a function of 	�. We then have

P

�
T2(n)
n

− Nh(n)
n

�
i∈S

μ1(i)(−H(P1(·|i))) < −	
�

≤ P

�
T2(n)
n

−Nh(n)
n

�
i∈S

μ1(i)(−H(P1(·|i))) < −	,
    Nh(n)

n
− λ∗δ

    ≤ 	1,    Nh(n, i, j)Nh(n)
− μ1(i)P1(j|i)

    ≤ 	� for all i, j ∈ S
�

+ P

�    Nh(n)
n

− λ∗δ

    > 	1

�

+
�
i,j∈S

P

�    Nh(n, i, j)Nh(n)
− μ1(i)P1(j|i)

    > 	�
�
. (191)

We now focus on the first term in (191), and notice that
for all sufficiently large values of n, this term may be
upper bounded as

P

�
(λ∗δ + 	1)

�
i∈S

μ1(i)(−H(P1(·|i))) − 	1

< −	+ (λ∗δ − 	1)
�
i∈S

μ1(i)(−H(P1(·|i)))
�

≤ P

�
	1 >

	

1 + 2
�
i∈S

μ1(i)H(P1(·|i))
�

= 0, (192)

where the last line follows from the choice of 	1 in
(188). Exponential bounds for the remaining terms in
(191) can be obtained similarly as in the analysis of the
first term in (184).
Lastly, for the terms in (171), (173), (175) and (176),
noting that the left-hand sides of the inequality inside the
probability expression in all the three terms converge to
zero a.s., similar procedures as used above for (172) and
(174) may be used to obtain exponential upper bounds.

This completes the proof of the lemma. �
Using the result of Lemma 8 in (166), we get that there

exist constants θ > 0 and 0 < B <∞ independent of L such
that the following holds:

lim sup
L→∞

Eπ
�

exp
�
τ(π)
logL

�    C
�

≤ exp
�

3
δ

2K (D(P1�Pδ|μ1) +D(P2�Pδ|μ2))

�

+ lim sup
L→∞

�
n≥l(L,δ)

B exp
�
n+ 1
logL

− nθ

�

<∞, (193)

thus establishing that the family {τ(π�(L, δ))/ logL : L ≥ 1}
is uniformly integrable. Combining the above result on uni-
form integrability along with the asymptotic bound in (155)
yields the desired upper bound in (46), thus completing the
proof of the proposition. �
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VIII. SUMMARY

We analysed the asymptotic behaviour of policies for a
problem of odd arm identification in a multi-armed rested
bandit setting with Markov arms. The asymptotics is in the
regime of vanishing probability of error. Our setting is one in
which the transition law of neither the odd arm nor the non-
odd arms is known. We derived an asymptotic lower bound on
the expected stopping time of any policy as a function of error
probability. We identified an explicit configuration-dependent
constant in the lower bound. Furthermore, we proposed a
scheme that (a) is a modification of the classical GLRT, and
(b) uses an idea of “forced exploration” from [7]. This scheme
takes as inputs two parameters: L ≥ 1 and δ ∈ (0, 1).
We showed that (a) for a suitable choice of L, the probability
of error of our scheme can be controlled to any desired
tolerance level, and (b) by tuning δ, the performance of our
scheme can be made arbitrarily close to that given by the lower
bound for vanishingly small error probabilities. In proving the
above results, we highlighted how to overcome some of the
key challenges that the Markov setting offers in the analysis.
To the best of our knowledge, the odd arm identification
problem (or variants like the best arm identification) in the
Markov observations setting have not been analysed in the
literature. Our analysis of the rested Markov setting is a key
first step in understanding the different case of restless Markov
setting, which is still open.
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