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Abstract—Consider a distributed detection problem in which
the underlying distributions of the observations are unknown; in-
stead of these distributions, noisy versions of empirically observed
statistics are available to the fusion center. These empirically
observed statistics, together with source (test) sequences, are
transmitted through different channels to the fusion center. The
fusion center decides which distribution the source sequence is
sampled from based on these data. For the binary case, we
derive the optimal type-II error exponent given that the type-
I error decays exponentially fast. The type-II error exponent
is maximized over the proportions of channels for both source
and training sequences. We conclude that as the ratio of the
lengths of training to test sequences α tends to infinity, using
only one channel is optimal. By calculating the derived exponents
numerically, we conjecture that the same is true when α is
finite under certain conditions. We relate our results to the
classical distributed detection problem studied by Tsitsiklis, in
which the underlying distributions are known. Finally, our results
are extended to the case of m-ary distributed detection with a
rejection option.

Index Terms—Distributed detection, Error exponents, Training
samples, Hypothesis testing

I. INTRODUCTION

The problem of distributed detection [1], [2] has a plethora
of applications, such as in distributed radar and sensor net-
works; see [3] and references therein for an overview. In
these examples, the observed information at local sensors
(processors) needs to be quantized before being sent to a fusion
center. The fusion center then performs a specific inference
task such as hypothesis testing.

In the traditional distributed detection problem as studied
in [1]–[4], the underlying generating distributions are available
at the fusion center and one is tasked to design a test based on
observations as well as the known distributions. However, in
practical applications, the fusion center has no knowledge of
the underlying distributions and may only be given quantized
or noisy observations and labelled training sequences (in place
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of the generating distributions). This leads to new challenges
in designing optimal tests.

Motivated by these practical issues and inspired by [2], [5],
in this paper, we adopt a contemporary statistical learning
approach and consider the distributed detection problem as
shown, for the binary case, in Figure 1 in which the distri-
butions of sensor observations are unknown. We term this
problem as distributed detection with empirically observed
statistics. We assume that the sensor observations are trans-
mitted to the fusion center via different channels, which can
also be regarded as compressors. Labelled training sequences
generated from the different underlying distributions are pre-
processed then provided to the fusion center. Our aim is to
derive fundamental performance limits of the classification
problem as well as to potentially come up with the same
conclusions as Tsitsiklis did in [2], i.e., to conclude that a small
number of distinct channels or local decision rules suffices to
attain the optimal error exponent.

A. Main Contributions

In this paper, our main contributions are as follows.
Firstly, for the binary distributed detection problem, we

derive the asymptotically optimal type-II error exponent when
the type-I error exponent is lower bounded by a positive
constant. In the achievability proof, we introduce a generalized
version of Gutman’s test in [5] and prove that the so-designed
test is asymptotically optimal.

Secondly, again restricting ourselves to the binary case,
we discuss the optimal proportions of different channels that
serve as pre-processors of the training and source sequences.
Let α, a constant, denote the ratio between the length of the
training sequence and the length of the source sequence. When
α→∞, we provide a closed-form expression for the type-II
error exponent and prove that using only one identical channel
for both training and source sequences is asymptotically opti-
mal. This mirrors Tsitsiklis’ result [2]. On the other hand, if
α is sufficiently small, the type-II error exponent is identically
equal to zero. When α does not take extreme values, by
calculating the derived exponent numerically, we conjecture
that using one channel for the training sequence and another
(possibly the same one) for the source sequence is optimal
under certain conditions.

Thirdly, we relate our results to the classical distributed
detection problem in Tsitsiklis’ paper [2]. When α→∞, the
true distributions can be estimated to arbitrary accuracy and
we naturally recover the results in [2] for both the Neyman-
Pearson and Bayesian settings.
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Fig. 1: System model for distributed detection with empirically observed
statistics. Functions h and g represent index mapping functions. See Fig. 2
for an illustration of h(·). The primary question in this paper is as follows:
Given a set of channels {Wj}j∈[K], what are the relative proportions of Wj ’s
that optimize the error exponent? For binary classification, when is using one
channel optimal (cf. [2])? See Sec. II-D for partial solutions.

Finally, we extend our analyses to consider an m-ary
distributed detection problem with rejection. We derive the
asymptotically optimal type-j rejection exponent for each
j ∈ [m] under the condition that all (undetected) error
exponents are lower bounded by a positive constant λ. In
the achievability proof, we introduce a generalized version
of Unnikrishnan’s test [6] by identifying an appropriate test
statistic.

B. Related Works

The distributed detection literature is vast and so it would
be futile to review all existing works. This paper, however,
is mainly inspired by [5] and [2]. In [5], Gutman proposed
an asymptotically optimal type-based test for the binary
classification problem. In [2], Tsitsiklis showed that using
1
2m(m− 1) distinct local decision rules is optimal for m-
ary hypotheses testing in standard Bayesian and Neyman-
Pearson distributed detection settings. Ziv [7] proposed a
discriminant function related to universal data compression
in the binary classification problem with empirically ob-
served statistics. Chamberland and Veeravalli [8] considered
the classical distributed detection in a sensor network with
a multiple access channel, capacity constraint and additive
noise. Liu and Sayeed [9] extended the type-based distributed
detection to wireless networks. Chen and Wang [10] studied
the anonymous heterogeneous distributed detection problem
and quantified the price of anonymity. Tay, Tsitsiklis and Win
studied tree-based variations of the distributed detection prob-
lem in the Bayesian [4] and Neyman-Pearson settings [11].
The authors also studied Bayesian distributed detection in
a tandem sensor network [12]. The aforementioned works
assume that the distributions are known.

Nguyen, Wainwright and Jordan [13] proposed a kernel-
based algorithm for the nonparametric distributed detection
problem with communication constraints. Similarly, Sun and
Tay [14] also studied nonparametric distributed detection net-
works using kernel methods and in the presence of privacy

constraints. While the problem settings in [13] and [14] involve
training samples, the questions posed there are algorithmic in
nature and hence, different. In particular, they do not involve
fundamental limits in the spirit of this paper.

C. Paper Outline

The rest of this paper is organized as follows. In Section II,
we formulate the distributed detection problem with empiri-
cally observed statistics. We also present the optimal type-II
error exponent and analyze the optimal proportion of channels
and recover analogues of the results in [2] both for Neyman-
Pearson and Bayesian settings. In Section III, we extend our
results to the case in which there are m ≥ 2 hypotheses and
the rejection option is present. We conclude our discussion and
present avenues for future work in Section IV. The proofs of
our results are provided in the appendices.

D. Notation

Random variables and their realizations are in upper (e.g.,
X) and lower case (e.g., x) respectively. All sets are denoted
in calligraphic font (e.g., X ). We use X c to denote the
complement of X . Let Xn := (X1, . . . , Xn) be a random
vector of length n. All logarithms are base e. Given any two
integers (a, b) ∈ N2, we use [a : b] to denote the set of integers
{a, a + 1, . . . , b} and use [a] to denote [1 : a]. The set of
all probability distributions on a finite set X is denoted as
P(X ) and the set of all conditional probability distributions
from X to Y is denoted as P(Y|X ). Given P ∈ P(X ) and
V ∈ P(Y|X ), we use PV to denote the marginal distribution
on Y induced by P and V . We denote the support of P as
supp(P ). Given a vector xn = (x1, x2, . . . , xn) ∈ Xn, the
type or empirical distribution [15] is denoted as Txn(a) =
1
n

∑n
i=1 1{xi = a} where a ∈ X . We interchangeably use

T nTxn and Txn := {x̃n ∈ Xn : Tx̃n(a) = Txn(a), ∀ a ∈ X}
to denote the type class of Txn . Let Pn(X ) denote the set of
types with denominator n. For two positive sequences {an}
and {bn}, we write an

.
≤ bn if lim supn→∞

1
n log an

bn
≤ 0. The

notations
.
≥ and .

= are defined similarly. For a given vector
a ∈ Rd, we let supp(a) := {i ∈ [d] : ai 6= 0} denote the
support of a.

II. BINARY DISTRIBUTED DETECTION WITH TRAINING
SAMPLES

In this section, we formulate the problem in which there
are two hypotheses and instead of distributions, only training
samples are available.

A. Problem Formulation

We assume that there are K fixed compressors or channels
(these are called local decision rules in [2]), where for each
j ∈ [K], the j-th channel is Wj ∈ P(Z|X ). This channel has
input alphabet X = [M ] and output alphabet Z = [L]. For
notational simplicity, we assume that |X | = M < ∞ but our
results go through for uncountably infinite X as well. We let
W := {Wj}j∈[K] be a fixed set of channels. Furthermore, let
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h : [n] 7→ [K] and g : [N ] 7→ [K] to be functions that map
the index of the test/training sample to the channel index.

The system model is as follows (see Figure 1). There are
n sensors and a source/test sequence Xn generated i.i.d.
according to some unknown distribution defined on X . For
each i ∈ [n], the i-th sensor observes Xi ∈ X and maps it to
Zi using the channel Wh(i). The Zi’s from all local sensors are
transmitted to a fusion center. In addition to Zi’s, the fusion
center observes two noisy versions of training sequences
(Y N1 , Y N2 ) ∈ X 2N which are generated i.i.d. according to
some unknown but fixed distributions (P1, P2) ∈ P(X )2.
The fusion center observes noisy sequences (Ỹ N1 , Ỹ N2 ), where
Ỹ1,i ∼ Wg(i)(·|Y1,i) and Ỹ2,i ∼ Wg(i)(·|Y2,i) for all i ∈ [N ].
With (Ỹ N1 , Ỹ N2 ) and Zn, the fusion center uses a decision
rule γ : [L]2N+n 7→ {H1,H2} to discriminate between the
following two hypotheses:
• H1: the source sequence Xn and the training sequence
Y N1 are generated according to the same distribution;

• H2: the source sequence Xn and the training sequence
Y N2 are generated according to the same distribution.

We assume N = dαne for some α ∈ R+.1 For each j ∈
[K], we use a(n)

j and b(n)
j to denote the proportions of [n] and

[N ] in which the channel Wj is used to process the source
and training sequences respectively, i.e.,

a
(n)
j :=

∑
i∈[n]1{h(i)=j}

n
, b

(n)
j :=

∑
i∈[αn]1{g(i)=j}

αn
.

(1)

An example is given in Figure 2. Furthermore, we let a(n) =

(a
(n)
1 , . . . , a

(n)
K ) and b(n) = (b

(n)
1 , . . . , b

(n)
K ). We assume that

the following limits exist:

aj := lim
n→∞

a
(n)
j , bj := lim

n→∞
b
(n)
j , ∀j ∈ [K]. (2)

To avoid clutter in subsequent mathematical expressions, we
abuse notation subsequently and drop the superscript (n) in
a(n) and b(n) in all non-asymptotic expressions, with the
understanding that a (resp. aj) appearing in a non-asymptotic
expression should be interpreted as a(n) (resp. a(n)

j ).
Given any decision rule γ at the fusion center and any

pair of distributions (P1, P2) according to which the training
sequences (Y N1 , Y N2 ) are generated, the performance metrics
we consider are the type-I and type-II error probabilities

βν(γ, P1, P2|a,b,W) = Pν{γ(Zn, Ỹ N1 , Ỹ N2 ) 6=Hν}, (3)

where for ν ∈ [2], we use Pν := Pr{·|Hν} to denote the
joint distribution of Zn and (Ỹ N1 , Ỹ n2 ) under hypothesis Hν .

1We ignore the integer constraints of (n,N) and write N = αn.

In the remainder of this paper, we use βν(γ, P1, P2) to denote
βν(γ, P1, P2|a,b,W) if there is no risk of confusion.

Inspired by [5], in this paper, we are interested in the
maximal type-II error exponent with respect to a pair of
target distributions for any decision rule at the fusion center
whose type-I error probability decays exponentially fast with
a certain fixed exponential rate for all pairs of distributions,
i.e., given any λ ∈ R+, the optimal non-asymptotic type-II
error exponent is

E∗(n, α, P1, P2, λ|a,b,W)

:= sup{E ∈ R+ : ∃ γ s.t. β2(γ, P1, P2) ≤ exp(−nE) and

β1(γ, P̃1, P̃2) ≤ exp(−nλ), ∀ (P̃1, P̃2) ∈ P(X )2}. (4)

B. Definitions

To state our results succinctly, we begin by stating some
somewhat non-standard definitions. Given any pair of distri-
butions (Q, Q̃) ∈ P([L])2 and any α ∈ R+, the generalized
Jensen-Shannon divergence [16, Eqn. (3)] is defined as

GJS(Q̃,Q, α) := D
(
Q
∥∥∥Q+ αQ̃

1 + α

)
+ αD

(
Q̃
∥∥∥Q+ αQ̃

1 + α

)
.

(5)
Let Q = (Q1, . . . , QK) ∈ P([L])K and Q̃i =

(Q̃i,1, . . . , Q̃i,K) ∈ P([L])K where i ∈ [2] be three collections
of distributions. Given any (Q, Q̃1, Q̃2) ∈ P([L])3K , any
(P, P̃1, P̃2) ∈ P(X )3, any α ∈ R+, any pair (a,b) ∈
P([K])2, define the following linear combination of diver-
gences

LD(Q, Q̃1, Q̃2, P, P̃1, P̃2|α,a,b,W)

:=
∑
k∈[K]

(
akD(Qk‖PWk) +

∑
i∈[2]

αbkD(Q̃i,k‖P̃iWk)
)
, (6)

and furthermore, given any λ ∈ R+, define the following set
of collections of distributions

Qλ(α,a,b,W) :=

{
(Q, Q̃1, Q̃2) ∈ P([L])3K :

min
(P̃ ,P )∈P(X )2

LD(Q, Q̃1, Q̃2, P̃ , P̃ , P |α,a,b,W)≤λ
}
. (7)

Finally, define the following minimum linear combina-
tion of divergences over the collections of distributions in
Qλ(α,a,b,W) as

fα(P1, P2|a,b,W)

:= min
(Q,Q̃1,Q̃2)
∈Qλ(α,a,b,W)

LD(Q, Q̃1, Q̃2, P2, P1, P2|α,a,b,W).

(8)

C. Main Results

The following theorem is our main result and presents a
single-letter expression for the optimal type-II exponent.

Theorem 1. Given any (λ, α) ∈ R2
+, any pair of target

distributions (P1, P2) ∈ P(X )2,

lim
n→∞

E∗(n, α, P1, P2, λ|a,b,W) = fα(P1, P2|a,b,W). (9)
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The proof of Theorem 1 is given in Appendix A. Several
remarks are in order.

Firstly, in the achievability proof of Theorem 1, we make
use of the following test at the fusion center

γ(Zn, Ỹ N1 , Ỹ N2 )

=

{
H1 minP̃ ,P LD

(
TZna ,TỸNb

1
,TỸNb

2
, P̃ , P̃ , P

)
≤ λ,

H2 otherwise,
(10)

where we suppressed the dependence of LD on (α,a,b,W)
and for each k ∈ [K], we use Znak to denote the collection
of Zi where i ∈ [n] satisfies h(i) = k and similarly for Ỹ Nbkj

for j ∈ [2]. Furthermore, we use Tzna to denote the vector of
types (Tzna1 , . . . , TznaK ) and use TỹNb

j
for j ∈ [2] similarly.

Theorem 1 indicates that the test in (10) is asymptotically
optimal. The test in (10) basically compares a certain distance
between Tzna and TỹNb

1
plus a bias term related to TỹNb

2
to

a threshold λ. When the distance is small enough, we declare
that Tzna and TỹNb

1
are generated according to the same

distribution; otherwise, we declare that they are not.
Secondly, the test in (10) is a generalization of Gutman’s

test in [5]. To see this, we note that if we let K = 1, M = L
and consider the deterministic channel denoted as W = IL,
the test in (10) reduces to Gutman’s test using (Zn, Ỹ N1 , Ỹ N2 )
since

min
P̃ ,P

LD
(
TZna ,TỸNb

1
,TỸNb

2
, P̃ , P̃ , P

∣∣α,a,b, {IL})
= min

P̃ ,P
D(TZn‖P̃ ) + αD(TY N1 ‖P̃ ) + αD(TY N2 ‖P ) (11)

= GJS(TỸ N1
, TZn , α), (12)

and the exponent in Theorem 1 reduces to the type-II exponent
for binary classification [5, Thm. 3], i.e.,

γ(Zn, Ỹ N1 , Ỹ N2 ) =

{
H1 GJS(TỸ N1

, TZn , α) ≤ λ,
H2 otherwise,

(13)

and

lim
n→∞

E∗(n, α, P1, P2, λ|a,b,W)

= min
(Q,Q̃)∈P(Z)2:

GJS(Q̃,Q,α)≤λ

D(Q‖P2) + αD(Q̃‖P1). (14)

Finally, to better understand the effect of not knowing
the true distributions, we numerically plot the optimal type-
II exponent fα(P1, P2|a,b,W) (defined in (8)) in Figure
3. As shown in Figure 3, the optimal type-II exponent
fα(P1, P2|a,b,W) increases as α = N

n increases and con-
verges to a threshold as α→∞. This threshold is the optimal
error exponent when the true distributions are known [2,
Theorem 2]. The gap f∞ − fα thus quantifies the loss due
to the fact that the generating distributions are unknown and
only training samples are available to the learner.

D. Further Discussions on the Impact of the Proportions of
Local Decision Rules (a,b) on the Exponent

In this subsection, we discuss the choices of the proportion
of local decision rules, denoted by (a,b), to achieve the

0 20 40 60 80 100 120 140 160 180
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0.15

0.2

Fig. 3: Plot of fα(P1, P2|a,b, λ) for various values of α, fixed (a,b, λ)
and K = 2

optimal type-II exponent fα(P1, P2|a,b,W). Throughout the
section, we fix a pair of target distributions (P1, P2). For
brevity, we define

fα(a,b, λ) := fα(P1, P2|a,b,W). (15)

Since the type-II error exponent depends on (a,b), inspired
by the result in [2] which states that one local decision rule is
optimal for binary hypotheses testing (in the Neyman-Pearson
and Bayesian settings), we can further optimize the type-II
error exponent with respect to the design of the proportion of
channels (encoded in a and b) and thus study

f∗α(λ) := max
(a,b)∈P([K])2

fα(a,b, λ) (16)

and the corresponding optimizers a∗ and b∗ for different
values of α. For this purpose, given any vector v ∈ P([K])
and any distribution P̃ ∈ P(X ), define

P(P̃ |v,W) :=
{
P ∈ P(X ) :

∀ k ∈ [K], vk‖PWk − P̃Wk‖∞ = 0
}
. (17)

Note that P̃ ∈ P(P̃ |v,W) and if supp(v) = [K], then
PWk = P̃Wk for all k ∈ [K].

Furthermore, given any Q ∈ P([L])K , any P1 ∈ P(X ) and
any pair (a,b) ∈ P([K])2, let

κ(Q, P1|a,b,W) := min
P̃∈P(P1|b,W)

∑
k∈[K]

akD(Qk‖P̃Wk). (18)

Lemma 2. The function fα(a,b, λ) satisfies

lim
α→∞

fα(a,b, λ) = f∞(a,b, λ)

:= min
Q∈P([L])K :κ(Q,P1|a,b,W)≤λ

∑
k∈[K]

akD(Qk‖P2Wk). (19)

The proof of Lemma 2 is provided in Appendix B.
We say that a ∈ P([K]) is deterministic if there exists a

j ∈ [K] such that aj = 1. Let ej be the j-th standard basis
vector in RK , i.e., the vector ej equals 1 in the j-th location
and 0 in other locations.

Corollary 3. Given any λ ∈ R+, we have

sup
(a,b)∈P([K])2

f∞(a,b, λ) = max
k∈[K]

f∞(ek, ek, λ), (20)
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Fig. 4: fα(a,b, λ) for small α, fixed (a,b, λ) and K = 2

and thus the maximizers (a∗,b∗) for f∞(a,b, λ) satisfy that
(a∗,b∗) are both deterministic and a∗ = b∗.

The proof of Corollary 3 is provided in Appendix C.
Corollary 3 says that when the length of the training sequence
is much longer than the test sequence, it is optimal to use a
single local decision rule or channel to pre-process the training
data and source sequence; this is analogous to [2, Theorem 1].

Given any α ∈ R+ and any (a,b) ∈ P([K])2, let

Gα(a,b)

:= min
(P̃ ,P )∈P(X )2

∑
k∈[K]

(
akD(P2Wk‖P̃Wk)

+ αbkD(P1Wk‖P̃Wk) + αbkD(P2Wk‖PWk)
)

(21)

= min
P̃∈P(X )

∑
k∈[K]

(
akD(P2Wk‖P̃Wk) + αbkD(P1Wk‖P̃Wk)

)
.

(22)

Given any λ ∈ R+, let α0(a,b, λ) be the solution (in α) to
the following equation

λ = Gα(a,b). (23)

Since Gα(a,b) is an increasing function of α and G0(a,b) =
0, for any λ ∈ R+, we have α0(a,b, λ) > 0 unless λ = 0.

Lemma 4. Given any (a,b) ∈ P([K])2 and any λ ∈ R+, if
α ∈ [0, α0(a,b, λ)], then

fα(a,b, λ) = 0. (24)

We verified Lemma 4 numerically by plotting fα(a,b, λ)
as a function of α when α is small for certain values of
(a,b, λ) in Figure 4. The proof of Lemma 4 is straightforward
since when α ≤ α0(a,b, λ), (Q∗, Q̃∗1, Q̃

∗
2) ∈ Qλ(α,a,b,W)

where Q∗k = P2Wk, Q̃∗1,k = P1Wk and Q̃∗2,k = P2Wk

and thus LD(Q∗, Q̃∗1, Q̃
∗
2, P2, P1, P2|α,a,b,W) = 0. The

intuition is that when α is small enough, for any λ > 0,
the decision rule γ in (10) always declares H1, which means
that β2(γ, P1, P2) = 1, so the corresponding exponent is
identically 0.

E. Numerical Study on Optimal Proportions of Local Deci-
sion Rules

In the following, we present numerical results to illus-
trate the properties of the optimal proportions of local de-

cision rules (a∗α,b
∗
α) := arg maxa,b fα(a,b, λ) when α ∈

(α0(a,b, λ),∞); that is, α is moderate.
When K = 2, regardless of the stochasticity of the channels

in W , we find that the maximal value of fα(a,b, λ) always
lies at a corner point of the feasible set of (a,b). See Figure 5
for numerical examples. When K ≥ 3, we find that the results
are more involved and it is not necessarily optimal to use
only one local decision rule. To clarify our observations, we
first describe cases where our numerical calculations of the
exponent suggest that it is optimal to use only one local
decision rule to achieve the optimal type-II error exponent;
this is analogous to [2, Theorem 2]. We then consider other
cases and briefly discuss why it is not always optimal to use
one local decision rule.

1) When One Local Decision Rule is Optimal: In most
practical distributed detection systems, the local decision rule
at each sensor is a deterministic compressor or quantizer.
However, under certain conditions, randomized local decision
rules can be used to provide privacy [17]–[19] or to satisfy
power constraints [20, Sec. IV]. We now describe a class of
local decision rules for which the exponent can be simplified
and numerical calculations of the exponents suggest that full
diversity of local decision rules is unnecessary.

Let VI be the set of stochastic matrices (channels) with
M = |X | rows and L = |Z| columns whose rows contain
a permutation of the rows of IL, the L × L identity matrix.
The set VI includes all deterministic mappings (e.g., Figure
6(b)) and a subset of stochastic mappings as long as for each
z ∈ Z , there exists an xz ∈ X that maps directly to it, as
illustrated in Figure 6(a). Note that Tsitsiklis [2] considers
only deterministic local decision rules, which certainly falls
into the class VI. The definition is extended in the obvious
way if M =∞ (i.e., for all z ∈ Z , there exists xz ∈ X such
that V (z|xz) = 1).

We assume that the second training sequence Y N2 is pre-
processed by one local decision rule V ∈ VI , i.e., Ỹ2,i ∼
V (·|Y2,i) for all i ∈ [N ]. The channels {Wj}j∈[K] that are
used to pre-process the test sequence Xn and the first training
sequence Y N1 are arbitrary. Under such a setting, we can
simplify the asymptotically optimal error exponent and test
(cf. (9) and (10)) as follows:

lim
n→∞

E∗VI(n, α, P1, P2, λ|a,b,W)

= min
(Q,Q̃)

∈Qλ,VI (α,a,b,W)

∑
k∈[K]

(
akD(Qk‖P2Wk)

+ αbkD(Q̃k‖P1Wk)
)

(25)

where Qλ,VI(α,a,b,W) :=
{

(Q, Q̃) ∈ P([L])K :

minP̃∈P(X )

∑
k∈[K]

(
akD(Qk‖P̃Wk)+αbkD(Q̃k‖P̃Wk)

)
≤

λ
}

, and γVI is given in (26) at the top of the next page.
By calculating fα(a,b, λ) for various (P1, P2) and W , we

find that when α is moderate (i.e., neither ≤ α0 nor ∞), the
maximal value of fα(a,b, λ) always lies at a corner point of
the feasible set of (a,b), as shown in Figure 7. Additional
numerical results are shown in Appendix D. Inspired by these
numerical results, we present the following conjecture:
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Fig. 5: Numerical evaluations of fα(a,b, λ) when K = 2 and λ = 0.01. Note that the maxima occur at the corner points of [0, 1]2.
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Fig. 6: Examples of random and deterministic V ∈ VI .

Conjecture 5. For all α, λ ∈ R+, the vectors a∗α and b∗α that
maximize fα(a,b, λ) are deterministic if the second training
sequence Y N2 is pre-processed by a single channel V ∈ VI .

2) Results without Assumptions on Channels: In this sub-
section, we discuss the general case where there is no assump-
tion (e.g., deterministic or membership in VI) on local decision
rules used to pre-process Xn, Y N1 and Y N2 .

By calculating fα(a,b, λ) for various (P1, P2) and W , we
find that when K = 3 and α is moderate, the maximal value
of fα(a,b, λ) does not always lie at a corner point; instead,
it may occur at non-corner points within the feasible set of
(a,b). We illustrate this in Figure 8 for the case of stochastic
W1,W2,W3 and for some b = (b1, b2, b3).

Our numerical results suggest that without the knowledge
of true distributions, it is not always optimal to use only one
identical channel to process the test and training samples,
which differs from the result in Tsitsiklis’ paper [2]. The
difference can be explained intuitively as follows. First, in
[2], deterministic decision rules are considered while in our
setting, we allow the channels to be stochastic. Second, when

α is moderate, we are not able to estimate the true distri-
butions with arbitrary accuracy using the training samples.
Thus, to combat the randomness induced by the channels and
to compensate for the loss of (full) knowledge of the true
distributions, the fusion center may require more information;
hence the need for more diversity in the local decision rules.

F. Connections to Results in Distributed Detection

We discuss the connections between Theorem 1 and [2],
which concerns distributed detection when the underlying
distributions are known. Throughout this subsection, to em-
phasize the dependence of error probabilities on (a,b), we
use βν(γ, P1, P2|a,b) to denote the type-ν error probability
with respect to distributions (P1, P2) when test γ is used at
the fusion center.

We first consider the Neyman-Pearson setting [21,
Sec. 11.8]. Given any ε ∈ [0, 1], let Γε(a,b) be the set of
tests satisfying that for all (P̃1, P̃2) ∈ P(X )2,

β1(γ, P̃1, P̃2|a,b) ≤ ε. (27)

Let the optimal type-II error probability subject to (27) be

β∗2(P1, P2) := min
(a,b)∈

Pn([K])×Pαn([K])

min
γ∈Γε(a,b)

β2(γ, P1, P2|a,b).

(28)

Note that β∗2(P1, P2) depends on n, α and ε but this depen-
dence is suppressed for the sake of brevity.

Corollary 6. Given any V ∈ VI and any (P1, P2) ∈ P(X )2,

lim
α→∞

lim
n→∞

1

n
log

1

β∗2(P1, P2)
= max
k∈[K]

D(P1Wk‖P2Wk). (29)

Proof sketch of Corollary 6. The direct parts of the result are
corollaries of Theorem 1, Lemma 2 and Corollary 3 by letting
λ = 1

n log 1
ε ↓ 0. The converse parts follow from [2, Theo-

rem 2] where the distributions are known since one can never
obtain better (larger) exponents with unknown distributions
than with known distributions. Since the justifications are
straightforward, we omit the details for the sake of brevity.

We also consider the Bayesian setting. Assume the prior
probabilities for H1 and H2 are π1 and π2 respectively. Clearly,
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γVI(Z
n, Ỹ N1 , Ỹ N2 ) =

{
H1 minP̃

∑
k∈[K]

(
akD(TZnak ‖P̃Wk) + αbkD(T

Y
Nbk
1

‖P̃Wk)
)
≤ λ,

H2 otherwise.
(26)
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Fig. 7: Numerical evaluations of fα(a,b, λ) with the assumption of V ∈ VI when K = 3, λ = 0.01, α = 10 and W1,W2,W3 are deterministic. Note
that for each vector b, the maxima with respect to a occur at the corner points of [0, 1]2.

π1 + π2 = 1. Given any (a,b) ∈ Pn([K]) × Pαn([K]) and
any W , let the Bayesian error probability be

Pe(γ, P1, P2|a,b) :=

2∑
i=1

πiβi(γ, P1, P2|a,b). (30)

Furthermore, let the maximum Chernoff information between
P2Wk and P1Wk be

λ∗ = max
k∈[K]

max
ρ∈[0,1]

log
1∑

z(P2Wk)ρ(z)(P1Wk)1−ρ(z)
. (31)

and let ΓBayes(a,b) be the set of tests at the fusion center
satisfying that for all (P̃1, P̃2) ∈ P(X )2,

β1(γ, P̃1, P̃2|a,b) ≤ exp(−nλ∗). (32)

Finally, let the optimal Bayesian error probability be

P∗e(P1, P2)

:= min
(a,b)

∈Pn([K])×Pαn([K])

min
γ∈ΓBayes(a,b)

Pe(γ, P1, P2|a,b). (33)

Again P∗e(P1, P2) depends on both n and α.

Corollary 7. Given any V ∈ VI and any (P1, P2) ∈ P(X )2,

lim
α→∞

lim
n→∞

1

n
log

1

P∗e(P1, P2)
= λ∗. (34)

Proof sketch of Corollary 7. The direct parts of the following
results are corollaries of Theorem 1, Lemma 2 and Corol-
lary 3 by solving maxk∈[K] f∞(ek, ek, λ) = λ. The (strong)
converse parts follow from [2].

Under the Bayesian setting, the exponents of the type-I and
type-II error probabilities are equal [21, Thm. 11.9.1].

Note that Corollaries 6 and 7 are analogous to distributed
detection [2] for the binary case under the Neyman-Pearson
and Bayesian settings respectively where the true distributions
(P1, P2) are known. The intuition is that when the lengths of
the training sequences are much longer than that of the source
sequence (i.e., α→∞), we can estimate the true distributions
to arbitrary precision, i.e., as accurately as desired.

III. m-ARY DISTRIBUTED DETECTION WITH THE
REJECTION OPTION AND TRAINING SAMPLES

In this section, we generalize the binary distributed detection
problem to the scenario in which we desire to discriminate
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Fig. 8: Numerical evaluations of fα(a,b, λ) when K = 3, α = 10, λ = 0.01 and W1,W2,W3 are all stochastic matrices. Note that in Fig. 8(a) the
maximal value occurs at (a1, a2, a3) = (0.65, 0, 0.35). However, in Fig. 8(b), the maximal value occurs at (a1, a2, a3) = (1, 0, 0).

between m ≥ 2 hypotheses with the rejection option. Our main
contribution here is the identification of an appropriate test
statistic and test that achieves the optimal rejection exponent
for a fixed lower bound on all error exponents.

A. Problem Formulation

In the m-ary distributed detection problem, there are m
training sequences {Y Ni }i∈[m], each generated i.i.d. accord-
ing to an unknown distribution Pi ∈ P(X ). There are n
sensors. Each sensor observes a source symbol Xi and com-
press/processes it into a noisy version Zi just as in the binary
distributed detection problem. Given noisy training sequences
{Ỹ Ni }i∈[m] and the compressed source sequence Zn, in which
Ỹi,j ∼ Wg(j)(·|Yi,j) for all i ∈ [m] and j ∈ [N ], the fusion
center uses a decision rule γ : [L]mN+n 7→ {H1, . . . ,Hm,Hr}
to discriminate among the following m+ 1 hypotheses:
• Hj , ∀ j ∈ [m]: the source sequence Xn and the j-th

training sequence Y Nj are generated according to the
same distribution;

• Hr: the source sequence Xn is generated according to
a distribution different from those which the training
sequences are generated from and hence we reject all
Hj , ∀ j ∈ [m].

Thus, the decision rule γ partitions the sample space
[L]mN+n into m + 1 disjoint regions: m acceptance regions
{Λj(γ)}j∈[m], where Λj(γ) favors hypothesis Hj , i.e.,

Λj(γ) :=
{

(zn, ỹN1 , . . . , ỹ
N
m) ∈ [L]mN+n :

γ(Zn, ỹN1 , . . . , ỹ
N
m) = Hj

}
, (35)

and one rejection region Λr(γ) := (∪j∈[m]Λj(γ))c which
favors hypothesis Hr. Note that here we assume that all
m training sequences are processed with channels in W
using the same index mapping function g. That is, all the
first components Y1,1, . . . , Ym,1 are passed through the same
channel, which is one element from W . The same is true for
all the other N − 1 components.

For conciseness, we set YN = (Y N1 , . . . , Y Nm ) and use
ỸN similarly. Furthermore, we set P = (P1, . . . , Pm) and
use P̃ and Q similarly. Recall the definition of a,b and the

assumption that N = dαne. Given any decision rule γ at the
fusion center and any tuple of distributions P, the performance
metrics we consider are the error probabilities and the rejection
probabilities for each j ∈ [m], i.e.,

βj(γ,P|a,b,W) := Pj{γ(Zn, ỸN ) /∈ {Hj ,Hr}}, (36)

βr,j(γ,P|a,b,W) := Pj{γ(Zn, ỸN ) = Hr}. (37)

We use βj(γ,P) and βr,j(γ,P) in place of
βj(γ,P|a,b,W) and βr,j(γ,P|a,b,W) respectively if
there is no risk of confusion. For this setting, we are
interested in tests that can simultaneously ensure exponential
decay of the error probabilities under any hypothesis for any
tuple of distributions and exponential decay of the rejection
probabilities under each hypothesis for a particular tuple of
distributions. To be concrete, given any tuple of distributions
P and any λ ∈ R+, we are interested in the following optimal
exponent of the rejection probability under hypothesis Hj :

E∗j (n, α,P, λ|a,b,W)

:= sup
{
Ej ∈ R : ∃ γ s.t. ∀ j ∈ [m],

βj(γ, P̃) ≤ exp(−nλ), ∀ P̃ ∈ P(X )m,

βr,j(γ,P) ≤ exp(−nEj)
}
. (38)

We emphasize that in this formulation, under each hypothesis,
the error exponent is at least λ for all tuples of distributions.

B. Main Results

Before presenting the main result, we present some prelim-
inary definitions. Recall that for each k ∈ [K], we use znak
to denote the collection of zi satisfying h(i) = k, use zna to
denote (zna1 , . . . , znaK ) and use Tzna to denote the vector
of types (Tzna1 , . . . , TznaK ). Similarly, for each k ∈ [K]
and j ∈ [m], we use the notations ỹNbkj , ỹNb

j and TỹNb
j

.
Given any tuple of distributions P = (P1, . . . , Pm) ∈ P(X )m
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and any j ∈ [m], define the following linear combination of
divergences

LD
[m]
j (TZna , {TỸNb

i
}i∈[m],P)

:=
∑
k∈[K]

(
akD(TZnak ‖PjWk) +

∑
i∈[m]

αbkD(T
Ỹ
Nbk
i

‖PiWk)
)
,

(39)

and furthermore, let

L̃Dj(TZna , {TỸNb
i
}i∈[m])

:= min
P∈P(X )m

LD
[m]
j (TZna , {TỸNb

i
}i∈[m],P). (40)

Note that LD
[m]
j (·) is a slight generalization of LD(·) in (6).

In the following, we will see that L̃Dj(·) is an appropriate
test statistic that will be used in the achievability proof and an
optimized version of LD

[m]
j (·) is the corresponding exponent.

Finally, given any (i, l) ∈ [m]2 satisfying i 6= l, we define the
following set of the collections of distributions:

Qλ,i,l(α,a,b,W) :=
{

(Q, {Q̃i}i∈[m]) ∈ P(X )(m+1)K :

L̃Di(Q, {Q̃i}i∈[m]) ≤ λ, L̃Dl(Q, {Q̃i}i∈[m]) ≤ λ
}
. (41)

Note that if we choose (Q, {Q̃i}i∈[m]) ∈ P(X )(m+1)K such
that Q = Q̃1 = . . . = Q̃m and Q1 = P0W1, Q2 =
P0W2, . . . , QK = P0WK for any P0 ∈ P(X ), then for all
j ∈ [m], we have

LD∗j (Q, Q̃j) = LD∗j ({P0Wk}k∈[K], {P0Wk}k∈[K]) = 0
(42)

and

min
P̃i

∑
k∈[K]

αbkD(Q̃i,k‖P̃iWk)

= min
P̃i

∑
k∈[K]

αbkD(P0Wk‖P̃iWk) = 0, ∀ i ∈ [m], (43)

which implies that L̃Di(Q, {Q̃i}i∈[m]) = 0 for all i ∈ [m].
Thus, Qλ,i,l(α,a,b,W) is non-empty for any (α,a,b,W).

Our main result in this section is the following asymptotic
characterization of E∗j (n, α,P, λ|a,b,W).

Theorem 8. Given any (λ, α) ∈ R2
+ and any tuple of target

distributions P ∈ P(X )m, for all j ∈ [m], we have

lim
n→∞

E∗j (n, α,P, λ|a,b,W)

= min
(i,l)∈[m]2:l 6=i

min
(Q,{Q̃i}i∈[m])

∈Qλ,i,l(α,a,b,W)

LD
[m]
j (Q, {Q̃i}i∈[m],P).

(44)

The proof of Theorem 8 is given in Appendix E.
First, as shown in Fig. 9, there exists λ ∈ R+ such that

limn→∞E∗j (n, α,P, λ|a,b,W) < λ, which implies that the
type-j rejection exponents can be designed to be smaller
than all the error exponents with an appropriate choice of
λ. This scenario is reminiscent of practical communication
scenarios [22], [23] (automatic repeat request or ARQ) where
the rejection probability is designed to be much larger than

the (undetected) error probability as declaring a rejection is
typically much less costly than a genuine mistake being made.

Second, let us describe the test that is used in the achiev-
ability proof of Theorem 8. This test is a generalized ver-
sion of Unnikrishnan’s test [6]. Given any tuple of types
(TZna , {TỸNb

i
}i∈[m]), we define the indices of the minimum

and the second minimum of L̃Di(TZna , {TỸNb
i
}i∈[m]) over

all i ∈ [m] as

i1 = i1(Zn, ỸN ) :=arg min
i∈[m]

L̃Di(TZna , {TỸNb
i
}i∈[m]) (45)

and

i2 = i2(Zn, ỸN ) := arg min
i∈[m]:i 6=i1

L̃Di(TZna , {TỸNb
i
}i∈[m]) (46)

respectively. If the index of the right hand side of (46) is not
unique, we define i2(Zn, ỸN ) as the smallest index of all
i ∈ [m] such that the value of L̃Di(TZna , {TỸNb

i
}i∈[m]) is

second smallest. In the achievability proof of Theorem 8, we
make use of the following test

γ(Zn, ỸN )

=

{
Hj if i1 = j and L̃Di2(TZna , {TỸNb

i
}i∈[m]) > λ,

Hr if L̃Di2(TZna , {TỸNb
i
}i∈[m]) ≤ λ.

(47)

In words, we declare that Hj is true if the minimum of L̃Di

occurs when i = j and the second largest L̃Di exceeds a
certain threshold λ. The latter condition intuitively indicates
that our decision that the true hypothesis is Hj is made with
high enough confidence. If there are at least two test statistics
L̃Di that are no larger than λ (i.e., |{i ∈ [m] : L̃Di ≤ λ}| ≥ 2),
our confidence in the quality of the training and test data is
low or that our confidence that Xn is generated from one of
the distributions that generated Y Ni , i ∈ [m] is low, and as
such, a rejection event should be declared.

Third, when m = 2, the test in (47) specializes to the test
given in (48) presented at the top of the next page and the
type-j rejection exponent in (44) simplifies to

lim
n→∞

E∗j (n, α,P, λ|a,b,W)

= min
(Q,Q̃1,Q̃2)

∈Qλ,1,2(α,a,b,W)

∑
k∈[K]

(
akD(Qk‖PjWk)

+ αbkD(Q̃1,k‖P1Wk) + αbkD(Q̃2,k‖P2Wk)
)
. (49)

Note that here we consider binary classification with rejection,
which is in contrast to the case of binary classification without
a rejection option (cf. (9) and (10)).

Fourthly, let us compare the exponents obtained for m = 2
in Theorems 1 and 8. For the binary distributed detection
problem without rejection (Theorem 1), the acceptance region
for hypothesis H1 is Qλ(α,a,b,W) (cf. (7)). In this section,
when m = 2, the rejection region is Qλ,1,2(α,a,b,W)
(cf. (41)). For any (Q, Q̃1, Q̃2) ∈ Qλ,1,2(α,a,b,W) , we
have

L̃D1(Q, Q̃1, Q̃2) ≤ λ, (50)
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Fig. 9: Numerical evaluations of limn→∞ E∗j (n, α,P, λ|a,b,W) in (44) versus λ when m = 4, K = 2, a = (0.2, 0.8), b = (0.6, 0.4) and α = 10.

γ(Zn, ỸN ) =


H1 if L̃D1(TZna , {TỸNb

i
}i∈[m]) < L̃D2(TZna , {TỸNb

i
}i∈[m]) and L̃D2(TZna , {TỸNb

i
}i∈[m]) > λ,

H2 if L̃D2(TZna , {TỸNb
i
}i∈[m]) < L̃D1(TZna , {TỸNb

i
}i∈[m]) and L̃D1(TZna , {TỸNb

i
}i∈[m]) > λ,

Hr if L̃D1(TZna , {TỸNb
i
}i∈[m]) ≤ λ and L̃D2(TZna , {TỸNb

i
}i∈[m]) ≤ λ;

(48)

which implies that (Q, Q̃1, Q̃2) ∈ Qλ(α,a,b,W). With this
observation, we see that

lim
n→∞

E∗(n, α, P1, P2, λ|a,b, V,W)

= min
(Q,Q̃1,Q̃2)
∈Qλ(α,a,b,W)

∑
k∈[K]

(
akD(Qk‖P2Wk)

+ αbkD(Q̃1,k‖P1Wk) + αbkD(Q̃2,k‖P2Wk)
)

(51)

≤ min
(Q,Q̃1,Q̃2)

∈Qλ,1,2(α,a,b,W)

∑
k∈[K]

(
akD(Qk‖P2Wk)

+ αbkD(Q̃1,k‖P1Wk) + αbkD(Q̃2,k‖P2Wk)
)

(52)
= lim
n→∞

E∗2 (n, α,P, λ|a,b,W), (53)

which indicates that the type-II rejection exponent in (44)
is not smaller than the type-II error exponent in (9) when
restricted to the binary setting. The rough intuition here is
that for the same λ, if it happens that the optimal test for
binary distributed detection with rejection in (48) decides on
rejecting the two hypotheses, this implies that the optimal
test for binary distributed detection without rejection in (10)
necessarily declares that H1 is true, thus resulting in a type-II
error. The reverse implication, however, is not true.

Finally, if we let K = 1 and consider all channels to be
deterministic, the test in (48) reduces to one presented in (54)
at the top of the next page For the m-ary hypotheses testing
problem with rejection in [5], Gutman used γGut

m (Zn, ỸN )
presented at (55) on the next page It can be seen that the
rejection regions for both the tests are the same. However, the
acceptance regions for γGut

m are not symmetric for different
hypotheses. In contrast, Unnikrishnan’s test in (54) is sym-
metric in the m hypotheses. Thus, it is more convenient to

use the generalized Unnikrishnan’s test γ in (47) to analyze
the error and rejection exponents.

C. Further discussions on (a,b)

We have the following corollary of Theorem 8.

Corollary 9. For each j ∈ [m], the type-j rejection exponent
satisfies

lim
α→∞

lim
n→∞

E∗j (n, α,P, λ|a,b,W)

= min
(i,l)∈[m]2:i6=l

min
Q∈P([L])K :

κ(Q,Pi|a,b,W)≤λ,
κ(Q,Pl|a,b,W)≤λ

∑
k∈[K]

akD(Qk‖PjWk),

(56)

where κ(Q, P |a,b,W) was defined in (18).

The proof of Corollary 9 is similar to that of Lemma 2 and
hence is omitted.

We remark that when λ is smaller than a certain threshold
λ0 = λ0(P,a,b), the type-j rejection exponent in (56) is
infinite. This is because if λ ≤ λ0, the two constraint sets
defined by κ(Q, Pi|a,b,W) ≤ λ and κ(Q, Pl|a,b,W) ≤
λ are disjoint for all distinct pairs of i and l, and thus, the
minimization in (56) is infeasible.

Let f∞,j(a,b, λ) denote the right-hand-side of (56). When
λ is chosen such that f∞,j(a,b, λ) < ∞ for all (a,b) ∈
P([K])2, we have the following corollary concerning the op-
timizers of f∞,j(a,b, λ) when there are only two hypotheses,
i.e., m = 2.
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γ(Zn, ỸN ) =

{
Hj if GJS(TỸ Nj

, TZn , α) < GJS(TỸ Ni
, TZn , α) and GJS(TỸ Ni

, TZn , α) > λ, ∀i 6= j,

Hr if GJS(TỸ Nl
, TZn , α) ≤ λ and GJS(TỸ Ni

, TZn , α) ≤ λ, ∃(i, l) ∈ [m]2 : i 6= l.
(54)

γGut
m (Zn, ỸN ) =


H1 if GJS(TỸ Ni

, TZn , α) > λ, ∀i ≥ 2,

Hj if GJS(TỸ Nj
, TZn , α) ≤ λ and GJS(TỸ Ni

, TZn , α) > λ, ∀i 6= j, j ≥ 2

Hr if GJS(TỸ Nl
, TZn , α) ≤ λ and GJS(TỸ Ni

, TZn , α) ≤ λ, ∃(i, l) ∈ [m]2 : i 6= l.

(55)

Corollary 10. For the binary distributed detection problem
with rejection, given each j ∈ [2], we have

sup
(a,b)∈P([K])2

f∞,j(a,b, λ) = max
k∈[K]

f∞,j(ek, ek, λ), (57)

and thus the optimizers (a∗,b∗) are deterministic and satisfy
a∗ = b∗.

The proof of Corollary 10 is similar to that of Corollary 3
and hence is omitted.

Corollary 10 implies that when the length of the training
sequences are much longer than the length of test sequence, it
is optimal to use identical local decision rules at each sensor
to pre-process the training sequences. It is natural to wonder
whether there is a generalization of Corollary 10 for larger
m. Numerical optimization of the rejection exponent in (56)
over (a,b) ∈ P([K])2 shows that when m = 3 and K = 3,
in general, it is optimal to use all 3 local decision rules or
channels to randomize the test and training sequences. When
K = 4, however, it is optimal to use all 4 channels in general.
This differs from the main finding in Tsitsiklis’ paper [2],
in which 1

2m(m − 1) local decision rules suffice to achieve
optimality. If the result were analogous, one would expect that
for any K, only 1

2 · 3 · (3− 1) = 3 local decision rules suffice.
This difference can be intuitively explained as follows. With
the rejection option, the fusion center needs to partition the
sample space into more regions compared to the case without
rejection. Roughly speaking, this means that the fusion center
needs more information or diversity from the training and test
samples to attain optimality. Hence, more channels or local
decision rules (compared to [2]) are needed.

IV. CONCLUSION AND FUTURE WORK

This work has taken a first step at considering the distributed
detection problem à la Tsitsiklis [2] when the underlying
distributions are unknown but in place of them, we have noisy
training samples. We adopted the Gutman formulation [5]
in (4) and derived asymptotically optimal exponents for the
binary and m-ary cases with and without rejection. While
results as conclusive as those in Tsitsiklis’ paper [2] were not
obtained, we have several important contributions, including
the identification of optimal tests and the conclusion that in the
binary case (with and without rejection) and when the number
of training samples far exceeds test samples, one decision rule
suffices for achieving the optimal error exponent.

In the future, one can consider the following avenues for
future work. First, a resolution of Conjecture 5 would be
desirable as it would allow us to parallel the main results

in [2] for arbitrary and finite α ∈ R+. Second, we can consider
deriving second-order asymptotic results in the spirit of Zhou,
Tan, and Motani [16]. This would shed further insights into
the finite-length behavior of the proposed tests. Finally, it
would be fruitful to study the statistical learning versions of
other distributed detection formulations, e.g., the anonymous
heterogeneous version proposed by Chen and Wang [10].

APPENDIX

A. Proof of Theorem 1
Recall the definitions of Tzna , TỹNb

1
and TỹNb

2
in Section

II-C. Define the following set of types

Tλ(α,a,b,W)

:=

{
(T, T̃1, T̃2) ∈

∏
k∈[K]

(
Pnak([L])× PNbk([L])2

)
:

min
(P̃ ,P )∈P(X )2

LD(T, T̃1, T̃2, P̃ , P̃ , P |α,a,b,W)≤λ
}
, (58)

and the following set of sequences

Lλ(α,a,b,W) :=
{

(zna,yNb
1 ,yNb

2 ) ∈ [L]n+N :

(Tzna ,TyNb
1
,TyNb

2
) ∈ Tλ(α,a,b,W)

}
. (59)

Note that Tλ(α,a,b,W) is the set Qλ(α,a,b,W) (defined
in (58)) but restricted to types.

1) Achievability: In the achievability part, given any pair
(a,b) ∈ Pn([K])×Pαn([K]), we assume that the test γ at the
fusion center is given by (10), but λ is replaced by λ̃ = λ+ cn

n ,
where cn :=

∑K
k=1(L log(nak + 1) + 2L log(αnbk + 1)) =

O(log n). Then for all pairs (P̃1, P̃2) ∈ P(X )2, the type-I
error probability can be upper bounded as follows:

β1(γ, P̃1, P̃2)

= P1{γ(Zn, Ỹ N1 , Ỹ N2 ) 6= H1} (60)

=
∑

(zna,ỹNb
1 ,ỹNb

2 )
/∈Lλ̃(α,a,b,W)

K∏
k=1

(
(P̃1Wk)nak(znak)

× (P̃1Wk)Nbk(ỹNbk1 )(P̃2Wk)Nbk(ỹNbk2 )
)

(61)

=
∑

(zna,ỹNb
1 ,ỹNb

2 )
/∈Lλ̃(α,a,b,W)

exp

{ K∑
k=1

( ∑
i:h(i)=k

log(P̃1Wk)(zi)

+
∑

i:g(i)=k

log(P̃1Wk)(ỹ1,i)+
∑

i:g(i)=k

log(P̃2Wk)(ỹ2,i)

)}
(62)
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≤
∑

(Tzna ,T
ỹNb
1

,T
ỹNb
2

)

/∈Tλ̃(α,a,b,W)

exp

{
− n min

(P̃1,P̃2)∈
P(X )2

K∑
k=1

(
akD(Tznak ‖P̃1Wk)

+αbkD(T
ỹ
Nbk
1

‖P̃1Wk)+αbkD(T
ỹ
Nbk
2

‖P̃2Wk)
)}

(63)

< exp(−nλ̃)

K∏
k=1

|Pnak([L])| ×
(
|PNbk([L])|

)2
(64)

≤ exp
(
−n
(
λ̃− cn

n

))
= exp(−nλ), (65)

where (64) follows from the definition of Tλ(α,a,b,W)
in (58).

For any (P1, P2) ∈ P(X )2, the type-II error probability can
be upper bounded as follows:

β2(γ, P1, P2)

=
∑

(zna,ỹNb
1 ,ỹNb

2 )
∈Lλ̃(α,a,b,W)

K∏
k=1

(
(P2Wk)nak(znak)

× (P1Wk)Nbk(ỹNbk1 )(P2Wk)Nbk(ỹNbk2 )
)

(66)

≤
∑

(Tzna ,T
ỹNb
1

,T
ỹNb
2

)

∈Tλ̃(α,a,b,W)

exp

{
− n

K∑
k=1

(
akD(Tznak ‖P2Wk)

+ αbkD(T
ỹ
Nbk
1

‖P1Wk) + αbkD(T
ỹ
Nbk
2

‖P2Wk)
)}

(67)

.
≤ exp

{
− n min

(Tzna ,T
ỹNb
1

,T
ỹNb
2

)

∈Tλ̃(α,a,b,W)

K∑
k=1

(
akD(Tznak ‖P2Wk)

+ αbkD(T
ỹ
Nbk
1

‖P1Wk) + αbkD(T
ỹ
Nbk
2

‖P2Wk)
)}

(68)

≤ exp

{
− n min

(Q,Q̃1,Q̃2)
∈Qλ̃(α,a,b,W)

K∑
k=1

(
akD(Qk‖P2Wk)

+ αbkD(Q̃1,k‖P1Wk) + αbkD(Q̃2,k‖P2Wk)
)}

. (69)

Thus, using the definition of LD in (6) and the result
in (69), we have the following lower bound on the type-II
error exponent:

lim inf
n→∞

1

n
log

1

β2(γ, P1, P2)

≥ min
(Q,Q̃1,Q̃2)
∈Qλ(α,a,b,W)

LD(Q, Q̃1, Q̃2, P2, P1, P2|α,a,b,W).

(70)

2) Converse: Our converse proof proceeds by showing (i)
type-based tests (i.e., tests γ that depend only on the types or
partial types of the data (Zn, Ỹ N1 , Ỹ N2 )) are almost optimal,
(ii) the test in (10) is an asymptotically optimal type-based
test.

The following lemma extends that of [16, Lemma 7].

Lemma 11. For any deterministic test γ, η ∈ [0, 1], (P1, P2) ∈
P(X )2 and (a,b) ∈ Pn([K]) × Pαn([K]), we can construct
a type-based test γT such that

β1(γ, P1, P2) ≥ ηβ1(γT, P1, P2), (71)

β2(γ, P1, P2) ≥ (1− η)β2(γT, P1, P2). (72)

Proof of Lemma 11. For h and g with proportions a and
b respectively and any (xn, yN1 , y

N
2 ), let (Zn, Ỹ N1 , Ỹ N2 ) ∼(

{Wh(i)(·|xi)}i∈[n], {Wg(i)(·|y1,i)}i∈[N ], {Wg(i)(·|y2,i)}i∈[N ]

)
.

Let Pna+2Nb([L]) denote the set(∏
k∈[K] Pnak([L]) × PNbk([L])2

)
and let Q =

(Q1,1, . . . , Q1,K , Q2,1, . . . , Q2,K , Q3,1, . . . , Q3,K) ∈
Pna+2Nb([L]). For any Q, we use T̃ n+2N

Q to denote
the set of sequence triples (Zn, Ỹ N1 , Ỹ N2 ) such that for all
k ∈ [K], Znak ∈ T̃ nakQ1,k

, Ỹ Nbk1 ∈ T̃ NbkQ2,k
and Ỹ Nbk2 ∈ T̃ NbkQ3,k

.
Given any test γ, define the following acceptance region:

A(γ,a,b) :={(zn, ỹN1 , ỹN2 ) : γ(zn, ỹN1 , ỹ
N
2 )=H1}. (73)

Fix any η ∈ [0, 1]. Given any Q ∈ Pna+2Nb([L]), we can
then construct the following type-based test γT:
• If an η fraction of sequence triples in T̃ n+2N

Q favors
hypothesis H2, i.e. |Ac(γ,a,b) ∩ T̃ n+2N

Q | > η|T̃ n+2N
Q |,

then γT(Q) = H2;
• Otherwise, γT(Q) = H1.

For any (P1, P2) ∈ P(X )2 and (a,b), we can relate the error
probabilities of the two tests as in (74)–(79) and (80)–(85) at
the top of the next page, where (77) follows since the elements
in T n+2N

Q are equally likely (under any product distribution)
for any Q.

Let δn := 1
n

(
L
∑
k∈[K](log(nak+1)+2 log(Nbk+1))

)
=

o(1) and fix an arbitrary sequence {δ′n} ⊂ (0, 1) to be such
that limn→∞ δ′n = 0.

Lemma 12. Given any (λ, α) ∈ R2
+ and any (a,b), for any

type-based test γT satisfying that for all pairs of distributions
(P̃1, P̃2) ∈ P(X )2,

β1(γT, P̃1, P̃2) ≤ exp(−nλ), (86)

we have that for any pair of distributions (P1, P2) ∈ P(X )2,

β2(γT, P1, P2)

≥P2

{
(TZna ,TỸNb

1
,TỸNb

2
)∈Tλ−δn−δ′n(α,a,b,W)

}
. (87)

Proof of Lemma 12. Let LD(Q, Q̃1, Q̃2, P̃ , P̃ , P ) =
LD(Q, Q̃1, Q̃2, P̃ , P̃ , P |α,a,b,W). In other words, Lemma
12 claims that for any type-based test γT satisfying (86), if
any (Tzna ,TỹNb

1
,TỹNb

2
) ∈ Pna+2Nb([L]) satisfies

min
(P̃1,P̃2)∈P(X )2

LD(Tzna ,TỹNb
1
,TỹNb

2
, P̃1, P̃1, P̃2) + δn

≤ λ− δ′n,

then we have γT(Tzna ,TỹNb
1
,TỹNb

2
) = H1.

This claim can be proved by contradiction. Suppose there
exists (Qzna ,QỹNb

1
,QỹNb

2
) ∈ Pna+2Nb([L]) such that

min
P̃1,P̃2

LD(Qzna ,QỹNb
1
,QỹNb

1
, P̃1, P̃1, P̃2)+δn≤λ−δ′n, (88)
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β1(γ, P1, P2) = P1{γ(Zn, Ỹ N1 , Ỹ N2 ) = H2} (74)

=
∑

Q∈Pna+2Nb([L])

P1{(Zn, Ỹ N1 , Ỹ N2 ) ∈ Ac(γ,a,b) ∩ T̃ n+2N
Q } (75)

≥
∑

Q∈Pna+2Nb([L]):

|Ac(γ,a,b)
⋂
T̃ n+2N
Q |>η|T̃ n+2N

Q |

P1{(Zn, Ỹ N1 , Ỹ N2 ) ∈ Ac(γ,a,b) ∩ T̃ n+2N
Q } (76)

≥
∑

Q∈Pna+2Nb([L]):

|Ac(γ,a,b)
⋂
T̃ n+2N
Q |>η|T̃ n+2N

Q |

ηP1{(Zn, Ỹ N1 , Ỹ N2 ) ∈ T̃ n+2N
Q } (77)

=
∑

Q∈Pna+2Nb([L]):

|Ac(γ,a,b)
⋂
T̃ n+2N
Q |>η|T̃ n+2N

Q |

η

( K∏
k=1

P1{Znak ∈ T̃ nakQ1,k
}P1{Ỹ Nbk1 ∈ T̃ NbkQ2,k

}P1{Ỹ Nbk2 ∈ T̃ NbkQ3,k
}
)

(78)

≥ ηβ1(γT, P1, P2), (79)

β2(γ, P1, P2) = P2{γ(Zn, Ỹ N1 , Ỹ N2 ) = H1} (80)

=
∑

Q∈Pna+2Nb([L])

P2{(Zn, Ỹ N1 , Ỹ N2 ) ∈ A(γ,a,b) ∩ T̃ n+2N
Q } (81)

=
∑

Q∈Pna+2Nb([L])

(P2{(Zn, Ỹ N1 , Ỹ N2 ) ∈ T̃ n+2N
Q } − P2{(Zn, Ỹ N1 , Ỹ N2 ) ∈ Ac(γ,a,b) ∩ T̃ n+2N

Q }) (82)

≥
∑

Q∈Pna+2Nb([L]):

|Ac(γ,a,b)
⋂
T̃ n+2N
Q |≤η|T̃ n+2N

Q |

(1− η)P2{(Zn, Ỹ N1 , Ỹ N2 ) ∈ T̃ n+2N
Q } (83)

=
∑

Q∈Pna+2Nb([L]):

|Ac(γ,a,b)
⋂
T̃ n+2N
Q |≤η|T̃ n+2N

Q |

(1− η)

( K∏
k=1

P2{Znak ∈ T̃ nakQ1,k
}P2{Ỹ Nbk1 ∈ T̃ NbkQ2,k

}P2{Ỹ Nbk2 ∈ T̃ NbkQ3,k
}
)

(84)

≥ (1− η)β2(γT, P1, P2). (85)

and γT(Qzna ,QỹNb
1
,QỹNb

2
) = H2. For all (P̃1, P̃2), we have

β1(γT, P̃1, P̃2)

=
∑

(zna,ỹNb
1 ,ỹNb

2 ):

γT(Tzna ,T
ỹNb
1

,T
ỹNb
2

)=H2

( K∏
k=1

(P̃1Wk)nak(znak)

× (P̃1Wk)Nbk(ỹNbk1 )(P̃2Wk)Nbk(ỹNbk2 )

)
(89)

=
∑

(Tzna ,T
ỹNb
1

,T
ỹNb
2

):

γT(Tzna ,T
ỹNb
1

,T
ỹNb
2

)=H2

( K∏
k=1

|Tznak ||TỹNbk1

||T
ỹ
Nbk
2

|
)

× exp

(
− n

K∑
k=1

ak

(
D(Tznak ‖P̃1Wk) +H(Tznak )

)
−N

K∑
k=1

bk

(
D(T

ỹ
Nbk
1

‖P̃1Wk) +H(T
ỹ
Nbk
1

)
)

−N
K∑
k=1

bk

(
D(T

ỹ
Nbk
2

‖P̃2Wk) +H(T
ỹ
Nbk
2

)
))

(90)

≥
∑

(Tzna ,T
ỹNb
1

,T
ỹNb
2

):

γT(Tzna ,T
ỹNb
1

,T
ỹNb
2

)=H2

exp

(
− n

K∑
k=1

(
akD(Tznak ‖P̃1Wk)

+ αbkD(T
ỹ
Nbk
1

‖P̃1Wk) + αbkD(T
ỹ
Nbk
2

‖P̃2Wk)

)
−

K∑
k=1

(L log(nak + 1) + 2L log(Nbk + 1))

)
(91)

≥ exp

(
− n

( K∑
k=1

(
akD(Qznak ‖P̃1Wk)

+αbkD(Q
ỹ
Nbk
1

‖P̃1Wk)+αbkD(Q
ỹ
Nbk
2

‖P̃2Wk)
)

+δn

))
,

(92)

where (91) follows since |Tznak | ≥ (nak +
1)−L exp(nakH(Tznak )) (cf. [15, Ch. 2]) and similar
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lower bounds hold for |T
ỹ
Nbk
1

| and |T
ỹ
Nbk
2

|. However, if we

choose (P̃1, P̃2) such that

(P̃1, P̃2) = (P̃ ∗1 , P̃
∗
2 )

:= arg min
(P̄1,P̄2)∈P(X )2

LD(Qzna ,QỹNb
1
,QỹNb

2
, P̄1, P̄1, P̄2), (93)

then we have

β1(γT, P̃1, P̃2)

≥ exp
(
− n(LD(Qzna ,QỹNb

1
,QỹNb

2
, P̃ ∗1 , P̃

∗
1 , P̃

∗
2 )+δn)

)
(94)

≥ exp
(
− n(λ− δ′n)

)
(95)

> exp(−nλ), (96)

where (94) follows from the definition of LD(·) in (6); (95)
follows from (88) and the strict inequality in (96) follows
because δ′n > 0 for all n. The result in (96) contradicts the
assumption that (86) is satisfied for all (P̃1, P̃2) ∈ P(X )2.

Corollary 13. Given any (λ, α) ∈ R2
+ and any (a,b), for any

test γ satisfying that for all (P̃1, P̃2) ∈ P(X )2,

β1(γ, P̃1, P̃2) ≤ exp
(
− n

(
λ+

log 2

n

))
, (97)

we have that for any pair of distributions (P1, P2) ∈ P(X )2,

β2(γ, P1, P2)

≥ 1

2
P2

{(
TZna ,TỸNb

1
,TỸNb

2

)
∈ Tλ−δn−δ′n(α,a,b,W)

}
.

(98)

Corollary 13 can be directly obtained from Lemma 11 and
Lemma 12 by letting η = 1

2 . Using Corollary 13, we have

β2(γ, P1, P2)

≥ 1

2
P2

{(
TZna ,TỸNb

1
,TỸNb

2

)
∈ Tλ−δn−δ′n(α,a,b,W)

}
(99)

=
∑

(Tzna ,T
ỹNb
1

,T
ỹNb
2

)

∈Tλ−δn−δ′n (α,a,b,W)

( K∏
k=1

|Tznak ||TỹNbk1

||T
ỹ
Nbk
2

|
)

exp

{
− n

K∑
k=1

ak
(
D(Tznak ‖P2Wk) +H(Tznak )

)
−N

K∑
k=1

bk
(
D(T

ỹ
Nbk
1

‖P1Wk) +H(T
ỹ
Nbk
1

)
)

−N
K∑
k=1

bk
(
D(T

ỹ
Nbk
2

‖P2Wk) +H(T
ỹ
Nbk
2

)
)
− log 2

}
(100)

≥
∑

(Tzna ,T
ỹNb
1

,T
ỹNb
2

)

∈Tλ−δn−δ′n (α,a,b,W)

exp

{
− n

K∑
k=1

(
akD(Tznak ‖P2Wk)

+
∑
i∈[2]

αbkD(T
ỹ
Nbk
i

‖PiWk) +
cn + log 2

n

)}
(101)

≥ exp

{
− n min

(Tzna ,T
ỹNb
1

,T
ỹNb
2

)

∈Tλ−δn−δ′n (α,a,b,W)

K∑
k=1

(
akD(Tznak ‖P2Wk)

+
∑
i∈[2]

αbkD(T
ỹ
Nbk
i

‖PiWk) +
cn + log 2

n

)}
. (102)

Note that the union of the set of types ∪n∈NTλ(α,a,b,W)
(where Tλ is defined in (58)) is dense in the set
of distributions Qλ(α,a,b,W) (defined in (7));
this follows from the continuity of (Q, Q̃1, Q̃2) 7→

min
(P̃ ,P )∈P(X )2

LD(Q, Q̃1, Q̃2, P̃ , P̃ , P |α,a,b,W). Also

n → ∞, δn, δ′n,
cn
n ,

log 2
n → 0. As a result, for any test

γ satisfying (97), the type-II error exponent can be upper
bounded as follows

lim sup
n→∞

1

n
log

1

β2(γ, P1, P2)

≤ min
(Q,Q̃1,Q̃2)
∈Qλ(α,a,b,W)

LD(Q, Q̃1, Q̃2, P2, P1, P2|α,a,b,W).

(103)

Combining the lower and upper bounds in (70) and (103) re-
spectively, we conclude that the optimal type-II error exponent
is given by (9) in Theorem 1, completing the proof.

B. Proof of Lemma 2

Given any vector b ∈ P([K]) and any distributions
(P1, P2) ∈ P(X )2, define the following set of distributions

Q̃(P1, P2|b,W) :=
{

(Q̃1, Q̃2) ∈ P([L])2K : ∀ k ∈ [K]

bk‖Q̃1,k − P1Wk‖∞ = bk‖Q̃2,k − P2Wk‖∞ = 0
}
. (104)

Recall LD(Q, Q̃1, Q̃2, P̃ , P̃ , P |α,a,b,W) in (6) and
fα(a,b, λ) in (15). As α → ∞, the objective func-
tion of fα(a,b, λ) tends to infinity unless (Q̃1, Q̃2) ∈
Q̃(P1, P2|b,W).

Lemma 14. For any Q ∈ P([L])K and any (Q̃1, Q̃2) ∈
Q̃(P1, P2|b,W), we have

lim
α→∞

min
(P̃ ,P )∈P(X )2

LD(Q, Q̃1, Q̃2, P̃ , P̃ , P |α,a,b,W)

= min
P̃∈P(X ):∀ k∈[K],

bk‖Q̃1,k−P̃Wk‖∞=0

∑
k∈[K]

akD(Qk‖P̃Wk). (105)

Proof. Given any Q̃ = (Q̃1, . . . , Q̃K) ∈ P([L])K , let

S(Q̃,b,W) := {P̃ : bk‖Q̃k − P̃Wk‖∞ = 0, ∀k ∈ [K]}.
(106)

For any (Q̃1, Q̃2) ∈ Q̃(P1, P2|b,W) and any i ∈ [2],

bk‖Q̃i,k − P̃Wk‖∞
≤ bk‖Q̃i,k − PiWk‖∞ + bk‖PiWk − P̃Wk‖∞
= bk‖PiWk − P̃Wk‖∞, (107)

so we have S({PiWk}k∈[K],b,W) ⊂ S(Q̃i,b,W). Since
S({PiWk}k∈[K],b,W) 6= ∅ for i ∈ [2], we have
S(Q̃i,b,W) 6= ∅.
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Note first that (α, P̃ , P ) ∈ [0,∞) × P(X )2 7→
LD(Q, Q̃1, Q̃2, P̃ , P̃ , P |α,a,b,W) is jointly continuous, and
P(X ) is compact. As such, the function

g(α) := min
P̃ ,P

LD(Q, Q̃1, Q̃2, P̃ , P̃ , P |α,a,b,W) (108)

with domain [0,∞) is continuous in α (cf. [24, Lemma 14]).
Let

(P̃ ∗(α), P ∗(α))

:= arg min
(P̃ ,P )∈P(X )2

LD(Q, Q̃1, Q̃2, P̃ , P̃ , P |α,a,b,W). (109)

Thus,

lim
α→∞

LD(Q, Q̃1, Q̃2, P̃
∗(α), P̃ ∗(α), P ∗(α)|α,a,b,W)

= lim
α→∞

g(α) = g(∞). (110)

Since S(Q̃i,b,W) 6= ∅ where i ∈ [2] for any (Q̃1, Q̃2) ∈
Q̃(P1, P2|b,W), we have for any α ∈ [0,∞)

g(α) ≤ min
P̃∈S(Q̃1,b,W),

P∈S(Q̃2,b,W)

LD(Q, Q̃1, Q̃2, P̃ , P̃ , P |α,a,b,W)

= min
P̃∈S(Q̃1,b,W)

∑
k∈[K]

akD(Qk‖P̃Wk) <∞. (111)

If P̃ ∗(∞), P ∗(∞) /∈ S(Q̃1,b,W), then g(∞) = ∞, which
violates (111). So P̃ ∗(∞), P ∗(∞) ∈ S(Q̃,b,W) and

g(∞) = min
P̃∈S(Q̃1,b,W)

∑
k∈[K]

akD(Qk‖P̃Wk). (112)

This concludes the proof.

Thus, for any Q ∈ P([L])K and any (Q̃1, Q̃2) ∈
Q̃(P1, P2|b,W), we have

lim
α→∞

min
(P̃ ,P )∈P(X )2

LD(Q, Q̃1, Q̃2, P̃ , P̃ , P |α,a,b,W)

= min
P̃∈S(Q̃1,b,W)

∑
k∈[K]

akD(Qk‖P̃Wk) (113)

= min
P̃∈P(X ):∀ k∈[K],

bk‖P1Wk−P̃Wk‖∞=0

∑
k∈[K]

akD(Qk‖P̃Wk) (114)

= min
P̃∈P(P1|b,W)

∑
k∈[K]

akD(Qk‖P̃Wk) (115)

= κ(Q, P1|a,b,W), (116)

where (113) follows from Lemma 14, (114) follows since
0 ≤ bk‖P1Wk − P̃Wk‖∞ ≤ bk‖Q̃1,k− P̃Wk‖∞+ bk‖Q̃1,k−
P1Wk‖∞ = 0 for all k ∈ [K], (115) follows from the
definition of P(P1|b,W) in (17) and (116) is due to the
definition of κ(·) in (18).

Combining above results, we have the desired result in
Lemma 2.

C. Proof of Corollary 3

From Lemma 2, we know that as α→∞, given any λ and
any (a,b) ∈ P([K])2, fα(a,b, λ) converges to

f∞(a,b, λ) = min
Q∈P([L])K :

κ(Q,P1|a,b,W)≤λ

∑
k∈[K]

akD(Qk‖P2Wk).

(117)

For any (a,b) ∈ P([K])2, we define

J (a,b) := {k ∈ [K] : ak > 0 and bk = 0}. (118)

Recalling the definition of κ(·) in (18) and noting that P1 ∈
P(P1|b,W), given any (a,b) such that J (a,b) 6= ∅, we have
that

f∞(a,b, λ) ≤ min
Q∈P([L])K :∑

k∈[K] akD(Qk‖P1Wk)≤λ

∑
k∈[K]

akD(Qk‖P2Wk).

(119)

On the other hand, for any (a,b) such that J (a,b) = ∅, we
have that

f∞(a,b, λ) = min
Q∈P([L])K :∑

k∈[K] akD(Qk‖P1Wk)≤λ

∑
k∈[K]

akD(Qk‖P2Wk).

(120)

Note that for any a ∈ P([K]), there exists b ∈ P([K])
such that J (a,b) = ∅ (e.g., supp(a) = supp(b)); on the
other hand, there also exists b such that J (a,b) 6= ∅, e.g.,
supp(b) ⊂ supp(a) when |supp(a)| ≥ 1 and supp(b) ∩
supp(a) = ∅ when |supp(a)| = 1. Thus, combining (119)
and (120), we have that for any λ ∈ R+,

sup
(a,b)∈P([K])2

f∞(a,b, λ)

= sup
a∈P([K])

sup
b∈P([K]):J (a,b)=∅

f∞(a,b, λ) (121)

= sup
(a,b)∈P([K])2:J (a,b)=∅

f∞(a,b, λ). (122)

For each k ∈ [K], given λ ∈ R+, let Q∗k achieve
f∞(ek, ek, λ), i.e.,

f∞(ek, ek, λ) = min
Qk∈P([L]):

D(Qk‖P1Wk)≤λ

D(Qk‖P2Wk) (123)

= D(Q∗k‖P2Wk). (124)

Given any (a,b) such that J (a,b) = ∅, from (124), we know
that ∑

k∈[K]

akD(Q∗k‖P1Wk) ≤ λ, (125)

and thus

f∞(a,b, λ) = min
Q∈P([L])K :∑

k∈[K] akD(Qk‖P1Wk)≤λ

∑
k∈[K]

akD(Qk‖P2Wk)

(126)

≤
∑
k∈[K]

akD(Q∗k‖P2Wk) (127)
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≤ max
k∈[K]

D(Q∗k‖P2Wk) (128)

= max
k∈[K]

f∞(ek, ek, λ). (129)

Combining (122) and (129), we have that

sup
(a,b)∈P([K])2

f∞(a,b, λ) ≤ max
k∈[K]

f∞(ek, ek, λ). (130)

On the other hand, it is easy to verify that

sup
(a,b)∈P([K])2

f∞(a,b, λ) ≥ max
k∈[K]

f∞(ek, ek, λ). (131)

The proof of Corollary 3 is completed by combining (130)
and (131).

D. Numerical Evaluations of fα(a,b, λ) when K = 3

In this subsection, we present further numerical evidence
for Conjecture 5 in Figs. 10 and 11. See the captions for
descriptions of the figures.

E. Proof of Theorem 8
Recall the definitions of i1(Zn, ỸN ) in (45) and

i2(Zn, ỸN ) in (46). Given any tuple of distributions
(Q, {Q̃i}i∈[m]) ∈ P([L])(m+1)K , we use L̃Dj to denote
L̃Dj(Q, {Q̃i}i∈[m]) if there is no risk of confusion.

1) Achievability: We use the test in (47) with λ replaced
by λ̃ = λ + cn

n , where cn :=
∑
k∈[K] L(log(nak + 1) +

m log(αnbk + 1)) = O(log n). Given any P ∈ P(X )m, for
any tuple of types (TZna , {TỸNb

i
}i∈[m]) ∈ Pna+mNb([L]),

for each j ∈ [m], the type-j error and rejection probabilities
for the test in (47) are respectively

βj(γ,P) = Pj{i1 6= j and L̃Di2 > λ̃} and (132)

βr,j(γ,P) = Pj{L̃Di2 ≤ λ̃}. (133)

For each j ∈ [m] and for all P̃ ∈ P(X )m, we upper bound
the type-j error probability as follows:

βj(γ,P) = Pj{i1 6= j, L̃Di > λ̃, ∀i 6= i1} (134)

≤ Pj{L̃Dj > λ̃} (135)

=
∑

(zna,{ỹNb
i }i∈[m]):

L̃Dj>λ̃

exp
{ ∑
k∈[K]

( ∑
i:h(i)=k

log(P̃jWk)(zi)

+
∑
l∈[m]

∑
i:g(i)=k

log(P̃lWk)(ỹl,i)
)}

(136)

≤
∑

(Tzna ,{T
ỹNb
i
}i∈[m]):

L̃Dj>λ̃

exp
{
− n

( ∑
k∈[K]

akD(Tznak ‖P̃jWk)

+
∑
l∈[m]

∑
k∈[K]

αbkD(T
ỹ
Nbk
l

‖P̃lWk)
)}

(137)

≤
∑

(Tzna ,{T
ỹNb
i
}i∈[m]):

L̃Dj>λ̃

exp
{
− n

(
min
P̃j

∑
k∈[K]

(
akD(Tznak ‖P̃jWk)

+ αbkD(T
ỹ
Nbk
l

‖P̃jWk)
)

+
∑

l∈[m]:l 6=j

min
P̃l

∑
k∈[K]

αbkD(T
ỹ
Nbk
l

‖P̃lWk)
)}

(138)

≤ exp(−nλ̃)
∏
k∈[K]

|Pnak([L])||PNbk([L])|m (139)

≤ exp
(
−n
(
λ̃− cn

n

))
= exp(−nλ), (140)

where (135) follows since
⋂
i 6=i1,i1 6=j

{
L̃Di > λ̃

}
⊂
{

L̃Dj >

λ̃
}

and (139) follows from the definition of L̃Dj in (40).
Similarly, for each j ∈ [m], we upper bound the type-j

rejection probability as follows:

βr,j(γ,P)

= Pj{∃ (l, i) ∈ [m]2 : l 6= i, L̃Di ≤ λ̃, L̃Dl ≤ λ̃} (141)

≤ m(m− 1)

2
max

(i,l)∈[m]2:l 6=i
Pj{L̃Di ≤ λ̃, L̃Dl ≤ λ̃} (142)

.
≤ max

(i,l)∈[m]2:l 6=i

∑
(Tzna ,{T

ỹNb
i
}i∈[m]):

L̃Di≤λ̃, L̃Dl≤λ̃

exp
{
− n

( ∑
k∈[K]

akD(Tznak ‖P̃jWk)

+
∑
i∈[m]

∑
k∈[K]

αbkD(T
ỹ
Nbk
i

‖P̃iWk)
)}

(143)

.
≤ exp

{
− n min

(i,l)∈[m]2:l 6=i
min

(Tzna ,{T
ỹNb
i
}i∈[m]):

L̃Di≤λ̃, L̃Dl≤λ̃( ∑
k∈[K]

akD(Tznak ‖P̃jWk)

+
∑
i∈[m]

∑
k∈[K]

αbkD(T
ỹ
Nbk
i

‖P̃iWk)
)}

(144)

≤ exp
{
− n min

(i,l)∈[m]2:l 6=i
min

(Q,{Q̃i}i∈[m])

∈Qλ,i,l(α,a,b,W)∑
k∈[K]

(
akD(Qk‖PjWk)

+
∑
i∈[m]

αbkD(Q̃i,k‖PiWk)
)}
. (145)

Using (145) and the definition of LD
[m]
j (Q, {Q̃i}i∈[m],P) in

(39), we arrive at the following lower bound on the type-j
rejection exponent:

lim inf
n→∞

1

n
log

1

βr,j(γ,P)

≥ min
(i,l)∈[m]2:l 6=i

min
(Q,{Q̃i}i∈[m])

∈Qλ,i,l(α,a,b,W)

LD
[m]
j (Q, {Q̃i}i∈[m],P).

(146)

2) Converse: Similar to the binary case, the converse proof
proceeds by showing (i) type-based tests (i.e., tests γ that
depend only on the types or partial types of the sequences
(Zn, ỸN ), i.e., TZna and {TỸNb

i
}i∈[m]), are almost optimal

and (ii) the test in (47) is an asymptotically optimal type-based
test.

Lemma 15. For any test γ, (η1, . . . , ηm) ∈ [0, 1]m, any
(a,b) ∈ Pn([K]) × Pαn([K]) and any tuple of distributions
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Fig. 10: Numerical evaluations of fα(a,b, λ) with the assumption that V ∈ VI when K = 3, λ = 0.01, α = 10 and W1,W2,W3 are deterministic. Note
that the maxima occur at the corner points of [0, 1]2, corroborating Conjecture 5.

P ∈ P(X )m, we can construct a type-based test γT such that
for each j ∈ [m],

βj(γ,P) ≥ ηminβj(γ
T,P), (147)

βr,j(γ,P) ≥ (1− ηsum)βr,j(γ
T,P), (148)

where ηmin := mini∈[m] ηi and ηsum :=
∑
i∈[m] ηi.

The proof of Lemma 15 is similar to the proof of Lemma
11 and thus omitted.

Before starting the next result, let δn = cn
n , and fix an

arbitrary sequence {δ′n} ⊂ (0, 1) be such that limn→∞ δ′n = 0.

Lemma 16. Given any (λ, α) ∈ R2
+, any (a,b), for any type-

based test γT satisfying that for all tuples of distributions
P̃ ∈ P(X )m,

βj(γ
T, P̃) ≤ exp(−nλ), ∀j ∈ [m], (149)

we have that for any P ∈ P(X )m,

βr,j(γ
T,P)

≥ Pj
{

L̃Di2(TZna , {TỸNb
i
}i∈[m]) ≤ λ− δn − δ′n

}
. (150)

Proof. The lemma is proved by showing that for any type-
based test γT satisfying (149), if any (TZna , {TỸNb

i
}i∈[m]) ∈

Pna+mNb([L]) satisfies

L̃Di2(Tzna , {TỹNb
i
}i∈[m]) + δn ≤ λ− δ′n, (151)

then we have γT(Tzna , {TỹNb
i
}i∈[m]) = Hr.

To prove this claim, it suffices to show by contradiction that
there exists (QZna , {QỸNb

i
}i∈[m]) ∈ Pna+mNb([L]) such

that i) γT(Qzna , {QỹNb
i
}i∈[m]) = Hk for some k ∈ [m], and

ii) there exists (l, j) ∈ [m]2 such that l 6= j and

L̃Dl(Qzna , {QỹNb
i
}i∈[m]) + δn ≤ λ− δ′n, (152)

L̃Dj(Qzna , {QỹNb
i
}i∈[m]) + δn ≤ λ− δ′n. (153)

In the following analysis, fix j ∈ [m] such that j 6= k. We can
then lower bound the type-j error probability as follows:

βj(γ
T,P)

= Pj{γT(TZna , {TỸNb
i
}i∈[m]) /∈ {Hj ,Hr}} (154)

≥ Pj{γT(TZna , {TỸNb
i
}i∈[m]) = Hk} (155)

=
∑

(zna,{ỹNb
i }i∈[m]):

γT(Tzna ,{T
ỹNb
i
}i∈[m])=Hk

exp
{ ∑
k∈[K]

( ∑
i:h(i)=k

log(P̃jWk)(zi)

+
∑
l∈[m]

∑
i:g(i)=k

log(P̃lWk)(ỹl,i)
)}

(156)

≥ exp
{
− n

( ∑
k∈[K]

akD(Qznak ‖P̃jWk)

+
∑
l∈[m]

∑
k∈[K]

αbkD(Q
ỹ
Nbk
l

‖P̃lWk) + δn

)}
. (157)

If we set

P̃j := arg min
P̄j∈P(X )

LD(Qzna ,QỹNb
j
, P̄j , P̄j |α,a,b,W), (158)

P̃l := arg min
P̄l∈P(X )

∑
k∈[K]

αbkD(Q
ỹ
Nbk
l

‖P̄lWk), ∀ l 6= j, (159)

then we have

βj(γ
T,P) ≥ exp

{
− n

(
L̃Dj(Qzna , {QỹNb

i
}i∈[m])+δn

)}
(160)

≥ exp{−n(λ− δ′n)} (161)
> exp{−nλ}, (162)

where (160) follows from the definition of L̃Dj in (40). Thus,
the inequality in (162) contradicts the conditions in (149) and
the proof of Lemma 16 is completed.

Using Lemmas 15 and 16, we obtain the following corollary,
which provides a lower bound on the rejection probability
for any test whose error probabilities decay exponentially fast
under all hypotheses for all tuples of distributions.

Corollary 17. Given any (λ, α) ∈ R2
+, any (a,b), for any test

γ satisfying that for all tuples of distributions P̃ ∈ P(X )m,

βj(γ, P̃) ≤ exp

(
− n

(
λ+

log(2m)

n

))
, ∀j ∈ [m], (163)
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Fig. 11: Numerical evaluations of fα(a,b, λ) with the assumption of V ∈ VI when K = 3, λ = 0.01, α = 10 and W1,W2,W3 are stochastic. Note that
the maxima occur at the corner points of [0, 1]2, corroborating Conjecture 5.

we have that for any P ∈ P(X )m,

βr,j(γ,P)

≥ 1

2
Pj
{

L̃Di2(TZna , {TỸNb
i
}i∈[m])≤λ−δn−δ′n

}
. (164)

Since

{L̃Di2 ≤ λ− δn − δ′n}

=
⋃
l 6=i

{L̃Di ≤ λ− δn − δ′n, L̃Dl ≤ λ− δn − δ′n}, (165)

using Corollary 17, we have

βr,j(γ,P)

≥ 1

2
Pj
{⋃
l 6=i

{L̃Di≤λ−δn−δ′n, L̃Dl≤λ−δn−δ′n}
}

(166)

≥ 1

2
max

(i,l)∈[m]2:
l 6=i

Pj
{

L̃Di ≤ λ−δn−δ′n, L̃Dl ≤ λ−δn−δ′n
}

(167)

≥ exp

{
− n min

(i,l)∈[m]2:
l 6=i

min
(Tzna ,{T

ỹNb
i
}i∈[m]):

L̃Di≤λ−δn−δ′n,
L̃Dl≤λ−δn−δ′n( ∑

k∈[K]

akD(Tznak ‖P̃jWk)

+
∑
i∈[m]

∑
k∈[K]

αbkD(T
ỹ
Nbk
i

‖P̃iWk)+δn+
log 2

n

)}
. (168)

Using (168), for each j ∈ [m], given any tuple of distribu-
tions P, the type-j rejection exponent can be upper bounded
as follows

lim sup
n→∞

1

n
log

1

βr,j(γ,P)

≤ min
(i,l)∈[m]2:l 6=i

min
(Q,{Q̃i}i∈[m])

∈Qλ,i,l(α,a,b,W)

LD
[m]
j (Q, {Q̃i}i∈[m],P).

(169)
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