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Abstract

The Slepian-Wolf (SW) coding system is a source coding system with two encoders and a decoder, where

these encoders independently encode source sequences from two correlated sources into codewords, and the decoder

reconstructs both source sequences from the codewords. In this paper, we consider the situation in which the SW

coding system is asynchronous, i.e., each encoder samples a source sequence with some unknown delay. We assume

that delays are unknown but maximum and minimum values of possible delays are known to encoders and the

decoder. We also assume that sources are discrete stationary memoryless and the probability mass function (PMF)

of the sources is unknown but the system knows that it belongs to a certain set of PMFs. For this asynchronous SW

coding system, we clarify the achievable rate region which is the set of rate pairs of encoders such that the decoding

error probability vanishes as the blocklength tends to infinity. We show that this region does not always coincide with

that of the synchronous SW coding system in which each encoder samples a source sequence without any delay.

Index Terms

Achievable rate region, asynchronous, Slepian-Wolf coding, universal coding scheme.

I. INTRODUCTION

The Slepian-Wolf (SW) coding system [3] is one of famous source coding systems with many terminals. In this

coding system (see Fig. 1), two encoders independently encode source sequences from two correlated sources into

codewords, and the decoder reconstructs both source sequences from the codewords. For this coding system, Slepian

and Wolf [3] characterized the achievable rate region for discrete stationary memoryless sources (DMSs), where

the achievable rate region is the set of rate pairs of encoders such that the decoding error probability vanishes as

the blocklength tends to infinity.

Discrete-time source symbols are regarded as discrete-time samples of a discrete-time process such as coin flips

or a continuous-time process such as a wave. In the above SW coding system, it is assumed that these processes

are sampled at the encoders without delay. Thus, encoders can encode a pair of source sequences with an expected

correlation. In other words, two encoders are synchronous. However, in practice, the encoders are not always
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Fig. 1: Slepian-Wolf coding system

0.5 1 1.5 2 2.5 3

T

H

0.5 1 1.5 2 2.5 3

T

H

(a) Waves without a delay

0.5 1 1.5 2 2.5 3

T

H

0.5 1 1.5 2 2.5 3

T

H

(b) Waves with a tiny delay

0.5 1 1.5 2 2.5 3

T

H

0.5 1 1.5 2 2.5 3

T

H

(c) Waves with a unit delay

Fig. 2: Asynchronicity of sampling

synchronous. It is natural to assume that these processes are sampled at encoders with some unknown delays. In

other words, the encoders are asynchronous. There are two reasons (i) and (ii) to justify this assumption: (i) Since

the encoders are independent in the system and cannot exchange any information, it is difficult to completely adjust

the time to start sampling among the encoders. Thus, in general, uncontrollable unknown delays occur. (ii) Even

if the encoders can adjust the time to start sampling by exchanging information or referring a shared clock, the

encoders become asynchronous when processes arrive late to the encoders. An example of this case is as follows:

Observatories (encoders) on islands sample wave heights (source sequences) per unit time caused by breeze, an

earthquake, a typhoon, etc. Since islands are separated, a wave reaches an island later than it reaches the other

island. The observatories send the sequences to a weather center (decoder) on a coast city distant from there. In

this example, the observatories (and also the weather center) do not know the actual delay of the wave in advance

because there are many uncertainties such as the direction of breeze, the point of the earthquake center, shielding

on the sea, etc. Thus, even if observatories can adjust the time to start sampling, they sample the wave with some

unknown delay.

To make matters worse, unknown delays may cause uncertainty of statistical properties of sources. To justify
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Fig. 3: Slepian-Wolf coding system with delays d1 and d2, where d1, d2 ∈ {· · · ,−2,−1, 0, 1, 2 · · ·}

this, we give an example where discrete-time source symbols are quantized and sampled version of a continuous

signal. Let us consider correlated wave signals shown in Fig. 2 (a). The upper wave is merely a constant wave in

which sometimes large changes occur. The lower wave is its noisy version where a Gaussian process is added. In

this example, we assume that each wave is sampled at each encoder per unit time at dotted lines and quantized with

some resolution. We also assume that a large change does not affect two unit times. These sampled and quantized

signals can be regarded as discrete-time and discrete-valued source symbols. If waves are sampled without any delay

(see Fig. 2 (a)), the encoders are synchronous. In that case, the correlation between two symbols is characterized

by only one channel induced by a Gaussian process. On the other hand, if waves are sampled with a tiny delay as

shown in Fig. 2 (b), the correlation between two symbols no longer corresponds to that of the case without delay.

When the delay is unknown, this causes uncertainty of statistical properties of sources, and now the properties are

characterized by a set of channels rather than a singleton i.e., only one channel. We also note that when the delay

corresponds to a unit time as shown in Fig. 2 (c), the encoders encode source sequences with integer-valued delays

as shown in Fig. 3.

As a consequence of the discussion so far, the asynchronous SW coding system can be represented as the

SW coding system with integer-valued delays (Fig. 3), where the delays and statistical properties of sources are

unknown. Thus, in what follows, a delay refers to an integer-valued delay unless otherwise stated. We note that

when a continuous signal is not assumed behind source symbols, the case where delays are unknown but statistical

properties are known is also worth considering. We also note that, in general, uncertainty of statistical properties

does not only come from unknown (real-valued) delays.

There are some related studies to the asynchronous SW coding system in the case where statistical properties of

sources are known in advance. Willems [4] considered the situation in which delays are unknown to encoders but

known to the decoder. He showed that the achievable rate region for DMSs coincides with that of the synchronous

SW coding system. In the same assumption as [4], Rimoldi and Urbanke [5] and Sun et al. [6] gave coding schemes

based on source splitting. In these studies [4]–[6], it is implicitly assumed that for a given finite blocklength, the

encoders continue to transmit codewords infinitely and the decoder has infinitely large memory to receive those

infinitely many codewords. Most importantly, this assumption eliminates the effect of delays because the decoder can

wait infinitely long time until receiving correlated codewords even if the blocklength is finite. However, in practice,

the decoder cannot have infinitely large memory and wait for decoding infinitely long time. Moreover, when delays

are very large, the decoding delay is also very large regardless of the blocklength. This justifies considering the

coding system encoding only one pair of source sequences for a given blocklength as the system shown in Fig. 3.

In this coding system, the decoder outputs an estimation from a pair of codewords and does not wait for the next
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pair. Obviously, this system includes the case where a codeword consists of sub-codewords. Thus, the decoder waits

until it receives a pair of codewords or finite pairs of sub-codewords, and does not wait infinitely long time for a

given finite blocklength. Here, for fairness among encoders and simplicity of the system, the blocklength of source

sequences are assumed to be the same. Oki and Oohama [7] considered this coding system, i.e., the system shown

in Fig. 3, where statistical properties of sources are known in advance. They assumed that delays are unknown to

encoders and also the decoder, but maximum and minimum values of possible delays are bounded and known to

the decoder. They showed that the achievable rate region for DMSs coincides with that of the synchronous SW

coding system.

In this paper, we also consider the asynchronous SW coding system. Specifically, we consider the SW coding

system with delays under the following two assumptions (i) and (ii): (i) Delays are unknown but maximum and

minimum values of possible delays are known to encoders and the decoder. In the above example of islands, the

maximum delay depends on the distance between the islands and is naturally known to the observatories and the

weather center because the distance is known in advance. (ii) Sources are DMSs and the probability mass function

(PMF) of the sources is unknown but a set of PMFs including it is known to encoders and the decoder. Unlike

the assumption in [7], we allow delays to be unbounded and maximum and minimum values of possible delays

to be subject to change by the blocklength. This allows us more detailed analyses such as the case where delays

affect a half of source sequences, the case where a delay always occurs, etc. This can also be seen as the following

situation: Each encoder has a FIFO (or LIFO) memory (i.e., a source sequence is always new or old). Since the

encoding and decoding delay of a preceding sequence has an order depending on the blocklength, which sequence

is stored in the memory depends on the blocklength. Consequently, possible delays also depend on the blocklength.

For this asynchronous SW coding system, we clarify the achievable rate region and show that the region does not

always coincide with that of the synchronous SW coding system. This result is completely different from results

of the above related studies. We use a usual information-theoretic technique as in [8] to the proof of the converse

part. On the other hand, the direct part is the challenging part, and its proof is somewhat different from the usual

one. Instead of directly dealing with coding for sources with delays, we deal with coding for a mixed source given

by the mixture of all sources with possible delays and employ Gallager’s random coding techniques [9] and [10]

to the mixed source. We note that given encoders and a decoder are universal in the sense that they can encode

and decode (asymptotically) correctly even if statistical parameters such as the delays and the PMF of DMSs are

unknown. We used an analogous technique using a mixed source in [11] to prove the existence of a code. However,

since we could not use Gallager’s techniques to the mixed source in [11], we did not give an exponential bound

in it. We also give an extension of our coding scheme: If possible delays are bounded, our coding scheme can be

extended to a scheme which does not require knowledge of the actual bound of delays. We note that this is also

an extension of the result by Oki and Oohama [7].

The rest of this paper is organized as follows. In Section II, we give some notations and the formal definition

of the asynchronous SW coding system and the achievable rate region. In Section III, we show the achievable rate

region and some properties of it. In Sections IV and V, we show the converse part and the direct part to clarify the

achievable rate region, respectively. In Section VI, we give the extension of our coding scheme. In Section VII, we
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conclude the paper.

II. PRELIMINARIES

In this section, we provide some notations and the precise definition of the asynchronous SW coding system.

We will denote an n-length sequence of symbols (a1, a2, · · · , an) by an, a sequence of symbols (am, am+1, · · · , am′)

by am
′

m , and a pair of sequences of symbols ((am, bl), (am+1, bl+1), · · · , (am′ , bl′)) by (am
′

m , bl
′

l ). If m > m′, we

assume am
′

m = ∅. For any finite sets X and Y , we will denote the set of all PMFs over X by P(X ), and the set

of all conditional PMFs over Y given elements of X by P(Y|X ). Unless otherwise stated, the PMF of a random

variable (RV) X on X will be denoted by PX ∈ P(X ), and the conditional PMF of Y on Y given X will be

denoted by PY |X ∈ P(Y|X ). We will denote the nth power of a PMF PX by Pn
X , i.e., Pn

X(xn) =
∏n

i=1 PX(xi),

and the nth power of a conditional PMF PY |X by Pn
Y |X , i.e., Pn

Y |X(yn|xn) =
∏n

i=1 PY |X(yi|xi). In what follows,

all logarithms and exponentials are taken to the base 2.

We assume that X and Y are finite sets. We will denote a general source {(Xn, Y n)}∞n=1 (i.e., a sequence of

n-length RVs) by the corresponding boldface letter (X,Y) (cf. [12]). Since a pair of DMSs is represented by a

sequence of independent copies of a pair of RVs (X,Y ), we simply write it as (X,Y ).

In the asynchronous SW coding system, two n-length sequences from DMSs (X,Y ) are independently encoded

by encoder 1 and encoder 2, respectively. Hence, for positive integers M
(1)
n and M

(2)
n , encoder 1 and encoder 2

are defined by the mappings

f (1)
n : Xn → M(1)

n = {1, · · · ,M (1)
n },

f (2)
n : Yn → M(2)

n = {1, · · · ,M (2)
n },

and the rates of these encoders are defined as

R(1)
n ,

1

n
logM (1)

n ,

R(2)
n ,

1

n
logM (2)

n ,

respectively. Since the encoders are asynchronous, encoder 1 might encode a source sequence Xn = (X1, X2, · · · , Xn)

while encoder 2 might encode a source sequence Y n−3
−2 = (Y−2, Y−1, · · · , Yn−3). In general, encoder 1 and encoder

2 encode sequences Xn and Y n+d
1+d = (Y1+d, Y2+d, · · · , Yn+d), respectively, where d is an integer which represents

a relative† delay (see Tables I and II).

Without loss of generality, we assume that −n ≤ d ≤ n because, for any d ≥ n or d ≤ −n, Xn is independent

of Y n+d
1+d . We denote Y n+d

1+d by Y n
(d) for the sake of brevity. Note that

PXnY n
(d)

(xn, yn) = P
|d|
X (x

|d|
I )P

n−|d|
XY (x

n−|d|
C , y

n−|d|
C )P

|d|
Y (y

|d|
I ), (1)

†Suppose that encoder 1 and encoder 2 run with delays d1 and d2, respectively. Then, for a source sequence (Xn+d1
1+d1

, Y
n+d2
1+d2

) encoded by

encoders, it holds that P
X

n+d1
1+d1

Y
n+d2
1+d2

(xn, yn) = P
X

n
1 Y

n+d2−d1
1+d2−d1

(xn, yn). Hence, we may only consider a relative delay.
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TABLE I: Correlation in the case where 0 ≤ d

X1 · · · X1+d · · · Xn · · ·

· · · Y1+d · · · Yn Yn+1 · · · Yn+d

TABLE II: Correlation in the case where d ≤ 0

· · · X1 · · · Xn+d X1+n+d · · · Xn

Y1+d · · · Y1 · · · Yn+d · · ·

where PXY is the PMF of the pair of DMSs (X,Y ), PX and PY are the marginal PMFs of PXY , and

x
|d|
I =





xd
1 if 0 ≤ d ≤ n,

xn
1+n+d if − n ≤ d ≤ 0,

(x
n−|d|
C , y

n−|d|
C ) =





(xn
1+d, y

n−d
1 ) if 0 ≤ d ≤ n,

(xn+d
1 , yn1−d) if − n ≤ d ≤ 0,

y
|d|
I =





yn1+n−d if 0 ≤ d ≤ n,

y−d
1 if − n ≤ d ≤ 0.

We denote DMSs (X,Y ) with a delay d simply by (X,Y(d)) which implies the sequence of RVs {(Xn, Y n
(d))}∞n=1.

We introduce the maximum dn (≤ n) and the minimum dn (≥ −n) of possible delays, and denote the sequence

{(dn, dn)}∞n=1 by d. Hence, any possible delay d satisfies dn ≤ d ≤ dn for any blocklength n. We allow the

maximum and the minimum of delays to be changed with the blocklength.

The decoder receives two codewords f
(1)
n (Xn) and f

(2)
n (Y n

(d)), and outputs an estimate of the pair of sequences

(Xn, Y n
(d)). Hence, the decoder is defined by the mapping

ϕn : M(1)
n ×M(2)

n → Xn × Yn.

Then, for DMSs (X,Y ) and a delay d, the error probability is defined as

ε
(n)
XY(d)

(f (1)
n , f (2)

n , ϕn) , Pr{ϕn(f
(1)
n (Xn), f (2)

n (Y n
(d))) 6= (Xn, Y n

(d))}. (2)

More generally, we will denote the error probability for a general source (X,Y) by ε
(n)
XY

(f
(1)
n , f

(2)
n , ϕn), i.e.,

ε
(n)
XY

(f (1)
n , f (2)

n , ϕn) , Pr{ϕn(f
(1)
n (Xn), f (2)

n (Y n)) 6= (Xn, Y n)}.

We will sometimes omit (f
(1)
n , f

(2)
n , ϕn) in the notation of ε

(n)
XY

when it is clear from the context.

In this coding system, we assume that the actual delay d is unknown but the bound d of delays is known to the

encoders and the decoder. Furthermore, we assume that the PMF PXY of the pair of DMSs is an element of a given

set S ⊆ P(X × Y) of PMFs and that the PMF PXY is unknown but the set S of PMFs is known to the encoders

and the decoder. More precisely, the code (f
(1)
n , f

(2)
n , ϕn) is independent of d and PXY ∈ S, but is allowed to be
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dependent on d and S. Hence, as we mentioned earlier, the code is universal in the sense that we require that they

can encode and decode (asymptotically) correctly even if statistical parameters d and PXY are unknown.

We now define achievability and achievable rate region for the asynchronous SW coding system for a given set

S of PMFs of sources and a bound d of delays.

Definition 1 (Achievability). A pair (R1, R2) is called achievable for a set S of PMFs and a bound d of delays

if and only if there exists a sequence of codes {(f (1)
n , f

(2)
n , ϕn)} satisfying

lim sup
n→∞

R(1)
n ≤ R1,

lim sup
n→∞

R(2)
n ≤ R2,

and

lim
n→∞

sup
PXY ∈S

max
d∈Dn

ε
(n)
XY(d)

(f (1)
n , f (2)

n , ϕn) = 0, (3)

where Dn , {dn, dn + 1, · · · , dn − 1, dn} is the set of possible delays.

Definition 2 (Achievable rate region). For a set S of PMFs and a bound d of delays, the achievable rate region

Rd(S) is defined by

Rd(S) , {(R1, R2) : (R1, R2) is achievable for the set S and the bound d}.

When S = {PXY } is a singleton, we simply write Rd(S) as Rd(X,Y ). Moreover, when there is no delay, i.e,

dn = dn = 0, we simply write Rd(X,Y ) as R(X,Y ).

Remark 1. When S is a singleton and dn = dn = 0, our coding system corresponds to the usual synchronous SW

coding system. Hence, R(X,Y ) denotes the achievable rate region of the synchronous SW coding system.

Oki and Oohama [7] considered the case where S is a singleton and delays are bounded in the sense that for a

constant c ∈ [0,∞), −c = dn ≤ d ≤ dn = c, ∀n > 0. They assume that the delay is unknown to encoders and the

decoder but c is known to the decoder. For this special case, they showed that the achievable rate region coincides

with that of the synchronous SW coding system, i.e.,

Rd(X,Y ) = R(X,Y )

= {(R1, R2) : R1 ≥ H(X |Y ), R2 ≥ H(Y |X), R1 +R2 ≥ H(X,Y )}, (4)

where H(X) denotes the entropy of X , and H(X |Y ) denotes the conditional entropy of X given Y . We will also

denote H(X) by H(PX), and H(X |Y ) by H(PX|Y |PY ) to clear their PMFs.

In what follows, we sometimes use the following notations for the sake of simplicity: H1(X,Y ) = H(X |Y ),

H2(X,Y ) = H(Y |X), H3(X,Y ) = H(X,Y ), and R3 = R1 +R2. Due to these notations, (4) is also written as

{(R1, R2) : Ri ≥ Hi(X,Y ), ∀i ∈ {1, 2, 3}}.
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3

H(X,Y )

R∗
2

H(Y |X)

H(X |Y ) R∗
1 H(X,Y ) R∗

3
R1

Rd(S)

Fig. 4: An image of Rd(S), where PXY ∈ S, R∗
1 = supPXY ∈S (H(X |Y ) + ∆dI(X ;Y )), R∗

2 =

supPXY ∈S (H(Y |X) + ∆dI(X ;Y )), and R∗
3 = supPXY ∈S (H(X,Y ) + ∆dI(X ;Y )).

III. ACHIEVABLE RATE REGION

In this section, we show the achievable rate region of the asynchronous SW coding system. We also show that

the obtained region does not always coincide with that of the synchronous SW coding system.

The next theorem clarifies the achievable rate region (see also Fig. 4).

Theorem 1. For a set S of PMFs of DMSs and a bound d of delays, we have

Rd(S) =
{
(R1, R2) : Ri ≥ sup

PXY ∈S
(Hi(X,Y ) + ∆dI(X ;Y )) , ∀i ∈ {1, 2, 3}

}
,

where

∆d , lim sup
n→∞

max
{
|dn|, |dn|

}

n
.

Remark 2. By the definition of d, it holds that 0 ≤ ∆d ≤ 1.

The proof of this theorem is given later in Sections IV and V. In this theorem, ∆d denotes the ratio of the

maximum delay to the blocklength. For example, for an arbitrarily fixed constant α ∈ (0, 1], suppose that dn = −αn

and dn = αn. Then ∆d = α, and hence we have for any subset S ⊆ P(X × Y),

Rd(S) =
{
(R1, R2) : Ri ≥ sup

PXY ∈S
(Hi(X,Y ) + αI(X ;Y )) , ∀i ∈ {1, 2, 3}

}
. (5)

Since α > 0, the rate region does not coincide with R(X,Y ), i.e., that of the synchronous SW coding system,

where we assume that PXY ∈ S and I(X ;Y ) > 0. This means that if delays have a significant influence in terms

of the blocklength n like this example, we cannot achieve a pair of rates of the synchronous SW coding system. As

shown in a later section, this is because delays affect the first-order of rates. Although this fact is very important,

it is not clear from previous studies [4] and [7].

More generally, we have the following corollaries.
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Corollary 1. Let PXY ∈ S. Then, Rd(S) 6= R(X,Y ) if and only if supPXY ∈S (Hi(X,Y ) + ∆dI(X ;Y )) 6=
Hi(X,Y ) for some i ∈ {1, 2, 3}.

Proof: If it holds that supPXY ∈S (Hi(X,Y ) + ∆dI(X ;Y )) 6= Hi(X,Y ) for some i ∈ {1, 2, 3}, we have

sup
PXY ∈S

(Hi(X,Y ) + ∆dI(X ;Y )) > Hi(X,Y ).

For such i ∈ {1, 2, 3}, we choose a boundary point (R′
1, R

′
2) ∈ R(X,Y ) such that R′

i = Hi(X,Y ). Then, according

to Theorem 1, we have

inf{Ri : (R1, R2) ∈ Rd(S)} ≥ sup
PXY ∈S

(Hi(X,Y ) + ∆dI(X ;Y )) > Hi(X,Y ) = R′
i.

This means that (R′
1, R

′
2) /∈ Rd(S), and hence Rd(S) 6= R(X,Y ). This gives the if part.

On the other hand, if it holds that supPXY ∈S (Hi(X,Y ) + ∆dI(X ;Y )) = Hi(X,Y ) for all i ∈ {1, 2, 3}, it

immediately holds that Rd(S) = R(X,Y ). This completes the proof.

Corollary 2. Let S = {PXY } be a singleton. Then, Rd(X,Y ) 6= R(X,Y ) if and only if ∆d 6= 0 and I(X ;Y ) 6= 0.

Proof: According to Corollary 1, Rd(X,Y ) 6= R(X,Y ) if and only if

Hi(X,Y ) + ∆dI(X ;Y ) 6= Hi(X,Y ), ∃i ∈ {1, 2, 3}.

This holds if and only if ∆d 6= 0 and I(X ;Y ) 6= 0.

IV. CONVERSE PART

In this section, we give a proof of the converse part of Theorem 1.

Before the proof of the converse part, we show the next fundamental lemma.

Lemma 1. For any PXY ∈ S and d ∈ Dn, we have

Hi(X
n, Y n

(d)) = nHi(X,Y ) + |d|I(X ;Y ), ∀i ∈ {1, 2, 3}. (6)

Proof: According to (1), for any PXY ∈ S and delay d ∈ Dn, we have

H(Xn|Y n
(d))

= −
∑

(xn,yn)∈Xn×Yn

P
|d|
X (x

|d|
I )P

n−|d|
XY (x

n−|d|
C , y

n−|d|
C )P

|d|
Y (y

|d|
I ) logP

|d|
X (x

|d|
I )P

n−|d|
X|Y (x

n−|d|
C |yn−|d|

C )

= −
∑

x|d|∈X |d|

P
|d|
X (x|d|) logP

|d|
X (x|d|)

−
∑

(xn−|d|,yn−|d|)∈Xn−|d|×Yn−|d|

P
n−|d|
XY (xn−|d|, yn−|d|) logP

n−|d|
X|Y (xn−|d||yn−|d|)

= |d|H(X) + (n− |d|)H(X |Y )

= nH(X |Y ) + |d|I(X ;Y ).
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Similarly, we have

H(Y n
(d)|Xn) = nH(Y |X) + |d|I(X ;Y ),

and

H(Xn, Y n
(d)) = |d|H(X) + (n− |d|)H(X,Y ) + |d|H(Y )

= nH(X,Y ) + |d|I(X ;Y ).

In order to emphasize the affect of delays, we give a converse bound for a given finite blocklength in the next

theorem.

Theorem 2. For any n > 0 and any code (f
(1)
n , f

(2)
n , ϕn), we have

R(i)
n ≥ sup

PXY ∈S

(
Hi(X,Y ) + ∆

(n)
d

I(X ;Y )
)
− ǫn, ∀i ∈ {1, 2, 3},

where ∆
(n)
d

=
max{|dn|,|dn|}

n
, R

(3)
n = R

(1)
n +R

(2)
n , and

ǫn = sup
PXY ∈S

max
d∈Dn

ε
(n)
XY(d)

log |X ||Y|+ 1

n
.

Proof: By using a usual converse technique (see Appendix A), for any n > 0, code (f
(1)
n , f

(2)
n , ϕn), delay

d ∈ Dn, and PXY ∈ S, we have

nR(i)
n ≥ Hi(X

n, Y n
(d))− nε

(n)
XY(d)

log |X ||Y| − 1, ∀i ∈ {1, 2, 3}. (7)

Hence, we have

R(i)
n ≥ sup

PXY ∈S
max
d∈Dn

(
1

n
Hi(X

n, Y n
(d))− ε

(n)
XY(d)

log |X ||Y| − 1

n

)

(a)
= sup

PXY ∈S
max
d∈Dn

(
Hi(X,Y ) +

|d|
n
I(X ;Y )− ε

(n)
XY(d)

log |X ||Y| − 1

n

)

≥ sup
PXY ∈S

max
d∈Dn

(
Hi(X,Y ) +

|d|
n
I(X ;Y )

)
−
(

sup
PXY ∈S

max
d∈Dn

ε
(n)
XY(d)

log |X ||Y|+ 1

n

)

= sup
PXY ∈S

(
Hi(X,Y ) +

maxd∈Dn
|d|

n
I(X ;Y )

)
− ǫn

= sup
PXY ∈S

(
Hi(X,Y ) + ∆

(n)
d

I(X ;Y )
)
− ǫn, ∀i ∈ {1, 2, 3},

where (a) comes from Lemma 1.

According to this theorem, delay affects the first-order of rates as the term ∆
(n)
d

I(X ;Y ). Hence, the larger ∆
(n)
d

becomes, the greater the difference between rates of synchronous SW coding systems and that of asynchronous SW

coding systems. As an instance, we consider the case were delay occurs a ratio of α > 0 for a given blocklength

n, i.e., dn = −αn and dn = αn. Since the error probability must be small, this theorem implies that any pair of

rates (R
(1)
n , R

(2)
n ) must satisfy

R(i)
n & sup

PXY ∈S
(Hi(X,Y ) + αI(X ;Y )) , ∀i ∈ {1, 2, 3}.

This also justifies the achievable rate region in Theorem 1 (cf. (5)).
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Now, we prove the converse part.

Proof of the converse part: Suppose that (R1, R2) ∈ Rd(S). By definition of the achievability, there exists a

sequence of codes {(f (1)
n , f

(2)
n , ϕn)} such that

lim sup
n→∞

R(i)
n ≤ Ri, ∀i ∈ {1, 2},

lim
n→∞

sup
PXY ∈S

max
d∈Dn

ε
(n)
XY(d)

(f (1)
n , f (2)

n , ϕn) = 0.

According to Theorem 2, for this sequence of codes and any PXY ∈ S, we have

Ri ≥ lim sup
n→∞

R(i)
n

≥ Hi(X,Y ) + ∆dI(X ;Y ), ∀i ∈ {1, 2, 3},

where we use the fact that

lim sup
n→∞

∆
(n)
d

= ∆d.

Since this inequality holds for any PXY ∈ S, we have

Ri ≥ sup
PXY ∈S

(Hi(X,Y ) + ∆dI(X ;Y )) , ∀i ∈ {1, 2, 3}.

Since this holds for any (R1, R2) ∈ Rd(S), we have

Rd(S) ⊆
{
(R1, R2) : Ri ≥ sup

PXY ∈S
(Hi(X,Y ) + ∆dI(X ;Y )) , ∀i ∈ {1, 2, 3}

}
.

This completes the proof of the converse part of Theorem 1.

V. DIRECT PART AND A UNIVERSAL CODING SCHEME

In this section, we give a proof of the direct part of Theorem 1. To this end, we will show a universal coding

scheme for asynchronous SW coding systems.

The universal coding scheme using the minimum entropy decoder [13] is well known. However, since it is

too much specialized to DMSs without delay, we cannot use it to our coding system straightforwardly. A natural

extension of the minimum entropy decoder may be as follows:

ϕn(m1,m2) =






(xn, yn) if (f
(1)
n (xn), f

(2)
n (yn)) = (m1,m2),

∃d ∈ Dn, ∀d̂ ∈ Dn, ∀(x̃n, ỹn) ∈ Xn × Yn, s.t.

(f
(1)
n (x̃n), f

(2)
n (ỹn)) = (m1,m2),

|d|H(P
x
|d|
I

) + (n− |d|)H(P
(x

n−|d|
C ,y

n−|d|
C )

) + |d|H(P
y
|d|
I

)

< |d̂|H(P
x̃
|d̂|
I

) + (n− |d̂|)H(P
(x̃

n−|d̂|
C ,ỹ

n−|d̂|
C )

) + |d̂|H(P
ỹ
|d̂|
I

),

declare the error otherwise,

where Pak is the type (cf. [14]) of a sequence ak defined by Pak(a) , |{i ∈ {1, · · · , k} : ai = a}|/k. However, it

may not be able to evaluate well the error probability of this decoder by using a usual method of the types. This

is because, for sequences yn and ỹn with the same type (or even for yn = ỹn), the type of yn−d does not always
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coincide with the type of ỹn−d̂ when d 6= d̂. Thus, when we use the minimum entropy decoder, we will probably

need a more sophisticated and somewhat complicated technique.

Instead of using the minimum entropy decoder, we employ a decoder for a mixed source and analyze the error

probability by using Gallager’s random coding techniques [9] and [10]. To this end, we introduce Pn(X ) that is

the set of PMFs PX̄ ∈ P(X ) taking rational numbers such that for each x ∈ X ,

PX̄(x) =
m

n
,

where m ∈ {0, 1, · · · , n}. This type of PMF is referred to as n-type in this paper. The next bound is well known

(see e.g., [14, Lemma 2.2]).

|Pn(X )| ≤ (n+ 1)|X |. (8)

Let dv be the variational distance between two PMFs P,Q ∈ P(X ) defined as

dv(P,Q) ,
∑

x∈X

|P (x)−Q(x)|.

Then, we have the next lemma which gives an approximation of a given distribution by an n-type. The proof is

given in Appendix B.

Lemma 2. Let α = |X ||Y|(|X ||Y| − 1) and εn = α ln
(
1 + α

n−α

)
. Then, for any n ≥ α and PXY ∈ P(X × Y),

there exists an n-type PX̄Ȳ ∈ Pn(X × Y) such that

dv(PXY , PX̄Ȳ ) ≤
2(|X ||Y| − 1)

n
, (9)

and

PXnY n
(d)

(xn, yn) ≤ PX̄nȲ n
(d)

(xn, yn)e3(α+εn),

∀(xn, yn) ∈ Xn × Yn, ∀d ∈ {−n, · · · , n}, (10)

where e is the base of the natural logarithm.

For each PXY ∈ S, we consider the corresponding n-type PX̄Ȳ in Lemma 2. We denote the set of those n-types

for elements of S by S̄n(⊆ Pn(X ×Y)), where S̄n is arbitrary for n < α. Hence by definition, for any PXY ∈ S
(and n ≥ α), there exists an n-type PX̄Ȳ ∈ S̄n satisfying (9) and (10). Roughly speaking, S̄n is an approximation

of S by n-types. By using this set S̄n, we define the mixed source (X̃, Ỹ) = {(X̃n, Ỹ n)}∞n=1, where the pair of

RVs (X̃n, Ỹ n) is drawn according to the joint PMF P
X̃nỸ n defined as

P
X̃nỸ n(x

n, yn) ,
∑

PX̄Ȳ ∈S̄n

∑

d∈Dn

1

|S̄n||Dn|
PX̄nȲ n

(d)
(xn, yn). (11)

This mixed source gives a bound on the maximum error probability for DMSs with delay as shown in the next

theorem.
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Theorem 3. Let α = |X ||Y|(|X ||Y| − 1) and εn = α ln
(
1 + α

n−α

)
. Then, for any n ≥ α and any code

(f
(1)
n , f

(2)
n , ϕn), we have

sup
PXY ∈S

max
d∈Dn

ε
(n)
XY(d)

(f (1)
n , f (2)

n , ϕn) ≤ e3(α+εn)(2n+ 1)(n+ 1)|X ||Y|ε
(n)

X̃Ỹ
(f (1)

n , f (2)
n , ϕn). (12)

Proof: We prove this theorem in two parts. In the first part, we show that for any n > 0 and any code

(f
(1)
n , f

(2)
n , ϕn),

max
PX̄Ȳ ∈S̄n

max
d∈Dn

ε
(n)

X̄Ȳ(d)
(f (1)

n , f (2)
n , ϕn) ≤ (2n+ 1)(n+ 1)|X ||Y|ε

(n)

X̃Ỹ
(f (1)

n , f (2)
n , ϕn), (13)

where (X̄, Ȳ(d)) denotes DMSs (X̄, Ȳ ) induced by the n-type PX̄Ȳ with the delay d. In the second part, we show

that for any n ≥ α and any code (f
(1)
n , f

(2)
n , ϕn),

sup
PXY ∈S

max
d∈Dn

ε
(n)
XY(d)

(f (1)
n , f (2)

n , ϕn) ≤ e3(α+εn) max
PX̄Ȳ ∈S̄n

max
d∈Dn

ε
(n)

X̄Ȳ(d)
(f (1)

n , f (2)
n , ϕn). (14)

The theorem follows immediately from (13) and (14).

First part: Since the decoder ϕn is a deterministic function, for any source (X,Y), the error probability

ε
(n)
XY

(f
(1)
n , f

(2)
n , ϕn) can be written as

ε
(n)
XY

(f (1)
n , f (2)

n , ϕn) =
∑

(xn,yn)∈En(f
(1)
n ,f

(2)
n ,ϕn)

PXnY n(xn, yn),

where En(f (1)
n , f

(2)
n , ϕn) is the set of pairs of sequences which cannot be decoded correctly, i.e.,

En(f (1)
n , f (2)

n , ϕn) , {(xn, yn) ∈ Xn × Yn : ϕn(f
(1)
n (xn), f (2)

n (yn)) 6= (xn, yn)}.

Thus, we have

max
PX̄Ȳ ∈S̄n

max
d∈Dn

ε
(n)

X̄Ȳ(d)
(f (1)

n , f (2)
n , ϕn) ≤

∑

PX̄Ȳ ∈S̄n

∑

d∈Dn

ε
(n)

X̄Ȳ(d)
(f (1)

n , f (2)
n , ϕn)

=
∑

PX̄Ȳ ∈S̄n

∑

d∈Dn

∑

(xn,yn)∈En(f
(1)
n ,f

(2)
n ,ϕn)

PX̄nȲ n
(d)

(xn, yn)

= |Dn||S̄n|
∑

(xn,yn)∈En(f
(1)
n ,f

(2)
n ,ϕn)

P
X̃nỸ n(x

n, yn)

= |Dn||S̄n|ε(n)
X̃Ỹ

(f (1)
n , f (2)

n , ϕn)

≤ (2n+ 1)(n+ 1)|X ||Y|ε
(n)

X̃Ỹ
(f (1)

n , f (2)
n , ϕn),

where the last inequality comes from the fact that −n ≤ dn ≤ dn ≤ n and (8). Hence, we have (13).

Second part: For an arbitrarily fixed PXY ∈ S, we consider a corresponding n-type PX̄Ȳ ∈ S̄n satisfying (10)

in Lemma 2. Then, for any d ∈ Dn, ε
(n)
XY(d)

(f
(1)
n , f

(2)
n , ϕn) can be bounded by

ε
(n)
XY(d)

(f (1)
n , f (2)

n , ϕn) =
∑

(xn,yn)∈En(f
(1)
n ,f

(2)
n ,ϕn)

PXnY n
(d)

(xn, yn)

≤ e3(α+εn)
∑

(xn,yn)∈En(f
(1)
n ,f

(2)
n ,ϕn)

PX̄nȲ n
(d)

(xn, yn)

= e3(α+εn)ε
(n)

X̄Ȳ(d)
(f (1)

n , f (2)
n , ϕn)
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≤ e3(α+εn) max
PX̄Ȳ ∈S̄n

max
d∈Dn

ε
(n)

X̄Ȳ(d)
(f (1)

n , f (2)
n , ϕn),

where the first inequality follows since PX̄Ȳ satisfies (10). This inequality holds for any PXY ∈ S and d ∈ Dn,

we have (14).

This theorem implies that if the error probability for the mixed source vanishes at the order o(n−|X ||Y|−1), the

maximum error probability for DMSs with delay also vanishes. In the next theorem, we show the existence of a

code of which the error probability vanishes exponentially rather than o(n−|X ||Y|−1).

To this end, we introduce some notations: For PXY ∈ P(X ×Y) and a real number ρ ≥ 0, let P
(ρ)
X ∈ P(X ) be

a PMF given by

P
(ρ)
X (x) =

PX(x)
1

1+ρ

∑
x∈X PX(x)

1
1+ρ

, (15)

P
(ρ)
X|Y ∈ P(X|Y) be a conditional PMF given by

P
(ρ)
X|Y (x|y) =

PXY (x, y)
1

1+ρ

∑
x∈X PXY (x, y)

1
1+ρ

, (16)

and P̄
(ρ)
X ∈ P(X ) be a PMF given by

P̄
(ρ)
X (x) =

(∑
y∈Y PXY (x, y)

1
1+ρ

)1+ρ

∑
x∈X

(∑
y∈Y PXY (x, y)

1
1+ρ

)1+ρ
. (17)

We note that these PMFs are continuous with respect to ρ ∈ [0, 1]. We also note that when ρ = 0, it holds that

P
(ρ)
X = P̄

(ρ)
X = PX and P

(ρ)
X|Y = PX|Y .

Now, we show an exponential bound on the error probability.

Theorem 4. For any R1, R2 > 0 and n ≥ α, there exists a code (f
(1)
n , f

(2)
n , ϕn) such that

M (1)
n =

⌈
2nR1

⌉
, M (2)

n =
⌈
2nR2

⌉
,

and

− 1

n
log ε

(n)

X̃Ỹ
≥ min

i∈{1,2,3}
sup

0≤ρ≤1
min

PXY ∈S̄n

Fi(ρ,Ri, PXY ,∆
(n)
d

)− ǫn,

where ǫn = log 3(2n+1)(n+1)|X||Y|

n
,

F1(ρ,R1, PXY ,∆) = ρ

(
R1 −H(P

(ρ)
X|Y |P̄

(ρ)
Y )−∆

∣∣∣H(P
(ρ)
X )−H(P

(ρ)
X|Y |P̄

(ρ)
Y )

∣∣∣
+

)

+D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY )−∆

∣∣∣D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY )−D(P

(ρ)
X ‖PX)

∣∣∣
+
, (18)

F2(ρ,R2, PXY ,∆) = ρ

(
R2 −H(P

(ρ)
Y |X |P̄ (ρ)

X )−∆
∣∣∣H(P

(ρ)
Y )−H(P

(ρ)
Y |X |P̄ (ρ)

X )
∣∣∣
+

)

+D(P̄
(ρ)
X × P

(ρ)
Y |X‖PXY )−∆

∣∣∣D(P̄
(ρ)
X × P

(ρ)
Y |X‖PXY )−D(P

(ρ)
Y ‖PY )

∣∣∣
+
, (19)

F3(ρ,R3, PXY ,∆) = ρ

(
R3 −H(P

(ρ)
XY )−∆

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+

)

+D(P
(ρ)
XY ‖PXY )−∆

∣∣∣D(P
(ρ)
XY ‖PXY )−D(P

(ρ)
X ‖PX)−D(P

(ρ)
Y ‖PY )

∣∣∣
+
, (20)
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and |x|+ , max{0, x}.

Proof: By employing Gallager’s random coding techniques [9] and [10] to the mixed source (X̃, Ỹ), we can

show the existence of a code (f
(1)
n , f

(2)
n , ϕn) such that M

(1)
n =

⌈
2nR1

⌉
, M

(2)
n =

⌈
2nR2

⌉
, and

ε
(n)

X̃Ỹ
(f (1)

n , f (2)
n , ϕn) ≤ 3 exp

(
−n min

i∈{1,2,3}
max
0≤ρ≤1

(
ρRi − E(i)

n (ρ, P
X̃nỸ n)

))
, (21)

where

E(1)
n (ρ, PXnY n) =

1

n
log

∑

yn∈Yn

(
∑

xn∈Xn

PXnY n(xn, yn)
1

1+ρ

)1+ρ

, (22)

E(2)
n (ρ, PXnY n) =

1

n
log

∑

xn∈Xn



∑

yn∈Yn

PXnY n(xn, yn)
1

1+ρ




1+ρ

, (23)

E(3)
n (ρ, PXnY n) =

1

n
log




∑

(xn,yn)∈Xn×Yn

PXnY n(xn, yn)
1

1+ρ




1+ρ

. (24)

This bound is also given by Nomura and Han [15, Appendix C] more explicitly.

On the other hand, according to Appendix C, we have

max
0≤ρ≤1

(
ρRi − E(i)

n (ρ, P
X̃nỸ n)

)
≥ sup

0≤ρ≤1
min

PXY ∈S̄n

Fi(ρ,Ri, PXY ,∆
(n)
d

)− ǫ′n, ∀i ∈ {1, 2, 3}, (25)

where

ǫ′n =
log(2n+ 1)(n+ 1)|X ||Y|

n
.

By combining (21) and (25), we have the theorem.

By using Theorems 3 and 4, we obtain the next theorem which gives a bound on the error exponent for the

asynchronous SW coding system.

Theorem 5. For any R1, R2 > 0, there exists a sequence of codes {(f (1)
n , f

(2)
n , ϕn)} such that

M (1)
n =

⌈
2nR1

⌉
, M (2)

n =
⌈
2nR2

⌉
, ∀n > 0,

and

lim inf
n→∞

− 1

n
log sup

PXY ∈S
max
d∈Dn

ε
(n)
XY(d)

≥ sup
δ>0

min
i∈{1,2,3}

sup
0≤ρ≤1

inf
PXY ∈Sδ

Fi(ρ,Ri, PXY ,∆d),

where

Sδ =
⋃

PXY ∈S

{PX′Y ′ ∈ P(X × Y) : dv(PXY , PX′Y ′) ≤ δ} .

Proof: For any n-type PX̄Ȳ ∈ S̄n, there exists PXY ∈ S satisfying (9) by definition. Thus, for any δ > 0 and

n ≥ 2(|X ||Y|−1)
δ

, we have

dv(PXY , PX̄Ȳ ) ≤
2(|X ||Y| − 1)

n
≤ δ.

This implies that

PX̄Ȳ ∈ {PX′Y ′ ∈ P(X × Y) : dv(PXY , PX′Y ′) ≤ δ} ⊆ Sδ.
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Since this holds for any n-type PX̄Ȳ ∈ S̄n, we have S̄n ⊆ Sδ for any δ > 0 and n > 2(|X ||Y|−1)
δ

.

According to this property and Theorem 4, for any R1, R2 > 0, there exists a sequence of codes {(f (1)
n , f

(2)
n , ϕn)}

such that

M (1)
n =

⌈
2nR1

⌉
, M (2)

n =
⌈
2nR2

⌉
, ∀n > 0,

and

lim inf
n→∞

− 1

n
log ε

(n)

X̃Ỹ
(f (1)

n , f (2)
n , ϕn)

≥ lim inf
n→∞

min
i∈{1,2,3}

sup
0≤ρ≤1

min
PXY ∈S̄n

Fi(ρ,Ri, PXY ,∆
(n)
d

)

≥ lim inf
n→∞

min
i∈{1,2,3}

sup
0≤ρ≤1

inf
PXY ∈Sδ

Fi(ρ,Ri, PXY ,∆
(n)
d

), ∀δ > 0, (26)

where the last inequality comes from the fact that S̄n ⊆ Sδ for any δ > 0 and sufficiently large n > 0.

Furthermore, for this sequence of codes, we have

lim inf
n→∞

− 1

n
log sup

PXY ∈S
max
d∈Dn

ε
(n)
XY(d)

(f (1)
n , f (2)

n , ϕn)

(a)

≥ lim inf
n→∞

− 1

n
log e3(α+εn)(2n+ 1)(n+ 1)|X ||Y|ε

(n)

X̃Ỹ
(f (1)

n , f (2)
n , ϕn)

= lim inf
n→∞

− 1

n
log ε

(n)

X̃Ỹ
(f (1)

n , f (2)
n , ϕn)

(b)

≥ sup
δ>0

lim inf
n→∞

min
i∈{1,2,3}

sup
0≤ρ≤1

inf
PXY ∈Sδ

Fi(ρ,Ri, PXY ,∆
(n)
d

), (27)

where (a) comes from Theorem 3 and (b) comes from (26).

On the other hand, we have

∣∣∣H(P
(ρ)
X )−H(P

(ρ)
X|Y |P̄

(ρ)
Y )

∣∣∣
+

(a)

≤
∣∣∣H(P

(ρ)
X )

∣∣∣
+

≤ log |X |,

and

∣∣∣D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY )−D(P

(ρ)
X ‖PX)

∣∣∣
+
≤
∣∣∣D(P̄

(ρ)
Y × P

(ρ)
X|Y ‖PXY )

∣∣∣
+

(b)

≤ log |X |,

where (a) follows since | · |+ is a monotonically increasing function, and (b) comes from Corollary 3 in Appendix

C. Similarly, we have

∣∣∣H(P
(ρ)
Y )−H(P

(ρ)
Y |X |P̄ (ρ)

X )
∣∣∣
+
≤ log |Y|,

∣∣∣D(P̄
(ρ)
X × P

(ρ)
Y |X‖PXY )−D(P

(ρ)
Y ‖PY )

∣∣∣
+
≤ log |Y|,

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+
≤ log |X ||Y|,

∣∣∣D(P
(ρ)
XY ‖PXY )−D(P

(ρ)
X ‖PX)−D(P

(ρ)
Y ‖PY )

∣∣∣
+
≤ log |X ||Y|.
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Since there exists a sequence {ǫn} such that ǫn > 0, limn→∞ ǫn = 0, and

∆
(n)
d

≤ ∆d + ǫn, ∀n > 0,

we have

F1(ρ,R1, PXY ,∆
(n)
d

)

= ρ

(
R1 −H(P

(ρ)
X|Y |P̄

(ρ)
Y )−∆

(n)
d

∣∣∣H(P
(ρ)
X )−H(P

(ρ)
X|Y |P̄

(ρ)
Y )

∣∣∣
+

)

+D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY )−∆

(n)
d

∣∣∣D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY )−D(P

(ρ)
X ‖PX)

∣∣∣
+

≥ ρ

(
R1 −H(P

(ρ)
X|Y |P̄

(ρ)
Y )−∆d

∣∣∣H(P
(ρ)
X )−H(P

(ρ)
X|Y |P̄

(ρ)
Y )

∣∣∣
+

)
− ǫn log |X |

+D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY )−∆d

∣∣∣D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY )−D(P

(ρ)
X ‖PX)

∣∣∣
+
− ǫn log |X |

= F1(ρ,R1, PXY ,∆d)− 2ǫn log |X |. (28)

Similarly, we have

F2(ρ,R2, PXY ,∆
(n)
d

) ≥ F2(ρ,R2, PXY ,∆d)− 2ǫn log |Y|, (29)

F3(ρ,R3, PXY ,∆
(n)
d

) ≥ F3(ρ,R3, PXY ,∆d)− 2ǫn log |X ||Y|. (30)

Substituting (28)–(30) into (27), we have the desired bound.

Remark 3. In the proof of Theorem 4, the existence of a code is shown by using random binning and the maximum

likelihood (ML) decoder (see, e.g., [15, Appendix C]). Thus, obtained encoders of Theorem 5 do not use a set S of

PMFs and a bound d of delays. On the other hand, the ML decoder must use S and d (or the PMF of the mixed

source) to calculate probabilities of source sequences. This claim is the same as [7]. However, it is not guaranteed

that the error exponent for these encoders is bounded by the same exponent in Theorem 5 for other parameters of

S and d. Thus, in this theorem, we do not state that the encoders are independent of S and d. In Section VI, we

give a sequence of codes that are independent of d and whose error exponent is bounded by the same exponent in

Theorem 5 if delays are bounded.

We are interested in the condition that the error exponent of Theorem 5 is positive. The next theorem shows that

it is positive whenever (R1, R2) is in the achievable rate region. The proof of the theorem is given in Appendix D.

Theorem 6. For any S ⊆ P(X × Y), R1, R2 > 0, and ∆ ∈ [0, 1] such that

Ri > sup
PXY ∈S

(Hi(X,Y ) + ∆I(X ;Y )) , ∀i ∈ {1, 2, 3},

we have

sup
δ>0

min
i∈{1,2,3}

sup
0≤ρ≤1

inf
PXY ∈Sδ

Fi(ρ,Ri, PXY ,∆) > 0. (31)

Now, we prove the direct part.
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Proof of the direct part: We show that any pair (r1, r2) satisfying

(r1, r2) ∈
{
(R1, R2) : Ri ≥ sup

PXY ∈S
(Hi(X,Y ) + ∆dI(X ;Y )) , ∀i ∈ {1, 2, 3}

}
(32)

is achievable.

For an arbitrarily fixed γ > 0 and (r1, r2) satisfying (32), let

Ri = ri + γ, ∀i ∈ {1, 2}.

Then, according to Theorem 5, there exists a sequence of codes {(f (1)
n , f

(2)
n , ϕn)} such that

M (1)
n =

⌈
2nR1

⌉
, M (2)

n =
⌈
2nR2

⌉
, ∀n > 0,

and

lim inf
n→∞

− 1

n
log sup

PXY ∈S
max
d∈Dn

ε
(n)
XY(d)

(f (1)
n , f (2)

n , ϕn) ≥ sup
δ>0

min
i∈{1,2,3}

sup
0≤ρ≤1

inf
PXY ∈Sδ

Fi(ρ,Ri, PXY ,∆d).

On the other hand, by noticing that

Ri ≥ sup
PXY ∈S

(Hi(X,Y ) + ∆dI(X ;Y )) + γ, ∀i ∈ {1, 2, 3},

Theorem 6 tells us that

sup
δ>0

min
i∈{1,2,3}

sup
0≤ρ≤1

inf
PXY ∈Sδ

Fi(ρ,Ri, PXY ,∆d) > 0.

Thus, we have

lim inf
n→∞

− 1

n
log sup

PXY ∈S
max
d∈Dn

ε
(n)
XY(d)

(f (1)
n , f (2)

n , ϕn) > 0.

This impels that there exists an integer N ≥ 1 such that for any n ≥ N ,

sup
PXY ∈S

max
d∈Dn

ε
(n)
XY(d)

(f (1)
n , f (2)

n , ϕn) ≤ γ.

Now, we choose a sequence {γk}∞k=1 such that γ1 > γ2 > · · · > 0 and γk → 0 as k → ∞. Then, by repeating

the above argument for each k ≥ 1, we can show the existence of a sequence of codes {(f (1)
n,k, f

(2)
n,k, ϕn,k)} and an

integer Nk ≥ 1 such that for any n ≥ Nk,

M (i)
n =

⌈
2n(ri+γk)

⌉
, ∀i ∈ {1, 2},

sup
PXY ∈S

max
d∈Dn

ε
(n)
XY(d)

(f
(1)
n,k, f

(2)
n,k, ϕn,k) ≤ γk.

Without loss of generality, we assume that N1 < N2 < · · · → ∞. We denote by kn the integer k satisfying

Nk ≤ n < Nk+1 and define a code as (f
(1)
n , f

(2)
n , ϕn) , (f

(1)
n,kn

, f
(2)
n,kn

, ϕn,kn
). Then, for the sequence of these

codes {(f (1)
n , f

(2)
n , ϕn)} and any n ≥ N1, we have

M (i)
n =

⌈
2n(ri+γkn )

⌉
, ∀i ∈ {1, 2},

sup
PXY ∈S

max
d∈Dn

ε
(n)
XY(d)

(f (1)
n , f (2)

n , ϕn) ≤ γkn
.

Since γkn
→ 0 as n → ∞, we have

lim sup
n→∞

R(i)
n = ri, ∀i ∈ {1, 2},
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lim
n→∞

sup
PXY ∈S

max
d∈Dn

ε
(n)
XY(d)

(f (1)
n , f (2)

n , ϕn) = 0.

This means that (r1, r2) is achievable and completes the proof.

VI. ELIMINATION OF KNOWLEDGE OF THE BOUND OF DELAYS

In this section, we give an extension of our coding scheme which does not require knowledge of the bound of

delays if possible delays are bounded. We note that this scheme is inspired by [16].

We assume that delays are bounded, i.e., for the bound d = {(dn, dn)}∞n=1, there are some constants d and d

such that

d ≤ dn ≤ dn ≤ d, ∀n > 0. (33)

In this case, according to Theorem 5, there exists a sequence {(f (1)
n , f

(2)
n , ϕn)} of codes such that the error exponent

is bounded as

lim inf
n→∞

− 1

n
log sup

PXY ∈S
max
d∈Dn

ε
(n)
XY(d)

(f (1)
n , f (2)

n , ϕn) ≥ sup
δ>0

min
i∈{1,2,3}

sup
0≤ρ≤1

inf
PXY ∈Sδ

Fi(ρ,Ri, PXY , 0).

We can show the existence of a sequence of codes achieving the same bound even if there is no knowledge of the

bound d.

To this end, we introduce the dummy bound d̃ = {(bn, bn)} of delays, where bn = −⌈√n⌉ and bn = ⌈√n⌉.

For this bound d̃, according to Theorem 5, there exists a sequence {(f̃ (1)
n , f̃

(2)
n , ϕ̃n)} of codes such that the error

exponent is bounded as, by the same exponent,

lim inf
n→∞

− 1

n
log sup

PXY ∈S
max
d∈D̃n

ε
(n)
XY(d)

(f̃ (1)
n , f̃ (2)

n , ϕ̃n) ≥ sup
δ>0

min
i∈{1,2,3}

sup
0≤ρ≤1

inf
PXY ∈Sδ

Fi(ρ,Ri, PXY , 0),

where

D̃n ,
{
bn, bn + 1, · · · , bn − 1, bn

}
.

Since for sufficiently large n, dummy bounds bn and bn exceed d and d, i.e., Dn ⊆ D̃n, we have

lim inf
n→∞

− 1

n
log sup

PXY ∈S
max
d∈Dn

ε
(n)
XY(d)

(f̃ (1)
n , f̃ (2)

n , ϕ̃n) ≥ lim inf
n→∞

− 1

n
log sup

PXY ∈S
max
d∈D̃n

ε
(n)
XY(d)

(f̃ (1)
n , f̃ (2)

n , ϕ̃n).

We note that this inequality holds for any bound d satisfying (33), and the sequence of codes {(f̃ (1)
n , f̃

(2)
n , ϕ̃n)}

depends on the dummy bound d̃ and is independent of the true bound d. Thus, we have the following theorem.

Theorem 7. For any R1, R2 > 0, there exists a sequence {(f̃ (1)
n , f̃

(2)
n , ϕ̃n)} of codes such that

M (1)
n =

⌈
2nR1

⌉
, M (2)

n =
⌈
2nR2

⌉
, ∀n > 0,

and

lim inf
n→∞

− 1

n
log sup

PXY ∈S
max
d∈Dn

ε
(n)
XY(d)

(f̃ (1)
n , f̃ (2)

n , ϕ̃n) ≥ sup
δ>0

min
i∈{1,2,3}

sup
0≤ρ≤1

inf
PXY ∈Sδ

Fi(ρ,Ri, PXY , 0),

where the sequence {(f̃ (1)
n , f̃

(2)
n , ϕ̃n)} is independent of d, and the inequality holds for any bound d = {(dn, dn)}∞n=1

such that there are some constants d and d satisfying

d ≤ dn ≤ dn ≤ d, ∀n > 0.
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VII. CONCLUSION

In this paper, we have dealt with the asynchronous SW coding system and clarified the achievable rate region.

According to the achievable rate region, it does not always coincide with that of the synchronous SW coding

system. In the converse part, we used a usual information-theoretic technique. In the direct part, we employed a

universal coding scheme using the mixed source. We extended our coding scheme to a scheme which does not

require knowledge of the bound of delays.

APPENDIX A

CONVERSE BOUND

In this appendix, we prove the bound (7) in a similar way as in [8, Sec. 15.4.2].

Due to Fano’s inequality [8, Theorem 2.10.1], for any n > 0, code (f
(1)
n , f

(2)
n , ϕn), delay d ∈ Dn, and PXY ∈ S,

we have

H(Xn, Y n
(d)|f (1)

n (Xn), f (2)
n (Y n

(d))) ≤ nε
(n)
XY(d)

log |X ||Y| + 1. (34)

We also have

H(Xn|f (1)
n (Xn), Y n

(d)) = H(Xn|f (1)
n (Xn), f (2)

n (Y n
(d)), Y

n
(d))

≤ H(Xn, Y n
(d)|f (1)

n (Xn), f (2)
n (Y n

(d)))

≤ nε
(n)
XY(d)

log |X ||Y| + 1, (35)

and similarly

H(Y n
(d)|f (2)

n (Y n
(d)), X

n) ≤ nε
(n)
XY(d)

log |X ||Y|+ 1. (36)

Thus, we have

nR(1)
n ≥ H(f (1)

n (Xn))

≥ H(f (1)
n (Xn)|Y n

(d))

= I(Xn; f (1)
n (Xn)|Y n

(d))

= H(Xn|Y n
(d))−H(Xn|f (1)

n (Xn), Y n
(d))

≥ H(Xn|Y n
(d))− nε

(n)
XY(d)

log |X ||Y| − 1, (37)

where the last inequality comes from (35). Similarly, due to (36), we have

nR(2)
n ≥ H(Y n

(d)|Xn)− nε
(n)
XY(d)

log |X ||Y| − 1. (38)

We also have

n(R(1)
n +R(2)

n ) ≥ H(f (1)
n (Xn), f (2)

n (Y n
(d)))

= I(Xn, Y n
(d); f

(1)
n (Xn), f (2)

n (Y n
(d)))

= H(Xn, Y n
(d))−H(Xn, Y n

(d)|f (1)
n (Xn), f (2)

n (Y n
(d)))
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≥ H(Xn, Y n
(d))− nε

(n)
XY(d)

log |X ||Y| − 1, (39)

where the last inequality comes from (34).

Combining (37)–(39), we have (7).

APPENDIX B

PROOF OF LEMMA 2

We first give the next lemma which is an extension of [11, Lemma 3] to non-binary alphabets.

Lemma 3. Let α = |X |(|X | − 1) and εn = α ln
(
1 + α

n−α

)
. Then, for any n ≥ α and any PX ∈ P(X ), there

exists an n-type PX̄ ∈ Pn(X ) such that

dv(PX , PX̄) ≤ 2(|X | − 1)

n
,

and

Pn
X(xn) ≤ Pn

X̄(xn)e(α+εn), ∀xn ∈ Xn. (40)

Proof: For any fixed PX ∈ P(X ), let x∗ ∈ X be a symbol with the highest probability, i.e. PX(x∗) ≥ PX(x)

for any x ∈ X . Let N(x) be an integer defined as

N(x) ,





⌈nPX(x)⌉ if x 6= x∗,

n−∑x∈X :x 6=x∗ ⌈nPX(x)⌉ if x = x∗.

(41)

Then, we have

0 ≤ N(x) ≤ n, ∀x 6= x∗,

and

n ≥ N(x∗)

= n−
∑

x∈X :x 6=x∗

⌈nPX(x)⌉

≥ n−
∑

x∈X :x 6=x∗

(nPX(x) + 1)

= n


1−

∑

x∈X :x 6=x∗

PX(x)


 − (|X | − 1)

= nPX(x∗)− (|X | − 1)

≥ n
1

|X | − (|X | − 1)

=
n− |X |(|X | − 1)

|X | .

Thus, for any n ≥ |X |(|X | − 1) = α, we have

0 ≤ N(x) ≤ n, ∀x ∈ X ,
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and also

∑

x∈X

N(x) = n.

For this N(x), we define an n-type PX̄ ∈ Pn(X ) as

PX̄(x) ,
N(x)

n
.

Then, according to (41), we have

0 ≤ PX̄(x)− PX(x) <
1

n
, ∀x 6= x∗, (42)

and

0 ≤ PX(x∗)− PX̄(x∗) <
|X | − 1

n
. (43)

Hence, we have

dv(PX , PX̄) =
∑

x∈X

|PX̄(x) − PX(x)| < 2(|X | − 1)

n
.

We also show that the n-type PX̄ satisfies (40). For any xn ∈ Xn and x ∈ X , define N(x|xn) as

N(x|xn) , |{i ∈ {1, · · · , n} : xi = x}|.

Then, for any xn ∈ Xn, we have

Pn
X(xn) =

∏

x∈X

PX(x)N(x|xn)

= PX(x∗)N(x∗|xn)
∏

x∈X :x 6=x∗

PX(x)N(x|xn)

≤
(
PX̄(x∗) +

|X | − 1

n

)N(x∗|xn) ∏

x∈X :x 6=x∗

PX̄(x)N(x|xn)

= PX̄(x∗)N(x∗|xn)

(
1 +

|X | − 1

nPX̄(x∗)

)N(x∗|xn) ∏

x∈X :x 6=x∗

PX̄(x)N(x|xn)

= Pn
X̄(xn)

(
1 +

|X | − 1

nPX̄(x∗)

)N(x∗|xn)

,

where the inequality comes from (42) and (43). According to (43) and the fact that PX(x∗) ≥ 1
|X | , we have

|X | − 1

nPX̄(x∗)
<

|X | − 1

nPX(x∗)− (|X | − 1)

≤ α

n− α
.

Since N(x∗|xn) ≤ n, we have

Pn
X(xn) ≤ Pn

X̄(xn)

(
1 +

|X | − 1

nPX̄(x∗)

)N(x∗|xn)

≤ Pn
X̄(xn)

(
1 +

α

n− α

)N(x∗|xn)



23

≤ Pn
X̄(xn)

(
1 +

α

n− α

)n

= Pn
X̄(xn)

(
1 +

1

n′

)αn′+α

= Pn
X̄
(xn)

(
1 +

α

n− α

)α(
1 +

1

n′

)αn′

,

where n′ = n/α− 1. Since
(
1 + 1

n′

)n′

is monotonically increasing function of n′ and converges to e, we have

Pn
X(xn) ≤ Pn

X̄(xn)
(
1 +

α

n− α

)α
eα

= Pn
X̄(xn)eα+εn .

This completes the proof.

By using the above lemma, we prove Lemma 2.

Proof of Lemma 2: According to Lemma 3, for any n ≥ α (= |X ||Y|(|X ||Y| − 1)), there exists an n-type

PX̄Ȳ ∈ Pn(X × Y) such that

Pn
XY (x

n, yn) ≤ Pn
X̄Ȳ (x

n, yn)eα+εn , (44)

and

dv(PXY , PX̄Ȳ ) ≤
2(|X ||Y| − 1)

n
.

Note that, for any k ≤ n, marginal distributions P k
XY (x

k, yk), P k
X(xk), and P k

Y (y
k) of Pn

XY (x
n, yn) satisfy

P k
XY (x

k, yk) ≤ P k
X̄Ȳ (x

k, yk)eα+εn ,

P k
X(xk) ≤ P k

X̄(xk)eα+εn ,

P k
Y (y

k) ≤ P k
Ȳ (y

k)eα+εn .

Thus, for any d ∈ {−n,−n+ 1, · · · , n}, we have

PXnY n
(d)

(xn, yn) = P
|d|
X (x

|d|
I )P

n−|d|
XY (x

n−|d|
C , y

n−|d|
C )P

|d|
Y (y

|d|
I )

≤ P
|d|

X̄
(x

|d|
I )P

n−|d|

X̄Ȳ
(x

n−|d|
C , y

n−|d|
C )P

|d|

Ȳ
(y

|d|
I )e3(α+εn)

= PX̄nȲ n
(d)

(xn, yn)e3(α+εn).

This completes the proof.

APPENDIX C

GALLAGER-TYPE BOUNDS

In this appendix, we show the bound (25) in the proof of Theorem 4. First of all, we give the next two lemmas.

Lemma 4. For any finite set Sn ⊆ P(Xn × Yn) of PMFs and the mixture Qn of all PMFs in Sn, i.e.,

Qn(x
n, yn) =

∑

Pn∈Sn

1

|Sn|
Pn(x

n, yn),
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we have for any ρ ∈ [0, 1],

E(i)
n (ρ,Qn) ≤

1

n
log |Sn|+ max

Pn∈Sn

E(i)
n (ρ, Pn), ∀i ∈ {1, 2, 3}. (45)

Proof: For any ρ ∈ [0, 1], we have

E(1)
n (ρ,Qn) =

1

n
log

∑

yn∈Yn

(
∑

xn∈Xn

Qn(x
n, yn)

1
1+ρ

)1+ρ

=
1

n
log

∑

yn∈Yn



∑

xn∈Xn

(
∑

Pn∈Sn

1

|Sn|
Pn(x

n, yn)

) 1
1+ρ




1+ρ

=
1

n
log

1

|Sn|
∑

yn∈Yn




∑

xn∈Xn

(
∑

Pn∈Sn

Pn(x
n, yn)

) 1
1+ρ




1+ρ

(a)

≤ 1

n
log

1

|Sn|
∑

yn∈Yn

(
∑

xn∈Xn

∑

Pn∈Sn

Pn(x
n, yn)

1
1+ρ

)1+ρ

(b)

≤ 1

n
log

1

|Sn|
∑

yn∈Yn

∑

Pn∈Sn

1

|Sn|

(
|Sn|

∑

xn∈Xn

Pn(x
n, yn)

1
1+ρ

)1+ρ

=
1

n
log

|Sn|1+ρ

|Sn|2
∑

Pn∈Sn

∑

yn∈Yn

(
∑

xn∈Xn

Pn(x
n, yn)

1
1+ρ

)1+ρ

≤ 1

n
log

|Sn|1+ρ

|Sn|2
|Sn| max

Pn∈Sn

∑

yn∈Yn

(
∑

xn∈Xn

Pn(x
n, yn)

1
1+ρ

)1+ρ

=
1

n
log |Sn|ρ max

Pn∈Sn

∑

yn∈Yn

(
∑

xn∈Xn

Pn(x
n, yn)

1
1+ρ

)1+ρ

≤ 1

n
log |Sn| max

Pn∈Sn

∑

yn∈Yn

(
∑

xn∈Xn

Pn(x
n, yn)

1
1+ρ

)1+ρ

=
1

n
log |Sn|+ max

Pn∈Sn

E(1)
n (ρ, Pn), (46)

where (a) follows since (a + b)r ≤ ar + br for 0 ≤ r ≤ 1 and a, b ≥ 0 (see Lemma 8 in Appendix E), and (b)

comes from Jensen’s inequality (see, e.g., [8]). Similarly, we have

E(2)
n (ρ,Qn) ≤

1

n
log |Sn|+ max

Pn∈Sn

E(2)
n (ρ, Pn). (47)

We also have

E(3)
n (ρ,Qn) =

1

n
log




∑

(xn,yn)∈Xn×Yn

Qn(x
n, yn)

1
1+ρ




1+ρ

=
1

n
log




∑

(xn,yn)∈Xn×Yn

(
∑

Pn∈Sn

1

|Sn|
Pn(x

n, yn)

) 1
1+ρ




1+ρ

=
1

n
log

1

|Sn|




∑

(xn,yn)∈Xn×Yn

(
∑

Pn∈Sn

Pn(x
n, yn)

) 1
1+ρ




1+ρ
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(a)

≤ 1

n
log

1

|Sn|




∑

(xn,yn)∈Xn×Yn

∑

Pn∈Sn

Pn(x
n, yn)

1
1+ρ




1+ρ

(b)

≤ 1

n
log

1

|Sn|
∑

Pn∈Sn

1

|Sn|


|Sn|

∑

(xn,yn)∈Xn×Yn

Pn(x
n, yn)

1
1+ρ




1+ρ

=
1

n
log

|Sn|1+ρ

|Sn|2
∑

Pn∈Sn




∑

(xn,yn)∈Xn×Yn

Pn(x
n, yn)

1
1+ρ




1+ρ

≤ 1

n
log

|Sn|1+ρ

|Sn|2
|Sn| max

Pn∈Sn




∑

(xn,yn)∈Xn×Yn

Pn(x
n, yn)

1
1+ρ




1+ρ

=
1

n
log |Sn|ρ max

Pn∈Sn




∑

(xn,yn)∈Xn×Yn

Pn(x
n, yn)

1
1+ρ




1+ρ

≤ 1

n
log |Sn| max

Pn∈Sn




∑

(xn,yn)∈Xn×Yn

Pn(x
n, yn)

1
1+ρ




1+ρ

=
1

n
log |Sn|+ max

Pn∈Sn

E(3)
n (ρ, Pn), (48)

where (a) and (b) come from the same reason as above.

Combining (46)–(48), we have (45).

The next lemma gives identities by Gallager (cf. [10, Section II]).

Lemma 5. For any PXY ∈ P(X × Y) and ρ ∈ [0, 1], it holds that

ρH(P
(ρ)
X )− E(3)(ρ, PX) = D(P

(ρ)
X ‖PX), (49)

ρH(P
(ρ)
X|Y |P̄

(ρ)
Y )− E(1)(ρ, PXY ) = D(P̄

(ρ)
Y × P

(ρ)
X|Y ‖PXY ), (50)

ρH(P
(ρ)
Y |X |P̄ (ρ)

X )− E(2)(ρ, PXY ) = D(P̄
(ρ)
X × P

(ρ)
Y |X‖PXY ), (51)

where

E(3)(ρ, PX) , E
(3)
1 (ρ, PX) = log

(
∑

x∈X

PX(x)
1

1+ρ

)1+ρ

,

E(1)(ρ, PXY ) , E
(1)
1 (ρ, PXY ) = log

∑

y∈Y

(
∑

x∈X

PXY (x, y)
1

1+ρ

)1+ρ

,

E(2)(ρ, PXY ) , E
(2)
1 (ρ, PXY ) = log

∑

x∈X



∑

y∈Y

PXY (x, y)
1

1+ρ




1+ρ

.

Proof: Since P
(ρ)
X (x) = PX (x)

1
1+ρ

∑
x∈X PX (x)

1
1+ρ

, we have for any x ∈ X such that PX(x) > 0,

(
∑

x∈X

PX(x)
1

1+ρ

)1+ρ

=

(
PX(x)

1
1+ρ

P
(ρ)
X (x)

)1+ρ

=
PX(x)

P
(ρ)
X (x)1+ρ

.
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Thus, we have

− log

(
∑

x∈X

PX(x)
1

1+ρ

)1+ρ

= −
∑

x∈X :PX(x)>0

P
(ρ)
X (x) log

PX(x)

P
(ρ)
X (x)1+ρ

=
∑

x∈X :P
(ρ)
X (x)>0

P
(ρ)
X (x) log

P
(ρ)
X (x)P

(ρ)
X (x)ρ

PX(x)

= D(P
(ρ)
X ‖PX)− ρH(P

(ρ)
X ).

This identity gives (49).

On the other hand, since

P
(ρ)
X|Y (x|y) =

PXY (x, y)
1

1+ρ

∑
x∈X PXY (x, y)

1
1+ρ

and

P̄
(ρ)
Y (y) =

(∑
x∈X PXY (x, y)

1
1+ρ

)1+ρ

∑
y∈Y

(∑
x∈X PXY (x, y)

1
1+ρ

)1+ρ
,

we have for any (x, y) ∈ X × Y such that PXY (x, y) > 0,

∑

x∈X

PXY (x, y)
1

1+ρ =
PXY (x, y)

1
1+ρ

P
(ρ)
X|Y (x|y)

,

and

∑

y∈Y

(
∑

x∈X

PXY (x, y)
1

1+ρ

)1+ρ

=

(∑
x∈X PXY (x, y)

1
1+ρ

)1+ρ

P̄
(ρ)
Y (y)

=

(
PXY (x,y)

1
1+ρ

P
(ρ)

X|Y
(x|y)

)1+ρ

P̄
(ρ)
Y (y)

=
PXY (x, y)

P̄
(ρ)
Y (y)P

(ρ)
X|Y (x|y)1+ρ

.

Thus, we have

− log
∑

y∈Y

(
∑

x∈X

PXY (x, y)
1

1+ρ

)1+ρ

=
∑

(x,y)∈X×Y:PXY (x,y)>0

P̄
(ρ)
Y (y)P

(ρ)
X|Y (x|y) log

P̄
(ρ)
Y (y)P

(ρ)
X|Y (x|y)1+ρ

PXY (x, y)

= D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY )− ρH(P

(ρ)
X|Y |P̄

(ρ)
Y ). (52)

Similarly, we have

− log
∑

x∈X



∑

y∈Y

PXY (x, y)
1

1+ρ




1+ρ

= D(P̄
(ρ)
X × P

(ρ)
Y |X‖PXY )− ρH(P

(ρ)
Y |X |P̄ (ρ)

X ). (53)
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Identities (52) and (53) give (50) and (51), respectively.

Corollary 3. For any PXY ∈ P(X × Y) and ρ ∈ [0, 1], it holds that

D(P
(ρ)
X ‖PX) ≤ log |X |,

D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY ) ≤ log |X |.

Proof: The corollary immediately follows since E(1)(ρ, PX) ≥ 0 and E(3)(ρ, PXY ) ≥ 0.

Now, we show the bound (25). For any ρ ∈ [0, 1] and i ∈ {1, 2, 3}, we have

E(i)
n (ρ, P

X̃nỸ n)
(a)

≤ 1

n
log |S̄n||Dn|+ max

PXY ∈S̄n

max
d∈Dn

E(i)
n (ρ, PXnY n

(d)
)

(b)

≤ log(2n+ 1)(n+ 1)|X ||Y|

n
+ max

PXY ∈S̄n

max
d∈Dn

E(i)
n (ρ, PXnY n

(d)
)

= ǫ′n + max
PXY ∈S̄n

max
d∈Dn

E(i)
n (ρ, PXnY n

(d)
), (54)

where (a) comes form Lemma 4, (b) comes from the fact that |S̄n| ≤ (n+ 1)|X ||Y| and |Dn| ≤ 2n+ 1, and

ǫ′n =
log(2n+ 1)(n+ 1)|X ||Y|

n
.

Thus, we have

sup
0≤ρ≤1

(
ρRi − E(i)

n (ρ, P
X̃nỸ n)

)
≥ sup

0≤ρ≤1

(
ρRi − max

PXY ∈S̄n

max
d∈Dn

E(i)
n (ρ, PXnY n

(d)
)

)
− ǫ′n

= sup
0≤ρ≤1

min
PXY ∈S̄n

(
ρRi − max

d∈Dn

E(i)
n (ρ, PXnY n

(d)
)

)
− ǫ′n. (55)

First, we show the bound (25) for the case where i = 1. For any ρ ∈ [0, 1], we have

E(1)
n (ρ, PXnY n

(d)
)

=
1

n
log

∑

yn∈Yn

(
∑

xn∈Xn

(
P

|d|
X (x

|d|
I )P

n−|d|
XY (x

n−|d|
C , y

n−|d|
C )P

|d|
Y (y

|d|
I )
) 1

1+ρ

)1+ρ

=
1

n
log

∑

yn∈Yn




∑

x
|d|
I ∈X |d|

P
|d|
X (x

|d|
I )

1
1+ρ




1+ρ


∑

x
n−|d|
C ∈Xn−|d|

P
n−|d|
XY (x

n−|d|
C , y

n−|d|
C )

1
1+ρ




1+ρ

(
P

|d|
Y (y

|d|
I )

1
1+ρ

)1+ρ

=
1

n
log




∑

x
|d|
I ∈X |d|

P
|d|
X (x

|d|
I )

1
1+ρ




1+ρ

∑

y
n−|d|
C ∈Yn−|d|




∑

x
n−|d|
C ∈Xn−|d|

P
n−|d|
XY (x

n−|d|
C , y

n−|d|
C )

1
1+ρ




1+ρ

=
|d|
n

log

(
∑

x∈X

PX(x)
1

1+ρ

)1+ρ

+
n− |d|

n
log
∑

y∈Y

(
∑

x∈X

PXY (x, y)
1

1+ρ

)1+ρ

= log
∑

y∈Y

(
∑

x∈X

PXY (x, y)
1

1+ρ

)1+ρ

+
|d|
n


log

(
∑

x∈X

PX(x)
1

1+ρ

)1+ρ

− log
∑

y∈Y

(
∑

x∈X

PXY (x, y)
1

1+ρ

)1+ρ



= E(1)(ρ, PXY ) +
|d|
n

(
E(3)(ρ, PX)− E(1)(ρ, PXY )

)
.
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On the other hand, due to (reverse) Minkowski’s inequality (see [17, Theorem 25]), we have

log

(∑

x∈X

PX(x)
1

1+ρ

)1+ρ

≥ log
∑

y∈Y

(∑

x∈X

PXY (x, y)
1

1+ρ

)1+ρ

,

i.e.,

E(3)(ρ, PX) ≥ E(1)(ρ, PXY ).

Hence, for any n > 0 and ρ ∈ [0, 1], we have

max
d∈Dn

E(1)
n (ρ, PXnY n

(d)
) = E(1)(ρ, PXY ) +

max{|dn|, |dn|}
n

(
E(3)(ρ, PX)− E(1)(ρ, PXY )

)

= E(1)(ρ, PXY ) + ∆
(n)
d

(
E(3)(ρ, PX)− E(1)(ρ, PXY )

)

= (1−∆
(n)
d

)E(1)(ρ, PXY ) + ∆
(n)
d

E(3)(ρ, PX). (56)

Then, we have

ρR1 − max
d∈Dn

E(1)
n (ρ, PXnY n

(d)
)

(a)
= ρR1 − (1 −∆

(n)
d

)E(1)(ρ, PXY )−∆
(n)
d

E(3)(ρ, PX)

= ρ
(
R1 − (1 −∆

(n)
d

)H(P
(ρ)
X|Y |P̄

(ρ)
Y )−∆

(n)
d

H(P
(ρ)
X ) + (1 −∆

(n)
d

)H(P
(ρ)
X|Y |P̄

(ρ)
Y ) + ∆

(n)
d

H(P
(ρ)
X )

)

− (1−∆
(n)
d

)E(1)(ρ, PXY )−∆
(n)
d

E(3)(ρ, PX)

(b)
= ρ

(
R1 − (1−∆

(n)
d

)H(P
(ρ)
X|Y |P̄

(ρ)
Y )−∆

(n)
d

H(P
(ρ)
X )

)

+ (1−∆
(n)
d

)D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY ) + ∆

(n)
d

D(P
(ρ)
X ‖PX)

= ρ
(
R1 −H(P

(ρ)
X|Y |P̄

(ρ)
Y )−∆

(n)
d

(
H(P

(ρ)
X )−H(P

(ρ)
X|Y |P̄

(ρ)
Y )

))

+D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY )−∆

(n)
d

(
D(P̄

(ρ)
Y × P

(ρ)
X|Y ‖PXY )−D(P

(ρ)
X ‖PX)

)

≥ ρ

(
R1 −H(P

(ρ)
X|Y |P̄

(ρ)
Y )−∆

(n)
d

∣∣∣H(P
(ρ)
X )−H(P

(ρ)
X|Y |P̄

(ρ)
Y )

∣∣∣
+

)

+D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY )−∆

(n)
d

∣∣∣D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY )−D(P

(ρ)
X ‖PX)

∣∣∣
+

= F1(ρ,R1, PXY ,∆
(n)
d

), (57)

where (a) comes from (56) and (b) comes from Lemma 5. By combining (55) and (57), we have (25) for the case

where i = 1 as follows:

sup
0≤ρ≤1

(
ρR1 − E(1)

n (ρ, P
X̃nỸ n)

)
≥ sup

0≤ρ≤1
min

PXY ∈S̄n

(
ρR1 − max

d∈Dn

E(1)
n (ρ, PXnY n

(d)
)

)
− ǫ′n

≥ sup
0≤ρ≤1

min
PXY ∈S̄n

F1(ρ,R1, PXY ,∆
(n)
d

)− ǫ′n.

Similarly, we have (25) for the case where i = 2.

Next, we show the bound (25) for the case where i = 3. We have

E(3)
n (ρ, PXnY n

(d)
)
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=
1

n
log




∑

xn∈Xn

∑

yn∈Yn

(
P

|d|
X (x

|d|
I )P

n−|d|
XY (x

n−|d|
C , y

n−|d|
C )P

|d|
Y (y

|d|
I )
) 1

1+ρ




1+ρ

=
1

n
log




∑

x
|d|
I ∈X |d|

P
|d|
X (x

|d|
I )

1
1+ρ




1+ρ


∑

x
n−|d|
C ∈Xn−|d|

∑

y
n−|d|
C ∈Yn−|d|

P
n−|d|
XY (x

n−|d|
C , y

n−|d|
C )

1
1+ρ




1+ρ

×




∑

y
|d|
I ∈Y|d|

P
|d|
Y (y

|d|
I )

1
1+ρ




1+ρ

=
|d|
n

log

(
∑

x∈X

PX(x)
1

1+ρ

)1+ρ

+
n− |d|

n
log



∑

x∈X

∑

y∈Y

PXY (x, y)
1

1+ρ




1+ρ

+
|d|
n

log



∑

y∈Y

PY (y)
1

1+ρ




1+ρ

=

(
1− |d|

n

)
log



∑

x∈X

∑

y∈Y

PXY (x, y)
1

1+ρ




1+ρ

+
|d|
n


log

(
∑

x∈X

PX(x)
1

1+ρ

)1+ρ

+ log



∑

y∈Y

PY (y)
1

1+ρ




1+ρ



=

(
1− |d|

n

)
E(3)(ρ, PXY ) +

|d|
n

(
E(3)(ρ, PX) + E(3)(ρ, PY )

)
. (58)

On the other hand, for any ρ ∈ [0, 1] and d ∈ Dn, we have,

H(P
(ρ)
XY ) + ∆

(n)
d

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+

≥ H(P
(ρ)
XY ) +

|d|
n

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+

≥
(
1− |d|

n

)
H(P

(ρ)
XY ) +

|d|
n

(
H(P

(ρ)
X ) +H(P

(ρ)
Y )

)
.

Thus, we have

ρ(R1 +R2)− E(3)
n (ρ, PXnY n

(d)
)

= ρ

(
R1 +R2 −

(
H(P

(ρ)
XY ) + ∆

(n)
d

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+

))

+ ρ

(
H(P

(ρ)
XY ) + ∆

(n)
d

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+

)
− E(3)

n (ρ, PXnY n
(d)

)

≥ ρ

(
R1 +R2 −

(
H(P

(ρ)
XY ) + ∆

(n)
d

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+

))

+ ρ

((
1− |d|

n

)
H(P

(ρ)
XY ) +

|d|
n

(
H(P

(ρ)
X ) +H(P

(ρ)
Y )

))
− E(3)

n (ρ, PXnY n
(d)

)

(a)
= ρ

(
R1 +R2 −

(
H(P

(ρ)
XY ) + ∆

(n)
d

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+

))

+ ρ

((
1− |d|

n

)
H(P

(ρ)
XY ) +

|d|
n

(
H(P

(ρ)
X ) +H(P

(ρ)
Y )

))

−
(
1− |d|

n

)
E(3)(ρ, PXY )−

|d|
n

(
E(3)(ρ, PX) + E(3)(ρ, PY )

)

(b)
= ρ

(
R1 +R2 −

(
H(P

(ρ)
XY ) + ∆

(n)
d

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+

))

+

(
1− |d|

n

)
D(P

(ρ)
XY ‖PXY ) +

|d|
n

(
D(P

(ρ)
X ‖PX) +D(P

(ρ)
Y ‖PY )

)
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≥ ρ

(
R1 +R2 −

(
H(P

(ρ)
XY ) + ∆

(n)
d

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+

))

+D(P
(ρ)
XY ‖PXY )−

|d|
n

∣∣∣D(P
(ρ)
XY ‖PXY )−D(P

(ρ)
X ‖PX)−D(P

(ρ)
Y ‖PY )

∣∣∣
+

≥ ρ

(
R1 +R2 −

(
H(P

(ρ)
XY ) + ∆

(n)
d

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+

))

+D(P
(ρ)
XY ‖PXY )−∆

(n)
d

∣∣∣D(P
(ρ)
XY ‖PXY )−D(P

(ρ)
X ‖PX)−D(P

(ρ)
Y ‖PY )

∣∣∣
+

= F3(ρ,R1 +R2, PXY ,∆
(n)
d

), (59)

where (a) comes from (58) and (b) comes from Lemma 5. By combining (55) and (59), we have (25) for the case

where i = 3 as follows:

sup
0≤ρ≤1

(
ρ(R1 +R2)− E(3)

n (ρ, P
X̃nỸ n)

)
≥ sup

0≤ρ≤1
min

PXY ∈S̄n

min
d∈Dn

(
ρ(R1 +R2)− E(3)

n (ρ, PXnY n
(d)

)
)
− ǫ′n

≥ sup
0≤ρ≤1

min
PXY ∈S̄n

min
d∈Dn

F3(ρ,R1 +R2, PXY ,∆
(n)
d

)− ǫ′n

= sup
0≤ρ≤1

min
PXY ∈S̄n

F3(ρ,R1 +R2, PXY ,∆
(n)
d

)− ǫ′n.

APPENDIX D

PROOF OF THEOREM 6

In this appendix, we prove Theorem 6. To this end, we introduce some necessary lemmas.

Lemma 6. For any ρ ∈ [0, 1] and any PXY ∈ P(X × Y), we have

dv(PX , P
(ρ)
X ) ≤ 2

(
1− |X |−ρ

)
, (60)

dv(PXY , P̄
(ρ)
Y × P

(ρ)
X|Y ) ≤ 2

(
1− |X |−ρ

)
. (61)

This lemma shows that each variational distance uniformly converges to 0 as ρ → 0. The proof is given in

Appendix E.

The next lemma follows immediately from [14, Problem 3.10].

Lemma 7. For any δ ∈ [0, 1], and P,Q ∈ P(X ) satisfying dv(P,Q) ≤ δ, we have

|H(P )−H(Q)| ≤ δ̄(|X |, δ),

where δ̄(N, δ) = 1
2δ log(N − 1) + h

(
δ
2

)
if N ≥ 2, δ̄(1, δ) = 0, h(p) = −(1 − p) log(1 − p) − p log p, and note

that δ̄(N, δ) → 0 as δ → 0. Furthermore, for any δ ∈ [0, 1], P,Q ∈ P(X ), and V,W ∈ P(Y|X ) satisfying

dv(P × V,Q×W ) ≤ δ, we have

|H(V |P )−H(W |Q)| ≤ 2δ̄(|X ||Y|, δ).

Now, we prove Theorem 6. Let γ > 0 be a constant such that

Ri ≥ sup
PXY ∈S

(Hi(X,Y ) + ∆I(X ;Y )) + 3γ, ∀i ∈ {1, 2, 3}. (62)
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We fix δ ∈ (0, 1] so that

(1 + ∆)2δ̄(|X ||Y|, δ) + ∆δ̄(|X |, δ) ≤ γ, (63)

(1 + ∆)2δ̄(|X ||Y|, δ) + ∆δ̄(|Y|, δ) ≤ γ, (64)

δ̄(|X ||Y|, δ) + ∆
(
δ̄(|X |, δ) + δ̄(|Y|, δ) + δ̄(|X ||Y|, δ)

)
≤ γ. (65)

We also fix ρ ∈ (0, 1] so that

2
(
1− |X |−ρ

)
≤ δ, (66)

2
(
1− |Y|−ρ

)
≤ δ, (67)

2
(
1− (|X ||Y|)−ρ

)
≤ δ. (68)

We note that γ > 0 and δ, ρ ∈ (0, 1] are determined depending only on (R1, R2,S,∆, |X |, |Y|). For these constants

γ, δ and ρ, we will show that

R1 ≥ sup
PXY ∈Sδ

(
H(P

(ρ)
X|Y |P̄

(ρ)
Y ) + ∆

∣∣∣H(P
(ρ)
X )−H(P

(ρ)
X|Y |P̄

(ρ)
Y )

∣∣∣
+

)
+ γ, (69)

R2 ≥ sup
PXY ∈Sδ

(
H(P

(ρ)
Y |X |P̄ (ρ)

X ) + ∆
∣∣∣H(P

(ρ)
Y )−H(P

(ρ)
Y |X |P̄ (ρ)

X )
∣∣∣
+

)
+ γ, (70)

R1 +R2 ≥ sup
PXY ∈Sδ

(
H(P

(ρ)
XY ) + ∆

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+

)
+ γ. (71)

Then, by using these inequalities, we can easily show that Fi(ρ,Ri, PXY ,∆) ≥ ργ > 0 for any PXY ∈ Sδ and

i ∈ {1, 2, 3}. This implies (31). Here, we use the fact that for (18)–(20),

D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY )−∆

∣∣∣D(P̄
(ρ)
Y × P

(ρ)
X|Y ‖PXY )−D(P

(ρ)
X ‖PX)

∣∣∣
+
≥ 0,

D(P̄
(ρ)
X × P

(ρ)
Y |X‖PXY )−∆

∣∣∣D(P̄
(ρ)
X × P

(ρ)
Y |X‖PXY )−D(P

(ρ)
Y ‖PY )

∣∣∣
+
≥ 0,

D(P
(ρ)
XY ‖PXY )−∆

∣∣∣D(P
(ρ)
XY ‖PXY )−D(P

(ρ)
X ‖PX)−D(P

(ρ)
Y ‖PY )

∣∣∣
+
≥ 0.

Hence, all we need is to show (69)–(71).

From the definition of Sδ , for any PXY ∈ Sδ , there exists PX′Y ′ ∈ S such that dv(PXY , PX′Y ′) ≤ δ. Hence,

according to Lemma 7, we have for any i ∈ {1, 2, 3},

Hi(X
′, Y ′) + ∆I(X ′;Y ′) ≥ Hi(X,Y ) + ∆I(X ;Y )−

(
(1 + ∆)2δ̄(|X ||Y|, δ) + ∆δ̄(|X |, δ)

)
.

By recalling that δ ∈ (0, 1] satisfies (63), we have for any i ∈ {1, 2, 3},

sup
PXY ∈S

(Hi(X,Y ) + ∆I(X ;Y )) ≥ sup
PXY ∈Sδ

(Hi(X,Y ) + ∆I(X ;Y ))− γ. (72)

On the other hand, according to Lemma 6 and (66)–(68), for any PXY ∈ P(X × Y), we have

dv(PX , P
(ρ)
X ) ≤ 2

(
1− |X |−ρ

)
≤ δ,

dv(PY , P
(ρ)
Y ) ≤ 2

(
1− |Y|−ρ

)
≤ δ,

dv(PXY , P
(ρ)
XY ) ≤ 2

(
1− (|X ||Y|)−ρ

)
≤ δ,
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dv(PXY , P̄
(ρ)
Y × P

(ρ)
X|Y ) ≤ 2

(
1− |X |−ρ

)
≤ δ,

dv(PXY , P̄
(ρ)
X × P

(ρ)
Y |X) ≤ 2

(
1− |Y|−ρ

)
≤ δ.

Hence, according to Lemma 7, we have

H(X |Y ) + ∆I(X ;Y ) = H(PX|Y |PY ) + ∆
∣∣H(PX)−H(PX|Y |PY )

∣∣
+

≥ H(P
(ρ)
X|Y |P̄

(ρ)
Y ) + ∆

∣∣∣H(P
(ρ)
X )−H(P

(ρ)
X|Y |P̄

(ρ)
Y )

∣∣∣
+

−
(
(1 + ∆)2δ̄(|X ||Y|, δ) + ∆δ̄(|X |, δ)

)
,

H(Y |X) + ∆I(X ;Y ) ≥ H(P
(ρ)
Y |X |P̄ (ρ)

X ) + ∆
∣∣∣H(P

(ρ)
Y )−H(P

(ρ)
Y |X |P̄ (ρ)

X )
∣∣∣
+

−
(
(1 + ∆)2δ̄(|X ||Y|, δ) + ∆δ̄(|Y|, δ)

)
,

H(X,Y ) + ∆I(X ;Y ) = H(PXY ) + ∆ |H(PX) +H(PY )−H(PXY )|+

≥ H(P
(ρ)
XY ) + ∆

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+

−
(
δ̄(|X ||Y|, δ) + ∆

(
δ̄(|X |, δ) + δ̄(|Y|, δ) + δ̄(|X ||Y|, δ)

))
.

By recalling that δ > 0 satisfies (63)–(65), we have

sup
PXY ∈Sδ

(H(X |Y ) + ∆I(X ;Y )) ≥ sup
PXY ∈Sδ

(
H(P

(ρ)
X|Y |P̄

(ρ)
Y ) + ∆

∣∣∣H(P
(ρ)
X )−H(P

(ρ)
X|Y |P̄

(ρ)
Y )

∣∣∣
+

)
− γ, (73)

sup
PXY ∈Sδ

(H(Y |X) + ∆I(X ;Y )) ≥ sup
PXY ∈Sδ

(
H(P

(ρ)
Y |X |P̄ (ρ)

X ) + ∆
∣∣∣H(P

(ρ)
Y )−H(P

(ρ)
Y |X |P̄ (ρ)

X )
∣∣∣
+

)
− γ, (74)

sup
PXY ∈Sδ

(H(X,Y ) + ∆I(X ;Y )) ≥ sup
PXY ∈Sδ

(
H(P

(ρ)
XY ) + ∆

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+

)
− γ. (75)

As a consequence of inequalities (72)–(75), we have

sup
PXY ∈S

(H(X |Y ) + ∆I(X ;Y )) ≥ sup
PXY ∈Sδ

(
H(P

(ρ)
X|Y |P̄

(ρ)
Y ) + ∆

∣∣∣H(P
(ρ)
X )−H(P

(ρ)
X|Y |P̄

(ρ)
Y )

∣∣∣
+

)
− 2γ,

sup
PXY ∈S

(H(Y |X) + ∆I(X ;Y )) ≥ sup
PXY ∈Sδ

(
H(P

(ρ)
Y |X |P̄ (ρ)

X ) + ∆
∣∣∣H(P

(ρ)
Y )−H(P

(ρ)
Y |X |P̄ (ρ)

X )
∣∣∣
+

)
− 2γ,

sup
PXY ∈S

(H(X,Y ) + ∆I(X ;Y )) ≥ sup
PXY ∈Sδ

(
H(P

(ρ)
XY ) + ∆

∣∣∣H(P
(ρ)
X ) +H(P

(ρ)
Y )−H(P

(ρ)
XY )

∣∣∣
+

)
− 2γ.

Hence, due to these inequalities and (62), we have (69)–(71).

APPENDIX E

PROOF OF LEMMA 6

In order to prove Lemma 6, we give some inequalities in the following lemmas and corollary.

Lemma 8 ( [17, Theorem 27]). For any x, y ≥ 0, and r ∈ [0, 1], we have

(x+ y)r ≤ xr + yr.

Lemma 9. For any PX ∈ P(X ) and any ρ ∈ [0, 1], we have

1 ≤
(
∑

x∈X

PX(x)
1

1+ρ

)1+ρ

≤ |X |ρ.
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Proof: The first inequality comes from Lemma 8 and the monotonicity of the function f(a) = a1+ρ for a ≥ 0.

The second inequality comes from Jensen’s inequality as follows:
(
∑

x∈X

PX(x)
1

1+ρ

)1+ρ

= |X |1+ρ

(
∑

x∈X

1

|X |PX(x)
1

1+ρ

)1+ρ

≤ |X |1+ρ
∑

x∈X

1

|X |PX(x) = |X |ρ.

Corollary 4. For any PXY ∈ P(X × Y) and any ρ ∈ [0, 1], we have

PY (y) ≤
(
∑

x∈X

PXY (x, y)
1

1+ρ

)1+ρ

≤ PY (y)|X |ρ, ∀y ∈ Y,

and hence

1 ≤
∑

y∈Y

(
∑

x∈X

PXY (x, y)
1

1+ρ

)1+ρ

≤ |X |ρ.

Now, we show (60) and (61). First, we show (60). For any ρ ∈ [0, 1] and any x ∈ X , we have

P
(ρ)
X (x) =

PX(x)
1

1+ρ

∑
x∈X PX(x)

1
1+ρ

(a)

≥ PX(x)
(∑

x∈X PX(x)
1

1+ρ

)1+ρ

(b)

≥ PX(x)|X |−ρ, (76)

where (a) comes from elementary inequalities PX(x)
1

1+ρ ≥ PX(x) and
∑

x∈X PX(x)
1

1+ρ ≤
(∑

x∈X PX(x)
1

1+ρ

)1+ρ

,

and (b) comes from Lemma 9. Thus, we have (60) as follows:

dv(PX , P
(ρ)
X ) =

∑

x∈X

|PX(x) − P
(ρ)
X (x)|

= 2
∑

x∈X :PX(x)≥P
(ρ)
X (x)

(
PX(x)− P

(ρ)
X (x)

)

(a)

≤ 2
∑

x∈X :PX(x)≥P
(ρ)
X

(x)

(
PX(x)− PX(x)|X |−ρ

)

= 2
(
1− |X |−ρ

) ∑

x∈X :PX(x)≥P
(ρ)
X

(x)

PX(x)

≤ 2
(
1− |X |−ρ

)
,

where (a) comes from (76).

Next, we show (61). For any ρ ∈ [0, 1] and any (x, y) ∈ X × Y , we have

P̄
(ρ)
Y (y)P

(ρ)
X|Y (x|y) =

(∑
x∈X PXY (x, y)

1
1+ρ

)1+ρ

∑
y∈Y

(∑
x∈X PXY (x, y)

1
1+ρ

)1+ρ

PXY (x, y)
1

1+ρ

∑
x∈X PXY (x, y)

1
1+ρ

=
PY (y)

(∑
x∈X PX|Y (x|y)

1
1+ρ

)1+ρ

∑
y∈Y

(∑
x∈X PXY (x, y)

1
1+ρ

)1+ρ

PY (y)
1

1+ρPX|Y (x|y)
1

1+ρ

PY (y)
1

1+ρ
∑

x∈X PX|Y (x|y)
1

1+ρ
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=
PY (y)

(∑
x∈X PX|Y (x|y)

1
1+ρ

)1+ρ

∑
y∈Y

(∑
x∈X PXY (x, y)

1
1+ρ

)1+ρ

PX|Y (x|y)
1

1+ρ

∑
x∈X PX|Y (x|y)

1
1+ρ

(a)

≥
PY (y)

(∑
x∈X PX|Y (x|y)

1
1+ρ

)1+ρ

∑
y∈Y

(∑
x∈X PXY (x, y)

1
1+ρ

)1+ρ

PX|Y (x|y)(∑
x∈X PX|Y (x|y)

1
1+ρ

)1+ρ

=
PXY (x, y)

∑
y∈Y

(∑
x∈X PXY (x, y)

1
1+ρ

)1+ρ

(b)

≥ PXY (x, y)|X |−ρ, (77)

where (a) again comes from the same type of elementary inequalities as before, and (b) comes from Corollary 4.

Thus, we have (61) as follows:

dv(PXY , P̄
(ρ)
Y × P

(ρ)
X|Y ) =

∑

(x,y)∈X×Y

|PXY (x, y)− P̄
(ρ)
Y (y)P

(ρ)
X|Y (x|y)|

= 2
∑

(x,y)∈X×Y:

PXY (x,y)≥P̄
(ρ)
Y

(y)P
(ρ)

X|Y
(x|y)

(
PXY (x, y)− P̄

(ρ)
Y (y)P

(ρ)
X|Y (x|y)

)

(a)

≤ 2
∑

(x,y)∈X×Y:

PXY (x,y)≥P̄
(ρ)
Y (y)P

(ρ)

X|Y
(x|y)

(
PXY (x, y)− PXY (x, y)|X |−ρ

)

= 2
(
1− |X |−ρ

) ∑

(x,y)∈X×Y:

PXY (x,y)≥P̄
(ρ)
Y

(y)P
(ρ)

X|Y
(x|y)

PXY (x, y)

≤ 2
(
1− |X |−ρ

)
,

where (a) comes from (77).
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