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Bounding and Estimating the Classical Information
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Abstract—We consider the scenario of classical communication
over a finite-dimensional quantum channel with memory using a
separable-state input ensemble and local output measurements.
We propose algorithms for estimating the information rate of
such communication setups, along with algorithms for bounding
the information rate based on so-called auxiliary channels.
Some of the algorithms are extensions of their counterparts
for (classical) finite-state-machine channels. Notably, we discuss
suitable graphical models for doing the relevant computations.
Moreover, the auxiliary channels are learned in a data-driven
approach; i.e., only input/output sequences of the true channel
are needed, but not the channel model of the true channel.

Index Terms—Quantum Channel, Memory, Information Rate,
Bounds

I. INTRODUCTION

WE consider the transmission rate of classical informa-

tion over a finite-dimensional quantum channel with

memory [3], [4], [5]. Recall that in the memoryless case,

given an input system A and an output system B, described by

some Hilbert spaces HA and HB, respectively, a memoryless

quantum channel can be modeled as a completely positive

trace-preserving (CPTP) map from the set of density operators

on HA to the set of density operators on HB [6], [7]; such

a quantum channel is said to be finite-dimensional if both

HA and HB are of finite dimension. A quantum channel with

memory is a quantum channel equipped with a memory system

S; namely it is a CPTP map from the set of density operators

onHA⊗HS to the set of density operators onHB⊗HS′ , where

HS (≡ HS′) is the Hilbert space describing S, and ⊗ stands

for the tensor product. The system S can be understood either

as a state of the channel (as illustrated in Fig. 1(a)), or as a part

of the environment that does not decay between consecutive

channel uses (as illustrated in Fig. 1(b)). Interesting examples

of quantum channels with memory include spin chains [8] and

fiber optic links [9].

Classical communication over such channels is accom-

plished by encoding classical data into some density operators

before the transmission and applying measurements at the
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Fig. 1. Interpretations of quantum channels with memory.

outputs of the channel [6], [7]. In the most generic case, a joint

input ensemble and a joint output measurement across multiple

channels can be used for encoding and decoding, respectively.

The scenario involving a k-channel joint ensemble and a k-

channel joint measurement is depicted in Fig. 2(b), where

• the encoding process E is described by some ensemble

{PX(x), ρ
(x)

Ak
1

}x∈X on the joint input system (A1, . . . ,Ak),

with X being the input alphabet, PX(x) being the input

distribution, and ρ
(x)

Ak
1

being the density operator on the

input systems Ak
1 corresponding to the classical input x;

• the decoding process D is described by some positive-

operator valued measure (POVM) {Λ(y)

Bk
1

}y∈Y on the joint

output system (B1, . . . ,Bk), with Y being the output

alphabet;

• the classical input and output are represented by some

random variables X and Y, respectively.

For comparison, Fig. 2(a) shows the corresponding memo-

ryless setup. The above arrangement results in a (classical)

channel from X to Y, whose rate of transmission is given by

I(E ,N⊠k,D) = lim sup
n→∞

1

n
I(Xn

1 ;Y
n
1 ), (1)

where we use the above transmission scheme n times consec-

utively (as depicted in Fig. 2(c)), and where

N⊠k ,
(

NAkSk−1→BkSk
⊗ I

B
k−1
1 →B

k−1
1

)

◦
(

IAk→Ak
⊗NAk−1Sk−2→Bk−1Sk−1

⊗ I
B
k−2
1 →B

k−2
1

)

◦

· · · ◦
(

IAk
2→Ak

2
⊗NA1S0→B1S1

)

.

Here, I stands for the mutual information. As a fundamental

result, this quantity can be simplified to I(X;Y) for the

memoryless case [10], [11]. Optimizing I(E ,N⊠k,D) over

E and D (with k → ∞) yields the classical capacity of the

quantum channel N , namely

C(N ) = lim sup
k

1

k
sup
E,D

I(E ,N⊠k,D). (2)

http://arxiv.org/abs/1903.00199v3
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(c) Generic classical communication corresponding to Eq. (1)

Fig. 2. Classical communications over quantum channels.
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Fig. 3. Classical communication over a quantum channel with memory using
a separable ensemble and local measurements.

In this paper, we are interested in computing and bounding

the information rate as in (1) for finite-dimensional quantum

channels with memory using only separable input ensembles

and local output measurements, i.e., the case k = 1, which is

depicted in Fig. 3. This restriction is equivalent to the scenario

where no quantum computing device is present at the sending

or receiving end; or the scenario where our manipulation of

the channel is limited to a single-channel use. The difficulty

of the problem lies with the presence of the quantum memory.

In the simplest situation, the memory system exhibits classical

properties under certain ensembles and measurements. In this

case, the resulting classical communication setup is equivalent

to a finite-state-machine channel (FSMC) [12]. Though the

evaluation of the information rate of an FSMC is nontrivial

in general, efficient stochastic methods for estimating and

bounding this quantity have been developed [13], [14].

Our work is highly inspired by [13], where the authors

considered the information rate of FSMCs. In particular, for

an indecomposable FSMC [12] with channel law W , its

information rate, which is independent from the initial channel

state, is given by

IW (Q) = lim
n→∞

1

n
I(Xn

1 ;Y
n
1 ), (3)

where Xn
1 = (X1, . . . ,Xn) is the channel input process charac-

terized by some sequence of distributions {Q(n)}n, and where

Yn
1 = (Y1, . . . ,Yn) is the channel output process. Although,

except for very special cases, there are no single-letter or other

simple expressions for information rates available, efficient

stochastic techniques have been developed for estimating the

information rate for stationary and ergodic input processes

{Q(n)}n [13], [15], [16]. (For these techniques, under mild

conditions, the numerical estimate of the information rate

converges with probability one to the true value when the

length of the channel input sequence goes to infinity.) In this

paper, we extend such techniques to quantum channels with

memory; in particular, we use similar (but extended) graphical

models, namely factor graphs for quantum probabilities [17]

for estimating quantities of interest. These graphical models

are useful for visualizing the relevant computations and for

providing a clear comparison between the setup considered in

this paper and its classical counterparts in [13] and [14].1

Our work is also partially inspired by [14], where the

authors proposed upper and lower bounds based on some

so-called auxiliary FSMCs, which are often lower-complexity

approximations of the original FSMC. They also provided ef-

ficient methods for optimizing these bounds. Such techniques

have been proven useful for FSMCs with large state spaces,

when the above-mentioned information rate estimation tech-

niques can be overly time-consuming. Interestingly enough,

the lower bounds represent achievable rates under mismatched

decoding, where the decoder bases its computations not on

the true FSMC but on the auxiliary FSMC [18]. (See the

paper [14] for a more detailed discussion of this topic and for

further references.) In this paper, we also consider auxiliary

channels and their induced bounds. However, the auxiliary

channels of our interest are chosen from a larger set of

channels called quantum-state channels, which will be defined

in Section III. We also propose a method for optimizing these

bounds. In particular, our method for optimizing the lower

bound is “data-driven” in the sense that only the input/output

sequences of the original channel are needed, but not the

mathematical model of the original channel.

One must note that even if we can efficiently compute

or bound the information rate, it is still a long way to

go to compute the classical capacity of a quantum channel

with memory. On the one hand, maximizing I(E ,N ,D) is

a difficult problem. (The analogous classical problems have

been addressed in [19], [20], and [21].) On the other hand,

due to the superadditivity property [22] of quantum channels,

which happens to be more common for quantum channels

with memory [23], [24], [25] (compared with memoryless

quantum channels), it is inevitable to consider joint ensembles

1Clearly, the graphical models that we use are very similar to tensor
networks (see, for example, the discussion in Appendix A of [17]). A benefit of
the graphical models that we use (including the corresponding terminology),
is that they are compatible with the graphical models that are being used in
classical information processing.
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on input systems and joint measurements on output systems

across multiple channel uses.

The rest of this paper is organized as follows. Section II

reviews the method of estimating the information rate of

an FSMC. Section III models the classical communication

scheme over a quantum channel with memory, and defines the

notion of quantum-state channels as an equivalent description.

A graphical notation for representing such channels is also

presented in this section. Section IV estimates the information

rate of such channels. Section V considers the upper and

lower bounds induced by auxiliary quantum-state channels,

and presents methods for optimizing them. Section VI contains

numerical examples. Section VII concludes the paper.

A. Further references

In the following, we assume that the reader is familiar with

the basic elements of quantum information theory (see [6] or

[7] for an introduction). For a general introduction to quantum

channels with memory, we refer to the papers by Kretschmann

and Werner [4] and by Caruso et al. [5].

Moreover, some familiarity with graphical models (like fac-

tor graphs) [26], [27], [28] and with techniques for estimating

the information rate of an FSMC as presented in [13], [14]

will be beneficial. Recall that graphical models are a popular

approach for representing multivariate functions with non-

trivial factorizations and for doing computations like marginal-

ization [26], [27], [28]. In particular, graphical models can

be used to represent joint probability mass functions (pmfs) /

probability density functions (pdfs). In the present paper we

will heavily rely on the paper [17], which discussed an ap-

proach for using normal factor graphs (NFGs) for representing

functions that typically appear when doing computations w.r.t.

some quantum systems. Alternatively, we could also have used

the slightly more compact double-edge normal factor graphs

(DE-NFGs) [29]. Probabilities of interest are then obtained by

suitably applying the sum-product algorithm or closing-the-

box operations.

B. Notations

We use the following conventions throughout the paper:

• Vectors are denoted using boldface letters.

• Sans-serif letters are being used to denote either random

variables or quantum systems.

• Lower and upper indices are used as the starting and

ending indices, respectively, of the elements in a vector

or an ordered collections of random variables or quantum

systems. For example,

– x
n
1 ≡ (x1, x2, . . . , xn) denotes an n-tuple with ele-

ments x1 up to xn;

– Xn
1 ≡ (X1,X2, . . . ,Xn) denotes a sequence of random

variables;

– Sn0 ≡ (S0, S1, . . . , Sn) denotes the collective quantum

system consisting of subsystems S0 up to Sn.

• The set of all density operators over a Hilbert space H
is denoted by D (H); its elements are represented using

Greek letters, e.g., ρS denotes a density operator of some

quantum system S.

As it should be clear from the context, we also overload

the symbol H to denote either the Shannon entropy or the

von Neumann entropy, and the symbol I to denote either the

classical or quantum mutual information.

II. REVIEW OF (CLASSICAL) FINITE-STATE MACHINE

CHANNELS: INFORMATION RATE, ITS ESTIMATION, AND

BOUNDS

In this section, we review the methods developed in [13]

for estimating the information rate of a (classical) FSMC, and

the auxiliary-channel-induced upper and lower bounds studied

in [14]. As we will see, the development in later sections

about quantum channels will have many similarities, but also

some important differences. We emphasize that this section is

a brief review of [13] and [14] for the purpose of introducing

necessary tools and ideas for later sections.

A. Finite-State Machine Channels (FSMCs) and their Graph-

ical Representation

A (time-invariant) finite-state machine channel (FSMC)

consists of an input alphabet X , an output alphabet Y , a

state alphabet S, all of which are finite, and a channel law

W (y, s′|x, s), where the latter equals the probability of receiv-

ing y ∈ Y and ending up in state s′ ∈ S given channel input

x ∈ X and previous channel state s ∈ S. The relationship

among the input, output, and state processes Xn
1 ,Y

n
1 , S

n
0 of

n-channel uses can be described by the conditional pmf

W (yn
1 , s

n
1 |xn

1 , s0) , PYn
1 ,Sn

1 |Xn
1 ,S0

(yn
1 , s

n
1 |xn

1 , s0)

=

n
∏

ℓ=1

W (yℓ, sℓ|xℓ, sℓ−1),
(4)

where xℓ ∈ X , yℓ ∈ Y , and sℓ ∈ S for each ℓ.

Example 1 (Gilbert–Elliott channels). A notable class of

examples of FSMCs are the Gilbert–Elliott channels [30],

which behave like a binary symmetric channel (BSC) with

cross-over probability ps controlled by the channel state

s ∈ {“b”, “g”}, where usually
∣

∣pb − 1
2

∣

∣ <
∣

∣pg − 1
2

∣

∣. The

state process itself is a first-order stationary ergodic Markov

process that is independent of the input process.2 (For more

details, see, e.g., the discussions in [14].)

Given an input process {Q(n)}n and an initial state pmf

PS0
(s0), we can write down the joint pmf of (Xn

1 ,Y
n
1 , S

n
0 ) as

g(xn
1 ,y

n
1 , s

n
0 ) , PXn

1
,Yn

1
,Sn

0
(xn

1 ,y
n
1 , s

n
0 ) (5)

= PS0
(s0) ·Q(n)(xn

1 ) ·
n
∏

ℓ=1

W (yℓ, sℓ|xℓ, sℓ−1). (6)

The factorization of g(xn
1 ,y

n
1 , s

n
0 ) as shown in (5) can be

visualized with the help of a normal factor graph (NFG) as

in Fig. 4. In this context, g(xn
1 ,y

n
1 , s

n
0 ) is called the global

function of the NFG. In particular:

2The independence of the state process on the input process is a particular
feature of the Gilbert–Elliott channel. In general, the state process of a finite-
state channel can depend on the input process.
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· · ·

· · ·

W
s2 sn−1

Q
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1
sn

Fig. 4. Channel with a classical state: closing the top box yields the
input process Q(n), closing the bottom box yields the joint channel law
W (yn

1 |x
n
1 ).

a) The part of the NFG inside the bottom box represents

W (yn
1 , s

n
1 |xn

1 , s0), i.e., the probability of obtaining y
n
1

and s
n
1 given x

n
1 and s0. After applying the closing-

the-box operation, i.e., after summing over all the vari-

ables associated with edges completely inside the bottom

box, we obtain the joint channel law W (yn
1 |xn

1 ) ,
∑

s
n
0
PS0

(s0) ·W (yn
1 , s

n
1 |xn

1 , s0).
b) The part of the NFG inside the top box represents the

input process Q(n)(xn
1 ). Here, for simplicity, the input

process is an i.i.d. process characterized by the pmf Q,

i.e., Q(n)(xn
1 ) =

∏n

ℓ=1 Q(xℓ).
c) The function g(xn

1 ,y
n
1 ) ,

∑

s
n
0
g(xn

1 ,y
n
1 , s

n
0 ), which is

obtained by summing the global function g(xn
1 ,y

n
1 , s

n
0 )

over sn0 , represents the corresponding marginal pmf over

x
n
1 and y

n
1 . The function g(sn0 ) ,

∑

x
n
1 ,y

n
1
g(xn

1 ,y
n
1 , s

n
0 ),

which is obtained by summing the global function over

x
n
1 and y

n
1 , represents the corresponding marginal pmf

over sn0 . Other marginal pmfs can be obtained similarly.

Equipped with the notion of the closing-the-box operation (see

item a) above), such NFG representations can be useful in

computing a number of quantities of interests. For example,

to prove that (4) is indeed a valid conditional pmf, it suffices

to show that
∑

s
n
1
,yn

1

W (yn
1 , s

n
1 |x̌n

1 , š0) = 1 ∀x̌n
1 ∈ Xn, š0 ∈ S, (7)

which can be verified via a sequence of closing-the-box oper-

ations as shown in Fig. 12 in the Appendix. Such techniques

are at the heart of the information-rate-estimation methods as

in [13]. The details are reviewed in the next subsection.

B. Information Rate Estimation

The approach of [13] for estimating information rates of

FSMCs, as reviewed in this section, is based on the Shannon–

McMillan–Breiman theorem (see e.g., [11]) and suitable gen-

eralizations. We make the following assumptions.

• As already mentioned, the derivations in this paper are

for the case where the input process X = (X1,X2, . . .) is

an i.i.d. process. The results can be generalized to other

stationary ergodic input processes that can be represented

by a finite-state-machine source (FSMS). Technically, this

is done by defining a new state that combines the source

state and the channel state.

• We assume that the FSMC is indecomposable, which

roughly means that in the long term the behavior of

the channel is independent of the initial channel state

distribution PS0
(see [12, Section 4.6] for the exact

definition). For such channels and stationary ergodic input

processes, the information rate IW in (3) is well defined.

Let W (yn
1 |xn

1 ) be the joint channel law of an FSMC satisfying

the assumptions above. As aforementioned, the information

rate of such a channel using the i.i.d. input distribution

{Q(n) , Q⊗n}n is given by (3), i.e., by

IW (Q) = lim
n→∞

1

n
I(Xn

1 ;Y
n
1 ), (3’)

where the input process Xn
1 and the output process Yn

1 are

jointly distributed according to

PXn
1
,Yn

1
(xn

1 ,y
n
1 ) =

n
∏

ℓ=1

Q(xℓ) ·W (yn
1 |xn

1 ). (8)

One can rewrite (3) as

IW (Q) = H(X) + H(Y) −H(X,Y), (9)

where the entropic rates H(X), H(Y) and H(X,Y) are defined

as

H(X) , lim
n→∞

1

n
H(Xn

1 ), (10)

H(Y) , lim
n→∞

1

n
H(Yn

1 ), (11)

H(X,Y) , lim
n→∞

1

n
H(Xn

1 ,Y
n
1 ). (12)

We proceed as in [13]. (For more background information,

see the references in [13], in particular [31].) Namely, because

of (9) and

− 1

n
logPXn

1
(Xn

1 )
n→∞−→ H(X) w.p. 1, (13)

− 1

n
logPYn

1
(Yn

1 )
n→∞−→ H(Y) w.p. 1, (14)

− 1

n
logPXn

1 ,Y
n
1
(Xn

1 ,Y
n
1 )

n→∞−→ H(X,Y) w.p. 1, (15)

by choosing some large number n, we have the approximation

IW (Q) ≈ − 1

n
logPXn

1
(x̌n

1 )−
1

n
logPYn

1
(y̌n

1 )

+
1

n
logPXn

1 ,Y
n
1
(x̌n

1 , y̌
n
1 ),

(16)

where x̌
n
1 and y̌

n
1 are some input and output sequences,

respectively, randomly generated according to

PXn
1
,Yn

1
(x̌n

1 , y̌
n
1 ) =

∑

s
n
0

PS0
(s0) ·Q(n)(x̌n

1 ) ·W (y̌n
1 , s

n
1 |x̌n

1 , s0), (17)

where W (y̌n
1 , s

n
1 |x̌n

1 , s0) is defined in (4). Note that x̌
n
1

can be obtained by simulating the input process, and

y̌
n
1 can be obtained by simulating the channel for the

given input string x̌
n
1 . The latter can be done by keeping

track of P
Yℓ|Xℓ

1,Y
ℓ−1
1

(yℓ|x̌ℓ
1, y̌

ℓ−1
1 ), which is proportional to

P
Yℓ,Y

ℓ−1
1 |Xℓ

1
(yℓ, y̌

ℓ−1
1 |x̌ℓ

1), and can be efficiently calculated by

applying suitable closing-the-box operations as in Fig. 14 in

the Appendix.

We continue by showing how the three terms appearing on

the right-hand side of (16) can be computed efficiently. We

show it explicitly for the second term, and then outline it for

the first and the third term.
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In order to efficiently compute the second term on the right-

hand side of (16), i.e., − 1
n
logPYn

1
(y̌n

1 ), we consider the state

metric defined in [13] as

µY

ℓ (sℓ) ,
∑

x
ℓ
1

∑

s
ℓ−1
0

PS0
(s0) ·Q(ℓ)(xℓ

1) ·W (y̌ℓ
1, s

ℓ
1|xℓ

1, s0). (18)

In this case,

PYn
1
(y̌n

1 ) =
∑

sn

µY

n(sn), (19)

and the calculation of µY

ℓ (sℓ) can be done iteratively as

µY

ℓ (sℓ) =
∑

xℓ

∑

sℓ−1

µY

ℓ−1(sℓ−1)·Q(xℓ|xℓ−1
1 )·W (y̌ℓ, sℓ|xℓ, sℓ−1)

=
∑

xℓ

∑

sℓ−1

µY

ℓ−1(sℓ−1)·Q(xℓ)·W (y̌ℓ, sℓ|xℓ, sℓ−1). (20)

Eq. (20) is visualized in Fig. 16 as applying suitable closing-

the-box operations to the NFG in Fig. 4.

However, since the value of µY

ℓ (sℓ) tends to zero as ℓ grows,

such recursive calculations are numerically inconvenient. A

solution is to normalize µY

ℓ (sℓ) after each use of (20) and to

keep track of the scaling coefficients. Namely,

µ̄Y

ℓ (sℓ) ,
1

λY

ℓ

∑

xℓ

∑

sℓ−1

µ̄Y

ℓ−1(sℓ)·Q(xℓ)·W (y̌ℓ, sℓ|xℓ, sℓ−1), (21)

where the scaling factor λY

ℓ > 0 is chosen such that
∑

sℓ
µ̄Y

ℓ (sℓ) = 1. With this, Eq. (19) can be rewritten as

PYn
1
(y̌n

1 ) =

n
∏

ℓ=1

λY

ℓ . (22)

Finally, we arrive at the following efficient procedure for

computing − 1
n
logPYn

1
(yn

1 ):

• For ℓ = 1, . . . , n, iteratively compute the normalized state

metric and with that the scaling factors λY

ℓ .

• Conclude with the result

− 1

n
logPYn

1
(yn

1 ) =
1

n

n
∑

ℓ=1

log(λY

ℓ ). (23)

The third term on the right-hand side of (16) can be

evaluated by an analogous procedure, where the state metric

µY

ℓ (sℓ) is replaced by the state metric

µXY

ℓ (sℓ) ,
∑

s
ℓ−1
0

PS0
(s0) ·Q(ℓ)(x̌ℓ

1) ·W (y̌ℓ
1, s

ℓ
1|x̌ℓ

1). (24)

The iterative calculation of µXY
ℓ (sℓ) is visualized in Fig. 18.

Finally, the first term on the right-hand side of (16) can be

trivially evaluated if X is an i.i.d. process, and with a similar

approach as above if it is described by an FSMS.

The above discussion is summarized as Algorithm 2. On

the side, note that for each ℓ = 2, . . . , n, the quantities λY

ℓ

and λXY

ℓ in the algorithm are the conditional probabilities

P
Yℓ|Yℓ−1

1
(y̌ℓ|y̌ℓ−1

1 ) and P
XℓYℓ|Xℓ−1

1 Y
ℓ−1
1

(x̌ℓ, y̌ℓ|x̌ℓ−1
1 , y̌ℓ−1

1 ), respec-

tively.

C. Auxiliary Channels and Bounds on the Information Rate

As already mentioned in Section I, auxiliary channels3 are

introduced when the state space of the FSMC is too large,

making the calculation in Algorithm 2 (pratically) intractable.

More precisely, given an auxiliary forward FSMC (AF-FSMC)

Ŵ (yℓ, ŝℓ|xℓ, ŝℓ−1) and an auxiliary backward FSMC (AB-

FSMC) V̂ (xℓ, ŝℓ|yℓ, ŝℓ−1), a pair of upper and lower bounds

of the information rate is given in [13], [14] as

Ī
(n)
W (Ŵ ) ,

1

n

∑

x
n
1 ,y

n
1

Q(xn
1 )W (yn

1 |xn
1 ) log

W (yn
1 |xn

1 )

(QŴ )(yn
1 )

, (25)

I
(n)
W (V̂ ) ,

1

n

∑

x
n
1 ,y

n
1

Q(xn
1 )W (yn

1 |xn
1 ) log

V̂ (xn
1 |yn

1 )

Q(xn
1 )

, (26)

where (QŴ )(yn
1 ) ,

∑

x
n
1
Q(xn

1 )·Ŵ (yn
1 |xn

1 ). To see that (25)

and (26) are, respectively, upper and lower bounds, one can

verify the following two equalities,

ĪW (Ŵ )− IW =
1

n
DKL

(

(QW )(Yn
1 )
∥

∥

∥
(QŴ )(yn1 )

)

, (27)

IW − IW (V̂ ) =
1

n

∑

y
n
1

(QW )(yn
1 )·

DKL

(

V (Xn
1 |yn

1 )
∥

∥

∥
V̂ (Xn

1 |yn
1 )
)

,

(28)

where DKL(· ‖ ·) stands for the Kullback–Leibler (KL) diver-

gence, and where the backward channel V (x|y) is defined

as V (x|y) , Q(x)W (y|x)/(QW )(y). In particular, given

an AF-FSMC Ŵ , the paper [14] considered the induced AB-

FSMC V̂ (x|y) , Q(x)Ŵ (y|x)/(QŴ )(y). In this case,

I
(n)
W (V̂ ) =

1

n

∑

x
n
1 ,y

n
1

Q(xn
1 )W (yn

1 |xn
1 ) log

Ŵ (yn
1 |xn

1 )

(QŴ )(yn
1 )

. (29)

The difference function ∆
(n)
W (Ŵ ) is defined as

∆
(n)
W (Ŵ ) , Ī

(n)
W (Ŵ )− I

(n)
W (V̂ )

=
1

n

∑

x
n
1 ,y

n
1

Q(xn
1 )W (yn

1 |xn
1 ) log

(

W (yn
1 |xn

1 )

Ŵ (yn
1 |xn

1 )

)

=
1

n
DKL

(

Q(Xn
1 )W (Yn

1 |Xn
1 )
∥

∥

∥
Q(Xn

1 )Ŵ (Yn
1 |Xn

1 )
)

.

(30)

Apparently, ∆
(n)
W (Ŵ ) > 0, and equality holds if and only

if Ŵ (yn
1 |xn

1 ) = W (yn
1 |xn

1 ) for all xn
1 and y

n
1 with positive

support w.r.t. PXn
1 ,Y

n
1

defined in (8). An efficient algorithm

for finding a local minimum of the difference function was

proposed in [14]; we refer to [14] for further details.

III. QUANTUM CHANNEL WITH MEMORY AND THEIR

GRAPHICAL REPRESENTATION

In this section, we formalize our notations and modeling of

quantum channels with memory [3], [4], [5] and of classical

communications over such channels. In particular, we will de-

fine a class of channels named quantum-state channels, which

3Technically speaking, an auxiliary channel can be defined as any channel
with the same input/output alphabet. For example, an auxiliary channel for
an FSMC can be just another FSMC with smaller state space; whereas in
Section V, an auxiliary channel can also be a quantum-state channel.
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Algorithm 2 Estimating the information rate of an FSMC

Input: indecomposable FSMC channel law W , input distri-

bution Q, positive integer n large enough.

Output: IW (Q) ≈ H(X) + Ĥ(Y) − Ĥ(X,Y).
1: Initialize the channel state distribution PS0

as a uniform

distribution over S
2: Generate an input sequence x̌

n
1 ∼ Q⊗n

3: Generate a corresponding output sequence y̌
n
1

4: µ̄Y
0 ← PS0

5: for each ℓ = 1, . . . , n do

6: µY

ℓ (sℓ)←
∑

xℓ,sℓ−1
µ̄Y

ℓ−1(sℓ−1)·Q(xℓ)·W (y̌ℓ, sℓ|xℓ, sℓ−1)

7: λY

ℓ ←
∑

sℓ
µY

ℓ (sℓ);

8: µ̄Y

ℓ ← µY

ℓ /λ
Y

ℓ

9: end for

10: Ĥ(Y)← − 1
n

∑n

ℓ=1 log(λ
Y
ℓ )

11: µ̄XY
0 ← PS0

12: for each ℓ = 1, . . . , n do

13: µXY
ℓ (sℓ)←

∑

sℓ−1
µ̄XY
ℓ−1(sℓ−1)·Q(x̌ℓ)·W (y̌ℓ, sℓ|x̌ℓ, sℓ−1)

14: λXY
ℓ ←

∑

sℓ
µXY
ℓ (sℓ)

15: µ̄XY

ℓ ← µXY

ℓ /λXY

ℓ

16: end for

17: Ĥ(X,Y)← − 1
n

∑n

ℓ=1 log(λ
XY

ℓ )
18: H(X)← −∑x Q(x) logQ(x)
19: Estimate IW (Q) as H(X) + Ĥ(Y) − Ĥ(X,Y).

is an alternative description of the classical communications

over quantum channels with memory. In addition, we will

introduce several NFGs for representing these channels and

processes.

A. Classical Communication over a Quantum Channel with

Memory

As already mentioned in Section I, a quantum channel with

memory is a completely positive trace-preserving (CPTP) map

N : D(HA ⊗HS)→ D(HB ⊗HS′), (31)

where A is the input system, B is the output system, S and

S′ are, respectively, the memory systems before and after the

channel use. The Hilbert spaces HA, HB, and HS ≡ HS′ are

the state spaces corresponding to those systems.

In the present paper, we consider classical communication

over such channels using some separable input ensemble and

local output measurements; namely, the encoder and decoder

are, respectively, some classical-to-quantum and quantum-to-

classical channels involving a single input or output system. In

particular, given an ensemble {ρ(x)
A
}x∈X and a measurement

{Λ(y)
B
}y∈Y , we define the encoding and decoding function,

respectively, as

Encoding E : pX 7→
∑

x∈X
pX(x)ρ

(x)
A

∀ pX over X , (32)

Decoding D : σB 7→
{

tr(Λ
(y)
B
·σB)

}

y∈Y
∀ σB over HB. (33)

We emphasize that in our setup, the ensemble {ρ(x)
A
}x∈X and

measurements {Λ(y)
B
}y∈Y are given and fixed. Furthermore,

we assume that one does not have access to the memory sys-

tems of the channel. For the case of i.i.d. inputs, the memory

system S before each channel use shall be independent of the

input system A, namely, the joint memory-input operator shall

take the form of ρA ⊗ ρS at each channel input.4

With this, the probability of receiving y ∈ Y , given that

x ∈ X was sent and given that the density operator of the

memory system before the usage of the channel was ρS, equals

PY|X;S(y|x; ρS) = tr
(

Λ
(y)
B
· trS′

(

N (ρ
(x)
A
⊗ ρS)

))

, (34)

which can also be written as

PY|X;S(y|x; ρS) = tr
(

(Λ
(y)
B
⊗ IS) · N (ρ

(x)
A
⊗ ρS)

)

, (35)

where trS′ stands for the partial trace operator (see, e.g. [6,

Section 2.4.3]) that extracts the subsystem B from the joint

system (BS′). Moreover, assuming that y was observed, the

density operator of the memory system after the channel use

is given by

ρS′ =
trB

(

(Λ
(y)
B
⊗ IS) · N (ρ

(x)
A
⊗ ρS)

)

tr
(

(Λ
(y)
B
⊗ IS) · N (ρ

(x)
A
⊗ ρS)

) . (36)

Notice that the denominator in (36) equals the expressions

in (34) and (35). One should note that, though the input

and the memory systems are independent before each channel

use (given i.i.d. inputs), the output and the memory systems

after each channel use can be correlated or even entangled.

In particular, this translates to the fact that the measurement

outcome y can have an influence on the memory system as

indicated in (36).

Consider using the channel n times consecutively with the

above scheme. The joint channel law, namely the conditional

pmf of the channel outputs Yn
1 given the channel inputs Xn

1

and the initial channel state ρS0
, can be computed iteratively

using (35) and (36). In particular, the joint conditional pmf

can be computed as

PYn
1 |Xn

1 ;S0
(yn

1 |xn
1 ; ρS0

) =
n
∏

ℓ=1

PYℓ|Xℓ;Sℓ−1
(yℓ|xℓ; ρSℓ−1

), (37)

where we compute the density operators {ρSℓ
}nℓ=1 iteratively

using (36) as

ρSℓ
=

trB

(

(Λ
(yℓ)
B
⊗ IS) · N (ρ

(xℓ)
A
⊗ ρSℓ−1

)
)

tr
(

(Λ
(yℓ)
B
⊗ IS) · N (ρ

(xℓ)
A
⊗ ρSℓ−1

)
) . (38)

B. Quantum-State Channels

For each channel-ensemble-measurement configuration (N ,

{ρ(x)
A
}x∈X , {Λ(y)

B
}y∈Y ) as introduced above, one ends up with

a joint conditional pmf, as in (37). However, this relationship

is not bijective. In particular, consider unitary operators UA

4 More generally, for FSMSs, this statement also holds by conditioning on
all previous inputs.
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and UB acting on HA and HB, respectively. The following

setup induces exactly the same joint conditional pmf:

Ñ : ρ̃AS 7→ (UB⊗IS) · N
(

(UA⊗IS)ρ̃AS(U †
A
⊗IS)

)

· (U †
B
⊗IS),

ρ̃
(x)
A

, U †
A
· ρ(x)

A
· UA ∀x ∈ X ,

Λ̃
(y)
B

, U †
B
· Λ(y)

B
· UB ∀y ∈ Y.

Such redundancy is not only tedious, but also detrimental when

we try to compare different channels; in particular, when we

try to introduce proper auxiliary channels to approximate the

original communication scheme.

In this subsection, we introduce a class of channels

called quantum-state channels to eliminate such redundancies.

In particular, notice that the statistical behavior of the afore-

mentioned communication scheme is fully specified via (35)

and (36); which are in turn determined by the set of completely

positive mappings {N y|x}x∈X ,y∈Y defined as

N y|x : ρS 7→ trB

(

(Λ
(y)
B
⊗ IS) · N (ρ

(x)
A
⊗ ρS)

)

. (39)

In this case, (35), (36), and (37) can be rewritten, respectively,

as

PY|X;S(y|x; ρS) = tr
(

N y|x(ρS)
)

, (40)

ρS′ = N y|x(ρS)
/

tr
(

N y|x(ρS)
)

, (41)

PYn
1 |Xn

1 ;S0
(yn

1 |xn
1 ; ρS0

) = tr
(

N yn|xn ◦ · · · ◦N y1|x1(ρS0
)
)

. (42)

Thus, the operators {N y|x}x∈X ,y∈Y fully specify the joint

conditional pmf as in (42). Moreover, such specification

is also unique; namely, any two sets of channel-ensemble-

measurement configuration shall end up with the same joint

channel law if and only if the mappings defined in (39) are

identical. This inspires us to make the following definition.

Definition 3 (Quantum-State Channel). A (finite indexed)

set of completely positive operators {N y|x}x∈X ,y∈Y (act-

ing on the same Hilbert space) is said to be a (classical-

input classical-output) quantum-state channel (CC-QSC) if
∑

y∈Y N y|x is trace-preserving for each x ∈ X .

Given any channel-ensemble-measurement configuration as

described in Section III-A, one can always define a corre-

sponding CC-QSC by (39). On the other hand, as stated in

the proposition below, the converse is also true.

Proposition 4. For any CC-QSC {N y|x}x∈X ,y∈Y , there exists

some quantum channel with memory N as in (31) such

that (39) holds with ensemble {ρ(x)
A

= |x〉〈x|}x∈X and

measurement {Λ(y)
B

= |y〉〈y|}y∈Y . Here, HA and HB are

defined such that {|x〉}x and {|y〉}y are orthonormal bases

of HA and HB, respectively.

Proof. It suffices to show that there exists a CPTP map N :
D(HA ⊗HS)→ D(HB ⊗HS) such that for all ρS ∈ D(HS),
and x ∈ X ,

N : |x〉〈x| ⊗ ρS 7→
∑

y∈Y
|y〉〈y| ⊗ N y|x(ρS).

Such an N can be constructed as

N : ρ 7→
∑

x,y,k

(

|y〉〈x| ⊗ E
y|x
k

)

· ρ ·
(

|y〉〈x| ⊗ E
y|x
k

)†
,

where
{

E
y|x
k

}

k
is a Kraus representation of N y|x, namely,

N y|x(ρS) ≡
∑

k

E
y|x
k · ρS · (Ey|x

k )† ∀ρS ∈ D(HS).

It remains to check if N is a CPTP, which is indeed the case:

∑

x,y,k

(

|y〉〈x| ⊗ E
y|x
k

)†
·
(

|y〉〈x| ⊗ E
y|x
k

)

=
∑

x

∑

y,k

|x〉〈x| ⊗ (E
y|x
k )†E

y|x
k =

∑

x

|x〉〈x| ⊗ I = I.

C. Visualization using Normal Factor Graphs

In this subsection, we focus on the computations of (40),

(41), and (42) for the situation where the involved channel

N is of finite dimension. In analogy to the FSMCs, we

demonstrate how to use NFGs to facilitate and visualize

the relevant computations. Our use of NFGs for describing

quantum systems follows [17].

By Proposition 4, let us consider a CC-QSC

{N y|x}x∈X ,y∈Y acting on HS, where d = dim(HS)
is finite, and {|s〉}s∈S is an orthonormal basis of HS.

(Apparently, |S| = d.) Since for each x and y, N y|x is a

completely positive map, there must exist finitely many (not

necessarily unique) matrices {F y|x
k ∈ CS×S}k such that

[

N y|x(ρS)
]

≡
∑

k

F
y|x
k · [ρS] · (F y|x

k )† ∀ρS ∈ D(HS), (43)

where
[

N y|x(ρS)
]

and [ρS] are, respectively, the matrix rep-

resentation of the operator N y|x(ρS) and ρS under {|s〉}s∈S .

The reason for such matrices {F y|x
k }k to exist is the same as

for the Kraus operators of CPTP maps (see [6, Theorems 8.1

and 8.3]). Also note that
∑

y∈Y Ey|x is trace-preserving, thus

it must hold that

∑

y∈Y

∑

k

(F
y|x
k )†F y|x

k = I ∀x ∈ X . (44)

Now, define a set of functions {W y|x}x∈X ,y∈Y as

W y|x : (s′, s, s̃′, s̃) 7→
∑

k

F
y|x
k (s′, s)F

y|x
k (s̃′, s̃), (45)

where s′, s, s̃′, s̃ ∈ S are indices of the corresponding matrices,

namely, F
y|x
k (s′, s) is the (s′, s)-th entry of matrix F

y|x
k . In

this case, one can rewrite (40), (41) and (42), respectively, into

PY|X;S(y|x; ρS) =
∑

s′,s̃′:

s′=s̃′

∑

s,s̃

W y|x(s′, s, s̃′, s̃) · [ρS]s,s̃, (46)

[ρS′ ]s′,s̃′ =

∑

s,s̃ W
y|x(s′, s, s̃′, s̃) · [ρS]s,s̃

∑

s′,s̃′:

s′=s̃′

∑

s,s̃ W
y|x(s′, s, s̃′, s̃) · [ρS]s,s̃

, (47)
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W

x

y

=ρS

s

s̃

s′

s̃′

Fig. 5. Representation of {W y|x}x,y using an NFG.

PYn
1 |Xn

1 ;S0
(yn

1 |xn
1 ; ρS0

) =
∑

sn,s̃n:

sn=s̃n

∑

s
n−1
0 ,s̃

n−1
0

[ρS0
]s0,s̃0 ·

n
∏

ℓ=1

W yℓ|xℓ(sℓ, sℓ−1, s̃ℓ, s̃ℓ−1).

(48)

By rearranging the entries of W y|x (for each x, y) into a matrix

[W y|x] ∈ CS2×S2

as

[W y|x](s′,s̃′),(s,s̃) , W y|x(s′, s, s̃′, s̃), (49)

where (s′, s̃′) ∈ S2 is the first index, and (s, s̃) ∈ S2 is the

second index of [W y|x], we can simplify (46), (47), and (48)

as

PY|X;S(y|x; ρS) = tr([W y|x] · [ρS]), (50)

[ρS′ ] =
[W y|x] · [ρS]

tr([W y|x] · [ρS])
, (51)

PYn
1 |Xn

1 ;S0
(yn

1 |xn
1 ; ρS0

) = tr
(

[W yn|xn ] · · · [W y1|x1 ]·[ρS0
]
)

,(52)

respectively. Here we treat [ρS] as a length-d2 vector indexed

by (s, s̃) ∈ S2 in the above equations.

By considering {W y|x}x,y as a function of six variables,

we can represent it using a factor node of degree six in an

NFG as in Fig. 5. In this case, Eqs. (46) and (50) can be

visualized as “closing the outer box” in the NFG, i.e., summing

over all the variables represented by the edges interior to the

box. Similarly, (47) and (51) can be visualized as “closing

the inner box”. The NFG corresponding to using the channel

n times consecutively is depicted in Fig. 6, where (48) and (52)

are visualized as closing the outermost box. Interestingly, this

closing-the-box operation can be carried out by a sequence of

simpler closing-the-box operations as shown in the figure.

A number of statistical quantities and density operators of

interest can be computed and visualized as closing-the-box

operations on suitable NFGs similar to that of Fig. 6. The

following example highlights how quantities of this kind can

be computed in such a manner.

Example 5 (BCJR [32] decoding for CC-QSCs). For fixed

y̌
n
1 ∈ Yn and a given initial density operator ρS0

, the

conditional probability PXℓ|Yn
1 ;S0

(xℓ|y̌n
1 ; ρS0

) can be computed

via

PXℓ|Yn
1 ;S0

(·|y̌n
1 ; ρS0

) ∝ PXℓ,Y
n
1 |S0

(·, y̌n
1 |ρS0

), (53)

n21

ρS0 W

s0

s̃0

x1

y1

W

s1

s̃1

x2

y2

· · ·

s2

s̃2

W

sn−1

s̃n−1

xn

yn

· · ·

· · ·

· · ·

· · ·

=

sn

s̃n

Fig. 6. The joint channel law (48) and (52) can be visualized as the result
of the “closing of the outermost box” above, which can in turn be carried out
by a sequence of “closing-the-box” operations as indicated.

where the right-hand side of (53) is a marginal pmf defined

as

PXℓ,Y
n
1 |S0

(xℓ, y̌
n
1 |ρS0

) =
∑

x
ℓ−1
1 ,xn

ℓ+1

∑

s
n
0 ,s̃

n
0

[ρS0
]s0,s̃0 ·

n
∏

i=1

Q(xi) ·
n
∏

j=1

W y̌j |xj(sj , sj−1, s̃j , s̃j−1),

(54)

where we have assumed that the input process Xn
1 is i.i.d.

characterized by some pmf Q. The evaluation of (54) can

be carried out efficiently using a sequence of closing-the-box

operations as visualized in Fig. 7. These operations can be

roughly divided into the following three steps.

1) Closing the left inner box: this results in an operator
⇀
σ
(y̌ℓ−1

1 )
Sℓ−1

on HSℓ−1
.

2) Closing the right inner box: this results in another oper-

ator
↼
σ
(y̌n

ℓ+1)

Sℓ
on HSℓ

.

3) Applying the closing-the-box operation to the yellow

box: the result is the marginal pmf PXℓ,Y
n
1 |S0

(xℓ, y̌
n
1 |ρS0

),
from which the desired conditional probability

PXℓ|Yn
1 ;S0

(xℓ|y̌n
1 ; ρS0

) can be easily obtained by

normalization.

The operators mentioned in 1) and 2) can be computed

recursively, using a sequence of closing-the-box operations.

Namely, one can carry out the computations in 1) consecu-

tively with ℓ = 1, 2, . . . , n; or the computations in 2) consec-

utively with ℓ = n, n−1, . . . , 1. This provides an efficient way

to evaluate PXℓ|Yn
1 ;S0

(xℓ|y̌n
1 ; ρS0

) for each ℓ = 1, . . . , n; and

thus provides an efficient symbol-wise decoding algorithm.

The idea in this example is conceptually identical to that of

the BCJR decoding algorithm for an FSMC.

As shown in the above example, very often the desired

functions or quantities are based on the same partial results.

The NFG framework is very helpful to visualize these partial

results and to show how they can be combined to obtain the

desired functions and quantities.

We emphasize that the functions {W y|x}x,y defined in (45)

are unique for a given finite-dimensional CC-QSC {N y|x}x,y;

even though such uniqueness does not apply to the Kraus

operators {F y|x}k being used to define {W y|x}x,y. This can

be proven by making the identification that
[

N y|x(ρS)
]

≡ [W y|x] · [ρS] ∀ρS ∈ D(HS), (55)



9

↼
σ
(y̌n

ℓ+1)

Sℓ

⇀
σ
(y̌ℓ−1

1 )
Sℓ−1

ρS0 W

s0

s̃0

Q

x1

y̌1

· · ·

· · ·

s1

s̃1

· · ·

· · ·

W

sℓ−2

s̃ℓ−2

Q

xℓ−1

y̌ℓ−1

W

sℓ−1

s̃ℓ−1

Q

xℓ

y̌ℓ

W

sℓ

s′ℓ

Q

xℓ+1

y̌ℓ+1

· · ·

· · ·

sℓ+1

s′ℓ+1

· · ·

· · ·

W

sn−1

s′n−1

Q

xn

y̌n

=

sn

s′n

Fig. 7. Computation of the marginal pmf PXℓ|Y
n
1
;S0 using a sequence of closing-the-box operations.

for all x and y. Moreover, we argue that the functions

{W y|x}x,y, are an equivalent way to specify a CC-QSC,

or classical communication over a quantum channel with

memory as described at the beginning of this section. Namely,

for any set of complex-valued functions {W y|x}x,y on S4
satisfying some constraints to be clarified later, there must

exist a unique CC-QSC {N y|x}x,y such that (55) holds; and

thus, there must exist some corresponding channel-ensemble-

measurement configuration, unique up to its channel law. As

for such constraints, we rearrange the entries of W y|x (for

each x, y) into another matrix JW y|xK ∈ CS2×S2

(a.k.a. Choi–

Jamiołkowski matrix [33]), whose entries are defined as

JW y|xK(s′,s),(s̃′,s̃) , W y|x(s′, s, s̃′, s̃), (56)

where (s′, s) ∈ S2 is the first index, and (s̃′, s̃) ∈ S2 is the

second index of JW y|xK. Notice that, JW y|xK is a positive

semi-definite (p.s.d.) matrix, and it satisfies the following

equation

∑

y∈Y

∑

s′,s̃′: s′=s̃′

JW y|xK(s′,s),(s̃′,s̃) = δs,s̃ ∀x ∈ X , (57)

where δs,s̃ is the Kronecker-delta function. In this case, the

“equivalence” can be shown by the following proposition.

Proposition 6. Let X , Y be finite sets, and HS be a

finite-dimensional Hilbert space with an orthonormal basis

{|s〉}s∈S . For any set of functions

{W y|x : S × S × S × S → C}x∈X ,y∈Y

such that their matrix form {JW y|xK}x,y consists of p.s.d.

matrices and satisfies (57), there must exist a unique CC-QSC

{N y|x}x,y acting on HS such that (55) holds.

Proof. The idea of the proof is to consider the eigenvalue

decomposition of JW y|xK, and reconstruct N y|x by following

the equations (45) and (43) backwardly. We omit the details

here.

Let us conclude this section by pointing out that the

functions {W y|x}x,y, particularly the corresponding NFG,

can be constructed from the channel-ensemble-measurement

configuration (N , {ρ(x)
A
}x∈X , {Λ(y)

B
}y∈Y ) as in Fig. 8. This

can be justified by checking (39) and (55).

W y|x(s′, s, s̃′, s̃)

ρ
(x)
A

N

x

s

s̃

s′

s̃′

Λ
(y)
B

y

Fig. 8. NFG representation of the channel-ensemble-measurement configu-

ration (N , {ρ
(x)
A

}x∈X , {Λ
(y)
B

}y∈Y ).

IV. INFORMATION RATE AND ITS ESTIMATION

In this section, we focus on the information rate of the

communication scheme described in Section III. As defined

in (1), the information rate is the limit superior of the average

mutual information 1
n
I (Xn

1 ;Y
n
1 ) between the input and output

processes Xn
1 and Yn

1 as n tends to infinity. We assume that Xn
1

is distributed according to some i.i.d. process5 characterized

by the pmf Q, i.e., Q(n)(xn
1 ) =

∏n

ℓ=1 Q(xℓ). In this case, the

joint distribution of (Xn
1 ,Y

n
1 ) is given by

PXn
1 ,Yn

1 |S0
(xn

1 ,y
n
1 |ρS0

)=

n
∏

ℓ=1

Q(xℓ)·PYn
1 |Xn

1 ;S0
(yn

1 |xn
1 ; ρS0

),(58)

where PYn
1 |Xn

1 ;S0
is specified in (37), (42), (48) or (52),

depending on which notation we use to specify the channel

(see Propositions 4 and 6). It is obvious that the value of (58),

and thus the information rate, depends on the initial density

operator ρS0
. In this sense, we denote the information rate

as a function of the input pmf Q, the CC-QSC {N y|x}x,y
describing the channel, and the initial density operator ρS0

,

namely

I(Q, {N y|x}x,y, ρS0
) , lim sup

n→∞
I(n)(Q, {N y|x}x,y, ρS0

),(59)

I(n)(Q, {N y|x}x,y, ρS0
) ,

1

n
I(Xn

1 ;Y
n
1 )(ρS0

). (60)

5For more general type of sources, like a finite-state-machine source
(FSMS), one can consider “merging” the memory of the source into that
of the channel, and thus obtaining an equivalent memoryless input process.
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Here, I(Xn
1 ;Y

n
1 )(ρS0

) is the mutual information between Xn
1

and Yn
1 ; and the latter are jointly distributed according to (58).

The argument ρS0
emphasizes the dependency of 1

n
I(Xn

1 ;Y
n
1 )

on ρS0
.

Similar to the case of an FSMC, the dependency of the

information rate on the initial density operator usually cannot

be ignored. However, as already mentioned in Section II-B,

for a class of FSMCs, namely the indecomposable FSMCs,

it is known that the information rate is independent from

the initial channel state [12]. An indecomposable FSMC,

intuitively speaking, is an FSMC whose state distribution,

given different initial states, tends to be indistinguishable

as n → ∞, independently of the input sequence realized.

A quantum analogy was proposed by Bowen, Devetak, and

Mancini [34], where they defined the indecomposable quantum

channels with memory, and proved that the quantum entropic

bound for such channels is independent from the initial density

operator.

In the remainder of this section we firstly define the in-

decomposability of CC-QSCs, and prove the independence

of the information rate as in (59) from the initial density

operator. Secondly, we generalize the methods in Algorithm 2

for estimating such information rates efficiently.

The definition of an indecomposable CC-QSC in our paper

is similar (but different) and closely related to that of an

indecomposable (quantum) channel with memory in [34].

Namely, an indecomposable channel with memory equipped

with separable input ensemble and local output measurement

will always induce an indecomposable CC-QSC, but not

necessarily vice versa. Moreover, in [34] the classical capacity

of quantum channels with finite memory was considered,

where the capacity is essentially the Holevo bound, and where

the latter was proven to be achievable [3]. However, in our

work, we focus on the situation where the ensemble and the

measurement are fixed.

A. Indecomposable Quantum-State Channel

Definition 7. A CC-QSC {N y|x}x,y is said to be indecom-

posable if for any initial density operators αS0
and βS0

, the

following statement holds: for any ǫ > 0, there exists some

positive integer N s.t.
∥

∥

∥
α
(xn

1 )
Sn
− β

(xn
1 )

Sn

∥

∥

∥

1
< ε ∀n > N, ∀xn

1 ∈ Xn, (61)

where

α
(xn

1 )
Sn

,
∑

y
n
1

N yn|xn ◦ · · · ◦ N y1|x1(αS0
), (62)

β
(xn

1 )
Sn

,
∑

y
n
1

N yn|xn ◦ · · · ◦ N y1|x1(βS0
), (63)

and where ‖A‖1 is the trace distance for an operator A on

HS, i.e., ‖A‖1 , 1
2 tr
√
A†A.

Theorem 8.6 The information rate of an indecomposable CC-

QSC with an i.i.d. input process is independent of the initial

6 A similar result regarding indecomposable/forgetful quantum channel with
memory can be found in [4] and [34].

density operator. Namely, if {N y|x}x,y is indecomposable,

then

I(n)(Q, {N y|x}x,y, αS0
)− I(n)(Q, {N y|x}x,y, βS0

)
n→∞−→ 0,

for any initial density operators αS0
, βS0

∈ D(HS0
).

In the proof below, we follow a similar idea as in [12] for

indecomposable FSMCs, and as that in [34] for indecompos-

able quantum channels with memory.

Proof. Let A and B be quantum systems described by

Hilbert spaces HA and HB, respectively, where {|x〉}x∈X and

{|y〉}y∈Y are orthonormal bases of HA and HB, respectively.

Let An
1 and Bn

1 be n copies of A and B, respectively. Let

ρS0
be some initial density operator; and let the joint density

operator on system An
1B

n
1 be

ρAn
1 B

n
1
,
∑

x
n
1

Q(xn
1 )·|xn

1 〉〈xn
1 |⊗

∑

y
n
1

tr
(

N y
n
1 |xn

1 (ρS0
)
)

·|yn
1 〉〈yn

1 | ,

where N y
n
1 |xn

1 , N yn|xn ◦ · · · ◦N y1|x1 . In this case, it is not

hard to see that

I(Xn
1 ;Y

n
1 )[ρS0

] = I(An
1 ;B

n
1 )[ρS0

].

In fact, one can easily check that

H(An
1 ) = H(Xn

1 ),

H(Bn
1 ) = H(Yn

1 ),

H(An
1 ,B

n
1 ) = H(Xn

1 ,Y
n
1 ).

In particular, H(An
1 ) is independent of the initial density

operator ρS0
. We also claim that, for each ρS0

∈ D(HS0
)

and positive integer N < n,

I(AN
1 BN

1 ;An
N+1B

n
N+1) 6 2H(SN ), (64)

I(BN
1 ;Bn

N+1) 6 2H(SN ), (65)

where the density operator for SN is defined as (depending on

ρS0
)

ρSN
,
∑

x
N
1

Q(xN
1 ) ·

∑

y
N
1

N y
N
1 |xN

1 (ρS0
).

Proof of (64): We define a class of CPTP maps {Φb
a :

D(HSa
)→ D(HAb

aB
b
a
)}a<b∈N as

Φb
a: ρSa

7→
∑

xb
a

Q(xb
a)·
∣

∣x
b
a

〉〈

x
b
a

∣

∣⊗
∑

yb
a

tr
(

N y
b
a|xb

a(ρSa
)
)

·
∣

∣y
b
a

〉〈

y
b
a

∣

∣.

Since the input process Q is i.i.d., we can rewrite ρAn
1 B

n
1

, for

each positive integer N < n, as

ρAn
1
Bn
1
=
(

IAN
1 BN

1
⊗ Φn

N+1

)(

ρAN
1 BN

1 SN

)

,

where

ρAN
1 BN

1 SN
,
∑

x
N
1

Q(xN
1 )
∣

∣x
N
1

〉〈

x
N
1

∣

∣⊗
∑

y
N
1

N y
N
1 |xN

1 (ρS0
)
∣

∣y
N
1

〉〈

y
N
1

∣

∣.

Hence, by data processing inequality for quantum mutual

information (see e.g., [7, Theorem 11.9.4]), one must have

I(AN
1 BN

1 ;An
N+1B

n
N+1) 6 I(AN

1 BN
1 ; SN ).
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Additionally, by subadditivity of joint entropy, we have

I(AN
1 BN

1 ; SN ) , H(AN
1 BN

1 ) +H(SN )−H(AN
1 BN

1 SN )

6 H(AN
1 BN

1 )+H(SN )−
∣

∣H(AN
1 BN

1 )−H(SN )
∣

∣

6 2H(SN ).

Combining the above two inequalities, we have proven (64).

Proof of (65): We follow the same approach as above for

proving (64) by defining another class of CPTP maps {Ψb
a :

D(HSa
)→ D(HBb

a
)}a<b∈N as

Ψb
a : ρSa

7→
∑

xb
a

Q(xb
a) ·

∑

yb
a

tr
(

N y
b
a|xb

a(ρSa
)
)

·
∣

∣y
b
a

〉〈

y
b
a

∣

∣ .

We omit the detailed derivation of (65).

We now return to the main proof. Given the initial density

operators αS0
, and βS0

, we define αAn
1
Bn
1

, βAn
1
Bn
1

and αSN
,

βSN
in a similar fashion as we have defined ρAn

1 B
n
1

and ρSN

based on ρS0
. In this case, one obtains

∣

∣H(αAn
1 B

n
1
)−H(βAn

1 B
n
1
)
∣

∣−
∣

∣H(αAn
N+1

Bn
N+1

)−H(βAn
N+1

Bn
N+1

)
∣

∣

(a)

6
∣

∣H(αAN
1 BN

1
)−H(βAN

1 BN
1
)
∣

∣+
∣

∣I(AN
1 BN

1 ;An
N+1B

n
N+1)[αAn

1 B
n
1
]

− I(AN
1 BN

1 ;An
N+1B

n
N+1)[βAn

1
Bn
1
]
∣

∣

(b)

6 N · log(dimHAB) + 2 ·max {H(αSN
),H(βSN

)} , (66)

where we have used the triangle inequality in step (a), and

a basic property of von Neumann entropy [6, Theorem 11.8]

and (64) in step (b). Similarly, using (65), one can prove

∣

∣H(αBn
1
)−H(βBn

1
)
∣

∣−
∣

∣H(αBn
N+1

)−H(βBn
N+1

)
∣

∣

6 N · log(dimHB) + 2 ·max {H(αSN
),H(βSN

)} .
(67)

By assumption, there exists some positive integer d such that

max{dimHA, dimHB, dimHS} 6 d. Thus, we have

1

n

∣

∣I(Xn
1 ;Y

n
1 )[αS0

]− I(Xn
1 ;Y

n
1 )[βS0

]
∣

∣

=
1

n

∣

∣I(An
1 ;B

n
1 )[αS0

]− I(An
1 ;B

n
1 )[βS0

]
∣

∣

=
1

n

∣

∣

(

H(αBn
1
)−H(αAn

1
Bn
1
)
)

−
(

H(βBn
1
)−H(βAn

1
Bn
1
)
)∣

∣

(c)

6
1

n

∣

∣H(αBn
1
)−H(βBn

1
)
∣

∣+
1

n

∣

∣H(αAn
1
Bn
1
)−H(βAn

1
Bn
1
)
∣

∣

(d)

6
3N + 4

n
· log d +

1

n

∣

∣H(αBn
N+1

)−H(βBn
N+1

)
∣

∣

+
1

n

∣

∣H(αAn
N+1

Bn
N+1

)−H(βAn
N+1

Bn
N+1

)
∣

∣

=
3N + 4

n
· log d +

1

n

∣

∣H(Ψn
N+1(αSN

))−H(Ψn
N+1(βSN

))
∣

∣

+
1

n

∣

∣H(Φn
N+1(αSN

))−H(Φn
N+1(βSN

))
∣

∣,

where we have used the triangle inequality in step (c), and [6,

Theorem 11.8], (66), (67) in step (d). Using a loose variant of

Fannes’ inequality [35]7, we have
∣

∣H(Ψn
N+1(αSN

))−H(Ψn
N+1(βSN

))
∣

∣ 6 (n−N) · log d ·
∥

∥Ψn
N+1(αSN

)−Ψn
N+1(βSN

)
∥

∥

1
+ e−1,

∣

∣H(Φn
N+1(αSN

)) −H(Φn
N+1(βSN

))
∣

∣ 6 2 · (n−N) · log d ·
∥

∥Φn
N+1(αSN

)− Φn
N+1(βSN

)
∥

∥

1
+ e−1.

Moreover, by the contractivity of the trace distance, we have,
∥

∥Ψn
N+1(αSN

)−Ψn
N+1(βSN

)
∥

∥

1
6 ‖αSN

− βSN
‖1 ,

∥

∥Φn
N+1(αSN

)− Φn
N+1(βSN

)
∥

∥

1
6 ‖αSN

− βSN
‖1 .

This allows us to bound the difference of the information rates

by

1

n

∣

∣I(Xn
1 ;Y

n
1 )[αS0

]− I(Xn
1 ;Y

n
1 )[βS0

]
∣

∣ 6
3N + 4

n
· log d

+
3(n−N)

n
· log d · ‖αSn

− βSn
‖1 +

2

n · e .

Finally, because the CC-QSC is indecomposable, for any ε >
0, we can choose N large enough such that

‖αSN
− βSN

‖1 <
ε

6 · log d,

and then choose an integer M > N such that

3N + 4

M
· log d+ 2

M · e <
ε

2
.

This will ensure that for any n > M , we have

3N + 4

n
· log d+ 3(n−N)

n
· log d · ‖αSn

− βSn
‖1+

2

n · e < ε,

which concludes the proof of the theorem.

B. Estimation of the Information Rate

The development in this section is very similar to the

development in Section II-B. In particular, we follow the same

approach as in Eqs. (9)–(16). This similarity stems from the

similarity of the NFGs in Figs. 4 and 7, and highlights one

of the benefits of the factor-graph approach that we take to

estimate information rates of quantum channels with memory.

We make the following assumptions.

• As already mentioned, the derivations in this paper are

for the case where the input process Xn
1 = (X1, . . . ,Xn)

is an i.i.d. process. The results can be generalized to other

stationary ergodic input processes that can be represented

by a finite-state-machine source (FSMS). Technically, this

is done by defining a new state that combines the FSMS

state and the channel state.

• We assume that the corresponding quantum-state channel

{N y|x}x∈X ,y∈Y is finite-dimensional and indecompos-

able. We also assume it can be represented by some

functions {W y|x}x,y as defined in (45).

The major difference compared with Section II-B is the

conditional pmf PYn
1 |Xn

1 ;S0
, and thus the joint pmf PYn

1 ,Xn
1 |S0

as

7 Namely, we used the inequality |H(ρ) −H(σ)| 6 log dim ·‖ρ− σ‖1+
e−1. Note that tighter variants of Fannes’ inequality exist, but the above
inequality is good enough to prove the desired result.
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specified in (52) and (58), respectively. In this case, in order to

compute − 1
n
logPYn

1
(y̌n

1 ) and − 1
n
logPXn

1 Y
n
1
(x̌n

1 , y̌
n
1 ) using a

similar method as in Section II-B, we consider the state metrics

{σY
ℓ }nℓ=1 and {σXY

ℓ }nℓ=1 (which are operators on HSℓ
for each

ℓ) defined w.r.t. y̌n
1 and w.r.t. x̌n

1 and y̌
n
1 , respectively, as

σY

ℓ ,
∑

x
ℓ
1

Q(ℓ)(xℓ
1) · N y̌n|xn ◦ · · · ◦ N y̌1|x1(ρS0

), (68)

σXY

ℓ , N y̌n|x̌n ◦ · · · ◦ N y̌1|x̌1(ρS0
). (69)

In this case, we have PYn
1
(y̌n

1 ) = tr(σY
n), and

PXn
1
Yn
1
(x̌n

1 , y̌
n
1 ) = tr(σXY

n ). Notice that {σY

ℓ }ℓ and {σXY

ℓ }ℓ
can be computed iteratively as

[σY

ℓ ] =
∑

xℓ

Q(xℓ) · [W y|x] · [σY

ℓ−1], (70)

[σXY

ℓ ] = [W y|x] · [σXY

ℓ−1], (71)

where we treat [σY
ℓ ] and [σXY

ℓ ] as length-d2 vectors indexed

by (s, s̃) ∈ S2 in the above two equations. (See (49) and (52)

for notations.) Moreover, we can also introduce normalizing

coefficients {λY
ℓ }ℓ and {λXY

ℓ }ℓ, similar to (21), for the sake

of numerical stability. In the latter case, we have iterative

updating rules

[σ̄Y

ℓ ] =
1

λY
ℓ

·
∑

xℓ

Q(xℓ) · [W y|x] · [σ̄Y

ℓ−1], (72)

[σ̄XY

ℓ ] =
1

λXY

ℓ

· [W y|x] · [σ̄XY

ℓ−1], (73)

where the scaling factors λY

ℓ > 0 and λXY

ℓ > 0 are chosen

such that tr(σ̄Y
ℓ ) = 1 and tr(σ̄XY

ℓ ) = 1, respectively. In

addition, one can verify that PYn
1
(y̌n

1 ) =
∏n

ℓ=1 λ
Y

ℓ , and

PXn
1
Yn
1
(x̌n

1 , y̌
n
1 ) =

∏n

ℓ=1 λ
XY

ℓ .

The above discussion is summarized as Algorithm 9. The

computations corresponding to Line 3, 5–9 and 12–16 are vi-

sualized in Figs. 15, 17, and 19 in the Appendix, respectively.

V. INFORMATION RATE UPPER/LOWER BOUNDS

AND THEIR OPTIMIZATION

In this section, we consider auxiliary channels and their

induced upper and lower bounds on the information rate. As

already mentioned in the introduction, auxiliary channels are

often introduced as a low-complexity approximation of the

original channel, which are useful in mismatch decoding. The

techniques developed in this section only require the channel

input/output data, but not the channel model itself. This is

particularly useful when the channel is only made physically,

but not mathematically, available. In this case, the task of

minimizing the difference between the upper and lower bound

is equivalent to finding the channel model (within a specified

class of channel models) best fitting the empirical channel law.

Similarly, minimizing the upper bound corresponds to finding

the channel model best fitting the empirical channel output

distribution, and maximizing the lower bound corresponds to

finding the channel model best fitting the empirical reverse

channel law. Motivated by the above scenarios, we particularly

consider the auxiliary channels chosen from the domain of

Algorithm 9 Estimating the information rate of a CC-QSC

Input: indecomposable CC-QSC {N y|x}x∈X ,y∈Y, which can

be represented by functions {W y|x}x,y, input distribu-

tion Q, positive integer n large enough.

Output: I(n)(Q, {N y|x}x,y) ≈ H(X) + Ĥ(Y) − Ĥ(X,Y).
1: Initialize the memory density operator ρS0

← |0S〉〈0S|
2: Generate an input sequence x̌

n
1 ∼ Q⊗n

3: Generate a corresponding output sequence y̌
n
1

4: σ̄Y
0 ← ρS0

5: for each ℓ = 1, . . . , n do

6: [σY

ℓ ]←
∑

xℓ
Q(xℓ) · [W y̌ℓ|x] · [σ̄Y

ℓ−1]

7: λY

ℓ ← tr(σY

ℓ )
8: σ̄Y

ℓ ← σY

ℓ /λ
Y

ℓ

9: end for

10: Ĥ(Y)← − 1
n

∑n

ℓ=1 log(λ
Y

ℓ )
11: σ̄XY

0 ← ρS0

12: for each ℓ = 1, . . . , n do

13: [σXY

ℓ ]← [W y̌ℓ|x̌ℓ ] · [σ̄XY

ℓ−1]
14: λXY

ℓ ← tr(σXY

ℓ )
15: σ̄XY

ℓ ← σXY
ℓ /λXY

ℓ

16: end for

17: Ĥ(X,Y)← − 1
n

∑n

ℓ=1 log(λ
XY

ℓ )
18: H(X)← −∑xQ(x) logQ(x)
19: Estimate I(n)(Q, {N y|x}x,y) as H(X)+ Ĥ(Y)− Ĥ(X,Y).

all CC-QSCs with the same input and output alphabet as

the original channel, and acting on a memory system of a

certain dimension (which can be different from the memory

dimension of the original channel). Throughout this section,

we assume the original channel as described in Section III is

indecomposable, and that all the involved Hilbert spaces are

of finite dimension, and that the alphabets X and Y are finite.

Suppose we have some auxiliary CC-QSC {N̂ y|x}x,y,

describable by some functions {Ŵ y|x}x,y as in (45). Let

P̂
Yn
1 |Xn

1 ,Ŝ0
denote its joint channel law, similar to (42), (48),

or (52). Namely,

P̂
Yn
1 |Xn

1 ,Ŝ0
(yn

1 |xn
1 ; ρ̂S0

) , tr
(

[Ŵ yn|xn ] · · · [Ŵ y1|x1 ]·[ρ̂S0
]
)

.(74)

We follow a similar approach as in [13], [14], and define the

quantities

Ī
(n)
W (Ŵ ) ,

1

n

∑

x
n
1 ,y

n
1

Q(n)(xn
1 ) · PYn

1 |Xn
1 ;S0

(yn
1 |xn

1 ; ρS0
)

· log
PYn

1 |Xn
1 ;S0

(yn
1 |xn

1 ; ρS0
)

∑

x̌
n
1
Q(n)(x̌n

1 )P̂Yn
1 |Xn

1 ,Ŝ0
(yn

1 |x̌n
1 ; ρŜ0

)
,

(75)

I
(n)
W (Ŵ ) ,

1

n

∑

x
n
1 ,y

n
1

Q(n)(xn
1 ) · PYn

1 |Xn
1 ;S0

(yn
1 |xn

1 ; ρS0
)

· log
P̂Yn

1 |Xn
1 ;S0

(yn
1 |xn

1 ; ρS0
)

∑

x̌
n
1
Q(n)(x̌n

1 )P̂Yn
1 |Xn

1 ,Ŝ0
(yn

1 |x̌n
1 ; ρŜ0

)
,

(76)

where PYn
1 |Xn

1 ;S0
is defined in (42), (48) or (52). By following

similar arguments like those in (27) and (28), one can verify

that

I
(n)
W (Ŵ ) 6 I

(n)
W 6 Ī

(n)
W (Ŵ ), (77)
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Ī
(n)
W (Ŵ ) =

1

n

〈

log
tr
(

[WYn|Xn ] · · · [WY1|X1 ] · [ρS0
]
)

∑

x
n
1
Q(n)(xn

1 ) · tr
(

[ŴYn|xn ] · · · [ŴY1|x1 ] · [ρ
Ŝ0
]
)

〉

Xn
1 Y

n
1

, (78)

I
(n)
W (Ŵ ) =

1

n

〈

log
tr
(

[ŴYn|Xn ] · · · [ŴY1|X1 ] · [ρ
Ŝ0
]
)

∑

x
n
1
Q(n)(xn

1 ) · tr
(

[ŴYn|xn ] · · · [ŴY1|x1 ] · [ρ
Ŝ0
]
)

〉

Xn
1 Y

n
1

, (79)

∆
(n)
W (Ŵ ) =

1

n

〈

log
tr
(

[WYn|Xn ] · · · [WY1|X1 ] · [ρS0
]
)

tr
(

[ŴYn|Xn ] · · · [ŴY1|X1 ] · [ρ
Ŝ0
]
)

〉

Xn
1Y

n
1

, (80)

d

dt

∣

∣

∣

∣

t=0

Ī
(n)
W (Ŵ + tH) ∝ − 1

n

〈

n
∑

k=1

∑

x
n
1

Q(n)(xn
1 ) · tr

(

[ŴYn|xn ] · · · [ŴYk+1|xk+1 ][HYk|xk ][ŴYk−1|xk−1 ] · · · [ŴY1|x1] · [ρ
Ŝ0
]
)

〉

Yn
1

= − 1

n

∑

x
n
1 ,y

n
1

PXn
1 ,Y

n
1 |S0

(xn
1 ,y

n
1 |ρS0

) ·
∑

k

∑

s′,s,s̃′,s̃

⇀
̺
(yk−1

1 )

Ŝk−1

(s, s̃) ·Hyk|xk(s′, s, s̃′, s̃) · ↼̺(y
n
k+1)

Ŝk

(s′, s̃′), (81)

d

dt

∣

∣

∣

∣

t=0

I
(n)
W (Ŵ + tH) ∝ − 1

n

〈

n
∑

k=1

∑

x
n
1

Q(n)(xn
1 ) · tr

(

[ŴYn|xn ] · · · [ŴYk+1|xk+1 ][HYk|xk ][ŴYk−1|xk−1 ] · · · [ŴY1|x1 ] · [ρ
Ŝ0
]
)

〉

Yn
1

+
1

n

〈

n
∑

k=1

tr
(

[ŴYn|Xn ] · · · [ŴYk+1|Xk+1 ][HYk|Xk ][ŴYk−1|Xk−1 ] · · · [ŴY1|X1 ] · [ρ
Ŝ0
]
)

〉

Xn
1Y

n
1

= − 1

n

∑

x
n
1 ,y

n
1

PXn
1 ,Y

n
1 |S0

(xn
1 ,y

n
1 |ρS0

) ·
∑

k

∑

s′,s,s̃′,s̃

⇀
̺
(yk−1

1 )

Ŝk−1

(s, s̃) ·Hyk|xk(s′, s, s̃′, s̃) · ↼̺ (yn
k+1)

Ŝk

(s′, s̃′)

+
1

n

∑

x
n
1 ,y

n
1

PXn
1 ,Y

n
1 |S0

(xn
1 ,y

n
1 |ρS0

) ·
∑

k

∑

s′,s,s̃′,s̃

⇀
̺
(xk−1

1 ,y
k−1
1 )

Ŝk−1

(s, s̃) ·Hyk|xk(s′, s, s̃′, s̃) · ↼̺(x
n
k+1,y

n
k+1)

Ŝk

(s′, s̃′),

(82)

d

dt

∣

∣

∣

∣

t=0

∆
(n)
W (Ŵ + tH) ∝ − 1

n

〈

n
∑

k=1

tr
(

[ŴYn|Xn ] · · · [ŴYk+1|Xk+1 ][HYk|Xk ][ŴYk−1|Xk−1 ] · · · [ŴY1|X1 ] · [ρ
Ŝ0
]
)

〉

Xn
1Y

n
1

= − 1

n

∑

x
n
1 ,y

n
1

PXn
1 ,Y

n
1 |S0

(xn
1 ,y

n
1 |ρS0

) ·
∑

k

∑

s′,s,s̃′,s̃

⇀
̺
(xk−1

1 ,y
k−1
1 )

Ŝk−1

(s, s̃) ·Hyk|xk(s′, s, s̃′, s̃) · ↼̺ (xn
k+1,y

n
k+1)

Ŝk

(s′, s̃′), (83)

(

∇Ī(n)W,ext(Ŵ )
)y|x

∝ − 1

n

〈

n
∑

k=1

δXk,x · δYk,y ·
⇀
̺
(Yk−1

1 )

Ŝk−1

⊗ ↼
̺
(Yn

k+1)

Ŝk

〉

Xn
1Y

n
1

, (84)

(

∇I(n)W,ext(Ŵ )
)y|x

∝ − 1

n

〈

n
∑

k=1

δXk,x · δYk,y ·
(

⇀
̺
(Yk−1

1 )

Ŝk−1

⊗ ↼
̺
(Yn

k+1)

Ŝk

− ⇀
̺
(Xk−1

1 ,Y
k−1
1 )

Ŝk−1

⊗ ↼
̺
(Xn

k+1,Y
n
k+1)

Ŝk

)

〉

Xn
1 Y

n
1

, (85)

(

∇∆(n)
W,ext(Ŵ )

)y|x
∝ − 1

n

〈

n
∑

k=1

δXk,x · δYk,y ·
⇀
̺
(Xk−1

1 ,Y
k−1
1 )

Ŝk−1

⊗ ↼
̺
(Xn

k+1,Y
n
k+1)

Ŝk

〉

Xn
1 Y

n
1

. (86)

where the first inequality holds with equality if and only

if P̂
Yn
1 |Xn

1 ,Ŝ0
(yn

1 |xn
1 ; ρŜ0

) and PYn
1 |Xn

1 ;S0
(yn

1 |xn
1 ; ρS0

) coincide

for all x
n
1 and y

n
1 with positive support of PYn

1 |Xn
1 ;S0

, and

where the second inequalities holds with equality if and only

if P̂
Yn
1 |Ŝ0

(yn
1 |ρŜ0

) and PYn
1 |S0

(yn
1 |ρS0

) coincide for all yn
1 with

positive support of PYn
1
|S0

. Another quantity of interest is the

difference function defined as

∆
(n)
W (Ŵ ) , Ī

(n)
W (Ŵ )− I

(n)
W (Ŵ ). (87)

Explicit expressions of (75), (76), and (87) are given

by (78), (79), and (80), respectively, at the top of this page,

where Xn
1 and Yn

1 are random variables distributed according

to the joint distribution Q(n)(xn
1 ) ·PYn

1 |Xn
1 ;S0

(yn
1 |xn

1 ; ρS0
), and

where 〈·〉 stands for the expectation function.

In the remainder of this section, we propose an algorithm

based on the gradient-descent method and the techniques

described in Section III-C and IV for optimizing the quantities

in (75), (76), and (87). In particular, we consider {Ŵ y|x}x,y
to be an interior point in the domain of CC-QSCs, namely

• The Choi–Jamiołkowski matrices JŴ y|xK, defined simi-

larly as (56), are strictly positive definite for each x and
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y,

• Eq. (57) holds by replacing W y|x with Ŵ y|x, namely
∑

y∈Y
∑

s′,s̃′: s′=s̃′JŴ
y|xK(s′,s),(s̃′,s̃) = δs,s̃ for all x ∈

X .

For any set of functions {Hy|x : S4 → C}x,y such that JHy|xK
(again, defined similarly as (56)) is Hermitian for each x and

y, and such that
∑

y∈Y

∑

s′,s̃′: s′=s̃′

JHy|xK(s′,s),(s̃′,s̃) = 0 ∀x ∈ X , (88)

the functions {Ŵ y|x + t · Hy|x}x,y describe a valid CC-

QSC, for all t in some neighborhood of 0. In this case,

the directional derivatives of functions I
(n)
W , Ī

(n)
W , and ∆

(n)
W

at {Ŵ y|x}x,y along {Hy|x}x,y is well defined, and can be

expressed as (81), (82), and (83) at the top of the last

page, where we define the messages {⇀̺(y̌
ℓ
1)

Sℓ
}ℓ, {↼̺(y̌

n
ℓ+1)

Sℓ
}ℓ,

{⇀̺(x̌
ℓ
1,y̌

ℓ
1)

Sℓ
}ℓ, and {↼̺(x̌

n
ℓ+1,y̌

n
ℓ+1)

Sℓ
}ℓ in a recursive manner as

[
⇀
̺
(y̌ℓ

1)
Sℓ

] ,
∑

x
ℓ
1

Q(xℓ
1) · [Ŵ y̌ℓ|xℓ ] · · · [Ŵ y̌1|x1 ] · [ρS0

], (89)

[
↼
̺
(y̌n

ℓ+1)

Sℓ
] ,

∑

x
n
ℓ+1

Q(xn
ℓ+1)·[ISn

]·[Ŵ y̌n|xn ] · · · [Ŵ y̌ℓ+1|xℓ+1], (90)

[
⇀
̺
(x̌ℓ

1,y̌
ℓ
1)

Sℓ
] , [Ŵ y̌ℓ|x̌ℓ ] · · · [Ŵ y̌1|x̌1 ] · [ρS0

], (91)

[
↼
̺
(x̌n

ℓ+1,y̌
n
ℓ+1)

Sℓ
] , [ISn

] · [Ŵ y̌n|x̌n ] · · · [Ŵ y̌ℓ+1|x̌ℓ+1]. (92)

Recall that, in above equations, [ISn
] is a row vector, whereas

[ρS0
] is a column vector.

By extending the domain of the functions I
(n)
W , Ī

(n)
W , and

∆
(n)
W to include all p.s.d. matrices JŴ y|xK, one can omit the

linear constraint (88). Namely, the “direction” {JHy|xK}x,y
can take any Hermitian matrices. Using some linear algebra,

the gradient w.r.t. Ŵ of these functions on this extended

domain can be expressed as (84), (85), and (86), respectively,

at the top of the last page. For stationary and ergodic input

and output processes (Xn
1 ,Y

n
1 ), we can estimate (84) and (86),

respectively, as

(

∇Ī(n)W,ext(Ŵ )
)y|x ·∝ − 1

n

∑

k: x̌k=x

y̌k=y

⇀
̺
(y̌k−1

1 )

Ŝk−1

⊗ ↼
̺
(y̌n

k+1)

Ŝk

, (93)

(

∇∆(n)
W,ext(Ŵ )

)y|x ·∝ − 1

n

∑

k: x̌k=x

y̌k=y

⇀
̺
(x̌k−1

1 ,y̌
k−1
1 )

Ŝk−1

⊗ ↼
̺
(x̌n

k+1,y̌
n
k+1)

Ŝk

,(94)

where (x̌n
1 , y̌

n
1 ) is a realization of the channel input/output

processes generated by the original channel model. The dot

in (93) and (94) stands for “approximation”. Notice that the

messages
⇀
̺
(y̌k−1

1 )
Sk−1

,
↼
̺
(y̌n

k+1)

Sk
,

⇀
̺
(x̌k−1

1 ,y̌
k−1
1 )

Sk−1
, and

↼
̺
(x̌n

k+1,y̌
n
k+1)

Sk
can be

computed iteratively. Thus, (93) and (94) provide efficient

means to estimate the gradient. However, due to the extension

of the domain, the gradients computed above may not satisfy

constraint (88). This can be compensated using a projection

w.r.t. the linear constraint, which can be solved using linear

programming. On the other hand, the above gradient method

may lead to a violation of the p.s.d. condition required by

CC-QSCs. However, since the feasible domain of CC-QSCs

is convex and bounded, this can be corrected using convex

programming at each step.

Algorithm 10 Optimizing the difference function

Input: indecomposable CC-QSC, input distribution Q, pos-

itive integer n large enough, initial auxiliary CC-

QSC {Ŵ y|x}x,y, step size γ > 0.

Output: {Ŵ y|x}x,y, an estimated local minimum point of

∆
(n)
W .

1: Initialize the memory density operator ρ
Ŝ0
← |0〉〈0|

2: Generate an input sequence x̌
n
1 ∼ Q⊗n

3: Generate a corresponding output sequence y̌
n
1

4: repeat

5:
⇀
̺
Ŝ0
← ρ

Ŝ0

6: for each ℓ = 1, . . . , n do

7: [
⇀
̺
Ŝℓ
]← [Ŵ y̌ℓ|x̌ℓ ] · [⇀̺

Ŝℓ−1
]

8: λℓ ← tr(
⇀
̺
Ŝℓ
)

9:
⇀
̺
Ŝℓ
← λ−1

ℓ ·
⇀
̺
Ŝℓ

10: end for

11:
↼
̺
Ŝn
← I

Ŝn

12: for each ℓ = n, . . . , 1 do

13: [
↼
̺
Ŝℓ−1

]← [
↼
̺
Ŝℓ
] · [Ŵ y̌ℓ|x̌ℓ ]

14:
↼
̺
Ŝℓ−1
←
(

tr(
↼
̺
Ŝℓ−1

)
)−1

· ↼̺
Ŝℓ−1

15: end for

16: for each x, y, let
(

∇∆(n)
W,ext(Ŵ )

)y|x
← 0

17: for each k = 1, . . . , n do

18:

(

∇∆(n)
W,ext(Ŵ )

)y̌k|x̌k

+= 1
n
·

⇀
̺
Ŝk−1

⊗↼
̺
Ŝk

λk·tr(⇀̺Ŝk
·↼̺

Ŝk
)

19: end for

20: Project {
(

∇∆(n)
W,ext(Ŵ )

)y|x
}x,y onto the

subspace satisfying (88); denoting the result by
{

(

∇∆(n)
W (Ŵ )

)y|x}

x,y

21: {Ŵ y|x}x,y ← {Ŵ y|x}x,y−γ ·
{

(

∇∆(n)
W (Ŵ )

)y|x}

x,y

22: Solve the following convex program w.r.t. {W̃ y|x}x,y:

min
∑

x,y

tr
(

(JW̃ y|xK− JŴ y|xK) · (JW̃ y|xK− JŴ y|xK)†
)

s.t. JW̃ y|xK ∈ CS2×S2

is p.s.d. for each x, y
∑

y∈Y
∑

s′,s̃′: s′=s̃′JW̃
y|xK(s′,s),(s̃′,s̃) = δs,s̃ ∀x

23: {Ŵ y|x} ← {W̃ y|x}
24: until {Ŵ y|x}x,y has converged.

We summarize the above discussion as Algorithm 10, which

is an iterative gradient-descent method for minimizing ∆
(n)
W .

Notice that the quantity λℓ in this case is the conditional

probability P
XℓYℓ|Xℓ−1

1 Y
ℓ−1
1

(x̌ℓ, y̌ℓ|x̌ℓ−1
1 , y̌ℓ−1

1 ). The algorithm for

minimizing the upper and lower bounds are similar, and we

omit the details.

VI. EXAMPLE: QUANTUM GILBERT–ELLIOTT CHANNELS

In this section we present some numerical results as a

demonstration of the algorithms introduced in this paper. In

particular, as a generalization of Example 1, we consider a
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memory system

primary system

enviroment

S

A

|0〉
U |s〉

B

VS S′ memory system

primary system

enviroment

S

A

|0〉
U |s〉

B

ṼS S′

Fig. 9. A quantum Gilbert–Elliott channel (LHS), and a variant where the memory system consists of multiple qubits with only one of them controlling
U |s〉 (RHS).
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Algorithm 11 with 1-qubit QSC

(a) Quantum Gilbert–Elliott Channel: pg = 0.05 is fixed; pb varies from 0
to 1; VS = exp(−jαH), where H is some fixed 2-by-2 Hermitian matrix
and where α = 1 is fixed; n = 105.
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Algorithm 11 with 2-qubit QSC

(b) Variant of the Quantum Gilbert–Elliott Channel described in the RHS of
Fig. 9. Here, the memory system S consists of two qubits, with only the first
one interacting with the primary system by serving as the controlling qubit
of the controlled bit-flip channel. Parameters: pg = 0.05; pb ∈ [0, 1];
ṼS = exp(−jαH), where H is some fixed 4-by-4 Hermitian matrix and
where α = 1 is fixed; n = 105.
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Algorithm 11 with 1-qubit QSC

(c) Quantum Gilbert–Elliott Channel: pg = 0.05 is fixed; pb = 0.95 is
fixed; VS = exp(−jαH), where H is the same 2-by-2 Hermitian matrix
as in Fig. 10(a) and where α varies from 0.1 to +1.5; n = 105.
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(d) Same variant of the Quantum Gilbert–Elliott Channel as in Fig. 10(b)
with different parameters: pg = 0.05; pb = 0.95; VS = exp(−jαH),
where H is the same 4-by-4 Hermitian matrix as in Fig. 10(b) and where
α varies from 0.1 to +1.5; n = 105.

Fig. 10. Some numerical information rate lower bounds estimated for a QGEC and a variant of a QGEC, equipped with “trivial” orthonormal ensemble and
projective measurements. The estimated information rates were obtained using Alg. 9.

class of quantum channels with memory named the quantum

Gilbert–Elliott channels (QGECs), which were introduced

in [1], and consider their information rates using some sepa-

rable input ensemble and local output measurement.

A QGEC is a quantum channel with memory defined by8

N :D(HS ⊗HA)→ D(HS′ ⊗HB)

ρSA 7→ (VS ⊗ IB) · ΦCBF(ρSA) · (V †
S
⊗ IB),

where HA, HB, and HS = HS′ are of dimension 2, namely

each of them is made up of one qubit; and where ΦCBF

8We put the system S ahead of A and B in this example to emphasize the
role of S as a control qubit, and also for simplicity reasons.

is the controlled bit-flip channel defined by ΦCBF(ρSA) ,
E0ρ

SAE†
0 + E1ρ

SAE†
1 with

E0 ,







√
1−pg 0 0 0

0
√

1−pg 0 0

0 0
√
1−pb 0

0 0 0
√
1−pb






, E1 ,





0
√
pg 0 0√

pg 0 0 0

0 0 0
√
pb

0 0
√
pb 0



 ;

and where VS is some unitary operator on HS to be specified

later. The controlled bit-flip channel ΦCBF applies a quantum

bit-flip channel on system A with flipping probability pg
when the system S is in the state of |0〉, and with flipping

probability pb when the system S is in the state of |1〉. The

action of a QGEC is the combined effect of a controlled bit-

flip channel and a unitary evolution on S; as depicted in the
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Fig. 11. Minimizing the difference function ∆
(n)
W

using different methods. The markers appear after every 400 updates.

following circuit diagram in Fig. 9, where U |s〉 is a Stinespring

representation of ΦCBF:

U |0〉 ,







√
1−pg 0 0 −√

pg

0
√

1−pg
√
pg 0

0 −√
pg

√
1−pg 0

√
pg 0 0

√
1−pg






,

U |1〉 ,





√
1−pb 0 0 −√

pb

0
√
1−pb

√
pb 0

0 −√
pb

√
1−pb 0√

pb 0 0
√
1−pb



 .

In Fig. 10, we present some numerical information rate

lower bounds estimated for a QGEC and a variant of a QGEC

(as depicted in Fig. 9), equipped with “trivial” orthonormal

ensemble and projective measurements. Namely, the original

channel in Fig. 10(a) and 10(c) can be described by the CC-

QSC

N y|x(ρS) = trB

(

(V †
S
VS⊗|y〉〈y|) · ΦCBF(ρS⊗|x〉〈x|)

)

, (95)

whereas that in Fig. 10(b) and 10(d) is described by

N y|x(ρS)=trB

(

(Ṽ †
S
ṼS⊗|y〉〈y|)·(I⊗ΦCBF)(ρS⊗|x〉〈x|)

)

,(96)

where {|x〉}x∈X and {|y〉}y∈Y are some orthonormal basis

of HA and HB, respectively. In the latter case, the memory

system S is extended as HS = HS1
⊗HS0

. More specifically,

in (96), ρS and ṼS are operators on HS, and ΦCBF acts

on D(HS0
⊗ HA), and I is the identity map on S1. For

both scenarios, the input processes are binary symmetric i.i.d.

processes, i.e., Q(n)(xn
1 ) , 2−n for all x

n
1 ∈ {0, 1}n. The

lower bounds in those figures were obtained by minimizing the

difference function ∆
(n)
W defined in (30) w.r.t. different classes

of auxiliary channels (subject to certain time and threshold

constraints). For the case where the auxiliary channels are

CC-QSCs, Alg. 10 was applied. For FSMC auxiliary channels,

we implemented the expectation-maximization type algorithm

in [14] for comparison. As already emphasized beforehand,

these lower bounds represent rates that are achievable with

the help of a mismatched decoder [18]. Fig. 11 is an example

illustrating the typical convergence time of different methods

(including our own) for minimizing the difference function. In

all of the above figures, n = 105, and we have used Alg. 9 to

estimate the information rate. According to our experience, the

error of the estimation in this case lies within the line-width

in the figures.

VII. CONCLUSION

In this article, we have considered the scenario of transmit-

ting classical information over a quantum channel with finite

memory using separable-state ensembles and local measure-

ments. We defined the notion of CC-QSCs as an equivalent

way to describe such communication setups, and demon-

strated how NFGs can be used to visualize such channels.

We have shown that the information rate of a quantum-state

channel is independent of the initial density operator under

suitable conditions, and proposed algorithms for estimating

and bounding such information rate. The computations in

such algorithms can be carried out using the corresponding

NFGs of the CC-QSC. We emphasize that our approach for

optimizing the lower bound is data-driven, and does not require

the knowledge of the true channel model.
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APPENDIX
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