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Abstract—A transmitter observing a sequence of independent
and identically distributed random variables seeks to keep a
receiver updated about its latest observations. The receiver need
not be apprised about each symbol seen by the transmitter, but
needs to output a symbol at each time instant t. If at time t
the receiver outputs the symbol seen by the transmitter at time
U(t) ≤ t, the age of information at the receiver at time t is
t−U(t). We study the design of lossless source codes that enable
transmission with minimum average age at the receiver. We show
that the asymptotic minimum average age can be attained up to
a constant gap by the Shannon codes for a tilted version of the
original pmf generating the symbols, which can be computed
easily by solving an optimization problem. Furthermore, we
exhibit an example with alphabet X where Shannon codes for
the original pmf incur an asymptotic average age of a factor

O(
√

log |X |) more than that achieved by our codes. Underlying
our prescription for optimal codes is a new variational formula
for integer moments of random variables, which may be of
independent interest. Also, we discuss possible extensions of our
formulation to randomized schemes and to the erasure channel,
and include a treatment of the related problem of source coding
for minimum average queuing delay.

Index Terms—Timely updates, source codes, Gibbs variational
formula, age of information

I. INTRODUCTION

Timeliness is emerging as an important requirement for

communication in cyber-physical systems (CPS). Broadly, it

refers to the requirement of having the latest information from

the transmitter available at the receiver in a timely fashion. It

is important to distinguish the requirement of timeliness from

that of low delay transmission: The latter places a constraint on

the delay in transmission of each message, while timeliness

is concerned about how recent is the current information at

the receiver. In particular, the instantaneous staleness at the

receiver is low if a message is received with low delay.

However, the instantaneous staleness increases linearly at the

receiver until a subsequent message is decoded successfully.

A heuristically appealing metric that can capture the notion of

timeliness of information in a variety of applications, termed

its age, was first used in [12] for a setting involving queuing

and link layer delays and was analyzed systematically for a

queuing model in the pioneering work [13]; see [1], [3], [10],

[14], [21], [23] for a sampling of subsequent developments in

problems related to minimum age scheduling. In this paper,

we initiate a systematic study of the design of source codes

with the goal of minimizing the age of the information at the

receiver.

The authors are with the Department of Electrical Communication
Engineering, Indian Institute of Science, Bangalore 560012, India. (Email:
{prathamesh, parimal, htyagi}@iisc.ac.in).

A preliminary version of this paper [17] was presented at the IEEE
International Symposium on Information Theory, Vail, USA, 2018.

As a motivating application, consider remote sensor data

monitoring where at each instant the sensor observes real-

valued, time-series measurements. For concreteness, the reader

may consider voltage and current data recording using in-

telligent electronic devices in a power distribution network.

The sensor communicates to a center over a network to

enable fault detection and fault analysis. On the one hand, the

communication protocol and buffer constraints at the sensor

limits the rate at which the sensor can send data packets to

the center. On the other hand, it is not very important for

the center to get all the packets from the sensor. Rather the

center wants timely updates about the sensor observations. In

fact, when operating with cheap hardware with limited front-

end buffers, it is common to have observation values in the

buffer overwritten as new recordings are made even before

the previous one waiting in the buffer has been picked-up for

processing. Our work focuses on data compression for such

applications where there is no direct cost of skipping packets

and the interest is only in timely updates.

Specifically, we consider the problem of source coding

where a transmitter receives symbols generated from a known

distribution and seeks to communicate them to a receiver in

a timely fashion.1 To that end, it encodes a symbol x to e(x)
using a variable length prefix-free code e. The coded sequence

is then transmitted over a noiseless communication channel

that sends one bit per unit time. We restrict our treatment

to a simple class of deterministic2 update schemes, termed

memoryless update schemes, where the transmitter does not

have have a buffer to store the symbols it has seen previously

and simply sends the next observed symbol once the channel

is free.

Specifically, denoting the source alphabet by X , the trans-

mitter observes a symbol Xt ∈ X at each discrete time t.
At time t = 1, the transmitter communicates the symbol

X1 = x1 by encoding it to codeword e(x1) of length ℓ(x1)
bits. This transmission requires ℓ(x1) channel uses and is

received perfectly at the decoder at time 1 + ℓ(x1). Since

the channel remains busy sending e(x1) for time instants

1 to ℓ(x1), the transmitter cannot send any new symbols

during this period. At time t′ = 1 + ℓ(x1), the transmitter

observes the symbol Xt′ = xt′ . Under a memoryless update

scheme, the transmitter cannot store the symbols seen during

the time interval {2, . . . , ℓ(x)} and communicates codeword

e(xt′) over the next ℓ(xt′) channel uses, starting from the time

instant t′ = 1 + ℓ(x1). The communication process continues

repeatedly in this fashion.

1 This assumption of known distribution is realized in practice by building
a model for sensor data offline, before initiating the live monitoring process.

2Our analysis of average age extends to randomized schemes as well; see
Section VI.
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We emphasize that under memoryless schemes, the source

symbols generated and observed by the transmitter while the

channel is busy sending a previous symbol are simply skipped.

This skipping is only allowed when the channel is busy, and

not at the will of the encoder when the channel is free (see

Section VI for discussion on randomized schemes that allow

the transmitted to skip symbols even when channel is free).

Furthermore, the encoder need not indicate to the decoder

that a symbol has been skipped using a special symbol – the

decoder can ascertain this from the received communication

since the channel is noiseless and compression is done using

prefix-free codes.

On the receiver side, at each instance t the decoder outputs

a time U(t) and the symbol XU(t) seen by the transmitter at

time U(t). Thus, the age of information at the receiver at time

t is given by A(t) = t−U(t). We note that age of information

measures timeliness at the receiver. When the transmitter skips

source symbols, U(t) remains unchanged at the receiver and

the age A(t) increases. Therefore, the age metric implicitly

penalizes for skipping symbols.

We illustrate the setup in Figure 1. In this example, the

symbol X1 generated at time t = 1 is encoded to a two-bit

codeword e(X1) and received at the decoder at time t = 3 after

two channel uses. At time t = 2, the transmitter skips symbol

X2 since the channel was busy sending X1 when it arrived.

Further, the decoder retains U(t) = 0 since it has not received

any symbol. At time t = 3, the decoder receives the codeword

e(X1), updates U(3) = 1, and outputs the corresponding

symbol X1. Thus, the age of information at the receiver at

time t = 3 is A(3) = 2. Since the channel becomes available

at time t = 3, the transmitter encodes the symbol X3 and

transmits the one-bit codeword e(X3), which is received after

a single channel-use at time t = 4. At time t = 4, the decoder

outputs time U(4) = 3 with outputs the corresponding symbol

X3, and the age of information at the receiver is A(4) = 1.

Once again, the channel becomes available at time t = 4 for

the transmitter. It encodes the current symbol X4 into the

codeword e(X4) of length 3 bits and sends e(X4) over the

channel; e(X4) is received at time t = 7. The decoder retains

the output U(t) = 3 and XU(t) = X3 for times t ∈ {4, 5, 6}.

At time t = 7, the decoder outputs time U(7) = 4 and

the corresponding symbol X4; the age of information at the

receiver is A(7) = 3.

Our goal in this paper is to design prefix-free codes for

which the average age of the memoryless scheme above is

minimized; namely codes e that minimize

Ā(e) = lim
T→∞

1

T

T
∑

t=1

A(t).

This formulation is apt for the timely update problem where

the transmitter need not send each update and strives only to

reduce the average age of the information at the receiver.

Using a simple extension of the renewal reward theorem,

we derive a closed form formula for the asymptotic average

age attained by a prefix-free code. Interestingly, this formula

is a rational function of the first and the second moment of

the random codeword length. Our main technical contribution
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Fig. 1: Illustration of a memoryless update scheme for the first

4 packets in the source-queue.

in this paper is a variational formula for the second moment

of random variables that enables an algorithm for finding the

code that attains the minimum asymptotic average age up

to a constant gap. The variational formula is of independent

interest and may be useful in other settings where such cost

functions arise; we point-out one such setting in Section VI.

In fact, our prescribed prefix-free code is a Shannon code3

for a tilted version of the original pmf. See (10) below for the

description of the tilted version; it can be computed by solving

an optimization problem entailing entropy maximization.

The formula for average age that we derive yields an

O(log |X |) upper bound on the minimum average age, attained

by a fixed length code. We show that the same upper bound

of O(log |X |) holds for the average age of a Shannon code

for the original distribution as well. However, we exhibit an

example where Shannon codes for the original distribution

have Ω(log |X |) age, while our aforementioned proposed code

yields an average age of O(
√

log |X |).
The problem of designing update codes with low average

age is related to real-time source coding (cf. [16]) where we

seek to transmit a stream of data under strict delay bounds. A

related formulation has emerged in the control over commu-

nication network literature (cf. [22]) where an observation is

quantized and sent to an estimator/controller to enable control.

Here, too, the requirement is that of communication under

bounded delay.

An alternative formulation for minimum age source coding

is considered in the recent work [25]. Unlike our formulation,

skipping of symbols is prohibited in [25]. Instead, the au-

thors consider fixed-to-variable length block codes and require

that each coded symbol be transmitted over a constant rate,

noiseless bit-pipe. In this setting, an exact expression for

average age is not available, and the authors take recourse to

an approximation for average age. This approximate average

age is then optimized numerically over a set of prefix-free

codes using the algorithm in [15]. The authors further reduce

the computational complexity of this algorithm by using the

algorithm in [2].

3A Shannon code for P is a prefix-free code that assigns lengths ℓS(x) =
⌈− logP (x)⌉ to a symbol x (cf. [5]).
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A recent paper [24] extends this problem to include random

arrival times of source symbols and applies the algorithm

from [15] for optimizing the cost function. Note that the

cost function optimized in [15] is similar to the approximate

average age of [24], [25], but with one crucial difference:

While the former is monotonic in both first and second

moments of random lengths, the latter is not. In absence of

this monotonicity, the optimality of the solution produced by

algorithm in [15] is not guaranteed for the cost functions

in [24], [25]. In a related work [26], the same authors point-

out that the average age can be further reduced by allowing

the encoder to dynamically control the block-length of the

fixed-to-variable length codes.

In contrast to [25], which is perhaps closest to our work,

we derive an exact expression for average age and rigorously

establish the structural properties of the optimal solution to

the relaxed problem. In fact, our proposed minimum average

age problem differs from all these prior formulations since

we need not send the entire stream and are allowed to skip

some symbols. In our applications of interest, such as that of

real-time sensor data monitoring outlined earlier, the allowed

communication rates are much lower than the rate at which

data is generated. Thus, there is no hope of transmitting all

the data at bounded delay, as mandated by the formulations

available hitherto. Nonetheless, our setting is related closely to

that in [25] and provides a complementary formulation for age

optimal source coding. We note that our focus is on settings

where the alphabet size of the streaming symbols is large.

In such settings, the average age for any memoryless update

scheme would be much larger than a small constant. Therefore,

it suffices to establish optimality up to small additive constants.

In addition to our basic formulation, we present a few

extensions of our formulations and other use cases for our

proposed variational formula. Specifically, while we restrict

to deterministic schemes for the most part, our analysis can

be extended easily to analyze randomized schemes where

the encoder can choose to skip an available transmission

slot randomly. This idea of skipping transmission slots arises

also in the recent work [21], albeit in a slightly different

context. We exhibit an example where a particular randomized

scheme outperforms every deterministic scheme. However, our

analysis is limited and does not completely clarify the role

of randomization; for instance, it remains unclear for which

distributions can randomized schemes strictly outperform de-

terministic ones.

In another direction, we consider the case where the trans-

mission channel is not error-free, but can erase each bit with

a known probability. Furthermore, an ACK-NACK feedback

indicating the success of transmission is available. Note that

for the standard transmission problem, the simple repeat-until-

succeed scheme is optimal in this setting. Our analysis can be

used to design the optimal source code when we restrict our

channel coding to this simple scheme. However, the optimality

of the ensuing source-channel coding scheme remains unclear.

Finally, we study the related problem of source coding for

ensuring minimum queuing delays. This problem, introduced

in [11], is closely related to the minimum age formulation of

this paper. Interestingly, our recipe for designing update codes

with minimum average age can be extended to this setting

as well. However, here, too, our results are somewhat unsat-

isfactory: Our approach only provides a solution to the real-

relaxation of the underlying integer-valued optimization prob-

lem and naive rounding-off is far from optimal. Nonetheless,

we have included these extensions in the current paper since

they indicate the rich potential for our proposed techniques

and provide new formulations for future research.

The next section contains a formal description of our setting

and a formula for asymptotic average age of a code. Our main

technical tool is presented in Section III, and we apply it to

the minimum average age code design problem in Section IV.

Numerical evaluations of our proposed scheme for the family

of Zipf distributions is presented in Section V. Section VI

contains a discussion on extensions to randomized schemes

and erasure channel, along with a treatment of source codes

for minimum average waiting time. We provide all the proofs

in the final section.

Notation and some preliminaries. Random variables are

denoted by capital letters X,Y etc., their realizations by small

letters x, y etc., and their range sets by X ,Y . The cardinality

of the set X is denoted by |X |. The set of all finite length

binary sequences is denoted by {0, 1}∗.

The logarithm to the base 2 is denoted by log a and the

logarithm to the base e is denoted by ln a. All the information

theoretic measures considered in this paper – such as Entropy,

Rényi divergence, and Kullback-Leibler divergence – are de-

fined with logarithm to the base 2.

Next, we recall the notions of Shannon lengths and Shannon

codes, which will be used throughout. A source code is called

prefix-free if no codeword is a prefix of another.

Definition I.1 (Shannon lengths and Shannon codes for P ).

For a pmf P on an alphabet X , the real-values ℓ(x) =
− logP (x), x ∈ X , are called the Shannon lengths for the

pmf P . A prefix-free source code for P with codeword lengths

ℓ(x) = ⌈− logP (x)⌉ , ∀x ∈ X , is called a Shannon code4 for

the pmf P .

II. AVERAGE AGE FOR MEMORYLESS UPDATE SCHEMES

Consider a discrete-time system in which at every time

instant t, a transmitter observes a symbol Xt generated from

a finite alphabet X with pmf P . We assume that the sequence

{Xt}∞t=1 is independent and identically distributed (iid). The

transmitter has a noiseless communication channel at its

disposal over which it can transmit one bit per unit time.

A memoryless update scheme consists of a prefix-free code,

represented by its encoder e : X → {0, 1}∗, and a decoder

which at each time instant t declares a time index U(t) ≤ t
and an estimate X̂U(t) for the symbol XU(t) that was observed

by the encoder at time U(t). We focus on error-free schemes

and require X̂U(t) to equal XU(t) with probability 1.

In a memoryless update scheme, once the encoder starts

communicating a symbol x, encoded as e(x), it only picks up

the next symbol once all the bits in e(x) have been transmitted

4There can be different codes with codeword lengths required in our
definition of a Shannon code. We simply refer to all of them as a Shannon
code, since any of these can serve our purpose in this paper.
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Fig. 2: A sample path of U(t), A(t) corresponding to Figure

1 starting with U(1) = 0.

successfully to the receiver. The time index U(t) is updated

to a new value only upon receiving all the encoded bits for

the current symbol. That is, if the transmission of a symbol

is completed at time t− 1, the encoder will start transmitting

e(Xt) in the next instant. Moreover, if the final bit of e(Xt)
is received at time t′, U(t′) is updated to t. A typical sample

path for U(t) is given in Figure 2. The age A(t) of the symbol

available at the receiver at time t is given by

A(t) = t− U(t).

A more general treatment can allow errors in estimates of

XU(t) as well as encoders with memory, but we limit ourselves

to the simple error-free and memoryless setting in this paper.

We are interested in designing prefix-free codes e that

minimize the average age for the memoryless update scheme

described above.

Definition II.1. The average age for a prefix-free code e,

denoted Ā(e), is given by

Ā(e) = lim sup
T→∞

1

T

T
∑

t=1

(t− U(t)).

We remark that Ā(e) can be viewed as the average area

under the curve of A(t) (w.r.t. t). Note that Ā(e) is random

variable, nevertheless we will prove that this random variable

is a constant almost surely. For any symbol x ∈ X , we denote

the length of the codeword e(x) by ℓ(x). Let X ∈ X be a

random symbol with pmf P over the alphabet X , then the

length of the random codeword e(X) is denoted by

L = ℓ(X).

The result below uses a simple extension of the classical

renewal reward theorem (cf. [19]) to provide a closed form

expression for Ā(e) in terms of the first and the second

moments of L.

Theorem II.2. Consider a random variable X with pmf P on

X . For a prefix-free code e, the average age Ā(e) is given by

Ā(e) = E [L] +
E
[

L2
]

2E [L]
− 1

2
a.s. . (1)

The proof is deferred to Section VII-A.

Denoting by Ā∗ the minimum average age over all prefix-

free codes e, as a corollary of the characterization above, we

can obtain the following bounds for Ā∗.

Corollary II.3. For any pmf P over X , the optimal average

age Ā∗ is bounded as

3

2
H(P )− 1

2
≤ Ā∗ ≤ 3

2
log |X |+ 1.

The proof of lower bound simply uses Jensen’s inequality

E
[

L2
]

≥ E [L]
2

and the fact that E [L] ≥ H(P ) for a prefix

free code; the upper bound is obtained by using codewords of

constant length ⌈log |X |⌉.

Note that the lengths ℓ(x) are required to be nonnegative

integers. However, for any set of real-valued lengths ℓ(x) ≥ 0,

we can obtain integer-valued lengths by using the rounded-off

values ⌈ℓ(x)⌉. Unlike the average length cost, the average age

cost function identified in (1) is not an increasing function

of the lengths. Nevertheless, by (1), the average age Ā(e)
achieved when we use the rounded-off values can be bounded

as follows: Denoting L̄ := ⌈ℓ(X)⌉, we have

E
[

L̄
]

+
E
[

L̄2
]

2E
[

L̄
] − 1

2
≤ E [L+ 1] +

E
[

(L+ 1)2
]

2E [L]
− 1

2

≤ E [L] +
E
[

L2
]

2E [L]
+

2E [L]

2E [L]

+
1

2E [L]
+

1

2

≤ E [L] +
E
[

L2
]

2E [L]
+ 2. (2)

Accordingly, in our treatment below we shall ignore the

integer constraints and allow nonnegative real-valued length

assignments.

Returning now to the bound of Corollary II.3, the upper

and lower bounds differ only by a constant 1.5 when P is

uniform. In view of the foregoing discussion, Shannon codes

for a uniform distribution attain the minimum average age up

to a constant gap. The next result gives an upper bound on

average age for Shannon codes for an arbitrary P on X .

Lemma II.4. Given a pmf P on X , a Shannon code e for P
has average age A(e) at most O(log |X |).
Proof. Let ℓ(X) denote the lengths of Shannon code corre-

sponding to P (see Definition I.1). We establish the claim

using the standard bound H(P ′) ≤ log |X | for an appropri-

ately chosen pmf P ′ on X . Specifically, for the tilting of P
given by P ′(x) ∝ ℓ(x)P (x), we get
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log |X | ≥
∑

x∈X

P (x)ℓ(x)

E [ℓ(X)]
log

E [ℓ(X)]

P (x)ℓ(x)

=
∑

x∈X

P (x)ℓ(x)(− log P (x))

E [ℓ(X)]

−
∑

x∈X

P (x)ℓ(x)

E [ℓ(X)]
log

ℓ(x)

E [ℓ(X)]

≥
∑

x∈X

P (x)ℓ(x)(− log P (x))

E [ℓ(X)]

−
∑

x∈X :ℓ(x)≥E[ℓ(X)]

P (x)ℓ(x)

E [ℓ(X)]
log

ℓ(x)

E [ℓ(X)]
.

Using − logP (x) ≥ ℓ(x)− 1 and lnx ≤ x2−1
2x for x ≥ 1, we

obtain

log |X | ≥ E
[

ℓ2(X)
]

E [ℓ(X)]
− 1

− 1

2 ln 2
·

∑

x∈X :ℓ(x)≥E[ℓ(X)]

P (x)

(

ℓ2(x)

E [ℓ(X)]
2 − 1

)

≥ E
[

ℓ2(X)
]

E [ℓ(X)]
− 1

− 1

2 ln 2
·

∑

x∈X :ℓ(x)≥E[ℓ(X)]

P (x) · ℓ2(x)

E [ℓ(X)]2

≥ E
[

ℓ2(X)
]

E [ℓ(X)]
− 1− 1

2 ln 2
·
∑

x∈X

P (x)ℓ2(x)

E [ℓ(X)]
2

≥ E
[

ℓ2(X)
]

E [ℓ(X)]
− 1− 1

2 ln 2
·
∑

x∈X

P (x)ℓ2(x)

E [ℓ(X)]

≥
(

1− 1

2 ln 2

)

· E
[

ℓ2(X)
]

E [ℓ(X)]
− 1,

where the second-last inequality follows from the fact that

E
[

ℓ2(X)
]

≥ E [ℓ(X)], which in turn follows from the fact

that ℓ(X) ≥ 1. The proof is completed by rearranging the

terms.

It is of interest to examine if, in general, a Shannon code

for P itself has average age close to Ā∗, as was the case for

the uniform distribution. In fact, it is not the case. Below we

exhibit a pmf P where the average age of a Shannon code for

P is Ω(log |X |), namely the previous bound is tight, and yet

a Shannon code for another distribution (when evaluated for

P ) has an average age of only O(
√

log |X |).
Example II.5. Consider X = {0, ..., 2n} and a pmf P on X
given by

P (x) =

{

1− 1
n
, x = 0

1
n2n , x ∈ {1, . . . , 2n}.

Using (1), the average age Ā(eP ) for a Shannon code for P
can be seen to satisfy Ā(eP ) ≈ (n+ 2 logn)/2. On the other

hand, if we instead use a Shannon code for the pmf Q given

by

Q(x) =

{

1
2
√

n , x = 0
1−2−

√
n

2n , x ∈ {1, . . . , 2n},

we get E [L] ≈ √
n and EL2 ≈ 2n, whereby Ā(eQ) ≈ 2

√
n,

just O(
√

log |X |).
Thus, one needs to look beyond the standard Shannon codes

for P to find codes with minimum average age. Interestingly,

we show that Shannon codes for a tilted version of P attain the

optimal asymptotic average age (up to the constant loss of at

most 2.5 bits incurred by rounding-off lengths to integers). In

particular, for the example above, our proposed optimal codes

will have an average age of only O(
√

log |X |) in comparison

to Ω(log |X |) of Shannon codes for P .

A key technical tool in design of our codes is a variational

formula that will allow us to linearize the cost function in

(1), thereby rendering Shannon codes for a tilted distribution

optimal. We present this in the next section.

III. A VARIATIONAL FORMULA FOR p-NORM

The expression for average age identified in Theorem II.2

involves the second moment of the random codeword length

L. This is in contrast to the traditional variable length source

coding problem where the goal is to minimize the average

codeword length E [L]. For this standard cost, Shannon codes

which assign a codeword of length ⌈− logP (x)⌉ to the symbol

x come within 1-bit of the optimal cost (see, for instance, [5]).

A variant of this standard problem was studied in [4], where

the goal was to minimize the log-moment generating function

logE [exp(λL)]. A different approach for solving this problem

is given in [9] where the Gibbs variational principle is used

to linearize the nonlinear cost function logE [exp(λL)]. The

next result provides the necessary variational formula to extend

the aforementioned approach to another nonlinear function,

namely ‖L‖p :=(E [Lp])
1
p for p > 1.

We believe that our result is of independent interest, and

present it in a general form that applies to general distributions

(and not just the discrete random variables considered in this

paper). To state the general result, we recall a basic notation

from probability theory. For two probability measures P and

Q on the same probability space such that Q is absolutely

continuous with respect to P , denoted Q ≪ P , denote by dQ
dP

the Radon-Nikodym derivative of Q with respect to P . Note

that dQ
dP

, too, is a random variable measurable with respect to

the underlying sigma-algebra. A reader not familiar with these

notions can see a standard textbook on probability theory for

definitions. For the discrete case, Q ≪ P corresponds to the

condition5 supp(Q) ⊂ supp(P ) and dQ
dP

equals the ratio of

the pmfs of the distributions Q and P .

Note that expectations are always taken with respect to

the reference measure. In particular, the expectations without

any subscript in Theorem III.1 below and its proof denote

the expectation with respect to P , which is the reference

5 supp(P ) denotes the support of distribution P over an alphabet X , i.e.,
supp(P ) := {x ∈ X : P (x) > 0}. .



6

measure in this case. The expectation in Remark 1 denotes

the expectation with respect to R.

Theorem III.1. For a real-valued random variable X with

distribution P and p ≥ 1 such that ‖X‖p < ∞, we have

‖X‖p = max
Q≪P

E

[

(

dQ

dP

)
1
p′

|X |
]

,

where p′ = p/(p− 1) is the Hölder conjugate of p.

Proof. For Q ≪ P and 0 < α 6= 1, let Dα(P,Q) denote the

Rényi divergence of order α between distributions Q and P
(see [18]), defined by

Dα(P,Q) :=
1

α− 1
logE

[(

dQ

dP

)α]

.

It is well-known that Dα(P,Q) ≥ 0 with equality if and only

if P = Q. Consider the probability measure Pp ≪ P defined

by
dPp

dP
:=

1

‖X‖pp
· |X |p.

Then, for α = 1/p′,

0 ≤ Dα(Pp, Q) =
1

α− 1
logE

[

(

dQ

dP

)α (
dPp

dP

)1−α
]

= −p logE

[(

dQ

dP

)α

|X |
]

+ p log ‖X‖p,

where the previous equality holds since p(1 − α) = 1. Thus,

for every Q ≪ P ,

E

[(

dQ

dP

)α

|X |
]

≤ ‖X‖p,

with equality if and only if Pp = Q.

Remark 1. The given definition of Rényi divergence restricts

Theorem III.1 to the case P (X = 0) = 0. To remove

this restriction, the following general definition of Rényi

divergence with respect to a common measure can be used:

For all Q,P ≪ R, define

Dα(P,Q) :=
1

α− 1
logE

[

(

dQ

dR

)α(
dP

dR

)1−α
]

.

The proof then follows by using the positivity of Dα(Pp, Q),
then by proceeding in the same manner as the previous proof.

Returning to the problem at hand, we apply the variational

formula above to the L2 norm of a discrete random variable.

We highlight this special case separately below.

Corollary III.2. For a discrete random variable X with a pmf

P such that ‖X‖2 < ∞, we have

‖X‖2 = max
supp(Q)⊂supp(P )

∑

x∈X

√

Q(x)P (x)x,

where supp(P ) denotes the support-set of the distribution P .

IV. PREFIX-FREE CODES WITH MINIMUM AVERAGE AGE

We now present a recipe for designing prefix-free codes with

minimum average age. By Theorem II.2, we seek prefix-free

codes that minimize the cost

E [L] +
E
[

L2
]

2E [L]
, (3)

where L = ℓ(X) for X with pmf P . Recall that a prefix-

free code with lengths {ℓ(x)∈ N, x ∈ X} exists if and only if

lengths satisfy Kraft’s inequality (cf. [5]), i.e., if and only if
∑

x∈X

2−ℓ(x) ≤ 1. (4)

Following the discussion leading to (2), we relax the integral

constraints for ℓ(x) and search over all real-valued ℓ(x) ≥ 0
satisfying (4). Specifically, we solve the relaxed optimization

problem

min
ℓ∈Λ

E [L] +
E
[

L2
]

2E [L]
, (5)

where

Λ =
{

ℓ ∈ R
|X | :

∑

x∈X

2−ℓ(x) ≤ 1, ℓ(x) ≥ 0 ∀x ∈ X
}

.

As noticed in (2), this can incur a loss of only a constant.

A key challenge in minimizing (3) is that it is nonlinear. We

linearize this cost as follows:

1) Note first the identity below, which is obtained by max-

imizing the expression on the right-side:

E [L] +
E
[

L2
]

2E [L]
= max

z≥0

(

1− z2

2

)

E [L] + z‖L‖2. (6)

2) Then, Corollary III.2 yields

‖L‖2 = max
Q≪P

∑

x∈X

√

Q(x)P (x)ℓ(x),

which further leads to

E [L] +
E
[

L2
]

2E [L]

= max
z≥0

(

1− z2

2

)

E [L] + z max
Q≪P

∑

x∈X

√

Q(x)P (x)ℓ(x)

= max
z≥0

max
Q≪P

∑

x∈X

gz,Q,P (x)ℓ(x),

where

gz,Q,P (x) :=

(

1− z2

2

)

P (x) + z
√

Q(x)P (x). (7)

As remarked earlier, as the source distribution P is discrete,

the constraint Q ≪ P simplifies to supp(Q) ⊂ supp(P ).
Thus, our goal is to identify the minimizer ℓ∗ that achieves

∆∗(P ) = min
ℓ∈Λ

max
z≥0

max
Q≪P

∑

x∈X

gz,Q,P (x)ℓ(x). (8)

The result below captures our main observation and facili-

tates the computation of optimal lengths attaining the minmax

cost ∆∗(P ).
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Theorem IV.1 (Structure of optimal codes). The optimal

minmax cost ∆∗(P ) in (8) satisfies

∆∗(P ) = max
z≥0

max
Q≪P

min
ℓ∈Λ

∑

x∈X

gz,Q,P (x)ℓ(x)

= max
z≥0,Q≪P,
(z,Q)∈G

∑

x∈X

gz,Q,P (x) log

∑

x′∈X gz,Q,P (x
′)

gz,Q,P (x)
,

(9)

where

G := {z ≥ 0, Q ∈ R
|X | : gz,Q,P (x) ≥ 0 ∀x ∈ X}.

Furthermore, if (z∗, Q∗) is the maximizer of the right-side

of (9), then the minmax cost (8) is achieved uniquely by the

Shannon lengths6 for the pmf P ∗ on X given by

P ∗(x) =
gz∗,Q∗,P (x)

∑

x′∈X gz∗,Q∗,P (x′)
. (10)

Thus, our prescription for design of source codes is simple:

Use a Shannon code for P ∗ instead of P . To compute P ∗,

we need to solve the optimization problem in (9). Note that is

unclear a priori that the minimum average age for the problem

in (5) would correspond to Shannon lengths for some pmf

since our cost function is not monotonic in expected length,

whereby the optimal solution may not satisfy Kraft’s inequality

with equality. Nonetheless, we show that the Shannon lengths

− logP ∗(x) are optimal for the relaxed problem given by (5).

We note that our formal result above only provides a

structural result for the optimal solution. But we believe that

this structural result leads to a recipe to design practical

algorithms for finding the optimal solution; we describe this

recipe below. Specifically, note that the resulting optimization

problem for finding P ∗ is one of entropy maximization for

which several heuristic recipes are available. Furthermore, we

note the following structural simplification for the optimal so-

lution which shows that if P (x) = P (y), then P ∗(x) = P ∗(y)
must hold as well; the proof is relegated to the Appendix.

Thus, the dimension of the optimization problem (9) can

be reduced from |X | + 1 to MP + 1, where MP denotes

the number of distinct elements in the probability multiset

{P (x) : x ∈ X}. Let A1 · · ·AMP
denote the partition of X

such that

P (x) = P (y) ∀x, y ∈ Ai, ∀i ∈ [MP ].

Lemma IV.2. Suppose that Q∗ is an optimal Q for (9). Then,

Q∗ must satisfy

Q∗(x) = Q∗(y) ∀x, y ∈ Ai, ∀i ∈ [MP ]. (11)

In proving Lemma IV.2, we use the fact that the cost

function in (9) is concave in Q for each fixed z and is

concave in z for each fixed Q (see Lemma A.2). However,

it may not be jointly concave in (z,Q). Nevertheless, we

apply standard numerical packages to optimize it in the next

section to quantify the performance of our proposed codes and

compare it with Shannon codes for the original distribution P .

6Recall that Shannon lengths for the pmf P on X are given by ℓ(x) =
− logP (x), x ∈ X , and are not necessarily integers.

V. NUMERICAL RESULTS FOR ZIPF DISTRIBUTION

We program all our optimization problems in AMPL [7]

and solve it using SNOPT [8] and CONOPT [6] solvers.

Specifically, for the pmfs P we consider in this section,

we solve the optimization problem given by (9) to find the

corresponding optimal (z∗, Q∗). In order to check if we have

indeed found the optimal (z∗, Q∗), we once again use Theorem

IV.1. In particular, it follows from Theorem IV.1 that the

necessary and sufficient condition for a particular (z,Q) to

be the optimal solution is that the value of the maximization

problem (9) at (z,Q) equals

E [− logP ′(X)] +
E
[

(logP ′(X))2
]

2E [− logP ′(X)]
,

where

P ′(X) =
gz,Q,P (x)

∑

x′∈X gz,Q,P (x′)
;

in all our numerical evaluations, the solution found by the

solver satisfies this condition, which establishes its optimality.

We now illustrate our recipe for construction of prefix-

free codes that yield minimum average age for memoryless

update schemes when P is a Zipf distribution. Specifically,

we illustrate our qualitative results using the Zipf(s,N)
distribution with alphabet X = {1, · · · , N} and given by

P (i) =
i−s

∑N
j=1 j

−s
, 1 ≤ i ≤ N.

Heuristically, the average age formula (1) suggests that the

differences between the performances of a code under average

codeword length cost and the average age cost will be the most

for “peaky distribution,” namely for distributions with heavy

elements. The parameter s of the Zipf distribution allows us

to vary from a uniform distribution to a “peaky distribution,”

making this family apt for our numerical study. Indeed, our

numerical results confirm that our proposed scheme outper-

forms a Shannon code for P when the parameter s is high;

see Figure 3. When we round-off real lengths to integers, the

gains are subsided but still exist. Further, when the parameter s
is close to 0, Shannon codes for P are close to optimal. With

increase in s, the gain of our proposed schemes over Shannon

codes starts becoming more prominent. As an aside, Figure 3

also provides an illustration of the non-monotonic nature of

the average age function with respect to code lengths.

The distribution P ∗ we use to construct our codes seems

to be a flattened version of the original Zipf distribution; we

illustrate the two distributions for Zipf(1, 8) in Figure 4.

As we see in Figure 4, P ∗ and P are very close in this

case. Indeed, we illustrate in Figure 5 that the average length

E [L] when Shannon lengths − logP (x) are used and when

− logP ∗(x) are used are very close7. In Figure 5, we note the

dependence of average age on the entropy of the underlying

distribution P . As expected, average age increases as H(P )
increases.

Thus, while Example II.5 illustrated high gains of the

proposed code over Shannon codes for P , for the specific case

7The difference of these two average lengths (averaged w.r.t. P ) is given
by the Kullback-Leibler divergence D(P‖P ∗); see [5].
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Fig. 3: Comparison of proposed codes and Shannon codes for

Zipf(s, 256) with varying s. The average age is computed

using real-valued lengths as well as lengths rounded-off to

integer values.
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Fig. 4: The pmf for P ∗ and P for Zipf(1, 8).

of Zipf distributions the gains may not be large. Characterizing

this gain for any given distribution is a direction for future

research.

VI. EXTENSIONS

A. Randomization for Timely Updates

We have restricted our treatment to deterministic memory-

less update schemes. A natural extension to randomized mem-

oryless schemes would entail allowing the encoder to make

a randomized decision to skip transmission of a symbol even

when the channel is free (we can allocate a special symbol ∅ to

signify no transmission to the receiver). Specifically, assume

that we transmit the symbol ∅ using a codeword of length

ℓ(∅) when we choose not to transmit the observed symbol

x ∈ X . Denoting by θ(x) the probability with which the

encoder will transmit the symbol x, the average age Ā(e, θ)
for the randomized scheme is given by

Ā(e, θ) =
E [L(θ)]

E [θ(X)]
+

E
[

L(θ)2
]

2E [L(θ)]
− 1

2
, (12)

0 2 4 6 8
0
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8

10

12

H(P )

Average length (real lengths)

Average age (real lengths)

Y = X

Fig. 5: Average age and average length for our update codes

as a function of H(P ) for Zipf(s, 256) with s varying from

0 to 5 at step sizes of 0.5.

where the random variable L(θ) is defined as follows:

L(θ) :=

{

ℓ(x), w.p P (x)θ(x)

ℓ(∅), w.p 1− E [θ(X)] .
(13)

Note that the expression in (12) is a slight generalization of

Theorem II.2 and is derived in Section VII-A.

Example VI.1. Consider X = {1, ..., 64} and the following

pmf;

P (x) =

{

1/4, x ∈ {1, . . . , 3},
1/244, x ∈ {4, . . . , 64}.

Since H(P ) = 3.483, Corollary II.3 yields that the average

age of the deterministic memoryless update scheme is bounded

below by 4.724. Next, consider a randomized update scheme

with θ(x) = 1 for x ∈ {1, 2, 3} and 0 otherwise. For this

choice, the effective pmf Pθ is uniformly distributed over the

symbols {1, 2, 3}∪ {φ}. Thus, the optimal length assignment

for this case assigns ℓ(x) = 2 to all the symbols and the

average age equals 3.17, which is less than the lower bound

of 4.724 for the deterministic scheme.

The idea of skipping available transmission opportunities,

i.e., not transmitting even when the channel is free, to

minimize average age appears in the recent work [21] as

well, albeit in a slightly different setting. Heuristically, the

randomization scheme above operates as we expect – it ignores

the rare symbols which will require longer codeword lengths.

In practice, however, these rare symbols might be the ones

we are interested in. But keep in mind that our prescribed

solution only promises to minimize the average age and does

not pay heed to any other consideration. Furthermore, for a

given randomization vector θ, we can establish a result similar

to Theorem IV.1. This will lead to the design of almost optimal

source codes for a given randomization vector θ. However,
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the joint optimality over the class of randomized schemes and

source coding schemes is still unclear.

In a more comprehensive treatment, one can study the

design of update codes with other constraints imposed. We

foresee the use of Corollary III.2 in these more general settings

as well. In another direction, we can consider the extension

of our results to the case when the transmission channel

is an erasure channel with probability of erasure ε. If we

assume the availability of perfect feedback, a natural model

for the link or higher layer in a network, and restrict to simple

repetition schemes where the transmitter keeps on transmitting

the coded symbol until it is received, our formula for average

age extends with (roughly) an additional multiplicative factor

of 1/(1−ε). Formally the average age over an erasure channel

with ε probability of erasure; a source code e, along with

a randomization vector θ and a repetition channel-coding

scheme yields the following average age

Āε(e, θ) =
1

1− ε
· Ā(e, θ) + ε

2(1− ε)
.

However, the optimality of repetition scheme is unclear, and

the general problem constitutes a new formulation in joint-

source channel coding which is of interest for future research.

B. Source Coding for Minimum Queuing Delay

Next, we point out a use case for Corollary III.2 in a

minimum queuing delay problem introduced in [11]. The

setting is closely related to our minimum average age update

formulation with two differences: First, the arrival process of

source symbols is a Poisson process of rate λ; and second, the

encoder is not allowed to skip source symbols. Instead, each

symbol is encoded and scheduled for transmission in a first-

come-first-serve (FCFS) queue. Our goal is to design a source

code that minimizes the average queuing delay encountered

by the source sequence. Formally, the symbols {Xn}∞n=1 are

generated iid from a finite alphabet X , using a common pmf

P . Every incoming symbol x is encoded as e(x) using a prefix-

free code specified by the encoder mapping e : X → {0, 1}∗,

and the bit string e(x) is placed in a queue. The queue

schedules bits for transmission using a FCFS policy. Each bit

in the queue is transmitted over a noiseless communication

channel. Denote by An the time of successful arrival of the

nth symbol. Also, denote by Dn the time instant of successful

reception of the nth symbol Xn. That is, Dn is the instant at

which the last bit of e(Xn) is received8. The delay for the nth

symbol is given by Dn −An; see Figure 6 for an illustration.

Thus, if ℓ(x) is the length of the encoded symbol e(x) in

bits, then the number of channel uses to transmit this symbol

is ℓ(x), whereby the service time of the nth arriving symbol is

given by Sn = ℓ(Xn). Since {Xn}∞n=1 is iid and the encoder

mapping e is fixed, the sequence (Sn)n∈N, too, is iid with

common mean E [L]. Therefore, the resulting queue is an

M/G/1 queuing system with Poisson arrivals of rate λ and

iid service times (Sn)n∈N. Note that this queue will be stable

only if λE [Sn] = λE [L] < 1.

8Note both An and Dn may not be integer valued, unlike the age setup.

T
im

e

Source Encoder Channel Decoder

X1

X2

X3

e(X1)

e(X2)

e(X3)

X1

X2

X3

Fig. 6: Figure describes a typical sample-path for transmission

of encoded symbols over a FCFS queuing system. Symbol X1

arrives at some time instant 1, it is encoded and transmitted

over the channel. Recall that unlike the slotted setup of

Figure 1, the setup here is that of continuous time with Poisson

arrivals. It is decoded at time instant 4. Symbol X2 arrives in

between time instants 2 and 3, and is placed in the queue, as

the channel is busy transmitting X1. As soon as the channel

becomes free at time instant 4, an encoded version of X2 is

transmitted over it. Symbol X3 arrives when the channel is

free and is transmitted immediately.

We are interested in designing prefix-free codes e that

minimize the average waiting time defined as follows:

Definition VI.2. The average waiting time D(e) of a source

code e is given by

D(e) := lim sup
N→∞

1

N

N
∑

n=1

E [Dn −An] ,

where the expectation is over source symbol realizations

{Xn}∞n=1 and arrival instants {An}n∈N.

We seek prefix-free codes e with the least possible average

waiting time D(e). In fact, a closed-form expression for D(e)
was obtained in [11]. For clarity of exposition, we denote

the load for the queuing system above for a fixed λ by

ρ(L):=λE [L]. Since ρ(L) < 1 for the queue to be stable,

the average codeword length E [L] must be strictly less than

a threshold Lth:=
E[L]
ρ(L) =

1
λ

for the queue to be stable.

Theorem VI.3 ([11]). Consider a random variable X with

pmf P and a source code e which assigns a bit sequence of

length ℓ(x) to x ∈ X . Let L denote the random variable ℓ(X).
Then, the average waiting time D(e) for e is given by

D(e) =

{

E[L2]
2(Lth−E[L]) + E [L] , E [L] < Lth,

∞, E [L] ≥ Lth.
(14)

Thus, the problem of designing source codes with minimum

average waiting time reduces to that of designing a prefix-

free code that minimizes the cost in (14). This problem was

first considered in [11]. In fact, it was noted in [11, Chapter

1, Section 3] that codes which minimize the first moment

are robust for (14). We will justify this empirical observation

in Corollary VI.5. However, optimal codes can differ from
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Shannon codes for P . Indeed, an algorithm for finding the

optimal length assignments ℓ(x), x ∈ X , for a prefix-free

code that minimizes D̄(e) was presented in [15] and the

optimal code can be seen to outperform Shannon codes for

P . While this algorithm has complexity that is polynomial

in the alphabet size, it is computationally expensive for large

alphabet sizes – the case of interest for our problem.

Interestingly, the cost function in (14) resembles closely

the expression we obtained for asymptotic average age and

our recipe used to design minimum average age codes can be

applied to design minimum average delay codes as well. The

underlying optimization problem can be solved numerically

rather quickly, much faster than the optimization in [15].

However, as before, our procedure can only handle the real-

relaxation of the underlying optimization problem, and unlike

the previous case, naive rounding-off to integer lengths yields

a sub-optimal solution when (1−ρ(L)) is small. Nonetheless,

the minimum average waiting time computed using our recipe

serves as an easily computable lower bound for the optimal

D(e). In fact, we observe in our numerical simulations that

the resulting lower bound is rather close to the optimal cost

obtained using [15].

Now, we describe the modification of our recipe to design

codes with E [L] < Lth that minimize the cost

‖L‖1 +
‖L‖22

2(Lth − ‖L‖1)
, (15)

where L = ℓ(X) for X with pmf P . As before, we first obtain

a variational form of (15) which entails a linear function of

lengths. Specifically, we have the following steps.

1) First, we obtain a polynomial form from the rational

function:

‖L‖22
2(Lth − ‖L‖1)

= max
z≥0

z ‖L‖2 −
z2

2
(Lth − ‖L‖1).

2) Then, Corollary III.2 yields that the cost in (15) equals

max
z≥0

max
Q≪P

∑

x∈X

gz,Q,P (x)ℓ(x) −
z2

2
Lth

where the gz,Q,P (x) is defined as

gz,Q,P (x) :=

(

1 +
z2

2

)

P (x) + z
√

Q(x)P (x).

Thus, our goal reduces to identifying the minimizer ℓ∗ ∈ Λ
that achieves

∆∗(P ) = min
ℓ∈Λ,

E[L]<Lth

max
z≥0

max
Q≪P

∑

x∈X

gz,Q,P (x)ℓ(x) −
z2

2
Lth.

(16)

The result below is the counterpart of Theorem IV.1 for

minimum delay source codes and is proved in Section VII-C.

Theorem VI.4. Under the condition

H(X) + log(1 + 1/
√
2) < Lth, (17)

the optimal minmax cost ∆∗(P ) in (16) satisfies

∆∗(P ) = max
z≥0

max
Q≪P

min
ℓ∈Λ,

E[L]<Lth

∑

x∈X

gz,Q,P (x)ℓ(x) −
z2

2
Lth

= max
z≥0

max
Q≪P

∑

x∈X

gz,Q,P (x) log

∑

x′∈X gz,Q,P (x
′)

gz,Q,P (x)

− z2

2
Lth. (18)

Furthermore, if (z∗, Q∗) is the maximizer of the right-side

of (18), then the minmax cost (16) is achieved uniquely by

Shannon lengths for pmf P ∗ on X given by

P ∗(x) =
gz,Q∗,P (x)

∑

x′∈X gz∗,Q∗,P (x′)
.

We remark that (14) implies that H(X) < Lth is essential

for the existence of a prefix free source coding scheme with

finite average delay. Thus, the condition H(X) + log(1 +
1/

√
2) < Lth is a mild one.

Thus, as before, the optimal codeword lengths for the

relaxed problem (allowing real-valued lengths) correspond,

once again, to Shannon lengths for a titled distribution P ∗.

As remarked earlier, the performance of the optimal source

code is known to be not too far from the Shannon code for

P . This observation can be justified by the following simple

corollary of Theorem VI.4.

Corollary VI.5. The KL-Divergence between P , P ∗ is

bounded as

D(P ||P ∗) ≤ log

(

1 +
1√
2

)

.

Proof. The proof follows from (37), which is in turn derived

in the proof of theorem VI.4 in section VII-C.

Thus, the average length for Shannon codes and our codes

do not differ by more than log(1 + 1/
√
2) (cf. [5]). Indeed,

we note in Figures 7a, 7b via numerical simulations that

the optimal cost in (18) is very close to the performance of

optimal codes designed using [15]. This suggests that possibly

there is an appropriate rounding-off procedure for real-valued

lengths that can yield integer lengths with close to optimal

performance; devising such a rounding-off procedure is an

interesting research direction for the future. We close this

section by noting that analogous versions of Lemma IV.2 and

Lemma A.2 in the Appendix can be obtained for optimization

problem (18).

VII. PROOFS

A. Proof of Theorem II.2

We establish the expression for average age given in (12) for

the more general class of randomized schemes; Theorem II.2

will follow upon setting θ(x) = 1, for all x ∈ X . Recall

that the symbol ∅ is available only in the extended model in

Section VI, and not in the original model discussed in rest

of the paper. Note that the formula for average age given in
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Fig. 7: Comparison of proposed codes with Larmore’s Algo-

rithms

Theorem II.2 is similar in form to the expressions for average

age derived in other settings; see [13] for an example.

We will first set up some notation. Let S0 := 0 and

Sk := inf{t > Sk−1 : U(t) > U(t− 1)}, k ∈ N.

Namely, Sk is the time at which the decoder updates its

estimate for the symbol for the kth time. Recall that U(t)
is incremented only on successful reception at the receiver

and is strictly increasing in t. For brevity, we introduce the

notation Yk := Sk − Sk−1 for the time between the (k− 1)th
and the kth information update at the decoder. Further, denote

by Zk := Sk − U(Sk) the age at time Sk, which is simply

the time taken for the successful reception of the symbol9

x ∈ X transmitted at time U(Sk). Also, denote by Rk the sum

9This must be a symbol in X and not ∅ by the definition of Sk .

of instantaneous age between Sk−1 and Sk (the kth reward),

namely

Rk :=

Sk
∑

t=Sk−1+1

(t− U(t)).

Heuristically, our proof can be understood as follows. We

note that the asymptotic average age is roughly
∑∞

k=1 Rk

limk→∞ Sk

.

It is easy to see that {Yk}∞k=1 is an iid sequence. Thus, if

{Rk}∞k=1, too, was an iid sequence, we would obtain the

asymptotic average age to be E [R1] /E [Y1] by the standard

Renewal Reward Theorem [19]. Unfortunately, this is not the

case. But it turns out that the dependence in sequence {Rk}
is only between consecutive terms. Therefore, we can obtain

the same conclusion as above by dividing the sum
∑∞

k=1 Rk

into the sum of odd terms and even terms, each of which is

in turn a sum of iid random variables.

We will now proceed to prove that dependence in Rk is

between consecutive terms. Since U(t) remains U(Sk−1) for

all t < Sk, we get for k ≥ 1 that

Rk =
(Sk − Sk−1 − 1)(Sk − Sk−1)

2
+ (Sk − Sk−1 − 1) · (Sk−1 − U(Sk−1))

+ Sk − U(Sk)

=
1

2
Y 2
k + Yk

(

Zk−1 −
1

2

)

+ Zk − Zk−1, (19)

with Z0 set to 0.

Note that since the source sequence {Xn} is iid and the

randomization θ is stationary, the sequences Yk and Zk are

iid, too. Therefore, the (R2n)n∈N and (R2n+1)n∈N are both10

iid sequences with E [R2n] = E [R2n+1] = E [R2] for all n.

Using this observation, we can obtain the following expres-

sion for the average age:

Ā(e, θ) =
E [R2]

E [Y1]
. (20)

Before we prove (20), which is the main ingredient of our

proof, we evaluate the expression on the right-side.

For E [Y1], note that Y1 gets incremented by ℓ(∅) each time

∅ is sent, and gets incremented finally by ℓ(x) once a symbol

x ∈ X is sent. Thus, Y1 takes the value ℓ(x) + rℓ(∅) with

probability (1−E [θ(X)])rθ(x)P (x). Denoting N0 = N∪{0},

we get

E [Y1] =
∑

x∈X

∑

r∈N0

(ℓ(x) + rℓ(φ))P (x)θ(x)(1 − E [θ(X)])r

=
∑

x∈X

∑

r∈N0

ℓ(x)P (x)θ(x)(1 − E [θ(X)])r

+
∑

x∈X

∑

r∈N0

rℓ(φ)P (x)θ(x)(1 − E [θ(X)])r

=

∑

x∈X ℓ(x)P (x)θ(x)

E [θ(X)]
+

ℓ(φ)(1 − E [θ(X)])

E [θ(X)]

10The initial term R1 has a different distribution since Z0 = 0.
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=
E [L(θ)]

E [θ(X)]
.

For E [R2], it follows from (19) that

E [R2] =
1

2
E
[

Y 2
2

]

+ E [Y2Z1]−
1

2
E [Y2] ,

since E [Z2] = E [Z1]. Also, note that Z1 only depends on

the symbol x ∈ X received at time S1 which in turn can

depend only on the symbols Xn for n ≤ S1− 1. On the other

hand, Y2 = S2 − S1 depends on symbols Xn for n ≥ S1 and

the outputs of the independent coin tosses corresponding to

randomization θ. Therefore, Z1 is independent of Y2, whereby

E [R2] =
1

2
E
[

Y 2
2

]

+ E [Y2]

(

E [Z1]−
1

2

)

.

Next, note that Z1 takes the value ℓ(x), x ∈ X , when the

symbol received at S1 is x. This latter event happens with

probability

∞
∑

r=0

(1− E [θ(X)])rθ(x)P (x) =
θ(x)P (x)

E [θ(X)]
,

and so, by the definition of L(θ) in (13),

E [Z1] =

∑

x ℓ(x)θ(x)P (x)

E [θ(X)]

=
E [L(θ)]

E [θ(X)]
− ℓ(∅)(1− E [θ(X)])

E [θ(X)]
.

Then by denoting p∅ = 1 − E [θ(X)], the second moment

E
[

Y 2
1

]

can be computed by observing the following recursion:

E
[

Y 2
1

]

=
∑

x∈X

∑

r∈N0

(ℓ(x) + rℓ(∅))2P (x)θ(x)pr∅

=
∑

x∈X

ℓ(x)2P (x)θ(x)

+ p∅
∑

x∈X

∑

r∈N

(ℓ(x) + rℓ(∅))2P (x)θ(x)pr−1
∅

=
∑

x∈X

ℓ(x)2P (x)θ(x)

+ p∅
∑

x∈X

∑

r∈N

(

ℓ(x) + (r − 1)ℓ(∅)
)2
P (x)θ(x)pr−1

∅

+ 2ℓ(∅)p∅
∑

x∈X

∑

r∈N

(

ℓ(x) + (r − 1)ℓ(∅)
)

P (x)θ(x)pr−1
∅

+ p∅
∑

x∈X

∑

r∈N

ℓ(∅)2P (x)θ(x)pr−1
∅

=
∑

x∈X

ℓ(x)2P (x)θ(x)

+ p∅E
[

Y 2
1

]

+ 2ℓ(∅)(1− E [θ(X)])E [Y1] + ℓ(∅)2p∅,
which upon rearrangement yields

E
[

Y 2
1

]

=
E
[

L(θ)2
]

E [θ(X)]
+ 2E [Y1] ·

ℓ(∅)p∅
E [θ(X)]

.

Upon combining the relations derived above, we get

E [R2]

E [Y1]
=

E
[

L(θ)2
]

2E [L(θ)]
+

E [L(θ)]

E [θ(X)]
− 1

2
,

which with (20) completes the proof.

It remains to establish (20). The proof is a simple extension

of the renewal reward theorem to our sequence of rewards

Rn in which adjacent terms may be dependent. We include

it here for completeness. Note that (Yn)n∈N is a sequence

of non-negative iid random variables with mean E [Y1], and

Sn =
∑n

k=1 Yk for all n ∈ N. The sequence {Sn} serves

as a sequence of renewal times and Rn denotes the reward

accumulated in the nth renewal interval (though not in the

standard iid sense). Define N(t) to be the number of receptions

up to time t > 0, i.e.,

N(t) = sup {n : Sn ≤ t},
and R(t) to be the cumulative reward accumulated till time t,
i.e.,

R(t) =

N(t)
∑

k=1

Rk.

With this notation, we have

R(t)

t
=

∑N(t)
k=1 Rk

t
(21)

=

∑N(t)
k=1 Rk

N(t)
.
N(t)

t
. (22)

Note that

∑⌊N(t)
2 ⌋

k=1

∑

i∈{0,1} R2k+i

N(t)
≤
∑N(t)

k=2 Rk

N(t)

≤
∑⌈N(t)

2 ⌉
k=1

∑

i∈{0,1} R2k+i

N(t)
.

We now analyze the two bounds in the previous set of

inequalities. Since E [Y1] is finite, we get (see [19] for a proof)

lim
t→∞

N(t)

t
→ 1

E [Y1]
a.s., (23)

which also shows that N(t) → ∞ a.s. as t → ∞. Therefore,

for i ∈ {0, 1},

∑⌈N(t)
2 ⌉

k=1 R2k+i

N(t)
=

∑⌈N(t)
2 ⌉

k=1 R2k+i
⌈

N(t)
2

⌉ ·

⌈

N(t)
2

⌉

N(t)
.

Since (R2k+i)k∈N is iid and N(t) → ∞ a.s. as t → ∞,

strong law of large numbers yields

lim
t→∞

∑⌈N(t)
2 ⌉

k=1 R2k+i
⌈

N(t)
2

⌉ = E [R2] a.s. ∀i ∈ {0, 1},

which further gives

lim
t→∞

∑⌈N(t)
2 ⌉

k=1

∑

i∈{0,1} R2k+i

N(t)
= E [R2] a.s..

Similarly,

lim
t→∞

∑⌊
N(t)

2 ⌋
k=1

∑

i∈{0,1} R2k+i

N(t)
= E [R2] a.s..
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Combining the observations above, we get

lim
t→∞

∑N(t)
k=1 Rk

N(t)
= E [R2] a.s.,

which together with (22) and (23) yields (20).

B. Proof of Theorem IV.1

Our proof is based on noticing that the minmax cost

∆∗(P ) in (8) involves weighted average length with weights

gz,Q,P (x). In fact, we will see below that there is no loss

in restricting to nonnegative weights, whereby our cost has

a form of average length with respect to a distribution that

depends on (z,Q). The broad idea of the proof is to establish

that a optimal code corresponding to the least favorable choice

of (z,Q) is minmax optimal. However, the proof is technical

since our cost function may not satisfy the assumptions in a

standard saddle-point theorem.

A simpler form of the minmax cost ∆∗(P ) from (6) is given

by

∆∗(P ) = min
ℓ∈Λ

max
z≥0

f(ℓ, z), (24)

where

f(ℓ, z) := −z2
E [L]

2
+ z
√

E [L2] + E [L] . (25)

We seek to apply the following version of Sion’s minmax

theorem to the function f .

Theorem VII.1 (Sion’s Minmax Theorem [20]). Let X be

convex space and Y be a convex, compact space. Let h be a

function on X ×Y which is convex on X for every fixed y in

Y and concave on Y for every fixed x in X . Then,

inf
x∈X

sup
y∈Y

h(x, y) = sup
y∈Y

inf
x∈X

h(x, y).

Indeed, the following lemma shows that our function f sat-

isfies the convexity requirements of Sion’s minmax theorem.

Lemma VII.2. f(ℓ, z) is convex in ℓ for every fixed z ≥ 0
and concave in z for a fixed ℓ ∈ Λ.

Proof. To show that f(ℓ, z) is a convex function of ℓ for every

fixed z ≥ 0, it suffices to show that
√

E [L2] is convex in

L = ℓ(X). To that end, let L1 = ℓ1(X) and L2 = ℓ2(X), for

some ℓ1 and ℓ2 in λ. For all λ ∈ [0, 1],
√

E

[

(λL1 + (1− λ)L2)
2
]

≤ λ
√

E [L2
1] + (1− λ)

√

E [L2
2],

where the inequality is by Minkowski inequality for ‖L‖2.

The concavity in z can be seen easily by noticing that
∂2f(ℓ,z)

∂z2 ≤ 0 for all ℓ in λ.

However, our underlying domains of optimization are not

compact. Our proof below circumvents this difficulty by

showing that we may replace one of the domains by a compact

set. For ease of reading, we divide the proof into 3 steps; we

begin by summarize the flow at a high-level. The first step is

to show that this minmax cost remains unchanged when the

domain of z is restricted to a bounded interval [0,K] for a

sufficiently large K . This will allow us to interchange minl∈Λ

and maxz∈[0,K] in the second step by using Theorem VII.1 to

obtain

∆∗(P ) = max
z∈[0,K]

min
ℓ∈Λ

f(ℓ, z). (26)

Furthermore, we then use Corollary III.2 to linearize the

cost. But this brings in the maximization over an additional

parameter Q, which we again interchange with the minimum

over ℓ using Sion’s minmax theorem (Theorem VII.1). Note

that the required convexity of the cost function is easy to see;

we note it in the following lemma.

Lemma VII.3. For every fixed z ≥ 0,
∑

x∈X gz,Q,P (x)ℓ(x)
is convex in ℓ for a fixed Q ≪ P and concave in Q for a fixed

ℓ ∈ Λ.

Proof. For every fixed z ≥ 0, the cost function
∑

x∈X gz,Q,P (x)ℓ(x) is linear, and thereby convex, in ℓ for

a fixed Q . For concavity in Q, note that for a fixed ℓ ∈ Λ,

the function
√

Q(x) is a concave function of Q(x), for all x
in X .

Thus, we obtain

∆∗(P ) = max
z∈[0,K],Q≪P

min
ℓ∈Λ

∑

x∈X

gz,Q,P (x)ℓ(x).

In the final step, we will establish that the optimal code for

linear cost with weights corresponding to the least favorable

(z,Q) is minmax optimal. We now present each step in detail.

Step 1: We begin by noting that there is no loss in

restricting to codes with11
E [L] ≤ log |X |. Indeed, note that

for E [L] > log |X | the average age is bounded as

E [L] +
E
[

L2
]

2E [L]
≥ 3

2
E [L] >

3

2
log |X |, (27)

where we have used Jensen’s inequality. On the other hand, a

fixed-length code with ℓ(x) = log |X | attains

E [L] +
E
[

L2
]

2E [L]
=

3

2
log |X |, (28)

which gives the desired form

∆∗(P ) = min
ℓ∈Λ,E[L]≤logX

E [L] +
E
[

L2
]

2E [L]

= min
ℓ∈Λ,E[L]≤logX

max
z∈R

f(ℓ, z), (29)

where f(ℓ, z) is defined in (25). Also, for a fixed ℓ in Λ the

function f(ℓ, z) attains its maximum at z∗(ℓ) given by

z∗(ℓ) :=

√

E [L2]

E [L]
.

11For simplicity, we assume that logX is an integer.
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For E [L] ≤ log |X |, the maximizer z∗(ℓ) is bounded as12

z∗(ℓ) ≤
√

E [L2]

H(X)

=

√
∑

x P (x)ℓ(x)2

H(X)

≤ E [L]

H(X)

√

max
x∈X

1

P (x)

≤ log |X |
H(X)

√

1

minx∈X P (x)
,

where the first inequality uses E [L] ≥ H(X), which holds

for every prefix-free code, and the second holds since ‖a‖2 ≤
‖a‖1 for any sequence a = (a1, ..., an). Denoting

K :=
log |X |
H(X)

√

1

minx∈X P (x)
,

(29) yields

∆∗(P ) = min
ℓ∈Λ,E[L]≤log |X |

max
z∈[0,K]

f(ℓ, z).

Next, we show that the minmax cost above remains unchanged

when we drop the constraint E [L] ≤ log |X | in the outer

minimum, which will complete the first step of the proof and

establish (26). Indeed, since by (28) the minimum over ℓ ∈ Λ
such that E [L] ≤ log |X | is at most (3/2) log |X |, it suffices

to show that

min
ℓ∈Λ,E[L]>log |X |

max
z∈[0,K]

f(ℓ, z) >
3

2
log |X |. (30)

We divide the proof of this fact into two cases. First consider

the case when ℓ in Λ is such that E [L] > log |X | and

K ≥ z∗(ℓ). Then, maxz∈[0,K] f(ℓ, z) equals maxz≥0 f(ℓ, z),
which is bounded below by (3/2) log |X | using (27) and the

definition of f(ℓ, z). For the second case when E [L] > log |X |
and K < z∗(ℓ), we have

max
z∈[0,K]

f(ℓ, z) = −K2E [L]

2
+K

√

E [L2] + E [L]

> K2E [L]

2
+ E [L]

>
3

2
· E [L]

>
3

2
· log |X |,

where the first inequality uses K < z∗(ℓ) =
√

E [L2]/E [L]
and the second holds since K ≥ 1 from its definition.

Therefore, we have established (30), and so we have

∆∗(P ) = min
ℓ∈Λ,E[L]≤log |X |

max
z∈[0,K]

f(ℓ, z) = min
ℓ∈Λ

max
z∈[0,K]

f(ℓ, z).

12We assume without loss of generality that P (x) > 0 for every x ∈ X .

Step 2: By lemma VII.2 , f(ℓ, z) is convex in ℓ for every

fixed z ≥ 0 and concave in z for a fixed ℓ ∈ Λ, z takes values

in a convex compact set [0,K], and the set {ℓ : ℓ ∈ Λ} is

convex, we get from Sion’s minmax theorem (Theorem VII.1)

that

∆∗(P ) = min
ℓ∈Λ

max
z∈[0,K]

f(ℓ, z) = max
z∈[0,K]

min
ℓ∈Λ

f(ℓ, z).

Using Corollary III.2, we have

‖L‖2 = max
Q≪P

∑

x∈X

Q(x)
1
2P (x)

1
2 ℓ(x),

which by the definition of f in (25) further yields

f(ℓ, z) = max
Q≪P

∑

x∈X

gz,Q,P (x)ℓ(x), (31)

where

gz,Q,P (x) =

(

1− z2

2

)

P (x) + z
√

Q(x)P (x).

We have obtained

∆∗(P ) = max
z∈[0,K]

min
ℓ∈Λ

max
Q≪P

∑

x∈X

gz,Q,P (x)ℓ(x). (32)

From Lemma VII.3,
∑

x∈X gz,Q,P (x)ℓ(x) is convex in ℓ , for

all Q ≪ P , and concave in Q, for a fixed ℓ ∈ Λ. Furthermore,

since the set {Q : Q ≪ P} is convex compact for a pmf P on

finite alphabet, using Sion’s minmax theorem (Theorem VII.1)

once again, we get

∆∗(P ) = max
z∈[0,K]

max
Q≪P

min
ℓ∈Λ

∑

x∈X

gz,Q,P (x)ℓ(x), (33)

which completes our second step.

Step 3: By (33), we get

∆∗(P ) ≤ max
z≥0

max
Q≪P

min
ℓ∈Λ

∑

x∈X

gz,Q,P (x)ℓ(x).

On the other hand, by (24) and (31) we have

∆∗(P ) = min
ℓ∈Λ

max
z≥0

max
Q≪P

∑

x∈X

gz,Q,P (x)ℓ(x)

≥ max
z≥0

max
Q≪P

min
ℓ∈Λ

∑

x∈X

gz,Q,P (x)ℓ(x),

whereby

∆∗(P ) = min
ℓ∈Λ

max
z≥0

max
Q≪P

∑

x∈X

gz,Q,P (x)ℓ(x)

= max
z≥0

max
Q≪P

min
ℓ∈Λ

∑

x∈X

gz,Q,P (x)ℓ(x), (34)

which proves the first part of theorem IV.1.

Next, we claim that in the maxmin formula above, the

maximum is attained by a (z,Q) for which gz,Q,P (x) is

non-negative for every x. Indeed, if for some z,Q there

exists an x′ in X such that gz,Q,P (x
′) is negative, then

the cost
∑

x∈X gz,Q,P (x)ℓ(x) is minimized by any ℓ such

that ℓ(x′) = ∞ and the minimum value is −∞. Such z,Q
clearly can’t be the optimizer of the maxmin problem, since

for z = 0, we have gz,Q,P ≥ 0, which in turn leads to

minℓ∈Λ

∑

x∈X gz,Q,P (x)ℓ(x) ≥ 0.
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Finally, consider (z,Q) such that gz,Q,P (x) ≥ 0 for all

x ∈ X . For such a (z,Q), we seek to identify the minimized

ℓ below:

min
ℓ∈Λ

∑

x∈X

gz,Q,P (x)ℓ(x)

=
∑

x′∈X

gz,Q,P (x
′)min

ℓ∈Λ

∑

x∈X

gz,Q,P (x)
∑

x′∈X gz,Q,P (x′)
ℓ(x). (35)

Thus, our optimization problem reduces to the standard prob-

lem of designing minimum average length prefix-free codes

for the pmf

Pz,Q(x) =
gz,Q,P (x)

∑

x′∈X gz,Q,P (x′)
.

By Shannon’s source coding theorem for variable length codes,

the minimum is achieved by

ℓ∗z,Q(x) := log

∑

x′∈X gz,Q,P (x)

gz,Q,P (x)
.

Furthermore, ℓ∗z,Q is the unique minimizer in Λ.

Consider now a maximizer (z∗, Q∗) of the maxmin problem

in (34), and let ℓo = ℓ∗z∗,Q∗ . Then, by Lemma A.1 in

the appendix,(ℓo, (z∗, Q∗)) is a saddle-point for the minmax

problem in (34). Moreover, ℓo is the unique minmax optimal

solution.

C. Proof of Theorem VI.4

Denoting

f(ℓ, z) = −z2
(Lth − E [L])

2
+ z
√

E [L2] + E [L] , (36)

the optimal cost ∆∗(P ) can be written as

∆∗(P ) = inf
ℓ∈Λ,E[L]<Lth

E
[

L2
]

2(Lth − E [L])
+ E [L]

= min
ℓ∈Λ,E[L]<Lth

max
z≥0

f(ℓ, z).

This form is similar to the one we had in Theorem IV.1.

But the proof there does not extend to the case at hand.

Specifically, note that for each ℓ, f(ℓ, z) attains its maximum

value for z∗(ℓ) =

√
E[L2]

(Lth−E[L]) which, unlike the quantity that

we obtained in the proof of Theorem IV.1, is unbounded over

the set of ℓ ∈ Λ such that E [L] ≤ Lth. However, under the

additional assumption H(X)+ log(1+ 1/
√
2) < Lth, we can

provide a simpler alternative proof. We rely on the following

lemma.

Lemma VII.4. Consider a function h : X ×Y → R such that

the set X is compact convex, the set Y is convex, h(x, y) is a

convex function of x for every fixed y and a concave function

of y for every fixed x. Suppose additionally that there exist a

convex subset X0 of X and a compact convex subset Y0 of Y
such that

1) for every for every x ∈ X0, an optimizer y∗(x) ∈
argmaxy∈Y h(x, y) belongs to Y0; and

2) for every y ∈ Y0, an optimizer x∗(y) ∈
argminx∈X h(x, y) belongs to X0.

Then,

min
x∈X

max
y∈Y

h(x, y) = max
y∈Y

min
x∈X

h(x, y).

Proof. Note that since for x in X0, the y that maximizes

h(x, y) over Y is in Y0, we get

min
x∈X

max
y∈Y

h(x, y) ≤ min
x∈X0

max
y∈Y

h(x, y) = min
x∈X0

max
y∈Y0

h(x, y).

Further, by Sion’s minmax theorem (Theorem VII.1), the right-

side equals maxy∈Y0 minx∈X0 h(x, y). But by our second

assumption, the restriction x ∈ X0 can be dropped, and we

have

max
y∈Y0

min
x∈X0

h(x, y) = max
y∈Y0

min
x∈X

h(x, y) ≤ max
y∈Y

min
x∈X

h(x, y).

Thus, we have shown minx∈X maxy∈Y h(x, y) ≤
maxy∈Y minx∈X h(x, y), which completes the proof since

the inequality in the other direction holds as well.

For our minmax cost, we will verify that both the conditions

of the lemma above hold under the assumption H(X)+log(1+
1/

√
2) < Lth. Indeed, first note that for any fixed ℓ ∈ Λ with

E [L] ≤ H(X) + log(1 + 1/
√
2), the maximizer z of f(ℓ, z)

given by
√

E [L2]/(Lth − E [L]) satisfies

√

E [L2]

Lth − E [L]

≤
√

1

minx P (x)
· E [L]

Lth − E [L]

≤
√

1

minx P (x)
· H(X) + log(1 + 1/

√
2)

Lth −H(X)− log(1 + 1/
√
2)
.

Denote the right-side above by K and L′
th = H(X)+log(1+

1/
√
2). Therefore, with the set {ℓ ∈ Λ,E [L] ≤ L′

th} in the

role of X0 in Lemma VII.4, the set [0,K] can play the role

of Y0.

To apply Lemma VII.4, we require two conditions to hold:

first, that f(l, z) is a convex function of ℓ for every fixed z and

a concave function of z for every fixed ℓ, second, that for every

z ∈ [0,K], the minimizing ℓ satisfies E [L] ≤ L′
th.The first

easily follows from (36). The proof of this fact is exactly the

same as Lemma VII.2. However, while the second condition

can be shown to be true, the proof of this fact is almost

the same as the proof of our theorem. For simplicity of

presentation, we instead present an alternative proof of the

theorem that uses a slight extension of the lemma above. Note

that from our foregoing discussion and following the proof of

the lemma, we already have obtained

∆∗(P ) ≤ max
z∈[0,K]

min
ℓ∈Λ,E[L]≤L′

th

f(ℓ, z).

By using Corollary III.2 and using Sion’s minmax theorem

once again, we get

∆∗(P )

≤ max
z∈[0,K]

max
Q≪P

min
ℓ∈Λ,E[L]≤L′

th

∑

x∈X

gz,Q,P (x)ℓ(x) −
z2

2
Lth,
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where

gz,Q,P (x) :=

(

1 +
z2

2

)

P (x) + z
√

Q(x)P (x).

In the preceding argument, we can use Sion’s minmax theorem

as the following two conditions hold. First, for every fixed

z ≥ 0, the function
∑

x∈X gz,Q,P (x)ℓ(x)− z2

2 Lth is concave

in Q for a fixed ℓ ∈ Λ and convex in ℓ for a fixed Q ≪ P .

Second, the sets {Q : Q ≪ P} and {ℓ ∈ Λ : E [L] ≤ L′
th}

are compact and convex. Proof of the first is exactly the same

as that of VII.3. Second is true as we have restricted to a

finite alphabet X . Thus, we can proceed as in the proof of the

lemma, but we need to show now that for every z ∈ [0,K] and

Q ≪ P , the optimal ℓ∗(z,Q) satisfies E [L∗] ≤ L′
th . Indeed,

consider the following optimization problem for a fixed z, Q:

min
ℓ∈Λ

∑

x∈X

gz,Q,P (x)ℓ(x)

=

(

∑

x′∈X

gz,Q,P (x
′)

)

min
ℓ∈Λ

∑

x∈X

gz,Q,P (x)
∑

x′∈X gz,Q,P (x′)
ℓ(x).

Since
gz,Q,P (x)∑

x′∈X gz,Q,P (x′) are nonnegative and add to 1, in the

optimization problem above, we are minimizing the expected

prefix free lengths for a finite alphabet for a particular dis-

tribution. Thus, by Shannon’s Source Coding Theorem, the

optimal ℓ∗z,Q is given by

ℓ∗z,Q(x) := log

∑

x′∈X gz,Q,P (x
′)

gz,Q,P (x)
;

in fact, this optimizer is unique. But then for every x in X ,

ℓ∗z,Q(x)

= log

∑

x′∈X gz,Q,P (x
′)

gz,Q,P (x)

= log

∑

x′∈X

(

1 + z2

2

)

P (x) +
∑

x∈X z
√

Q(x)P (x)
(

1 + z2

2

)

P (x) + z
√

Q(x)P (x)

≤ log
1

P (x)

+ log





(

1 + z2

2

)

(

1 + z2

2

)

+ z
√

Q(x)
P (x)

+
z

(

1 + z2

2

)

+ z
√

Q(x)
P (x)





≤ log
1

P (x)
+ log





(

1 + z2

2

)

(

1 + z2

2

) +
z

(

1 + z2

2

)





≤ log
1

P (x)
+ log

(

1 +
1√
2

)

,

where the first inequality is by the Cauchy-Schwarz inequal-

ity, the second inequality follows upon noting that
Q(x)
P (x) is

nonnegative, and the last inequality follows from the fact that

z2/2+1 ≥
√
2z (which holds with equality at z =

√
2). Thus

as a consequence of this inequality the expected code length

of such a code is upper bounded as follows,

E
[

L∗
z,Q

]

≤ H(x) + log

(

1 +
1√
2

)

, (37)

which in the manner of Lemma VII.4 gives

∆∗(P ) = max
z≥0

max
Q≪P

min
ℓ∈Λ,E[L]≤Lth

∑

x∈X

gz,Q,P (x)ℓ(x) −
z2

2
Lth.

Finally, it remains to establish that ℓ∗z∗,Q∗ is the unique

minmax optimal solution. This can be shown in exactly the

same manner as it was shown for Theorem IV.1 in the previous

section; we skip the details.
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APPENDIX

A SADDLE-POINT LEMMA

The following simple result is needed to establish the

minmax optimality of our scheme. The first part of the result

claims that any pair of minmax optimal x and maxmin optimal

y forms a saddle point, a well-known fact. The second part

claims that if the minimizer for the maxmin optimal y is

unique, then it must also be minmax optimal and thereby

constitute a saddle-point with y.

Lemma A.1. Consider the minmax problem min
x∈X

max
y∈Y

h(x, y),

and assume that

min
x∈X

max
y∈Y

h(x, y) = max
y∈Y

min
x∈X

h(x, y).

Then, for every pair (x∗, y∗) such that

x∗ ∈ argminx∈X maxy∈Y h(x, y) and y∗ ∈
argmaxy∈Y minx∈X h(x, y) constitutes a saddle-point.

Furthermore, if the minimizer xo(y∗) of minx∈X h(x, y∗)
is unique, then x∗ = xo(y∗) is the unique minmax optimal

solution.

Proof. Since minmax and maxmin costs are assumed to be

equal, by the definition of x∗ and y∗, we have

h(x, y∗) ≥ max
y′∈Y

min
x′∈X

h(x′, y′)

= min
x′∈X

max
y′∈Y

h(x′, y′) ≥ h(x∗, y), (38)

for all x in X and y in Y . Upon substituting x∗ for x and

y∗ for y, we get that x∗ is a minimizer of h(x, y∗) and y∗

a maximizer of h(x∗, y). Therefore, (x∗, y∗) forms a saddle-

point and h(x∗, y∗) = minx∈X maxy∈Y h(x, y).
Turning now to the second part, suppose that x′, too, is

minmax optimal. Then, using (38) with x = x′ and y = y∗,
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we get that x′ must be a minimizer of h(x, y∗) as well. But

since this minimizer is unique, x′ must coincide with xo.

PROOF OF LEMMA IV.2

Denoting

cP (z,Q) :=
∑

x∈X

gz,Q,P (x) log

∑

x′∈X gz,Q,P (x
′)

gz,Q,P (x)
,

we begin by observing the concavity of cP (z,Q). Recall the

notations G = {z ≥ 0, Q ∈ R
|X | : gz,Q,P (x) ≥ 0 ∀x ∈ X}

and gz,Q,P (x) = (1 − z2/2)P (x) + z
√

Q(x)P (x).

Lemma A.2. The function cP (z,Q) is concave in Q for each

fixed z and is concave in z for each fixed Q, over the set G.

Proof. For the first part, (35) yields that for every (z,Q) ∈ G,

∑

x∈X

gz,Q,P (x) log

∑

x′∈X gz,Q,P (x
′)

gz,Q,P (x)

= min
ℓ∈Λ

∑

x∈X

gz,Q,P (x)ℓ(x).

Also, for every fixed z, the function gz,Q,P (x) is concave in

Q, and thereby
∑

x∈X gz,Q,P (x)ℓ(x), is concave in Q. Thus,

since the minimum of concave functions is concave, cP (z,Q)
is concave in Q for a fixed z. Similarly, we can show concavity

in z for a fixed Q since gz,Q,P (x) is concave in z, too, for

every fixed Q.

We now complete the proof of Lemma IV.2. We will show

that for any (z,Q) which is feasible for optimization problem

(9), we can find a feasible (z,Q′) with Q′ satisfying (11), and

cP (z,Q) ≤ cP (z,Q
′).

Indeed, consider Q′(x) := Q(Ai)/|Ai| for all x ∈ X .

The remainder of the proof is divided into two parts, the

first proving the feasibility of Q′ and the second proving

cP (z,Q) ≤ cP (z,Q
′).

a) Feasibility of (z,Q′): From the feasibility of (z,Q),
for all symbols x in Ai and for all i in [MP ], gz,Q,P (x) ≥ 0,

whereby

∑

x∈Ai

gz,Q,P (x) =
∑

x∈Ai

(

1− z2

2

)

P (x)

+ z
∑

x∈Ai

√

Q(x)P (x)

=

(

1− z2

2

)

P (Ai) + z
∑

x∈Ai

√

Q(x)P (x)

≥
(

1− z2

2

)

P (Ai) + z
√

Q′(Ai)P (Ai)

= |Ai|gz,Q′,P (x)

≥ 0,

where the first inequality is by Cauchy-Schwarz inequality, the

positivity of z, and the assumption that P (x) = P (Ai)/|Ai|
for every x in Ai, and the final identity uses definition of

Q′. This proves the feasibility of (z,Q′) for the optimization

problem (9).

b) Proof of optimality: Denoting by Π(A1) the set of all

permutations of the elements of A1, let Qπ be the distribution

given by

Qπ(x) =

{

Q(π(x)), ∀x ∈ A1

Q(x), otherwise.

Then, the distribution Q = (1/|Π(A1)|) · ∑π∈Π(A1)
Qπ

satisfies

Q(x) =

{

1
|A1|

·Q(A1), ∀x ∈ A1

Q(x), otherwise.

Since by Lemma A.2 cP (z,Q) is concave in Q for every fixed

z, we get

cP (z,Q) ≥ 1

|Π(A1)|
·
∑

π∈Π(A1)

cP (z,Q
π).

Furthermore, note that gz,Qπ,P (x) = gz,Q,P (π(x)) since

P (x) = P (A1)/|A1| for every x in A1, and thereby

cP (z,Q
π) = cP (z,Q) for every π ∈ Π(A1) . Therefore,

combining the observations above, we obtain cP (z,Q) ≥
cP (z,Q).

Repeating this argument by iteratively using permutations

of Ai for i ≥ 2, we obtain the required inequality

cP (z,Q
′) ≥ cP (z,Q).
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