
1

A Reduced-Complexity Projection Algorithm for
ADMM-based LP Decoding

Florian Gensheimer, Tobias Dietz, Kira Kraft, Student Member, IEEE,
Stefan Ruzika, and Norbert Wehn, Senior Member, IEEE

Abstract—The Alternating Direction Method of Multipliers has
recently been adapted for Linear Programming Decoding of Low-
Density Parity-Check codes. The computation of the projection
onto the parity polytope is the core of this algorithm and usually
involves a sorting operation, which is the main effort of the
projection.

In this paper, we present an algorithm with low complexity
to compute this projection. The algorithm relies on new findings
in the recursive structure of the parity polytope and iteratively
fixes selected components. It requires up to 37% less arithmetical
operations compared to state-of-the-art projections. Additionally,
it does not involve a sorting operation, which is needed in all exact
state-of-the-art projection algorithms. These two benefits make
it appealing for efficient hard- and software implementations.

Index Terms—ADMM, LP decoding, parity polytope projection

I. INTRODUCTION

L INEAR Programming (LP) decoding is a rather new
decoding approach, that was established in 2003 by

Feldman et al. [1]. The LP decoding problem is a relaxation
of the Maximum-Likelihood (ML) decoding problem onto a
special polytope. Using redundant parity checks [2], the error-
correcting performance of LP decoding is close to the ML
decoding performance. Therefore, LP decoding has become
an interesting area of research for nearly all relevant code
classes.

The major advantage of LP decoding is the reduced com-
plexity compared to ML decoding. While ML decoding is NP
hard in general [3], the relaxation onto the special polytope re-
duces the problem to a linear program, which can be solved in
polynomial time. Recently, the Alternating Direction Method
of Multipliers (ADMM) [4], an iterative method from con-
vex optimization, was proposed for solving the LP decoding
problem. In this context, the main effort of the ADMM is the
projection onto the so-called parity polytope (see Section IV).
The projection complexity grows with the number of ones in
each row of the code’s underlying parity-check matrix, thus,

This work was supported by the DFG under project-ID WE 2442/9-3 and
RU 1524/2-3.

This paper will be presented in parts at the 10th International Symposium
on Turbo Codes and Iterative Information Processing.

F. Gensheimer is with the Mathematical Institute, University of Koblenz-
Landau, 56070 Koblenz, Germany (email: gensheimer@uni-koblenz.de).

T. Dietz and S. Ruzika are with the Department of Mathematics, Tech-
nische Universität Kaiserslautern, 67663 Kaiserslautern, Germany (email:
dietz@mathematik.uni-kl.de; ruzika@mathematik.uni-kl.de).

K. Kraft and N. Wehn are with the Department of Electrical and Computer
Engineering, Technische Universität Kaiserslautern, 67663 Kaiserslautern,
Germany (email: kraft@eit.uni-kl.de; wehn@eit.uni-kl.de).

ADMM-based LP decoding is mainly performed for Low-
Density Parity-Check (LDPC) codes. This projection is the
key of the ADMM algorithm and requires a sorting operation
in all exact state-of-the-art implementations. However, sorting
can become a major problem, especially for efficient hardware
implementations, where it can heavily impact on latency, area,
and power consumption.

In this paper, we extend the theory of parity polytopes
and reveal their recursive structure. These findings allow us
to present a new efficient projection algorithm that does not
require sorting operations. The proposed algorithm iteratively
fixes selected components of the projection to recursively
reduce the problem to a smaller instance. We show that
at least one component of the input can be fixed in every
step. Therefore, the number of recursions is bounded and
the problem size is strictly decreasing in every iteration. Our
approach requires up to 37% less arithmetic operations than
state-of-the-art projection algorithms, which directly translates
to a reduction in computational complexity. In addition, the
sorting operation is circumvented completely.

The outline of the paper is as follows: Section II describes
the related work in the area of the ADMM-based LP decoding.
In Section III, preliminaries and the ADMM method for LP
decoding are recapitulated. In Section IV, we define the con-
sidered projection problem, recall some essential properties of
the (even) parity polytope and derive the analogous results for
its odd counterpart. Section V shows the geometrical idea of
our new projection algorithm in an example. In Section VI, we
prove the main theorem about this projection. It states that in
every iteration, there exists at least one component that can be
fixed for the rest of the projection. In Section VII, we show that
the projection can be formulated as a recursive problem and
utilize this fact in our efficient projection algorithm. The whole
algorithm is then summarized in Section VIII. Section IX
presents numerical results and highlights the benefit of our
new projection algorithm. Finally, the paper is concluded in
Section X.

II. RELATED WORK

The first ADMM method for LP decoding was presented
by Barman et al. in [5], where a two-slice representation
is used in the projection in order to describe the vectors
of the parity polytope. The projection method in [5] needs
two sorting operations. A more efficient projection method
was presented Zhang and Siegel in [6], which is based on
the cut-search algorithm [2] of the same authors. Its main

ar
X

iv
:1

90
1.

03
24

0v
1

 [
cs

.I
T

]
 1

0
Ja

n
20

19

2

effort is a sorting operation on a vector, which is in worst-
case as large as the dimension d of the parity polytope. The
projections by Wasson and Draper [7] and Zhang et al. [8]
reduce the problem to the projection onto a simplex and use
the corresponding algorithms of Duchi et al. from [9]. The
main effort in [7] is again a sorting operation. In [8], the two
main subroutines are partial sorting and a modification of the
randomized median finding algorithm from [10]. An iterative
method, which does not require sorting operations, is presented
by Wei and Banihashemi in [11]. However, it only outputs an
approximate projection. A lookup table is used by Jiao et al.
in the projection algorithm in [12], where the authors use the
symmetric structure of the parity polytope in order to reduce
the size of the table. In [13], Jiao et al. further decrease the
size by using a non-uniform quantization scheme, which is
found by minimizing the mean square error of a sample set.

Apart from the projection onto the parity polytope, many
other investigations and improvements of ADMM-based LP
decoding are made in the literature. In [14], Liu and Draper
improve the error correction rate by introducing penalty terms
for the objective function that reward binary decision variables.
The behavior of ADMM decoding on trapping sets is studied
by the same authors in [15]. In [16], Jiao et al. improve the
error-correcting performance of penalized ADMM decoding
for irregular LDPC codes by using different penalty parameters
for variables with different variable degrees. In [17], Wei et
al. reduce the runtime by avoiding projections whenever the
change in the input of the projection is sufficiently small.
New piecewise penalty terms are introduced by Wang et al.
in [18]. In [19], Jiao et al. compare two improving tech-
niques of ADMM in the context of LP decoding, namely
over-relaxation [4] and accelerated ADMM [20]. A two-step
scheme based on ADMM decoding is presented by Jiao and
Mu in [21]. In order to reduce the error floor, the code structure
is changed by eliminating codewords with low weight, and a
postprocessing step is added after the ADMM LP decoder.

In [22], Wasson et al. propose a hardware architecture
for the ADMM LP decoder based on the projection method
presented in [7]. The hardware complexity of ADMM LP
decoding is also investigated by Debbabi et al. in [23]. A mul-
ticore implementation is presented by the same authors in [24].
The schedule of the computations in the ADMM LP decoder
are changed by Debbabi et al. [25] and Jiao et al. [26]. These
schedules are combined to a new mixed schedule for ADMM
LP decoding of LDPC convolutional codes by Thameur et al.
in [27]. In [28], Xu et al. propose turbo equalization together
with ADMM decoding for communication over the partial
response channel.

III. ADMM-BASED LP DECODING

In this paper, we consider binary linear block codes C ⊆
{0, 1}n with block length n and a parity-check matrix H ⊆
{0, 1}m×n, where J = {1, . . . ,m} denotes the set of check
nodes and dj denotes the degree of check j ∈ J , that is, the
number of ones in the corresponding row of the parity-check
matrix. The set of variable nodes is given by I = {1, . . . , n}
and Ni ⊆ J describes the set of check nodes that include

variable node i ∈ I . The set Nj = {i ∈ {1, . . . , n} : Hji =
1} ⊆ I denotes the set of variable nodes that are considered for
check j ∈ {1, . . . ,m}. We consider binary-input memoryless
channels. In [29], it is shown that, in this case, maximum-
likelihood (ML) decoding can be rewritten as the minimization
of a linear function. This means that

xML = arg min
x∈C

n∑
i=1

λixi,

where λi = ln Pr(x̃i|xi=0)
Pr(x̃i|xi=1) are the so-called log-likelihood

ratios (LLR) and x̃ is the received vector. The linear program-
ming relaxation of this problem is called linear programming
(LP) decoding [29]. For ADMM-based LP decoding, the
following LP formulation with auxiliary variables zj ∈ Rdj
is used:

min λ>x (1)
s. t. Tjx = zj ∀j ∈ J (2)

zj ∈ Pdj ∀j ∈ J. (3)

The matrix Tj ∈ {0, 1}dj×n from [6] selects the variable nodes
i ∈ Nj for all j ∈ J . The ADMM is an iterative method from
convex optimization, that combines the strong convergence of
the method of multipliers with the decomposability of the dual
ascent method [4]. Mathematically, the ADMM is a gradient
method, that solves a special dual problem of (1)-(3) which
depends on the augmented Lagrangian. For the LP decoding
problem, the augmented Lagrangian with scaled dual variables
u is given by

Lρ(x, z, u) = λ>x+
ρ

2

∑
j∈J
‖Tjx− zj + uj‖22−

ρ

2

∑
j∈J
‖uj‖22 .

In iteration k, the variables are updated as follows:

xk+1 := arg min
x

λ>x+
ρ

2

∑
j∈J

∥∥Tjx− zkj + ukj
∥∥2
2

 , (4)

zk+1
j := ΠPdj

(
Tjx

k+1 + ukj
)
∀j ∈ J,

uk+1
j := ukj + Tjx

k+1 − zk+1
j ∀j ∈ J.

The mapping ΠPdj
(·) is defined as the projection onto the

parity polytope

Pdj := conv{x ∈ {0, 1}dj :

dj∑
i=1

xi is even}.

The minimum in the x-update (4) can be computed analytically
with the formula

xi =
1

di

∑
j∈Ni

((
ukj
)
i
−
(
zkj
)
i

)
− λ

ρ

 ∀ i ∈ I.

The penalty terms used in [14] and [18] only change this x-
update. The main computational effort are the z-updates which
consist of a projection onto the parity polytopes of every parity
row j ∈ J .

3

IV. EVEN AND ODD PARITY POLYTOPES

In the following, we recall basic properties of Pd which we
call the even parity polytope

Pd,even := Pd := conv{x ∈ {0, 1}d :

d∑
i=1

xi is even}

to distinguish it from the odd parity polytope

Pd,odd := conv{x ∈ {0, 1}d :

d∑
i=1

xi is odd}.

Projections on the even parity polytope and on the odd parity
polytope both play a crucial role in the projection algorithm
presented later.

In [29], Feldman presents the linear programming relaxation

0 ≤ xi ≤ 1 ∀ i = 1, . . . , n (5)
0 ≤ wj,S ≤ 1 ∀S ∈ Ej∑
S∈Ej

wj,S = 1 (6)

xi =
∑
S∈Ej

S3i

wj,S ∀ i ∈ Nj (7)

for the local parity polytope Cj = {x ∈ {0, 1}n : Hjx ≡ 0
mod 2}, where Ej = {S ⊆ N(j) : |S| even} is the set of
even-sized subsets of Nj . The feasible set of this polyhedron
is called Qj in [29] and Q̇j = {x ∈ Rn : ∃w : (x,w)> ∈ Qj}
is the corresponding polyhedron without the auxiliary variables
wj,S .
Pd,even can be interpreted as the convex hull of the local

parity polytope with parity row H1 = (1 . . . 1). This means
that all bit variables xi participate in this row. Hence, the sum
in (7) is not empty and it follows that

xi =
∑
S∈E1
S3i

w1,S︸︷︷︸
≥0

≥ 0

and
xi =

∑
S∈E1
S3i

w1,S ≤
∑
S∈E1

w1,S
(6)
= 1

for all i = 1, . . . , d. Thus, the constraints (5) are redundant
and can be removed, so it holds that

Q̇1 = Pd,even = conv{x ∈ {0, 1}d :

d∑
i=1

xi is even}, (8)

where the variables wj,S can be interpreted as the coefficients
in the convex combinations of the incidence vectors to the
even-sized subsets S ⊆ {1, . . . , d}. In Theorem 5.15 in [29],
Feldman shows that Q̇j can be described by the polyhedron

0 ≤ xi ≤ 1 ∀ i = 1, . . . , d∑
i∈V

xi −
∑

i∈N(j)\V

xi ≤ |V | − 1 ∀V ⊆ Nj

with |V | odd.

Together with (8), this shows that Pd,even is completely
characterized by the box constraints and the forbidden-set
inequalities, i. e. Pd,even is given by

0 ≤ xi ≤ 1 ∀ i = 1, . . . , d∑
i∈V

xi −
∑

i∈{1,...,d}\V

xi ≤ |V | − 1 ∀V ⊆ {1, . . . , d}

with |V | odd.
(9)

In [30], it is shown, that if for x ∈ [0, 1]d, one of the
forbidden-set inequalities in (9) defines a cut, i. e. it is violated,
then all other forbidden-set inequalities are fulfilled with strict
inequality. In particular this means that at most one forbidden-
set inequality of Pd,even is violated. In [2], Zhang and Siegel
present their so-called cut-search algorithm, that computes this
potentially violated forbidden-set inequality. It consists of two
steps:

1. θi = sgn (xi − 0.5) ∀ i = 1, . . . , d
2. If |{i : θi = 1}| is even, then determine i∗ =

arg mini |0.5− xi| and set θi∗ = −θi∗ .
The inequality is then given by θ>w ≤ |V | − 1 =: p, where
|V | = |{i : θi = 1}|. If x /∈ [0, 1]d, then the cut-search
algorithm for Π[0,1]d(x) can be used as above with x in the
formulas, because x ≥ 1

2 holds if and only if Π[0,1](xi) ≥
1
2 . For ADMM-based LP decoding, Zhang and Siegel show
in [6] that if Π[0,1]d(x) /∈ Pd,even, then the projection of x
onto Pd,even lies on the face defined by the unique forbidden-
set inequality, that is violated by Π[0,1]d(x):

Lemma 1 ([6]). Let x ∈ Rd, let z = Π[0,1]d(x). If V ⊆
{1, . . . , d} with |V | odd is a cutting set of z, i. e. θ>V z >
|V | − 1, then Pd,even must be on the face of Pd,even defined by
V , i. e. Pd,even ∈ FV := {w ∈ [0, 1]d : θ>V w = |V | − 1}.

The vector θV denotes the forbidden-set inequality corre-
sponding to V . Next, we show that these properties for Pd,even
are analogously valid for Pd,odd, where we can use forbidden-
set inequalities with even instead of odd subsets:

Theorem 2. Let d ∈ N>0. Then it holds:
i) Pd,odd = {x ∈ [0, 1]d :

∑
i∈V xi −

∑
i∈{1,...,d}\V xi ≤

|V | − 1 ∀V ⊆ {1, . . . , d} with |V | even}
ii) If for x ∈ [0, 1]d, one of the forbidden-set inequalities

from i) is a cut, then all other forbidden-set inequalities
of i) are fulfilled with strict inequality.

iii) The cut from ii) can be found as follows:
1. θi = sgn(xi − 0.5) ∀ i = 1, . . . , d
2. If |{i : θi = 1}| is odd, then determine i∗ =

arg mini |0.5− xi| and set θi∗ = −θi∗
iv) Let u ∈ Rd, let z = Π[0,1]d(x). If V ⊆ {1, . . . , d} with
|V | even is a cutting set of z, then Pd,odd must be on the
face of Pd,odd defined by V , i. e. Pd,odd ∈ FV := {w ∈
[0, 1]d : θ>V w = |V | − 1}.

Proof:
i) For d = 1, the parity polytope has the form P1,odd =

conv{1} = {1} and the right-hand side of i) is given
by {x1 ∈ [0, 1] : −x1 ≤ −1} = {1} = P1,odd, because
V = ∅ defines the only forbidden-set inequality in this

4

case.
Next, let us consider the case d ≥ 2. Analogously to the
formulation (5) − (7), we consider the polyhedron Q̃1

defined by

0 ≤ wj,S ≤ 1 ∀S ∈ E1∑
S∈E1

w1,S = 1

xi =
∑
S∈E1
S3i

w1,S ∀ i = 1, . . . , d,

where E1 = {S ⊆ {1, . . . , d} : |S| odd} is the
set of odd-sized subsets of {1, . . . , d}. We denote the
restriction of Q̃1 to the variables xi by ˙̃Q1 := {x ∈
Rd : ∃w : (x,w)> ∈ Q̃1}. Since the values w1,S can be
interpreted as the coefficients of a convex combination
of the incidence vectors to the sets S, it follows that

˙̃Q1 = Pd,odd = conv{x ∈ {0, 1}d :

d∑
i=1

xi is odd}.

We can prove almost exactly as in Theorem 5.15 in [29]
that Pd,odd =

˙̃Q1 can be described by the polyhedron

0 ≤ xi ≤ 1 ∀ i = 1, . . . , d∑
i∈V

xi −
∑

i∈{1,...,d}\V

xi ≤ |V | − 1 ∀V ⊆ {1, . . . , d}

with |V | even.

In the proof, we only need to replace “odd” by “even”
and vice versa. Additionally, it is used in the proof
of Theorem 5.15 that Q̇j is full-dimensional, which is
proven in Theorem 2 (c) in [31]. In our proof, we use
instead that ˙̃Q1 is full-dimensional, which this is also
shown in Theorem 2 (c) of [31].

ii) The proof from Theorem 1 in [30] can be adopted by
replacing every “odd” by “even” in the proof. The only
statement, that needs to be verified, is that two indicator
vectors of two distinct odd subsets have an `1-distance of
at least 2. This also holds for two distinct even subsets.

iii) The forbidden-set inequalities∑
i∈V

xi −
∑

i∈{1,...,d}\V

xi ≤ |V | − 1

for all V ⊆ {1, . . . , d} with |V | even can be rewritten
as ∑

i∈V
(1− xi) +

∑
i∈{1,...,d}\V

xi ≥ 1

for all V ⊆ {1, . . . , d} with |V | even. By ii), at most
one of these inequalities is violated. If one of these
inequalities is violated, it must be the one, where the left-
hand side is minimal, since the right-hand side is always
1. For finding the even-sized set corresponding to this
inequality, we define V = {i ∈ {1, . . . , d} : xi > 0.5}.
If |V | is even, then we are done. If |V | is odd, then we
must flip the membership of that index, which increases
the sum by the smallest margin. This means that we
must find the index i∗, where |xi − 0.5| is minimized

and include it in V if it was not contained in V before
or vice versa. The cut-search algorithm computes the
corresponding coefficient vector to this V . Hence, this
cut-search algorithm is correct.

iv) The proof in [6] can be used word-by-word, only state-
ment ii) is needed.

As for the polytope Pd,even, we can use x /∈ [0, 1]d as an
input in Theorem 2 iii), when we want to apply this cut-search
algorithm to Π[0,1]d(x).

V. GEOMETRICAL IDEA

In this section, we want to explain the geometrical idea
behind our new projection algorithm in an example. We want
to project the point x̂ = (1

2 , 1,
11
4)> onto the parity polytope

P3,even := conv{x ∈ {0, 1}3 : x1 + x2 + x3 is even},

i. e. we want to computez1z2
z3

 := ΠP3,even

 1
2
1
11
4

 .

As a first step, we apply the cut-search algorithm of Zhang
and Siegel [2] to

Π[0,1]3

 1
2
1
11
4

 =

 1
2
1
1

 ,

which outputs the forbidden-set inequality x1 + x2 + x3 ≤ 2.
Since 1

2 + 1 + 1 = 5
2 > 2, it holds that this inequality is,

indeed, violated by (1
2 , 1, 1)>. Hence, it follows that (1

2 , 1, 1)>

is not in P3,even and therefore not the projection of x̂ onto
P3,even. Hence, it follows from Lemma 1, that the projection
of (1

2 , 1,
11
4)> onto P3,even lies on the face

F := {x ∈ [0, 1]3 : x1 + x2 + x3 = 2}. (10)

The projection onto such a face is a difficult problem, because
the face is an intersection of two sets, namely the unit hyper-
cube [0, 1]3 and the hyperplane {x ∈ R3 : x1 +x2 +x3 = 2}.
However, as an idea in our projection, we use the fact that the
projection onto the hypercube [0, 1]3 and the projection onto a
hyperplane can both be computed easily. The projection onto
[0, 1]3 can be computed component-wise by mapping values
greater than 1 to 1, negative values to 0 and keeping all other
values unchanged. The projection onto the hyperplane can be
obtained by subtracting a certain multiple of the normal vector
of the hyperplane, which is (1, 1, 1)> in the example.

In our projection, we start with the projection of x̂ onto the
hyperplane x1 + x2 + x3 = 2, which leads to the point

v = Π{x∈R3:x1+x2+x3=2}

 1
2
1
11
4

=

 1
2
1
11
4

− 3

4

1
1
1

 =

− 1
4

1
4
2

 .

The situation is illustrated in Figure 1. In this figure, the yellow

5

Figure 1. Geometrical Idea

area illustrates the hyperplane x1 + x2 + x3 = 2 and the
red triangle is the face F . The blue volume is the part of
the unit hypercube, that fulfills the forbidden-set inequality
x1 + x2 + x3 ≤ 2, and the blue point z is the projection of
x̂ onto the face, which is - at this moment - still unknown.
If the violet point v = (− 1

4 ,
1
4 , 2)> lies in the unit hypercube

[0, 1]3, then this point will also be the projection of x̂ onto the
face F . However, this is not the case in this example.

a) First Attempt: As a next idea, we project v onto
[0, 1]3, which leads to the point

Π[0,1]3

− 1
4

1
4

2

 =

0
1
4

1

 , (11)

the orange point in Figure 1. This is no projection onto the
face since 0 + 1

4 + 1 6= 2. Even projecting this new point
onto the face, which leads to the red point in the figure, is not
the desired projection. Hence, projecting all components of v
onto [0, 1]3 is not a good idea, in general. However, we claim
that one component which is not yet contained in [0, 1] can
be fixed to 0 or 1 for the rest of the projection.

b) Second Attempt: As a second attempt, we try to fix
the first component v1. Since v1 < 0, we fix v1 to 0 and
obtain the point (0, 14 , 2)>. However, the only point on the
plane x1 = 0, that lies on the face F is the point (0, 1, 1),
which is not the wanted projection.

c) Third Attempt: Since v2 is already contained in [0, 1],
the next attempt is to fix the third component v3 to 1, i. e. we
move from

v =

− 1
4

1
4

2

 to

− 1
4

1
4

1

 .

As can be seen in Figure 1, the green line is the intersection
of the plane v3 = 1 with the face F . Since z is contained in
this green line, fixing v3 to 1 was correct.

In the second attempt, the point (0, 14 , 2)> is not con-
tained in the feasible halfspace of the forbidden-set inequality

x1 + x2 + x3 ≤ 2, in contrast to the point (− 1
4 ,

1
4 , 1)>. It is

shown later that this is the criterion for choosing the correct
component.

Since we concluded that z3 = 1, we reduce the original
problem of projecting x̂ onto P3,even to the subproblem of
projecting (x̂1, x̂2)> onto

P2,odd = conv{x ∈ {0, 1}2 : x1 + x2 is odd},

which is exactly the green line {x ∈ F : x1 + x2 = 1}
in Figure 1. This subproblem has one dimension less, and
the “type” of the parity polytope changed from even to
odd. We can now apply the same approach again. The cut-
search algorithm applied to (1

2 , 1)> leads to the forbidden-set
inequality x1 +x2 ≤ 1, which is the same as inserting x3 = 1
to the original forbidden-set inequality x1+x2+x3 ≤ 2. Later
it is proven that this fast update procedure is always correct,
such that the cut-search algorithm does not have to be applied
again from scratch.

Next, we project (1
2 , 1)> onto the hyperplane x1 + x2 = 1.

This situation is illustrated in Figure 2. The resulting point on

Figure 2. Recursive Projection

the hyperplane is

ṽ = Π{x∈R2:x1+x2=1}

(
1
2
1

)
=

(
1
2
1

)
− 1

4

(
1
1

)
=

(
1
4
3
4

)
.

Since ṽ ∈ [0, 1]2, it holds that

ΠP2,odd

(
1
2
1

)
=

(
1
4
3
4

)
.

Hence, the solution of the original projection problem is

z = ΠP3,even

 1
2

1
11
4

 =

 1
4
3
4

1

 .

VI. FIXING COMPONENTS OF THE PROJECTION

In this section, we generalize the previous example and
present the main theorem of this paper, that states how

6

components in our projection can be fixed. Its proof is inspired
by the geometric idea.

The goal of the projection is to compute z = ΠPd,even(x),
i. e. the projection of some given point x ∈ Rd onto the
even parity polytope Pd,even. As in other projection algorithms
(see e. g. [6]), we start with the application of the cut-search
algorithm of Zhang and Siegel [2] to x ∈ Rd to obtain some
forbidden-set inequality θ>w ≤ p. If θ>Π[0,1]d(x) ≤ p, then
we know that all other forbidden-set inequalities are also
fulfilled, because θ>w ≤ p is, as the output of the cut-
search algorithm, the only forbidden-set inequality of Pd,even,
that is potentially violated. Hence, in this case it holds that
Π[0,1]d(x) ∈ Pd,even and that ΠPd,even(x) = Π[0,1]d(x). If
θ>Π[0,1]d(x) > p, we know from Lemma 1 that z lies on the
face {w ∈ [0, 1]d : θ>w = p}. In this case, we compute the
orthogonal projection of x onto the hyperplane θ>w = p. The
following lemma states, that the orthogonal projection onto the
hyperplane moves the point x in the correct direction, namely
in the direction of the desired projection z = ΠPd,even(x).

Lemma 3. Let U := {w ∈ Rd : θ>w = p} be a
hyperplane and ∅ 6= F := U ∩ [0, 1]d its intersection
with the unit hypercube. Let x ∈ Rd. Then it holds that
ΠF (x) ∈ arg miny∈F ‖ΠU (x)− y‖2. This means, that the
projection of x onto F is the point on F , which has the
smallest distance to the projection of x onto the hyperplane.

Proof: Let z = ΠF (x) be the projection of x onto F and
let v = ΠU (x) be the projection of x onto the hyperplane U .
Let y ∈ F . The projection v can be written as x − λθ for
some λ ∈ R, because θ is a normal vector of the hyperplane
θ>w = p. Hence, it follows that

‖y − x‖22 = ‖y − v + v − x‖22
= ‖y − v‖22 + ‖v − x‖22 + 〈y − v,−λθ〉
= ‖y − v‖22 + ‖v − x‖22 − λ(θ>y − θ>v)

= ‖y − v‖22 + ‖v − x‖22 − λ(p− p)
= ‖y − v‖22 + ‖v − x‖22 .

We can conclude that

‖y − v‖22 = ‖y − x‖22 − ‖v − x‖
2
2 . (12)

By replacing y with z, one obtains that

‖z − v‖22 = ‖z − x‖22 − ‖v − x‖
2
2 . (13)

Hence, it follows that

‖z − v‖22
(13)
= ‖z − x‖22 − ‖v − x‖

2
2

def. of z
≤ ‖y − x‖22 − ‖v − x‖

2
2

(12)
= ‖y − v‖22 .

To perform the projection onto the hyperplane, we need to
subtract a multiple of the normal vector of the hyperplane
θ>w = p from x, i. e. we want to find the step length λ such
that x− λθ lies on the hyperplane. Therefore, the equation

p = θ>(x− λθ) = θ>x− λ
d∑
i=1

(θi︸︷︷︸
∈{±1}

)2 = θ>x− λd.

needs to be fulfilled. Hence, the projection of x onto θ>w = p
is given by

v = x− θ>x− p
d

θ.

If v lies in [0, 1]d, then v ∈ {w ∈ [0, 1]d : θ>w = p} holds.
By Lemma 1, this means that v is the wanted projection onto
Pd,even in this case. If v /∈ [0, 1]d, we claim that we can fix at
least one component zi with vi /∈ [0, 1] to 0 or 1. We claim
that we can fix those components zi, where the projection of vi
onto [0, 1] would move the point v into the feasible halfspace
θ>w ≤ p of the violated forbidden-set inequality. If vi > 1,
this would mean that we move into the direction −ei, i. e.
θ>(v − ei) ≤ p shall be fulfilled where ei denotes the i-th
unit vector. With θ>v = p and θ ∈ {±1}, we can conclude
that

θ>(v − ei) ≤ p⇔ −θ>ei ≤ 0⇔ θi ≥ 0⇔ θi = 1.

For the case vi < 0, projecting onto [0, 1] means to move into
the direction ei, i. e. θ>(v + ei) ≤ p shall be fulfilled. In the
same way, we get that

θ>(v + ei) ≤ p⇔ θ>ei ≤ 0⇔ θi ≤ 0⇔ θi = −1.

This means that, if vi > 1 and θi = 1, we claim that zi = 1.
If vi < 0 and θi = −1, we claim that zi = 0. This claim is
formalized and proven in the following main theorem of the
paper:

Theorem 4. Let x ∈ Rd with d ≥ 2. Let

θ>w =
∑
j∈V

wj −
∑

j∈{1,...,d}\V

wj ≤ |V | − 1

with V ⊆ {1, . . . , d} (|V | even or odd) be a forbidden-set
inequality. Let v = Π{w∈Rd:θ>w=|V |−1}(x) be the projection
of x onto the hyperplane θ>w = |V |−1 and let z = ΠF (x) be
the projection of x onto the face F := {w ∈ [0, 1]d : θ>w =
|V | − 1}. Let i ∈ {1, . . . , d}. Then it holds:

1) If vi > 1 and θi = 1, then zi = 1.
2) If vi < 0 and θi = −1, then zi = 0.

Proof: to 1.: It is proven by contradiction. Assume that
zi < 1:

The idea of this proof is to construct another point z + λy
on the face F , which has a shorter distance to v than z. This
results in a contradiction to Lemma 3. In order to construct z+
λy, we start in z and move along the hyperplane perpendicular
to the face F ′ := {w ∈ F : wi = 1} until we intersect it. The
intersection point is then the wanted point in F with the shorter
distance to v. The situation is illustrated in Figure 3.

a) Finding direction of improvement y: For finding the
improving direction y, we increase the component zi along
the hyperplane θ>w = |V | − 1. This means that the direction
y is the orthogonal projection of ei onto θ>w = 0. Since θ is
a normal vector of θ>w = 0, we get that

y = ei −
〈ei, θ〉
〈θ, θ〉

θ = ei −
θi∑d

j=1 θ2j︸︷︷︸
=1

θ
θi=1
= ei −

θ

d
.

7

Figure 3. Geometric idea of this proof

For j ∈ {1, . . . , d} \ {i}, this leads to

yj = (ei)j −
θj
d

= −θj
d
.

For j = i, it leads to

yi = (ei)i −
θi
d

θi=1
= 1− 1

d
=
d− 1

d
.

By multiplying with the denominator d, we get that

yj =

{
−θj if j 6= i

d− 1 if j = i
∀j = 1, . . . , d.

b) Finding the intersection point: Next, we determine the
step length λ, such that z + λy ∈ F ′. Hence, we set

1
!
= (z + λy)i = zi + λyi = zi + λ(d− 1).

It follows that λ = 1−zi
d−1 . Next, we show that z + λy lies in

F . Since z ∈ F and θ>y = 0, it follows by

θ>(z+λy) = θ>z+λθ>y = |V | − 1 +λ · 0 = |V | − 1 (14)

that z+λy is contained in the hyperplane. Therefore, it is left
to show that 0 ≤ zj + λyj ≤ 1 for all j ∈ {1, . . . , d} \ {i}.
Let j ∈ {1, . . . , d} \ {i}.

Case 1: θj = 1
Since zj ≤ 1, zi < 1 and d > 1, it follows that (z + λy)j =
zj + 1−zi

d−1 · (−θj) = zj − 1−zi
d−1 ≤ 1. In the following, we use

that z lies on the hyperplane, i. e.

d∑
l=1

θlzl = |V | − 1. (15)

Since
θl = 1⇔ l ∈ V ∀ l = 1, . . . , d (16)

and since θi = θj = 1, it follows that

|{l ∈ {1, . . . , d} \ {j, i} : l ∈ V }| = |V | − 2. (17)

Together with d ≥ 2 and 0 ≤ zj ≤ 1, we can conclude that

d∑
l=1

l/∈{i,j}

θlzl − zj︸︷︷︸
≥0

(d− 2)︸ ︷︷ ︸
≥0

≤
d∑
l=1

l/∈{i,j}

θlzj

=

d∑
l=1

l/∈{i,j}
l∈V

zj︸︷︷︸
≤1

−
d∑
l=1

l/∈{i,j}
l/∈V

zj︸︷︷︸
≥0

≤
d∑
l=1

l/∈{i,j}
l∈V

1
(17)
= |V | − 2.

By using some algebra, it follows that

d∑
l=1

l/∈{i,j}

θlzl − zj(d− 2) ≤ |V | − 2

θj=1⇔
d∑
l=1
l 6=i

θlzl − zj(d− 1) ≤ |V | − 2

(15)⇔ |V | − 1− θizi − zj(d− 1) ≤ |V | − 2
−(|V |−2)⇔ 1− θizi − zj(d− 1) ≤ 0
θi=1=θj⇔ (1− zi)θj − zj(d− 1) ≤ 0

:−(d−1)⇔ zj +
1− zi
d− 1︸ ︷︷ ︸
=λ

(−θj)︸ ︷︷ ︸
=yj

≥ 0

Hence, it follows that (z − λy)j ≥ 0.
Case 2: θj = −1

This case follows the same idea as the first case. With zj ≥ 0,
zi < 1 and d > 1, we get that

(z + λy)j = zj +
1− zi
d− 1

(−θj) = zj +
1− zi
d− 1

≥ 0.

Since θi = 1 and θj = −1, it follows with (16) that

|{l ∈ {1, . . . , d} \ {j, i} : l ∈ V }| = |V | − 1. (18)

With d ≥ 2 and 0 ≤ zj ≤ 1, we can conclude that

− (d− 2)︸ ︷︷ ︸
≥0

(1− zj)︸ ︷︷ ︸
≥0

+

d∑
l=1

l/∈{i,j}

θlzl ≤
d∑
l=1

l/∈{i,j}

θlzl

=

d∑
l=1

l/∈{i,j}
l∈V

zj︸︷︷︸
≤1

−
d∑
l=1

l/∈{i,j}
l/∈V

zj︸︷︷︸
≥0

≤
d∑
l=1

l/∈{i,j}

1
(18)
= |V | − 1.

By using some algebra, θj = −1 and θi = 1, we get that

−(d− 2)(1− zj) +

d∑
l=1

l/∈{i,j}

θlzl ≤ |V | − 1

⇔−(d− 1)(1− zj) + 1− zj +

d∑
l=1

l/∈{i,j}

θlzl ≤ |V | − 1

⇔−(d− 1)(1− zj) + 1 +

d∑
l=1
l 6=i

θlzl ≤ |V | − 1

8

⇔−(d− 1)(1− zj) + 1 +

d∑
j=1
j 6=i

θlzl − (|V | − 1) ≤ 0

⇔−(d− 1)(1− zj) + 1− θizi ≤ 0

⇔−(d− 1)(1− zj) + (1− zi)(−θj) ≤ 0

⇔(d− 1)zj + (1− zi)(−θj) ≤ d− 1

⇔zj +
1− zi
d− 1︸ ︷︷ ︸
=λ

(−θj)︸ ︷︷ ︸
=yj

≤ 1

Hence, it follows that (z − λy)j ≤ 1.
c) Distances to v: We have shown that z+λy ∈ F ′ ⊂ F .

Next, we show that z+λy is a point on the face, that is closer
to v than z.

In the following, we use that

y =

−θ1
...

−θi−1
d− 1
−θi+1

...
−θd

=

−θ1
...

−θi−1
−θi + θi + d− 1

−θi+1

...
−θd

= −θ + (θi + d− 1)ei

θi=1
= −θ + dei.

(19)

Calculating the distance between v and z, we obtain

‖v − z‖22 = ‖v − (z + λy) + λy‖22
= ‖v − (z + λy)‖22 + λ2 ‖y‖22 + 2〈v − (z + λy), λy〉.

(20)

The last two terms can be transformed to

λ2 ‖y‖22 + 2〈v − (z + λy), λy〉
= λ2 ‖y‖22 + 2λ〈v − z, y〉 − 2λ2 ‖y‖22
(19)
= −λ2 ‖y‖22 + 2λ〈v − z,−θ + dei〉

= λ
(
−λ ‖y‖22 + 2〈v − z,−θ + dei〉

)

= λ

−λ
 d∑
j=1
j 6=i

(−θj)2︸ ︷︷ ︸
=1

+ (d− 1)
2

+ 2〈v − z,−θ + dei〉

= λ

(
zi − 1

d− 1

(
(d− 1) + (d− 1)

2
)

+ 2〈v − z,−θ + dei〉
)

= λ
(
(zi − 1) d− 2θ>v + 2θ>z + 2d〈v − z, ei〉

)
= λ ((zi − 1) d− 2 (|V | − 1) + 2 (|V | − 1) + 2d (vi − zi))
= λd(zi − 1 + 2vi − 2zi)

=
1− zi
d− 1︸ ︷︷ ︸
>0

d︸︷︷︸
>0

(vi − 1︸ ︷︷ ︸
>0

+ vi − zi︸ ︷︷ ︸
>0

) > 0.

Hence, it follows with (20) that

‖v − z‖22 > ‖v − (z + λy)‖22 .

However, because of Lemma 3 and z + λy ∈ F , it holds that
‖v − z‖22 > ‖v − (z + λy)‖22 is a contradiction to z being the
projection onto the face F . Hence, the assumption zi < 1 was
wrong and it must hold that zi = 1.

to 2.: The proof is similar to the first part. To obtain a
contradiction, we assume that zi > 0.

We want to decrease the component of zi along the hyper-
plane θ>w = |V | − 1. Hence, we choose the direction vector
y as the orthogonal projection of −ei onto θ>w = 0. We get
that

y = −ei −
〈−ei, θ〉
〈θ, θ〉

θ = −ei +
θi
d
θ
θi=−1= −ei −

θ

d
.

For j ∈ {1, . . . , d} \ {i}, this leads to

yj = −(ei)j −
θj
d

= −θj
d
.

For j = i, we obtain

yi = −(ei)i −
θi
d

θi=−1= −1 +
1

d
= −d− 1

d
.

By multiplying with d, we obtain the direction vector

yj =

{
−θj if j 6= i

−(d− 1) if j = i
∀j = 1, . . . , d.

For determining the step length λ, z + λy shall be the
intersection point with the face F ′ = {w ∈ F : wi = 0}.
Hence, z + λy shall fulfill the equation

0
!
= (z + λy)i = zi − λ(d− 1).

Hence, we get that λ = zi
d−1 .

Again, we want to show that z+λy ∈ F ′ ⊂ F . As in (14),
it follows that θ>(z + λy) = |V | − 1. It remains to show that
0 ≤ zj+λyj ≤ 1 for all j ∈ {1, . . . , d}\{i}. For this purpose,
we distinguish two cases:

Case 1: θj = 1
We get that

(z + λy)j = zj +
zi

d− 1
(−θj) = zj︸︷︷︸

≤1

− zi
d− 1︸ ︷︷ ︸
>0

≤ 1.

With θj = 1 = −θi and (16) we can conclude that

|{l ∈ {1, . . . , d} \ {i, j} : l ∈ V }| = |V | − 1 (21)

and that

− (d− 2)︸ ︷︷ ︸
≥0

zj︸︷︷︸
≥0

+

d∑
l=1

l/∈{i,j}

θlzl ≤
d∑
l=1

l/∈{i,j}

θlzl

=

d∑
l=1

l/∈{i,j}
l∈V

zl︸︷︷︸
≤1

−
d∑
l=1

l/∈{i,j}
l/∈V

zl︸︷︷︸
≥0

≤
d∑
l=1

l/∈{i,j}
l∈V

1
(21)
= |V | − 1.

By using some algebra, we get that

−(d− 2)zj +

d∑
l=1

l/∈{i,j}

θlzl ≤ |V | − 1

·(−1)⇔ (d− 2)zj −
d∑
l=1

l/∈{i,j}

θlzl ≥ −(|V | − 1)

9

θj=1⇔ (d− 1)zj −
d∑
l=1
l 6=i

θlzl ≥ −(|V | − 1)

+(|V |−1)⇔ (d− 1)zj −
d∑
l=1
l 6=i

θlzl + (|V | − 1) ≥ 0

(15)⇔ (d− 1)zj + θizi ≥ 0
θi=−1=−θj⇔ (d− 1)zj + zi(−θj) ≥ 0

:(d−1)⇔ zj +
zi

d− 1︸ ︷︷ ︸
=λ

(−θj)︸ ︷︷ ︸
=yj

≥ 0.

Hence, it holds that zj + λyj ≥ 0.
Case 2: θj = −1

It holds that

(z + λy)j = zj +
zi

d− 1
(−θj) = zj︸︷︷︸

≥0

+
zi

d− 1︸ ︷︷ ︸
>0

≥ 0.

In this case, we have θi = θj = −1. Together with (16), it
follows that

|{l ∈ {1, . . . , d} \ {i, j} : l ∈ V }| = |V |

and

− (1− zj)︸ ︷︷ ︸
≥0

(d− 2)︸ ︷︷ ︸
≥0

+

d∑
l=1

l/∈{i,j}

θlzl ≤
d∑
l=1

l/∈{i,j}

θlzl

=

d∑
l=1

l/∈{i,j}
l∈V

zj︸︷︷︸
≤1

−
d∑
l=1

l/∈{i,j}
l/∈V

zj︸︷︷︸
≥0

≤
d∑
l=1

l/∈{i,j}
l∈V

1
(16)
= |V |.

We get that

−(1− zj)(d− 2) +

d∑
l=1

l/∈{i,j}

θlzl ≤ |V |

⇔ −(1− zj)(d− 1) + 1− zj +

d∑
l=1

l/∈{i,j}

θlzl ≤ |V |

θj=−1⇔ −(1− zj)(d− 1) + 1 +

d∑
l=1
l 6=i

θlzl ≤ |V |

−|V |⇔ −(1− zj)(d− 1)− (|V | − 1) +

d∑
l=1
l 6=i

θlzl ≤ 0

(15)⇔ −(1− zj)(d− 1)− θizi ≤ 0
−θi=1=−θj⇔ −(1− zj)(d− 1) + zi(−θj) ≤ 0

:(d−1)⇔ −1 + zj +
zi

d− 1
(−θj) ≤ 0

+1⇔ zj +
zi

d− 1︸ ︷︷ ︸
=λ

(−θj)︸ ︷︷ ︸
=yj

≤ 1

Hence, it follows that (z + λy)j ≤ 1 and z + λy ∈ F ′ ⊂ F .
For the distance comparison, we use

y =

−θ1
...

−θi−1
−(d− 1)
−θi+1

...
−θd

=

−θ1
...

−θi−1
−θi + θi − (d− 1)

−θi+1

...
−θd

= −θ + (θi − d− 1)ei

θi=−1= −θ − dei.

(22)

As in case 1, it holds that

‖v − z‖22 = ‖v − (z + λy)‖22 +λ2 ‖y‖22 +2〈v− (z+λy), λy〉.

For the last two terms, we get that

λ2 ‖y‖22 + 2〈v − (z + λy), λy〉
= λ2 ‖y‖22 + 2λ〈v − z, y〉 − 2λ2 ‖y‖22
(22)
= λ

(
−λ ‖y‖22 + 2〈v − z,−θ − dei〉

)

= λ

−λ
 d∑
j=1
j 6=i

(−θj)2︸ ︷︷ ︸
=1

+ (d− 1)
2

+ 2〈v − z,−θ − dei〉

= λ

(
−zi
d− 1

(
(d− 1) + (d− 1)

2
)

+ 2〈v − z,−θ − dei〉
)

= λ
(
−zid− 2θ>v + 2θ>z − 2d〈v − z, ei〉

)
= λ (−zid− 2 (|V | − 1) + 2 (|V | − 1)− 2d (vi − zi))
= λd(−zi − 2vi + 2zi)

=
zi

d− 1︸ ︷︷ ︸
>0

d︸︷︷︸
>0

(zi︸︷︷︸
>0

−2 vi︸︷︷︸
<0

) > 0.

Hence, it follows that ‖v − z‖22 > ‖v − (z + λy)‖22. Again,
Lemma 3, z + λy ∈ F and ‖v − z‖22 > ‖v − (z + λy)‖22 are
a contradiction to the fact, that z is the projection of x onto
the face F . Hence, the assumption zi > 0 was wrong and it
follows that zi = 0.

The next theorem shows that the conditions of the last the-
orem are fulfilled for at least one component vi if v /∈ [0, 1]d:

Theorem 5. Let x ∈ Rd and let

θ>w =
∑
i∈V

wi −
∑

i∈{1,...,d}\V

wi ≤ |V | − 1

with V ⊆ {1, . . . , d} (|V | odd or even) a forbidden-set
inequality. Let v = Π{w∈Rd:θ>w=|V |−1}(x) be the projection
of x onto the hyperplane θ>w = |V | − 1 with v /∈ [0, 1]d.
Then there exists at least one i ∈ {1, . . . , d} such that

vi > 1 and θi = 1

or
vi < 0 and θi = −1.

Proof: The proof is again by contradiction:
Let us assume that for all vi /∈ [0, 1], it holds that

vi < 0 and θi = 1 (23)

10

or
vi > 1 and θi = −1. (24)

In particular, it holds that vi ≤ 1 for all i = 1, . . . , d with
θi = 1 and that vi ≥ 0 for all i = 1, . . . , d with θi = −1.
Since v /∈ [0, 1]d, there exists at least one component vj with
j ∈ {1, . . . , d} that fulfills (23) or (24). If vj < 0 and θj = 1,
it follows that

|V | − 1 = θ>v =
∑
i∈V
i 6=j

vi︸︷︷︸
≤1

+ vj︸︷︷︸
<0

−
∑

i∈{1,...,d}\V

vi︸︷︷︸
≥0

<
∑
i∈V
i 6=j

1 = |V | − 1.

If vj > 1 and θj = −1, it holds that

|V | − 1 = θ>v =
∑
i∈V

vi︸︷︷︸
≤1

− vj︸︷︷︸
>1

−
∑

i∈{1,...,d}\V
i6=j

vj︸︷︷︸
≥0

<
∑
i∈V

1− 1 = |V | − 1.

Both cases lead to a contradiction. Hence, the assumption was
wrong and the claim follows.

VII. RECURSIVE STRUCTURE OF THE PROJECTION

Up to now, we established the following procedure for
computing the projection z = ΠPd,even(x): First, we compute
the potentially violated forbidden-set inequality θ>w ≤ p of
Π[0,1]d(x) and check whether θ>Π[0,1]d(x) ≤ p. If this is true,
then z = Π[0,1]d(x). Otherwise, we know from Lemma 1, that
z ∈ {w ∈ [0, 1]d : θ>w = p} and compute the projection
v = x− θ>x−p

d θ of x onto the hyperplane. If v ∈ [0, 1]d, then
z = v. Otherwise, Theorem 5 tells us that we can compute
at least one component of z by using Theorem 4. Next, we
show that the remaining components of z are the solution
of a smaller-dimensional projection problem onto Pd̃,even or
Pd̃,odd, where d̃ < d. First, we consider the case that only one
component of z was fixed with Theorem 4. For this purpose,
we show that the points in the parity polytopes exhibit the
following recursive structure:

Theorem 6. Let d ≥ 2 and i ∈ {1, . . . , d}. Then it holds:

1) {x ∈ Pd,even : xi = 1} =

{x̃1, . . . , x̃i−1, 1, x̃i, . . . , x̃d−1)> ∈ Rd : x̃ ∈ Pd−1,odd}
2) {x ∈ Pd,even : xi = 0} =

{(x̃1, . . . , x̃i−1, 0, x̃i, . . . , x̃d−1)> ∈ Rd : x̃ ∈ Pd−1,even}
3) {x ∈ Pd,odd : xi = 1} =

{(x̃1, . . . , x̃i−1, 1, x̃i, . . . , x̃d−1)> ∈ Rd : x̃ ∈ Pd−1,even}
4) {x ∈ Pd,odd : xi = 0} =

{(x̃1, . . . , x̃i−1, 0, x̃i, . . . , x̃d−1)> ∈ Rd : x̃ ∈ Pd−1,odd}

Proof: For 1.) : Since

Pd,even = conv{x ∈ {0, 1}d :

d∑
j=1

is even}

is a convex hull of finitely many points, it follows that it is
a polyhedron. Since Pd,even ⊆ [0, 1]d, it follows that xi ≤ 1
is a valid inequality and {x ∈ Pd,even : xi = 1} is a face of
Pd,even. Hence, all extreme points of {x ∈ Pd,even : xi = 1}
are also extreme points of Pd,even. Together with the fact that
all extreme points of Pd,even are binary vectors, it follows that
{x ∈ Pd,even : xi = 1} does also only have binary vectors as
extreme points. Since {x ∈ Pd,even : xi = 1} ⊆ [0, 1]d, it even
follows that its binary solutions are exactly its extreme points.
For any binary vector x ∈ {0, 1}d, it holds that

x ∈ Pd,even and xi = 1 (25)

⇔ xi = 1 and
d∑
j=1

xj is even (26)

⇔ xi = 1 and
d∑
j=1
j 6=i

xj is odd (27)

Since {x ∈ Pd,even : xi = 1} ⊆ [0, 1]d is a polytope, it follows
from Minkowski’s Theorem that {x ∈ Pd,even : xi = 1} is the
convex hull of its extreme points, i. e.

{x ∈ Pd,even : xi = 1}

(27)
= conv

(x̃1, . . . , x̃i−1, 1, x̃i, . . . , x̃d−1)> ∈ {0, 1}d :

d−1∑
j=1

x̃j is odd

(∗)
=

∑L
l=1 λl

 x̃l1
...

x̃li−1

1

∑L
l=1 λl

 x̃li
...

x̃ld−1

|
L∑
l=1

λl = 1; x̃l ∈ {0, 1}d−1;

d−1∑
j=1

x̃lj is odd; 0 ≤ λl ≤ 1 ∀ l ∈ {1, . . . , L}, L ∈ N>0

= {(x̃1, . . . , x̃i−1, 1, x̃i, . . . , x̃d−1)> ∈ Rd : x̃ ∈ Pd−1,odd}.

In (∗), we use that
∑L
l=1 λl · 1 = 1. The proofs for 2) to

4) are completely analogous to 1). In 2) and 4), we need to
replace 1 by 0 in the corresponding i-th components and use∑L
l=1 λl · 0 = 0 instead of

∑L
l=1 λl = 1. The equivalences in

(25) - (27) are replaced by:

2) x ∈ Pd,even and xi = 0

⇔ xi = 0 and
d∑
j=1

xj is even

⇔ xi = 0 and
d∑
j=1
j 6=i

xj is even.

11

3) x ∈ Pd,odd and xi = 1

⇔ xi = 1 and
d∑
j=1

xj is odd

⇔ xi = 1 and
d∑
j=1
j 6=i

xj is even.

4) x ∈ Pd,odd and xi = 0

⇔ xi = 0 and
d∑
j=1

xj is odd

⇔ xi = 0 and
d∑
j=1
j 6=i

xj is odd.

Next, we show that after fixing one component of zi, the
remaining entries of z are again the solution of a projection
problem onto a parity polytope. For this purpose, we show that
fixing one component reduces the problem to a projection of
the remaining components onto a smaller-dimensional parity
polytope.

Theorem 7. 1) Let z = ΠPd,even(x) with zi = 1 for some
i ∈ {1, . . . , d}. Then it holds:

(z1, . . . , zi−1, zi+1, . . . , zd) =

ΠPd−1,odd(x1, . . . , xi−1, xi+1, . . . , xd)
>

2) Let z = ΠPd,even(x) with zi = 0 for some i ∈ {1, . . . , d}.
Then it holds:

(z1, . . . , zi−1, zi+1, . . . , zd) =

ΠPd−1,even(x1, . . . , xi−1, xi+1, . . . , xd)
>

3) Let z = ΠPd,odd(x) with zi = 1 for some i ∈ {1, . . . , d}.
Then it holds:

(z1, . . . , zi−1, zi+1, . . . , zd) =

ΠPd−1,even(x1, . . . , xi−1, xi+1, . . . , xd)
>

4) Let z = ΠPd,odd(x) with zi = 0 for some i ∈ {1, . . . , d}.
Then it holds:

(z1, . . . , zi−1, zi+1, . . . , zd) =

ΠPd−1,odd(x1, . . . , xi−1, xi+1, . . . , xd)
>

Proof: It follows directly from Theorem 6 and

‖z − x‖22=

d∑
j=1

(zj − xj)2 =

d∑
j=1
j 6=i

(zj − xj)2 + |zi − xi|2

=‖(z1, . . . , zi−1, zi+1, . . . , zd)−
(x1, . . . , xi−1, xi+1, . . . , xd)‖22 + |zi − xi|2.

If more than one component of z was fixed with Theorem 4,
then Theorem 7 can be applied several times inductively so
that the remaining components of z are again the solution of
a projection problem onto a parity polytope.

Hence, the idea of our algorithm is to repeat our mentioned
steps (see the beginning of this section) recursively in order to
solve the corresponding smaller-dimensional projection prob-
lem onto some parity polytope Pd̃,even or Pd̃,odd with d̃ < d.
Since we showed in Theorem 2 that the required properties for
the parity polytope Pd̃,even from the literature are also true in
the analogous way for Pd̃,odd, it is not relevant in our problem,
on which type of parity polytope we need to project. In the
following, we will just talk about (csa), when we mean the
cut-search algorithm of Zhang and Siegel [2] for Pd̃,even or the
analog cut-search algorithm from Theorem 2 iii) for Pd̃,even,
respectively.

The first step in our proposed projection algorithm was the
application of (csa) to Π[0,1]d(x). Let us assume we are now
in the recursive part of the algorithm with d̃ < d, i. e. we
already fixed some components of z and want to project the
remaining components x̃ ∈ Rd̃ of x to the corresponding (even
or odd) smaller-dimensional parity polytope. Next, we will
show that the (csa) applied to Π[0,1]d̃(x̃) can be computed
very efficiently. We do not need to apply (csa) again from
the scratch. Instead, we can use the output θ>w ≤ p with
θ ∈ {±1}d of (csa) applied to Π[0,1]d(x), which was computed
in the previous step. The output of (csa) for Π[0,1]d̃(x̃) is then
given by the components of θ, where zi is not yet fixed. The
right-hand side p̃ is the right-hand side of the previous step
minus the number of components of z that were fixed to 1 in
the previous step. The next theorem shows this statement for
the case that one component of z was fixed in the previous
step.

Theorem 8. Let x = (x̃1, . . . , x̃i−1, y, x̃i, . . . , x̃d−1)> ∈ Rd
with d ≥ 2.

1) Let (θ, p) ∈ Rd+1 be the forbidden-set inequality re-
turned by (csa) applied to x and Pd,even. Let θi = 1.
Then ((θ1, . . . , θi−1, θi+1, . . . , θd)

>, p−1) is the output
of (csa) applied to x̃ and Pd−1,odd.

2) Let (θ, p) ∈ Rd+1 be the forbidden-set inequality re-
turned by (csa) applied to x and Pd,odd. Let θi = 1.
Then ((θ1, . . . , θi−1, θi+1, . . . , θd)

>, p−1) is the output
of (csa) applied to x̃ and Pd−1,even.

3) Let (θ, p) ∈ Rd+1 be the forbidden-set inequality re-
turned by (csa) applied to x and Pd,even. Let θi = −1.
Then ((θ1, . . . , θi−1, θi+1, . . . , θd)

>, p) is the output of
(csa) applied to x̃ and Pd−1,even.

4) Let (θ, p) ∈ Rd+1 be the forbidden-set inequality re-
turned by (csa) applied to x and Pd,odd. Let θi = −1.
Then ((θ1, . . . , θi−1, θi+1, . . . , θd)

>, p) is the output of
(csa) applied to x̃ and Pd−1,odd.

Proof: We use that the right-hand side of any forbidden-
set inequality θ>w ≤ p is given by p = |{i ∈ {1, . . . , } : θi =
1}| − 1.

to 1): We consider two cases:
Case 1: |{j ∈ {1, . . . , d} : xj > 0.5}| is odd

In this case, the (csa) for x and Pd,even stops after step 1 and it
holds that θj = 1 if and only if xj > 0.5 for all j = 1, . . . , d.
Since θi = 1, it holds that y > 0.5 and that

|{j ∈ {1, . . . , d} \ {i} : xj > 0.5}| =

12

|{j ∈ {1, . . . , d} : xj > 0.5}| − 1

is even. This means that the (csa) for x̃ and Pd−1,odd also stops
after step 1 and computes
((θ1, . . . , θi−1, θi+1, . . . , θd)

>, p− 1).
Case 2: |{j ∈ {1, . . . , d} : xj > 0.5}| is even

In this case, the (csa) applied to x and Pd,even would need to
do step 2, i. e. it would compute i∗ and set θi∗ := −θi∗ . We
consider two cases:

Case 2a: i∗ = i
Because of θi = 1 and i∗ = i, it holds in this case that y ≤ 0.5.
Then, the (csa) for x̃ and Pd−1,odd would compute the vector
(θ1, . . . , θi−1, θi+1, . . . , θd)

> in step 1 and stop because

|{j ∈ {1, . . . , d} \ {i} : xj > 0.5}| =
|{j ∈ {1, . . . , d} : xj > 0.5}|

is even. The right-hand side is p−1 = |{j ∈ {1, . . . , d}\{i} :
xj > 0.5}| − 1, because no component of θ is flipped and
p− 1, the right-hand side after step 1, is not increased to p in
step 2, as it is done in the (csa) applied to x and Pd,even.

Case 2b: i∗ 6= i
Because of θi = 1 and i∗ 6= i, it holds that y > 0.5. Hence, it
follows that

|{j ∈ {1, . . . , d} \ {i} : xj > 0.5}| =
|{j ∈ {1, . . . , d} : xj > 0.5}| − 1

(28)

is odd. Since, i∗ 6= i, the same entry of θ is flipped by (csa)
for x and x̃. Hence, the (csa) applied to x̃ and Pd−1,odd would
output the coefficient vector (θ1, . . . , θi−1, θi+1, . . . , θd)

>.
From (28) and the flipping of θi∗ in the (csa) for x and x̃, it
follows that the right-hand side for x̃ is one less than the one
for x after step 1 and step 2 of (csa). Hence, the right-hand
side p− 1 is outputted by the (csa) applied to x̃ and Pd−1,odd.

to 2): the proof of 1) can be used, where every “odd” is
replaced by “even” and vice versa.

to 3): We consider two cases:
Case 1: |{j ∈ {1, . . . , d} : xj > 0.5}| is odd

In this case, the (csa) applied to x and Pd,even stops after step
1 and xj > 0.5 is equivalent to θj = 1 for all j = 1, . . . , d.
Hence, it follows from θi = −1 that y ≤ 0.5 and that

|{j ∈ {1, . . . , d} \ {i} : xj > 0.5}| =
|{j ∈ {1, . . . , d} : xj > 0.5}|

is odd. Hence, the (csa) applied to x̃ also stops after step 1
and outputs ((θ1, . . . , θi−1, θi+1, . . . , θd)

>, p).
Case 2: |{j ∈ {1, . . . , d} : xj > 0.5}| is even

In this case, (csa) applied to x and Pd,even is not finished after
step 1 and has to flip θi∗ . There can occur two cases:

Case 2a: i∗ = i.
Since θi = −1, it must hold that y > 0.5 and that

|{j ∈ {1, . . . , d} \ {i} : xj > 0.5}| =
|{j ∈ {1, . . . , d} : xj > 0.5}| − 1

is odd. Hence, the (csa) applied to x̃ and Pd−1,even
stops after step 1 and returns the coefficient vector
(θ1, . . . , θi−1, θi+1, . . . , θd)

>. After step 1 of (csa), the right-
hand side to x is one unit larger than the one of x̃. However,

since the (csa) applied to x flips θi from 1 to −1, the computed
right-hand sides to x and x̃ are the same after the termination
of (csa). Hence the (csa) applied to x̃ and Pd−1,even returns
((θ1, . . . , θi−1, θi+1, . . . , θd)

>, p).
Case 2b: i∗ 6= i

In this case, θi is always −1 during the whole (csa) applied
to x and Pd,even. Hence, it holds that y ≤ 0.5 and that

|{j ∈ {1, . . . , d} \ {i} : xj > 0.5}| =
|{j ∈ {1, . . . , d} : xj > 0.5}|

is even. Hence, the (csa) for x and x̃ (with Pd,even and
Pd−1,even) will compute the same right-hand side in step 1
and flip the same entry of θ. Hence, the (csa) applied to x̃ and
Pd−1,even outputs
((θ1, . . . , θi−1, θi+1, . . . , θd)

>, p).
to 4): the proof of 3) can be used by replacing every “even”

by “odd” and vice versa.
If more than one component of z was fixed in the last

iteration, then the last theorem can be applied several times
inductively. The next step after computing the potentially
violated forbidden-set inequality θ̃>w̃ ≤ p̃ of Π[0,1]d̃(x̃) would

be the check whether θ̃>Π[0,1]d̃(x̃) ≤ p̃. If the check is
fulfilled, then Π[0,1]d̃(x̃) would be the projection of x̃ onto
Pd̃,even or Pd̃,odd, respectively. However, we show that this
check is never fulfilled and therefore redundant in the recursive
part of our projection algorithm. If the check is true, then
the corresponding very first check in the beginning of the
algorithm would have also been true and the algorithm would
have terminated in the beginning with Π[0,1]d(x). This is
shown in the next theorem:

Theorem 9. The check θ>Π[0,1]d(x) ≤ p is only necessary in
the beginning of the proposed projection algorithm, i. e. it is
redundant in the recursive calls of the algorithm.

Proof: Let x ∈ Rd and (θ, p) the input of a recursive call
of the described projection algorithm. Since it is a recursive
call, at least one component of the wanted projection z was
fixed before in the algorithm by using Theorem 4. With
Theorem 8, it follows that θ>w ≤ p is the output of the
corresponding cut-search algorithm applied to Π[0,1]d(x) and
Pd,even (or Pd,odd). If we undo the last fixing of a component zj

in the algorithm, we obtain a larger vector
(

x
x̃d+1

)
∈ Rd+1.

(Without loss of generality, the last component of z was fixed).
There are two possible cases when we fix components of z
according to Theorem 4:

Case 1: θd+1 = 1 and vd+1 > 1
From the way, how components of z are fixed in Theorem 4,

and from Theorem 8, it follows that(
θ
1

)>
w̃ ≤ p+ 1 (29)

is the result of the cut-search algorithm applied to

Π[0,1]d+1

(
x

x̃d+1

)
with Pd+1,odd (or Pd+1,even).

If θ>Π[0,1]d(x) ≤ p, then it holds that(
θ
1

)>
Π[0,1]d+1

(
x

x̃d+1

)
=

13

θ>Π[0,1]d(x)︸ ︷︷ ︸
≤p

+ Π[0,1](x̃d+1)︸ ︷︷ ︸
≤1

≤ p+ 1.

Case 2: θd+1 = −1 and vd+1 < 0
From Theorem 8 and the way, how components of z are

fixed in Theorem 4, it follows that(
θ
−1

)>
w̃ ≤ p (30)

is the result of the cut-search algorithm applied to

Π[0,1]d+1

(
x

x̃d+1

)
with Pd+1,even (or Pd+1,odd).

If θ>Π[0,1]d(x) ≤ p, then it holds that(
θ
−1

)>
Π[0,1]d+1

(
x

x̃d+1

)
=

θ>Π[0,1]d(x)︸ ︷︷ ︸
≤p

−Π[0,1](x̃d+1)︸ ︷︷ ︸
≥0

≤ p.

Summarizing both cases, we can conclude that if the check in
Theorem 9 is fulfilled during a recursive call of the proposed

projection algorithm, then the corresponding vector
(

x
x̃d+1

)
fulfills the corresponding higher-dimensional check (29) or
(30). Inductively, it follows that if the check in Theorem 9
is fulfilled, then the very first check of the algorithm, that
tests whether the projection onto the unit hypercube lies in
the parity polytope, was also fulfilled. But in this case, the
algorithm terminates with the projection onto the unit hyper-
cube without starting the recursion. Hence, if our projection
algorithm is currently in a recursive call, then the check from
Theorem 9 is never fulfilled, i. e. we can omit the check during
the recursive part of the proposed algorithm.

After the projection onto the hyperplane, there are three
possibilites: A component vi could lie outside of [0, 1] and
fulfill one of the two fixing conditions from Theorem 4, such
that we can compute zi, or vi lies outside of [0, 1] and cannot
be fixed, or vi ∈ [0, 1]. If all components of v lie in [0, 1], the
algorithm terminates and z = v. Next, we want to investigate
the question, how the components of v can switch between
these three cases in the subsequent recursive steps.

For this purpose, let us assume first that the projection v
of x onto the current hyperplane θ>w = p is not in [0, 1]d

(otherwise, z = v and we are finished) and that we could
only fix one component of z, i. e. there exists exactly one
i ∈ {1, . . . , d} with

vi > 1 and θi = 1

or
vi < 0 and θi = −1.

Let x̃ = (x1, . . . , xi−1, xi+1, . . . , xd)
> be the remaining

components of x in the next recursive step and let θ̃ =
(θ1, . . . , θi−1, θi+1, . . . , θd)

> and

p̃ =

{
p if vi < 0

p− 1 if vi > 1

be the violated forbidden-set inequality in the next recursive
step. Let (ṽ1, . . . , ṽi−1, ṽi+1, . . . , ṽd)

> = x̃ − θ̃>x̃−p̃
d−1 θ̃ be the

projection of x̃ ∈ Rd̃ = Rd−1 onto the hyperplane θ̃>w̃ = p̃
in the next recursive step. For simplifying the notation, we
assume without loss of generality, that j < i. Then, the
following holds for any component ṽj :

Theorem 10. i) If θj = 1, then ṽj > vj .
ii) If θj = −1, then ṽj < vj .

Proof: We make a case distinction:
In both cases, we use that

− 1

d− 1
= −1

d
− 1

(d− 1)d
. (31)

Case 1: vi > 1, θi = 1:

ṽj = xj −

d∑
l=1
l 6=i

θlxl − (p− 1)

d− 1
θj

= xj −

d∑
l=1

θlxl − p

d− 1
θj +

θixiθj
d− 1

− 1

d− 1
θj

(31)
= xj −

d∑
l=1

θlxl − p

d
θj︸ ︷︷ ︸

=vj

−

d∑
l=1

θlxl − p

(d− 1)d
θj

+
θixiθj
d− 1

− 1

d− 1
θj

= vj +
θj

d− 1

θixi −
d∑
l=1

θlxl − p

d
− 1

θi=1
= vj +

θj
d− 1

xi − θ>x− p
d

θi︸ ︷︷ ︸
=vi

−1

= vj +

θj
d− 1

(vi − 1).

If θj = 1, then it holds that ṽj = vj +
1

d− 1︸ ︷︷ ︸
>0

(vi − 1)︸ ︷︷ ︸
>0

> vj .

If θj = −1, then it holds that ṽj = vj −
1

d− 1︸ ︷︷ ︸
>0

(vi − 1)︸ ︷︷ ︸
>0

< vj .

Case 2: vi < 0, θi = −1:

ṽj = xj −

d∑
l=1
l 6=i

θlxl − p

d− 1
θj

= xj −

d∑
l=1

θlxl − p

d− 1
θj +

θixiθj
d− 1

(31)
= xj −

d∑
l=1

θlxl − p

d
θj︸ ︷︷ ︸

=vj

−

d∑
l=1

θlxl − p

(d− 1)d
θj +

θixiθj
d− 1

14

= vj −
θj

d− 1

−θixi +

d∑
l=1

θlxl − p

d

θi=−1= vj −

θj
d− 1

xi − θ>x− p
d

θi︸ ︷︷ ︸
=vi

 = vj −
θj

d− 1
vi.

If θj = 1, then it holds that ṽj = vj −
1

d− 1︸ ︷︷ ︸
>0

vi︸︷︷︸
<0

> vj .

If θj = −1, then it holds that ṽj = vj +
1

d− 1︸ ︷︷ ︸
>0

vi︸︷︷︸
<0

< vj .

If more than one component was fixed, the analogous result
follows from applying the last theorem inductively. Hence,
it follows that components vj of the projection onto the
hyperplane are strictly monotonically increasing in the case
of θj = 1 and strictly monotonically decreasing in the case
of θj = −1. Since we can fix components of z in the cases
(vj > 1, θj = 1) and (vj < 0, θj = −1), this means that the
v′js move into the direction where Theorem 4 is applicable.
Additionally, this means if vj ∈ [0, 1], then there are two
possibilities:

1) vj stays in [0, 1] in every following recursion.
2) vj is fixed in the first recursion, where it is not in [0, 1]

anymore.

VIII. PROJECTION ALGORITHM

Our projection method is summarized in Algorithm 1.
In the lines 1− 5, we apply the cut-search algorithm to x,

which leads to the same result as applying it to Π[0,1]d(x).
In the lines 6 − 8, it is checked whether Π[0,1]d(x) is lying
in the parity polytope. If this is true, then Π[0,1]d(x) is the
projection of x onto Pd,even and therefore returned. If Π[0,1]d /∈
ΠPd,even , we enter the while loop, the recursive part of the
projection. Before entering the loop, we initialize l by d. This
variable tracks the number of components of z, that are not
yet computed. For the implementation, we swap the computed
components of z to the beginning of the vector and continue
with the remaining vector. The variable f tracks the index
of the first uncomputed component of z, whereas fold stores
the value of f from the beginning of the current while loop
iteration. The index vector Q tracks all swaps, that were made.
The lines 12− 17 describe one of the two stopping criteria. If
the current dimension l of the recursive subproblem is 1, then
there are the following two possibilities for the corresponding
parity polytope: The first case is

P1,even = conv{x ∈ {0, 1} : x1 is even} = conv{0} = {0}.

In this case, P1,even can be described by the box constraints
0 ≤ x ≤ 1 and the only forbidden-set inequality x ≤ 0.
This means that θf = 1 and p = 0 in this case. The second
possibility is the odd parity polytope

P1,odd = conv{x ∈ {0, 1} : x1 is odd} = conv{1} = {1}.

Algorithm 1 Projection Algorithm

Require: x ∈ Rd, Output: z = ΠPd,even(x)
1: θi := sgn(xi − 0.5) ∀ i = 1, . . . , d
2: if |{i : θi = 1}| is even then
3: i∗ := arg mini |xi − 0.5|
4: θi∗ = −θi∗
5: p = |{i : θi = 1}| − 1
6: u = Π[0,1]d(x)
7: if θ>u ≤ p then
8: return u
9: l = d, f = 1, fold = 1

10: Q = [1, . . . , d]
11: while True do
12: if l = 1 then
13: if θf = 1 then
14: zf = 0
15: else
16: zf = 1
17: break
18: vf,...,d = xf,...,d − 〈θf,...,d,xf,...,d〉−p

l θf,...,d
19: for i = fold, . . . , d do
20: if vi > 1 then
21: if θi = 1 then
22: swap Qf and Qi
23: xi = xf
24: θi = θf
25: zf = 1
26: f = f + 1
27: p = p− 1
28: else if vi < 0 then
29: if θi = −1 then
30: swap Qf and Qi
31: xi = xf
32: θi = θf
33: zf = 0
34: f = f + 1
35: if fold = f then
36: zfold,...,d = vfold,...,d
37: break
38: l = d− f + 1, fold = f
39: return z[Q]

In this case, P1,odd can be described by 0 ≤ x ≤ 1 and the
only forbidden-set inequality −x ≤ −1. This means that θf =
−1 and p = −1 in this case. Hence, we can make the check
θf = 1 to distinguish both cases. If this stopping criterion
is not fulfilled, we continue and compute the projection of
the remaining components of x onto the hyperplane defined
by the current forbidden-set inequality in line 18. In the lines
19-34, we go through all components of vf,...,d and check to
which components of z Theorem 4 can be applied, i. e. which
components of z can be fixed in this iteration. For the swaps
in x and θ in the lines 23-24 and 31-32, it is sufficient to

15

0 10 20 30 40 50

1

2

3

4

5

6

Check degree d

A
ve

ra
ge

nu
m

be
r

of
ite

ra
tio

ns
[−1, 1)d

[−3, 3)d

[−5, 5)d

[−10, 10)d

log2(d)

Figure 4. Number of while loop iterations in the case Π[0,1]d (x) /∈ Pd,even

update xi and θi, because xf and θf are not needed anymore.
Theorem 5 says that at least one component can be fixed in the
case of vf,...,d /∈ [0, 1]l. Hence, if no component was fixed, i. e.
the check in line 35 is true, then we are in the case vf,...,d ∈
[0, 1]l and we can stop with zf,...,d = vf,...,d. Otherwise, we
update the current problem size l, update fold and consider
the corresponding smaller-dimensional projection problem in
the next while loop iteration. In the algorithm, we do not check
whether l = 0, which could happen theoretically. However, the
next theorem shows that this situation cannot occur:

Theorem 11. In Algorithm 1, the variable l cannot become
zero.

Proof: Assume the claim is wrong, i. e. l is set to zero
during an iteration of the while loop in Algorithm 1. Let
v ∈ Rd̃ be the current projection of x ∈ Rd̃ onto the current
hyperplane θ>w = p = |{i : θi = 1}| − 1 in the iteration of
the while loop, where l is set to zero. Since l is set to zero
in line 38, this means that all remaining components of the
projection on x onto the face {w ∈ [0, 1]d̃ : θ>w = p} were
fixed with Theorem 4. This means that for all i = 1, . . . , d̃, it
must hold that

vi > 1 and θi = 1

or
vi < 0 and θi = −1.

Since v lies on the hyperplane θ>v = p, it follows that

p = θ>v =

d̃∑
i=1
θi=1

vi︸︷︷︸
>1

−
d̃∑
i=1
θi=−1

vi︸︷︷︸
<0

>

d̃∑
i=1
θi=1

1 =

|{i : θi = 1}| = p+ 1,

which is a contradiction. Hence, the assumption was wrong
and the claim follows.

Since we fix, by Theorem 5, at least one component of
z in every iteration of the while loop in Algorithm 1, it
follows that the worst-case complexity of Algorithm 1 is
O(d)+d ·O(d) = O(d2). Figure 4 displays the actual average
number of iterations in the case Π[0,1]d(x) /∈ Pd,even that we
measured in our numerical results for different ranges of input

vectors. In the Figure, one can see that the actual number is
close to log2(d). Hence, we make the conjecture that half of
the components are fixed in average. A mathematical intuition
behind this conjecture is that when we compute the projection
v onto the hyperplane θ>x = p, then every component vj
can be in [0, 1] or not. If vj ∈ [0, 1], Theorem 10 states
that vj stays in [0, 1] for the whole algorithm or is fixed
in the first iteration where it leaves [0, 1]. Staying in [0, 1]
would be a good situation, because if v ∈ [0, 1]d, then the
algorithm terminates and v is the wanted projection onto the
parity polytope (see line 35 of Algorithm 1). In the more
difficult situation vj /∈ [0, 1], there are four possibilities:
(vj < 0, θj = 1), (vj < 0, θj = −1), (vj > 1, θj = 1)
and (vj > 1, θj = −1). In two of four, i.e. in half of the
cases, we can fix the component zj of the projection by using
Theorem 4. Under the conjecture that all four cases occur
with equal probability, we would obtain an average complexity
of O(d) + O(d2) + O(d4) + · · · = O(2d) = O(d), i. e. we
would have a quadratic worst-case and a linear average-case
complexity, similar to the algorithm in [8].

IX. NUMERICAL RESULTS

In this section, we compare our new projection algorithm
with the projection algorithms from the literature, namely with
the algorithm of Zhang and Siegel [6], Wasson and Draper [7],
Zhang et al. [8], and Wei and Banihashemi [11]. To have an
estimation of the potential complexity for efficient hard- and
software implementations, we count the number of arithmetic
operations. For this purpose, we count the number of divisions,
the number of multiplications and the number of all other
low-complexity operations, as e. g. comparisons, additions,
substractions or negations. We avoided unnecessary divisions
by replacing the comparisons δ

ζ > ti in Algorithm 3 of [6] by
δ > ζti and by storing isi instead of si for the computation
of ρ in Algorithm 2 of [7]. Comparisons with 0, max(x, 0),
the floor operation and assignments to 1, 0, −1 or other
assignments without arithmetic operations were not counted
to the low-complexity operations due to their negligible effort
in hardware. Since the coefficient vector θ ∈ {±1}d (or the
vector f ∈ {0, 1}d in [7]) could be stored as a boolean array,
comparisons of the form θi = 1 or θi = −1 are also negligible
and were not counted. Operations of the form a + θi · b, as
they appear in several algorithms, were therefore counted as
one low-complexity operation, because one can check whether
θi = 1 and then make an addition or substraction to compute
a + b or a − b, respectively. The sortings from [6] and [7]
were implemented with the quicksort algorithm with the last
element as pivot element. For simplification, we also chose
the last element as pivot element in the partial sorting and the
projection onto the simplex in [8].

We simulated projections onto Pd,even for input vectors from
[−1, 1)d, [−3, 3)d, [−5, 5)d, and [−10, 10)d. For [−1, 1)d, the
dimensions d = 2, . . . , 20 were simulated. For the other three
simulations, the dimensions d = 2, . . . , 50 were investigated.
For every d, one million randomly generated vectors were
projected. The results are shown in Figures 5 to 8. Our
proposed algorithm is denoted by “Fix”. Figures 5a to 8a

16

5 10 15 20

50

100

150

Check degree d

A
ve

ra
ge

nu
m

be
r

of
op

er
at

io
ns

[6]
[7]

[11]
[8]
Fix

(a) Low-complexity operations

5 10 15 20

0

2

4

6

Check degree d

A
ve

ra
ge

nu
m

be
r

of
op

er
at

io
ns

[6] mult
[7] mult
[8] mult
[6] div
[7] div

[11] div
[8] div
Fix div

(b) Multiplications and divisions

Figure 5. Comparison of arithmetical operations for different projection methods with random input from [−1, 1)d

0 10 20 30 40 50

0

200

400

600

Check degree d

A
ve

ra
ge

nu
m

be
r

of
op

er
at

io
ns

[6]
[7]
[11]
[8]
Fix

(a) Low-complexity operations

0 10 20 30 40 50

0

5

10

Check degree d

A
ve

ra
ge

nu
m

be
r

of
op

er
at

io
ns

[6] mult
[7] mult
[8] mult
[6] div
[7] div
[11] div
[8] div
Fix div

(b) Multiplications and divisions

Figure 6. Comparison of arithmetical operations for different projection methods with random input from [−3, 3)d

show the average number of low-complexity operations and
Figure 5b to 8b the average number of multiplications and
divisions for different check degrees. After our mentioned
simplifications, our algorithm and the algorithm from [11] do
not need any multiplications. Hence, the corresponding two
plots are left out in the Figures 5b to 8b. The algorithms
from [6] and [7] need both exactly one division in the difficult
case of Π[0,1]d(x) /∈ Pd,even and zero in the simple case
Π[0,1]d(x) ∈ Pd,even. The number of divisions of [8] are very
similar and form basically the same lines in the Figures 5b
to 8b. In these Figures, the number of multiplications and
divisions is monotonically decreasing for all five algorithms
after a certain value of d, although the problem size increases
for growing d. The same situation can be observed for the low-
complexity operations of [11]. This behavior can be explained
by Figure 9. It shows the probabilities, measured through
our simulations, that the difficult case Π[0,1]d(x) /∈ Pd,even
occurs for some random input from our considered ranges.
For all four ranges, we can see that the probabilities decrease
after a certain certain check degree. In our proposed and
in the two algorithms from [6], [7] it is checked whether
Π[0,1]d(x) ∈ Pd,even. In [8], this check is done in the main

case of their algorithm. The approximative algorithm from [11]
stops after one iteration in that case. Hence, the number of
multiplications and divisions (and low-complexity operations
for [11]) decrease for large d. Additionally, this means that for
[−1, 1)d and d > 20, the projection is very simple, because the
hard case Π[0,1]d(x) /∈ Pd,even is happening only very rarely.
Hence, we only considered the degrees d ≤ 20 for this range.

Table I
MAXIMUM GAIN

input low-complexity operations all arith. op.

[−1, 1)d -13% -14%

[−3, 3)d -31% -32%

[−5, 5)d -36% -37%

[−10, 10)d -37% -37%

As can be seen in the Figures 5 to 8, our implementation
needs less low-complexity operations than all other implemen-
tations for every dimension d and every range the random input
is created from. The Figures also show that low-complexity

17

0 10 20 30 40 50

0

500

1,000

1,500

Check degree d

A
ve

ra
ge

nu
m

be
r

of
op

er
at

io
ns

[6]
[7]
[11]
[8]
Fix

(a) Low-complexity operations

0 10 20 30 40 50

0

5

10

15

20

Check degree d

A
ve

ra
ge

nu
m

be
r

of
op

er
at

io
ns

[6] mult
[7] mult
[8] mult
[6] div
[7] div

[11] div
[8] div
Fix div

(b) Multiplications and divisions

Figure 7. Comparison of arithmetical operations for different projection methods with random input from [−5, 5)d

0 10 20 30 40 50

0

1,000

2,000

3,000

4,000

Check degree d

A
ve

ra
ge

nu
m

be
r

of
op

er
at

io
ns

[6]
[7]
[11]
[8]
Fix

(a) Low-complexity operations

0 10 20 30 40 50

0

10

20

30

Check degree d

A
ve

ra
ge

nu
m

be
r

of
op

er
at

io
ns

[6] mult
[7] mult
[8] mult
[6] div
[7] div

[11] div
[8] div
Fix div

(b) Multiplications and divisions

Figure 8. Comparison of arithmetical operations for different projection methods with random input from [−10, 10)d

operations form the large majority of operations in all consid-
ered algorithms. Regarding high-complexity operations, our
algorithm needs slightly more divisions than the implementa-
tions from [6], [7] and [8]. However, they are less than the
sum of divisions and multiplications of every other algorithm
in all considered cases. Table I shows the maximum gain in
arithmetical operations for different input intervals. The values
were obtained by comparing our proposed algorithm with the
best result from the other four considered algorithms. Overall,
we need up to 37% less arithmetical operations, resulting in
lower implementation complexity and making LP decoding
more attractive for efficient hardware implementation.

X. CONCLUSION

In this paper, we presented a new reduced-complexity
projection algorithm for ADMM-based LP decoding. By es-
tablishing the theory of the odd parity polytope similar to that
of the even parity polytope, the projection algorithm can be
regarded as a recursive problem, where the projections are
varying between projections on the even or odd parity poly-
tope. As some components of the input are fixed in every iter-
ation, the problem size is constantly decreasing. In contrast to

other exact state-of-the-art projections, the proposed algorithm
needs up to 37% less arithmetical operations and additionally
requires no sorting operation. These properties make it a very
good choice for future hardware implementations.

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

Check degree d

Pr
ob

ab
ili

ty

[−1, 1)d

[−3, 3)d

[−5, 5)d

[−10, 10)d

Figure 9. Probability of the case Π[0,1]d (x) /∈ Pd,even

18

ACKNOWLEDGEMENT

We gratefully acknowledge financial support by the DFG
(project-ID: WE 2442/9-3 and RU 1524/2-3).

REFERENCES

[1] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear program-
ming to decode binary linear codes,” IEEE Transactions on Information
Theory, vol. 51, no. 3, pp. 954–972, March 2005.

[2] X. Zhang and P. H. Siegel, “Adaptive cut generation algorithm for
improved linear programming decoding of binary linear codes,” IEEE
Transactions on Information Theory, vol. 58, no. 10, pp. 6581–6594,
October 2012.

[3] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent
intractability of certain coding problems (corresp.),” IEEE Transactions
on Information Theory, vol. 24, no. 3, pp. 384–386, May 1978.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the alternating
direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1–122, January 2011. [Online]. Available:
http://dx.doi.org/10.1561/2200000016

[5] S. Barman, X. Liu, S. C. Draper, and B. Recht, “Decomposition methods
for large scale LP decoding,” IEEE Transactions on Information Theory,
vol. 59, no. 12, pp. 7870–7886, December 2013.

[6] X. Zhang and P. H. Siegel, “Efficient iterative LP decoding of LDPC
codes with alternating direction method of multipliers,” in 2013 IEEE
International Symposium on Information Theory, July 2013, pp. 1501–
1505.

[7] M. Wasson and S. C. Draper, “Hardware based projection onto the parity
polytope and probability simplex,” in 2015 49th Asilomar Conference
on Signals, Systems and Computers, November 2015, pp. 1015–1020.

[8] G. Zhang, R. Heusdens, and W. B. Kleijn, “Large scale LP decoding
with low complexity,” IEEE Communications Letters, vol. 17, no. 11,
pp. 2152–2155, November 2013.

[9] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient
projections onto the l1-ball for learning in high dimensions,” in
Proceedings of the 25th International Conference on Machine Learning,
ser. ICML ’08. New York, NY, USA: ACM, 2008, pp. 272–279.
[Online]. Available: http://doi.acm.org/10.1145/1390156.1390191

[10] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[11] H. Wei and A. H. Banihashemi, “An iterative check polytope projection
algorithm for ADMM-based LP decoding of LDPC codes,” IEEE
Communications Letters, vol. 22, no. 1, pp. 29–32, January 2018.

[12] X. Jiao, J. Mu, Y. C. He, and C. Chen, “Efficient ADMM decoding of
LDPC codes using lookup tables,” IEEE Transactions on Communica-
tions, vol. 65, no. 4, pp. 1425–1437, April 2017.

[13] X. Jiao, Y. C. He, and J. Mu, “Memory-reduced look-up tables for
efficient ADMM decoding of LDPC codes,” IEEE Signal Processing
Letters, vol. 25, no. 1, pp. 110–114, January 2018.

[14] X. Liu and S. C. Draper, “The ADMM penalized decoder for LDPC
codes,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp.
2966–2984, June 2016.

[15] ——, “ADMM decoding on trapping sets,” in 2015 IEEE International
Symposium on Information Theory (ISIT), June 2015, pp. 2663–2667.

[16] X. Jiao, H. Wei, J. Mu, and C. Chen, “Improved ADMM penalized
decoder for irregular low-density parity-check codes,” IEEE Communi-
cations Letters, vol. 19, no. 6, pp. 913–916, June 2015.

[17] H. Wei, X. Jiao, and J. Mu, “Reduced-complexity linear programming
decoding based on ADMM for LDPC codes,” IEEE Communications
Letters, vol. 19, no. 6, pp. 909–912, June 2015.

[18] B. Wang, J. Mu, X. Jiao, and Z. Wang, “Improved penalty functions
of ADMM penalized decoder for LDPC codes,” IEEE Communications
Letters, vol. 21, no. 2, pp. 234–237, February 2017.

[19] X. Jiao, J. Mu, and J. Guo, “A comparison study of LDPC decoding
using accelerated ADMM and over-relaxed ADMM,” in 2016 2nd IEEE
International Conference on Computer and Communications (ICCC),
October 2016, pp. 191–195.

[20] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast
alternating direction optimization methods,” SIAM Journal on Imaging
Sciences, vol. 7, no. 3, pp. 1588–1623, 2014. [Online]. Available:
https://doi.org/10.1137/120896219

[21] X. Jiao and J. Mu, “Lowering the error floor of ADMM penalized
decoder for LDPC codes,” China Communications, vol. 13, no. 8, pp.
127–135, August 2016.

[22] M. Wasson, M. Milicevic, S. C. Draper, and P. G. Gulak, “Hardware-
based linear program decoding with the alternating direction method
of multipliers,” CoRR, vol. abs/1611.05975, 2016. [Online]. Available:
http://arxiv.org/abs/1611.05975

[23] I. Debbabi, N. Khouja, F. Tlili, B. Le Gal, and C. Jégo, “Evaluation of
the hardware complexity of the ADMM approach for LDPC decoding,”
in 2016 IEEE Wireless Communications and Networking Conference,
April 2016, pp. 1–6.

[24] I. Debbabi, B. Le Gal, N. Khouja, F. Tlili, and C. Jégo, “Multicore
and manycore implementations of ADMM-based decoders for LDPC
decoding,” Journal of Signal Processing Systems, September 2017.
[Online]. Available: https://doi.org/10.1007/s11265-017-1284-0

[25] ——, “Fast converging ADMM-penalized algorithm for LDPC decod-
ing,” IEEE Communications Letters, vol. 20, no. 4, pp. 648–651, April
2016.

[26] X. Jiao, J. Mu, and H. Wei, “Reduced complexity node-wise scheduling
of ADMM decoding for LDPC codes,” IEEE Communications Letters,
vol. 21, no. 3, pp. 472–475, March 2017.

[27] H. B. Thameur, B. Le Gal, N. Khouja, F. Tlili, and C. Jégo, “Low
complexity ADMM-LP based decoding strategy for LDPC convolutional
codes,” in 2017 25th International Conference on Software, Telecommu-
nications and Computer Networks (SoftCOM), September 2017, pp. 1–5.

[28] W. Xu, X. Jiao, and J. Mu, “Evaluating the performance of turbo equal-
ization with ADMM decoding,” in 2017 IEEE International Conference
on Signal Processing, Communications and Computing (ICSPCC), Oc-
tober 2017, pp. 1–5.

[29] J. Feldman, “Decoding Error-Correcting Codes via Linear Program-
ming,” Ph.D. dissertation, Massachusetts Institute of Technology, 2003.

[30] M. H. Taghavi N. and P. H. Siegel, “Adaptive methods for linear
programming decoding,” IEEE Transactions on Information Theory,
vol. 54, no. 12, pp. 5396–5410, December 2008.

[31] R. Jeroslow, “On defining sets of vertices of the hypercube by linear
inequalities,” Discrete Mathematics, vol. 11, no. 2, pp. 119 – 124,
1975. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0012365X75900035

http://dx.doi.org/10.1561/2200000016
http://doi.acm.org/10.1145/1390156.1390191
https://doi.org/10.1137/120896219
http://arxiv.org/abs/1611.05975
https://doi.org/10.1007/s11265-017-1284-0
http://www.sciencedirect.com/science/article/pii/0012365X75900035
http://www.sciencedirect.com/science/article/pii/0012365X75900035

	I Introduction
	II Related Work
	III ADMM-based LP Decoding
	IV Even and Odd Parity Polytopes
	V Geometrical Idea
	VI Fixing Components of the Projection
	VII Recursive Structure of the Projection
	VIII Projection Algorithm
	IX Numerical Results
	X Conclusion
	References

