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Abstract—This work presents an axiomatization for entropy
based on an extension of concavity called core-concavity. We show
that core-concavity characterizes the largest class of functions for
which the data-processing inequality holds, under the assumption
that conditional entropy is defined as a generalized average.
Also, under the same assumption, we show that data-processing
and “conditioning reduces entropy” properties are equivalent.
We prove several properties of core-concave functions, including
generalization of perfect secrecy and of Fano’s inequality. We
also show that definitions of conditional entropy based on worst-
case can be retrieved as limit cases of generalized averages. A
connection between statistical decision making and this axiomatic
approach is also presented.

I. INTRODUCTION

Information theoretical entropy was introduced by Shannon
using a set of three axioms [2]. Several variations and exten-
sions of Shannon’s entropy have also been introduced in an
axiomatic way, the most well-known being Rényi’s entropies
[3]. While these works derive some specific entropy or family
of entropies, this paper aims to characterize all entropies
satisfying some desirable properties regarding their conditional
form. Possibly the most celebrated property of entropy is
that processing data can never increase information: the data-
processing inequality (DPI). Another well-known property is
that the uncertainty about X knowing Y is never higher than
the uncertainty about X alone, i.e., “conditioning reduces
entropy” (CRE). At a high level, we seek to answer “what is
the largest class of entropies that satisfy DPI and/or CRE?”.

This class is characterized by the axiomatization presented
here. We define conditional entropy via a “generalized averag-
ing” which we call η-averaging (EAVG). Assuming this form
of conditional entropy, we show that an entropy satisfies DPI
and CRE if and only if it is “core-concave” (CCV), i.e., it is
an increasing transformation of a concave function [4].

The contributions of this paper are the following: In Section
II we define core-concave entropies, and explain their rela-
tionship with quasi-concave and Schur-concave functions. In
Section III, we introduce our axiomatic approach and prove
the claim made above in Theorem 2. Section IV illustrates
examples from the literature that are core-concave entropies.

Next, in Section V-A, we consider the “additional in-
formation increases entropy” property and establish that all
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symmetric and expansible core-concave entropies satisfy it.
For such symmetric and expansible core-concave entropies, we
then prove two important properties: first, a general “perfect
secrecy” theorem in Section V-C; second, a generalization of
the Fano’s inequality in Section V-D, which provides bounds
for such entropies in terms of the probability of error.

Subsequently, Section V-E shows that conditional entropies
defined as a “worst-case scenario”, as adopted in some con-
texts, can be recaptured as a limit construction of our general-
ized averages. Section V-F establishes a natural connection
to the problem of statistical decision making, in which a
statistical experiment is considered where each state of the
nature can result in different possible observables. The deci-
sion maker then has to decide which state generated the given
observable, where the decision has to minimize a loss function.
We interpret this setting within our axiomatic framework.

Finally, in Section V-G, we investigate the relationship be-
tween core-concave entropies and channel ordering. Namely,
“degradedness” ordering [5], also called “channel refinement”
[6] and “matrix majorization” [7], is the order defined as fol-
lows: K2 ≤ K1 ⇐⇒ K2 = K1K for channels K1,K2,K,
i.e., channel K2 can be derived by a post-processing of channel
K1. We show that for channels K1 : X → Y,K2 : X → Z
channel K2 is degraded from K1 if and only if for all
probability distributions over X and all core-concave entropies
H , we have H(X|Y ) ≤ H(X|Z).

A. Background and Related Literature

A portion of the results in this paper had appeared in the
workshop proceedings [1].

The axiomatic approach to information measures is arguably
as old as the field of information theory itself, as already
in [2] Shannon proved his entropy to be the only one (up
to a scaling factor) that satisfies some intuitive requirements.
Much work in that direction has been undertaken in exploring
sets of postulates that characterize Shannon entropy or its
generalizations [3], [8], [9]. A review of these efforts is
provided in [10].

The axiomatic approach of Section III-A is inspired by the
work of Alvim et al. [11], which was concerned with an
axiomatic treatment for the field of Quantitative Information
Flow. Instead of the generalized averaging (EAVG), they con-
fined their study to regular averaging, reaching a conclusion
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similar to our Theorem 2. It follows from their results that
conditional entropies under regular averaging respect DPI and
CRE if and only if they are concave. However, their framework
was not directly suitable to define or analyze conditional forms
of fairly common entropies, such as the Rényi families. By
relaxing the regular averaging to EAVG, we are able to expand
the scope of their results, encompassing those entropies.

One of the motivations for this work was the competing
definitions of conditional Rényi entropies in the literature, as
surveyed in [12] and later in [13]. In these works, properties
such as CRE and DPI were proved or disproved in a case
by case basis for each candidate conditional form. In [12],
Teixeira et al. investigated the first two definitions in Table I.
In addition to those two, Iwamoto and Shikata [13] also studied
definitions (1a) and (1b). Theorems 2 and 3 simplify the
verification of both CRE and DPI for each form of Rényi
entropies and each α. Moreover, the results in Section V can
be instantiated to obtain information-theoretic results for each
form of conditional Rényi entropies.

The notion of preorders over channels has also been exten-
sively studied in the literature, both within Information Theory
and outside it. In the setting of comparison of experiments,
the degradedness order has been used to establish whether
an experiment is more informative than another: Theorem
6 can be traced back to Blackwell’s Theorem [14]. In our
setting, the partial proof of Sherman [15], which only concerns
experiments with finite outcomes, suffices. A simple proof of
the Theorem can also be found in [16]. Our proof of Theorem
6 is inspired by Dahl [7]. Dahl’s work is concerned with
a preorder over all real matrices, which coincides with the
degradedness ordering when these matrices are row-stochastic.

B. Notations & Conventions

Throughout the paper, X , Y , Z, . . . represent discrete
random variables (abbreviated as r.v.) with alphabets X , Y ,
Z, . . . . We assume that the elements of each alphabet are
indexed, e.g., denoting by x1, . . . , x|X | the elements of X ,
and so on. Given xi ∈ X , we write p(xi) or pi to mean
Pr{X = xi}, and use p to refer to the distribution. We may
specify the r.v. with a subscript, e.g., write pX(x), if it is not
clear from the context.

Let ∆n ⊂ Rn be the (n − 1)-dimensional probability
simplex. Given a probability distribution p over {x1, . . . , xn}
we overload the notation and use p to refer to its probability
vector (p1, . . . , pn) ∈ ∆n. Given a function F over ∆n and
a random variable X with distribution p = (p1, . . . , pn), we
will use F (X), F (p1, . . . , pn) and F (p) interchangeably.

A channel K is a row stochastic matrix with rows indexed
by X and columns indexed by Y . The value K(y|x) is equal to
p(y|x) = Pr{Y = y|X = x}, i.e., the conditional probability
that y is produced by the channel K when x is the input value.
The notation K : X → Y means that the channel K has X
and Y as its input and output alphabets.

II. CORE-CONCAVITY AND BASIC PROPERTIES

Entropy is classically motivated as a measure of the “un-
certainty” associated with a distribution. For example, if the

entropy function is symmetric, it should attain its minimum
on a point distribution like (1, 0, . . . , 0), and its maximum on
the uniform distribution (1/n, . . . , 1/n).

A further basic property for an entropy function can be
derived by studying the following example: Consider a coin
toss with “head” and “tails” probabilities of α and 1−α and a
random variable X . If the outcome of the coin flip is “head”,
the distribution that X is drawn from is p1, and if it is “tails”,
it is p2, for some p1, p2 ∈ ∆n. If the outcome of the coin flip
is not observed, the distribution of X will be p3 = αp1 +(1−
α)p2. One would expect that a measure of uncertainty F to
be lower in the scenario that the outcome of the coin-flip is
observed compared to when it is not; that is:

αF (p1) + (1− α)F (p2) ≤ F
(
αp1 + (1− α)p2

)
.

In other words, F should be concave.
However, and crucial to this work, we can make the obser-

vation that applying an increasing function η to both sides of
the above inequality preserves it, i.e.,:

η
(
αF (p1) + (1− α)F (p2)

)
≤ η

(
F
(
αp1 + (1− α)p2

))
.

Hence the above inequality, using the pair (η, F ), can be
justified as a measure of uncertainty in the same way as F
is. Crucially, the pair (η, F ) describes strictly more functions
than just concave functions. The pair (η, F ) defines a core-
concave entropy [4]:

Definition 1. A “core-concave entropy” H = (η, F ) is a pair
such that:

1) F is a real-valued function over ∆n that is continuous
and concave;

2) η is a continuous and strictly increasing real valued
function defined over the image of F .

Let H denote the set of all core-concave entropies. Given H =
(η, F ) ∈ H, we define H(p) = η(F (p)). If X is a discrete
random variable with distribution p ∈ ∆n we may use H(X)
to refer to H(p).

Notice that so far we do not require H to be “expansible”,
that is, H(p1, . . . , pn) may be different from H(p1, . . . , pn, 0)
and so on. There are indeed core-concave entropies that are
not expansible, for example, the function F (p) = −

∑
i 2pi is

concave for each ∆n but not expansible.
A downside of not assuming expansibility is that it would

make little sense to compare entropies of distributions that
have different dimensions. Expansibility, along with symmetry,
will be added at a later stage (Section V) when considering
the “additional information increases entropy” property.

The definition of core-concavity can be readily seen to
capture:
• Shannon entropy: H1(p) = −

∑
i pi log pi, with η(t) = t

and F (p) = −
∑
i pi log pi.

• Min-entropy: H∞(p) = − log(maxi pi), with η(t) =
− log(−t), and F (p) = −maxi pi.

• Guessing entropy HG(p) =
∑
i ip[i] (where p[1], . . . , p[n]

is a non-increasing rearrangement of p), with η(t) = t
and F (p) =

∑
ip[i].
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Core-concave entropies also encompass a more general
family of entropies referred to as Sharma-Mittal [17] defined
as follows:

Hα,β(p) =
1

β − 1

(
1− (‖p‖αα)

1−β
1−α
)
, α ≥ 0, α, β 6= 1.

This family generalizes Rényi entropies by Hα,β→1(p), Shan-
non by Hα→1,β→1(p), and Havrda-Tsallis entropies [18], [19]
as Hα,α(p) = 1

1−α (1− ‖p‖αα). Core-concavity of Sharma-
Mittal family Hα,β(p) (and hence any of its subfamilies) can
be seen by taking:

η(t) =
1

β − 1

(
1− t

1−β
1−α

)
, F (p) = ‖p‖αα 0 < α < 1,

η(t) =
1

β − 1

(
1− (−t)

1−β
1−α

)
, F (p) = −‖p‖αα 1 < α.

A. Core/Quasi/Schur-Concavity

Besides being a generalizing framework for entropy mea-
sures, core-concavity can be seen as a property of real valued
functions over ∆n. Given f : ∆n → R, we say that f
is a core-concave function if there is a (η, F ) ∈ H such
that f(p) = η(F (p)). In particular, the unconditional form
of a core-concave entropy is a core-concave function. In the
following, we shed some light on the relation of the core-
concave property with the related notions of quasi-concavity
and Schur-concavity.

By definition, a real valued function φ over some convex
subset of Rn is quasi-concave if for all α ∈ R, the set
{x|φ(x) ≤ α} is a convex set. Equivalently, it must be that
for all λ ∈ [0, 1], and all x, y in the domain of φ we have:
φ(λx+ (1−λ)y) ≥ min{φ(x), φ(y)}. Note that trivially, any
concave function is also both core-concave and quasi-concave.
We also have:

Proposition 1. Any core-concave function is also quasi-
concave.

Proof: The statement of the proposition follows from the
following two facts:

1) All concave functions are quasi-concave;
2) If F is quasi-concave and η is increasing then η ◦ F is

quasi-concave.

Given p, q ∈ ∆n, p majorizes q if for all k ≤ n,∑
p[i] ≥

∑
q[i], where (p[1], . . . , p[n]) and (q[1], . . . , q[n]) are

non increasing rearrangements of p and q. A function φ is said
to be Schur-concave iff φ(p) ≤ φ(q) whenever p majorizes
q. As any symmetric quasi-concave function is Schur-concave
[20, Chapter 3.C], an immediate consequence of Proposition 1
is the following:

Corollary 1. Any symmetric core-concave function is Schur-
concave.

Note, however, that we are not assuming symmetry in this
paper until Section V.

B. Conditional Entropy

Definition 2. Given a core-concave entropy H = (η, F ), we
define its “conditional” form as:

H(X|Y ) = η

∑
y∈Y+

p(y)F (X|y)

 ,

where Y+ is the support of Y and F (X|y) is shorthand for
F (pX|y).

Critically, note that in terms of the (unconditional) entropy,
the above is equivalent to:

H(X|Y ) = η

∑
y∈Y+

p(y)η−1 (H(X|y))

 ,

which is a generalization of the expected value of H(X|y)
with respect to pY .

From the definitions above, it is also possible to define,
for each H ∈ H, a quantity IH(X;Y ) = H(X) −H(X|Y ),
analogous to the classical mutual information. Moreover, fol-
lowing Csiszár [10], a core-concave divergence can also be
defined, at least for core-concave entropies where F is such
that F (p) =

∑
i f(pi) for some convex function f (this is the

“postulate of Sum property” in [10]). Then one can define a
(η, F ) divergence as:

D(η,F )(p ‖ q) = −η

(
−
∑
i

qif(pi/qi)

)
.

C. Choices of η and F

When describing an entropy within our framework the
choices of η and F are, in general, not unique. For example,
one could equally define Shannon entropy in this framework
by choosing η(x) = 2x and F (p) = − 1

2

∑
i pi log pi. While

the choices of η and F are immaterial to the values of the
entropy H(p), they can radically change its conditional form.
Consider, for instance, the Rényi entropies:

Hα(p) =
α

1− α
log ‖p‖α,

which, for α > 1, can be recovered by choosing either
η(x) = (α/1−α) log(−x) and F (p) = −‖p‖α, or η∗(x) =
(1/1−α) log(−x) and F ∗(p) = −‖p‖αα. These choices induce,
respectively, the following two conditional forms:

Hα(X|Y ) =
α

1− α
log

∑
y∈Y+

p(y)
∥∥pX|y∥∥α, (1a)

H∗α(X|Y ) =
1

1− α
log

∑
y∈Y+

p(y)
∥∥pX|y∥∥αα. (1b)

Indeed, both forms have been proposed in the literature
[21], [22], and they do not coincide. In particular, only (1a)
coincides with conditional min-entropy as α → ∞, that is,
limα→∞Hα(X|Y ) = H∞(X|Y ) (see e.g. [13]).

Nevertheless, the conditional form of an entropy uniquely
identifies the choice of η and F up to a linear transformation:

Theorem 1. Let H1=(η1, F1) and H2=(η2, F2) be core-
concave entropies. If H1(X|Y ) = H2(X|Y ) for all r.v. X,Y ,
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then η2(x) = η1(ax + b) and F2(p) = (1/a)F1(p) − b/a for
some a, b ∈ R.

Conversely, if there are a, b ∈ R such that η2(x) = η1(ax+
b) and F2(p) = (1/a)F1(p)− b/a, then H1(X|Y ) = H2(X|Y )
for all r.v. X,Y .

Proof: The converse follows directly from Definition 2.
For the direct implication, let H1 = (η1, F1), H2 =

(η2, F2) ∈ H such that for all r.v. X,Y ,
η1(
∑
y p(y)F1(X|y)) = η2(

∑
y p(y)F2(X|y)). Since the

images of η1 and η2 coincide, and η1 is strictly increasing,
the function φ = η−1

1 ◦ η2 is well defined. Thus, for all
probability vectors p ∈ ∆n, we have F1(p) = φ(F2(p)).

Now, let p1, p2 ∈ ∆n, X = {x1, . . . , xn}, Y = {y1, y2},
and define the joint distribution:1

p(X,Y )(x, y) =

{
tp1(x) if y = y1,

(1− t)p2(x) if y = y2.
(2)

From the definition of p(X,Y ), one can easily check that the
marginal distributions are given by pX = tp1 + (1 − t)p2

and pY = (t, 1 − t), and that pX|y1
= p1 and pX|y2

=
p2. Thus, from the assumption that η1(

∑
y p(y)F1(X|y)) =

η2(
∑
y p(y)F2(X|y)), we obtain:

φ(tF2(p1) + (1− t)F2(p2)) = tF1(p1) + (1− t)F1(p2)

= tφ(F2(p1)) + (1− t)φ(F2(p2)).

Note that the above equation holds for all choices of p1, p2 ∈
∆n and t ∈ [0, 1]. Now, since F is a continuous function
over the compact metric space ∆n, it attains its maximum and
minimum. Let w = minp∈∆n F2(p) and z = maxp∈∆n F2(p).
Thus, the range of F2 is [w, z]. Let r ∈ [w, z]. Substituting
t = r−w

z−w in the above equation, we obtain:

φ(r) =
r − w
z − w

φ(z) +

(
1− r − w

z − w

)
φ(w)

=

(
φ(z)− φ(w)

z − w

)
r +

zφ(w)− wφ(z)

z − w
.

Hence, φ(r) = ar + b, for a = φ(z)−φ(w)
z−w and b =

zφ(w)−wφ(z)
z−w . Therefore, η2(r) = η1(φ(r)) = η1(ar + b), and

F1(p) = φ(F2(p)) = aF2(p) + b.

III. AXIOMS

Let H = (η, F ) be a pair such that F : ∆n → R and η is a
strictly increasing real-valued function defined on the image of
F , and define H(X) = η(F (X)). Note that every real-valued
function H : ∆n → R can be constructed in this way for any
η, by taking F = η−1 ◦H .

Given the pair H = (η, F ), we associate with it a con-
ditional form H(X|Y ), which is the extension of H to a
distribution over distributions. In particular, (X|Y ) represents
the family of random variables (X|y)y∈Y where (X|y) is the
random variable with distribution pX|y(x) = p(X,Y )(x,y)/pY (y).
The family of distributions associated to the family of random
variables (X|Y ) is hence {pX|y : y ∈ Y}. Given a channel

1This joint distribution is the same one used in [11, Proposition 16], defined
in terms of a marginal π3 and a channel C∗.

K : X → Y and a distribution over X , the family of
distributions {pX|y : y ∈ Y} can be computed using Bayes’
rule. This construction is similar to the hyper-distributions as
defined in [11], [23].

Definition 3. For any n > 0, a pair H = (η, F ), F : ∆n → R
as defined above, respects:

CCV (core-concavity): if H is core-concave (as described
in Definition 1).

EAVG (η-averaging): if given r.v. X ,Y , its conditional form
H(X|Y ) is defined as:

H(X|Y ) = η

∑
y∈Y+

p(y)F (X|y)

 .

CRE (conditioning reduces entropy): if for all r.v. X ,Y ,
H(X|Y ) ≤ H(X), with equality holding if X and
Y are independent.

DPI (data-processing inequality): if, for all r.v. X ,Y ,Z
such that X → Y → Z (i.e., if X and Z are
conditionally independent given Y ),

H(X|Y ) ≤ H(X|Z).

In all axioms, we assume |X | = n, and that Y,Z are finite,
nonempty sets.

A. Relations Between the Axioms

This section proves the results illustrated in Figure 1. These
axioms were inspired by those in [11]. However the axioms
therein fail to capture most entropies, e.g. all Rényi entropies
with α > 1, which are not concave [24, Theorem 1].

Fig. 1. The implications graph among the axioms.

We begin by noting that the second part of CRE is a
straightforward consequence of EAVG:

Lemma 1. If EAVG holds for H = (η, F ), then H(X|Y ) =
H(X) for all independent r.v. X , Y .
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Proof: Assume X and Y are independent r.v.’s. Then:

H(X|Y ) = η

∑
y∈Y+

p(y)F (X|y)


= η

∑
y∈Y+

p(y)F (X)

 = η ◦ F (X) = H(X).

For the sake of brevity, the implications between the
axioms in the following results are stated using the
acronyms in Definition 3. Hence, for example, the statement
(EAVG and DPI) ⇒ CRE means that if a pair H = (η, F )
satisfies EAVG and DPI, then it satisfies CRE.

Proposition 2. (EAVG and DPI)⇒ CRE.

Proof: Let Z be a random variable over the singleton
set Z = z1, so that p(z1) = 1. Consider the composition
X → Y → Z. Then:

H(X|Y ) ≤ H(X|Z) = H(X).

The inequality follows from DPIand the equality follows from
Lemma 1 by noting that Z is independent of X given Y .

Proposition 3. (EAVG and CRE)⇒ CCV.

Proof: Let X1, X2 be random variables with distributions
p1, p2 ∈ ∆n, t ∈ [0, 1] and define random variables X,Y with
the range and joint distribution as in (2). Then, the marginal
and conditional distributions obtained are as in the proof of
Theorem 1, and EAVG implies:

H(X|Y ) = η
(
tF (p1) + (1− t)F (p2)

)
.

On the other hand, H(X) can be written as
η
(
F
(
tp1 + (1− t)p2

))
. From CRE, we have

H(X|Y ) ≤ H(X). Hence:

η(tF (p1) + (1− t)F (p2)) ≤ η
(
F
(
tp1 + (1− t)p2

))
.

Since η is strictly increasing, the above yields concavity of F :

tF (p1) + (1− t)F (p2) ≤ F
(
tp1 + (1− t)p2

)
.

Hence H = (η, F ) is core-concave.

Proposition 4. (EAVG and CCV)⇒ DPI.

Proof: Assume X → Y → Z. Since p(y) =∑
z∈Z+ p(z)p(y|z), we can write:∑
y∈Y+

p(y)F (X|y) =
∑
y∈Y+

( ∑
z∈Z+

p(z)p(y|z)

)
F (X|y)

=(a)

∑
y∈Y+,z∈Z+

p(z)p(y|z)F (X|y, z)

≤
∑
z∈Z+

p(z)F

∑
y∈Y+

p(y|z)pX|y,z


=(b)

∑
z∈Z+

p(z)F (X|z) .

Equality (a) follows because X → Y → Z implies pX|y =
pX|y,z . Next, Jensen’s inequality is applied for concave F ,

noting that p(y|z) for y ∈ Y+ constitute convex coefficients.
Equality (b) uses:∑

y∈Y+

p(y|z)pX|y,z = pX|z.

The proposition follows by applying η(·) to the steps, noting
that η preserves the inequality since it is increasing.

This completes all the relations between axioms in Figure 1.
An important consequence of the axioms is the following:

Theorem 2. Given EAVG, the properties of CRE, CCV and
DPI become equivalent. That is:

EAVG⇒ (CRE⇔ CCV⇔ DPI).

Proof: Split the theorem in the following two statements:
1) EAVG⇒ (CRE⇔ CCV),
2) EAVG⇒ (CCV⇔ DPI).
For (1), the proof of the “only if” part is Proposition 3,

and the “if” part is proved by Proposition 4 combined with
Proposition 2.

For (2), the proof of the “only if” part is Proposition 4,
and the “if” part is proved by Proposition 2 combined with
Proposition 3.

The definition of EAVG might seem somewhat peculiar.
However, it is equivalent to applying a generalized definition
of mean as per [25, Section 6.20], and taking H(X|Y ) as this
generalized mean of the values of H(X|y) weighted by pY .

IV. APPLICATIONS TO ENTROPY DEFINITIONS IN THE
LITERATURE

The results of Section III can be applied to conditional en-
tropies defined in the literature. The work of verifying whether
a given conditional form satisfies CRE and DPI, which in
many works in the literature is often done in a case-by-case
manner (see, e.g., [12], [13]) can be, in most cases, replaced by
a direct application of Theorem 2. An application of Theorem
2 to possible conditional Rényi entropies suggested in the
literature is presented in Table I.

Another application of Theorem 2 is as a “recipe” for defin-
ing well-behaved conditional entropies – that is, conditional
entropies that satisfy the properties DPI and CRE. From the
discussion on Section II, for example, one might define a
conditional version of the Sharma-Mittal entropy as:

Hα,β(X|Y ) =
1

β − 1

1−

(∑
y

p(y)
∥∥pX|y∥∥αα

) 1−β
1−α
 .

Since this conditional version satisfies EAVG and Sharma-
Mittal entropies are core-concave, it follows that DPI and CRE
hold for this definition.

As another example, consider the (h,Φ)-entropies [26],
which are a generalization of the f -entropies as defined in
(1.4) in [27]. They are defined by a strictly increasing function
h and a concave Φ, as follows

Hh,Φ(X) = h

(∑
x

Φ(p(x))

)
.
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TABLE I
CHARACTERISTICS OF RÉNYI ENTROPY MEASURES DIRECTLY OBTAINABLE BY THE RESULTS IN SECTION III

Unconditional form Conditional form H(X|Y ) η(r) F (p) EAVG CCV DPI and CRE

Hα(X) =
α

1− α
log ‖p‖α

∑
y p(y)Hα(X|y) r Hα(p) Yes iff α ≤ 1 iff α ≤ 1

1

1− α
log

(∑
x,y p(x, y)

α∑
y p(y)

α

)
- - No No -

α

1− α
log
(∑

y p(y)
∥∥pX|y∥∥α) α

1− α
log(−r) −‖p‖α Yes Yes Yes

1

1− α
log
(∑

y p(y)
∥∥pX|y∥∥αα) 1

1− α
log(−r) −‖p‖αα Yes Yes Yes

− log
(∑

y p(y)
∥∥pX|y∥∥ α

α−1
α

)
− log(−r) −‖p‖

α
α−1
α Yes Yes Yes

These entropies are easily seen to be core-concave, by tak-
ing η = h and F (X) =

∑
x Φ(p(x)). From Theorem 2,

the naive way of defining a conditional (h,Φ)-entropy as∑
y p(y)Hh,Φ (X|y) would, in general, fail to satisfy DPI and

CRE. Instead, our results suggest the definition

Hh,Φ(X|Y ) = h

(∑
y

p(y)
∑
x

Φ
(
pX|y(x)

))
.

The following generalized entropy, introduced by Arimoto
[27], depends on a function f : (0, 1] → R≥0 of class C1

(i.e., functions whose first derivative is continuous) such that
f(1) = 0:

Hf (X) = inf
q∈∆n

n∑
i=1

p(xi)f(qi).

As shown in [27], this entropy is continuous and concave,
and therefore core-concave (with η as the identity function).
Hence, Theorem 2 ensures that the conditional form given by:

Hf (X|Y ) =
∑
y

p(y)Hf (X|y)

satisfies DPI and CRE.

V. ADDITIONAL PROPERTIES

In this section, some classical information-theoretic results
are generalized to the core-concave framework. For many of
these results, the formalism developed above is not sufficiently
expressible, as one needs to compare the entropy measure of
probability distributions of different dimensions. To address
this shortcoming, we introduce the following definition:

Definition 4. A collection {Hi}i∈N of core concave entropies
is “expansible” if, for each i ∈ N,

1) Hi is a core-concave entropy over ∆i;
2) for all (p1, . . . , pi) ∈ ∆i, Hi(p1, . . . , pi) =

Hi+1(p1, . . . , pi, 0).

Another property that will be necessary for the results of
this section is symmetry:

Definition 5. A core concave entropy H = (η, F ) over
∆n is “symmetric” if for all (p1, . . . , pn) ∈ ∆n and all
bijective functions φ : {1, . . . , n} → {1, . . . , n}, we have

F (p1, . . . , pn) = F (pφ(1), . . . , pφ(n)). We say that a collection
{Hi}i∈N is symmetric if all its elements are symmetric.

Generally, we say that a collection {Hi}i∈N satisfies a
property if all its elements satisfy that property.

All the results in Sections V-A, V-B, V-C and V-D regard
collections of core-concave entropies. Thus, for brevity, we
will refer to the collection {Hi}i∈N simply by H .

A. AIE (additional information increases entropy)

A common requirement for an entropy function is that “ad-
ditional information increases entropy”, i.e., ∀X,Y, H(X) ≤
H(X,Y ) (see e.g. [13]). It is easy to prove that this property,
and its conditional extension, are a consequence of symmetry
and expansibility for core-concave entropies:

Proposition 5. Let H be symmetric and expansible. Then:
1) ∀X,Y H(X) ≤ H(X,Y ),
2) ∀X,Y, Z H(X|Z) ≤ H(X,Y |Z).

Proof: Recall that that a core-concave entropy which is
symmetric and expansible is also Schur-concave (Corollary 1).

For (1), note that pX (the distribution of X) majorizes
p(X,Y ) (the distribution of (X,Y )). Hence by Schur-concavity
of H , H(pX) ≤ H(p(X,Y )), i.e. H(X) ≤ H(X,Y ).

For (2), the argument is the same noticing that for all z,
pX|z majorizes p(X,Y )|z .

B. Subadditivity

It is known that subadditivity, that is

H(X,Y ) ≤ H(X) +H(Y )

does not hold for most Rényi entropies. For example, consider
the joint distribution over (X,Y ), with X = {x1, x2} and
Y = {y1, y2} given by

p(X,Y )(x1, y1) = 0, p(X,Y )(x1, y2) = 1/4,

p(X,Y )(x2, y1) = 1/4, p(X,Y )(x2, y2) = 1/2.

This distribution has marginals pX = pY = (1/4, 3/4), and
one can check that H(X,Y ) > H(X) + H(Y ) for H being
any Rényi entropy with α > 1.61.

Consequently subadditivity does not hold for core-concave
entropies. However, we have the following (tight) inequality:
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Proposition 6. Let H be symmetric and expansible. Then
H(X,Y ) ≤ H(p̃) where p̃ is the following |X ||Y|-sized
distribution:

p̃(x, y) = pX(x)/|Y|, ∀x ∈ X , y ∈ Y.

Proof: Without loss of generality, arrange p(X,Y ) as a
|X ||Y|-sized vector where the first |Y| elements are p(x1, y1)
to p(x1, y|Y|), the second |Y| elements are p(x2, y1) to
p(x2, y|Y|), and so on. Thanks to the Schur-concavity of H ,
the result follows if we show p(X,Y ) majorizes p̃. For this,
it is sufficient to find a doubly stochastic matrix D (of size
|X ||Y|-by-|X ||Y|) such that p̃ = Dp(X,Y ) (see e.g. [28,
Theorem 2.1]). The following is such a D:

D =


Y 0 · · · 0
0 Y · · · 0
...

. . .
...

0 0 · · · Y


where each zero represents a |Y|-by-|Y| matrix will all zero
entries, and Y is a |Y|-by-|Y| matrix with all entries equal to
1/|Y|. It is straightforward to check that D is indeed doubly
stochastic and p̃ = Dp(X,Y ).

For Rényi entropies, this proposition takes a more concise
form sometimes referred to as “weak subadditivity” and was
proved for quantum systems in [29]. An alternative proof can
be obtained as a corollary of Proposition 6.

Corollary 2. Let Hα denote the Rényi entropy with parameter
α. We have:

Hα(X,Y ) ≤ Hα(X) + log |Y|.

Proof: Applying Prop. 6 to Rényi entropy, we get:

Hα(X,Y ) ≤ Hα(p̃)

=
1

1− α
log

(∑
x

∑
y

(p(x)/|Y|)α
)

=
1

1− α
log

(∑
x

|Y|(p(x)/|Y|)α
)

=
1

1− α

(
log

(∑
x

p(x)α

)
+ log

(
|Y|1−α

))
= Hα(X) + log |Y|.

C. Perfect Secrecy

Shannon’s perfect secrecy theorem can be generalized to all
expansible and symmetric core-concave entropies, by extend-
ing an argument from [13]. As in [13] we assume a symmetric
encryption scheme E that satisfies (1) “perfect secrecy” i.e.
plaintext and ciphertext are interpreted as independent random
variables, and (2) “perfect correctness” that is the encryption
scheme makes no decryption errors, i.e. for all keys k, cipher-
text c, plaintexts m:

p(m, k|c) =

{
0 if E(k, c) 6= m,

p(k|c) if E(k, c) = m.

Proposition 7. Let H be symmetric and expansible, and
let K,M,C be the r.v. associated respectively with keys,
plaintexts, and ciphertexts in a symmetric encryption system
satisfying perfect secrecy and perfect correctness. Then the
following holds: H(M) ≤ H(K).

Proof: We have:

H(M) = H(M |C) ≤a H(M,K|C) =b H(K|C) ≤c H(K),

where H(M) = H(M |C) because M and C are independent
(because of perfect secrecy), (a) is Proposition 5-2, (b) is
because the encryption makes no decryption errors (perfect
correctness), and (c) is CRE.

D. Bounds in terms of probability of error

Symmetric core-concave entropies can be bounded in terms
of the probability of error. These bounds generalize Fano’s
inequality. Let H be symmetric and expansible and X a r.v.
with distribution (p1, . . . , pn). Then the probability of error
e is defined as e = 1 − maxx∈X p(x). Given a family of
random variables (X|Y ), the average-probability of error ê is
defined as the average probability of all errors in the family,
i.e., ê =

∑
y p(y)ey where ey = 1−maxx∈X pX|y(x).

Proposition 8. (Fano’s generalization)

1) H(X) ≤ H
(

1− e, e
n−1 , . . . ,

e
n−1

)
.

2) H(X|Y ) ≤ H
(

1− ê, ê
n−1 , . . . ,

ê
n−1

)
.

Proof: For part (1): A symmetric core-concave entropy
is Schur concave and the distribution (p1, . . . , pn) majorizes(

1− e, e
n−1 , . . . ,

e
n−1

)
;. This argument was originally used

in Vajda and Vasěk work [9] for Schur concave entropies.
For part (2): Let ey be the associated probability of error to

the distribution (X|y). Following part (1):

F (X|y) ≤ F
(

1− ey,
ey

n− 1
, . . . ,

ey
n− 1

)
.

Hence:∑
y

p(y)F (X|y) ≤
∑
y

p(y)F

(
1− ey,

ey
n− 1

, . . . ,
ey

n− 1

)

≤(a) F

(∑
y

p(y)(1− ey),

∑
y p(y)ey

n− 1
, . . . ,

∑
y p(y)ey

n− 1

)

= F

(
1− ê, ê

n− 1
, . . . ,

ê

n− 1

)
.

where inequality (a) is by concavity of F . Part (2) now follows
by applying the (increasing) function η to the above.

Proposition 8 is a generalization of the Fano’s inequality:

H(X|Y ) ≤ H(ê, 1− ê) + ê log(n− 1).

This is because when H is the Shannon entropy, we have:

H(X|Y ) ≤ H(1− ê, ê

n− 1
, . . . ,

ê

n− 1
)

= (1− ê) log(
1

1− ê
) + (n− 1)

ê

n− 1
log(

n− 1

ê
)

= H(ê, 1− ê) + ê log(n− 1).
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E. Recovering MIN as a Limit Case of CCV and EAVG

We now consider a definition of conditional entropy based
on the “worst-case” scenario, by taking the conditional entropy
to be the minimum value of the entropy over the posterior
distributions. That is, given an entropy measure HM : ∆n →
R, the conditional has the form

HM (X|Y ) = min
y∈Y+

HM (X|y).

This form has also been studied in [11], in which results
similar to the ones of the last section are derived. Given an
(possibly not core-concave) entropy H we say that it satisfies:

QCV (quasi-concavity): if H , as a function over ∆n, is
quasi-concave.

MIN (minimum): if given r.v. X ,Y , its conditional form
H(X|Y ) is defined as:

H(X|Y ) = min
y∈Y+

H(X|y).

The next result, similar to Theorem 2, is a rewording of the
results in [11]:

Theorem 3. MIN⇒ (QCV⇔ DPI⇔ CRE).

A straightforward result from Theorem 3 is the following:

Proposition 9. Let H be a symmetric and expansible entropy
that satisfies MIN and QCV. Then, it satisfies the conclusions
of Propositions 5 and 7.

Proof: From Theorem 3, such an entropy satisfies DPI
and CRE. Moreover, a symmetric quasi-concave function is
Schur-concave [20, Section 3.C]. The proof is then almost
identical to the ones on Propositions 5 and 7.

In general, entropies that satisfy MIN do not satisfy EAVG,
and therefore, are not encompassed by the core-concave
framework. However, if there is H = (η, F ) ∈ H such
that HM (X) = H(X) (that is, if the unconditional form
of HM coincides with that of a core-concave entropy),
then HM (X|Y ) can be retrieved as a limit of a sequence
{(ηi, Fi)}i∈N in H. Before establishing this claim, we need
an auxiliary result:

Lemma 2. Given V : ∆n → R≥0, we have:

lim
β→∞

∑
y∈Y+

p(y) (V (X|y))
β

1/β

= max
y∈Y+

V (X|y).

Proof: Fix β > 0 and choose y∗ such that y∗ ∈
arg maxy∈Y+(V (X|y))β . Then, because

∑
y∈Y+ p(y) = 1,∑

y∈Y+

p(y) (V (X|y))
β ≥ p(y∗) (V (X|y∗))β , and

∑
y∈Y+

p(y) (V (X|y))
β ≤ max

y∈Y+
(V (X|y))

β
.

For β > 0 , the function f(t) = t1/β is increasing in R≥0. Its
application to the terms of the inequalities above yields∑

y∈Y+

p(y)(V (X|y))β

1/β

≥ (p(y∗))
1/βV (X|y∗), and

∑
y∈Y+

p(y)(V (X|y))β

1/β

≤ max
y∈Y+

V (X|y).

Since the function f(t) = tβ is strictly increasing, y∗ ∈
arg maxy∈Y+ V (X|y). Therefore,

lim
β→∞

(p(y∗))
1/βV (X|y∗) = V (X|y∗) and

max
y∈Y+

V (X|y) = V (X|y∗)

and the claim follows from the sandwich theorem.

Theorem 4. Let HM : ∆n → R be an entropy mea-
sure associated with a conditional form as HM (X|Y ) =
miny∈Y+ HM (X|y). If there is (η, F ) ∈ H such that
HM (p) = η(F (p)), then there is a sequence {Hi =
(ηi, Fi)}i∈N in H such that:

HM (X|Y ) = lim
i→∞

Hi(X|Y ) = lim
i→∞

ηi

( ∑
y∈Y+

p(y)Fi(X|y)
)
.

Proof: Suppose that HM (p) = η(F (p)) for some
(η, F ) ∈ H. Without loss of generality, we can assume F
to be nonpositive, by taking a = 1 and b = maxp∈∆n

F (p) in
Theorem 1. Now, define ηi(x) = η(−(−x)1/i) and Fi(p) =
−(−F (p))i. We first show that (ηi, Fi) ∈ H. Note that for all
i > 0, ηi is increasing, since it is the composition of η and
the function x 7→ −(−x)1/i, which is increasing for x ∈ R≤0.
Moreover, for all p1, p2 ∈ ∆n, β ∈ [0, 1],

(−F (βp1 + (1− β)p1))i ≤ (β(−F (p1)) + (1− β)(−F (p2)))i

≤ β(−F (p1))i + (1− β)(−F (p2))i,

where the inequalities follow from F being concave and x 7→
xi increasing. Thus, (−F )i is convex, and each Fi is concave.
This proves that (ηi, Fi) ∈ H.

Now, we have:

lim
i→∞

Hi(X|Y ) = lim
i→∞

ηi

∑
y∈Y+

p(y)Fi(X|y)


= lim
i→∞

η

−
−

∑
y∈Y+

p(y)Fi(X|y)

1/i


= η

 lim
i→∞

−

−
∑
y∈Y+

p(y)
(
−(−F (X|y))i

)1/i


= η

− lim
i→∞

∑
y∈Y+

p(y)(−F (X|y))i

1/i


=(a) η

(
− max
y∈Y+

(−F (X|y))

)
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= η

(
min
y∈Y+

F (X|y)

)
=(b) min

y∈Y+
HM (X|y) = HM (X|Y ).

where the equality (a) follows from Lemma 2, substituting
−F for V , and equality (b) because η is increasing.

Note that, in the statement of Theorem 4, HM and H are
different core-concave entropies. Although HM coincides with
H in the unconditional form, their conditional forms do not.

F. Connection to statistical decision making

A particular case of the axiomatization presented in this
work is when η is the identity function. In this case, core-
concavity reduces to concavity, η-averaging to simple averag-
ing, and the results in Section III reduce to those in [11].

This particular case is of interest because it captures the
problem of experiment comparison and statistical decision
making. In this setting a channel is seen as a statistical
experiment, where the rows of the channel corresponds to
the possible values of an unknown parameter (the state of
nature) given by the r.v. X , and the columns corresponds to
the possible observations given the experiment, represented
by the r.v. Y . A statistical decision problem is to choose an
element on a set A = {a1, . . . , ak} of possible actions based
on the observations of the experiment such that a certain loss
function is minimized.

To formalize the setting, and following [7], consider a prob-
abilistic decision function δ where δ(y, a) is the probability of
taking action a if y has been observed. Let’s also define the
loss function L : X × A → R such that L(x, a) is the loss
when x is the true state and a is the decision. The risk in a
statistical experiment K (i.e., a channel K : X → Y ) when
the true state of nature is x, the decision function is δ, and the
loss function is L is defined then as:

RK(x, δ, L) =
∑
y∈Y

K(y|x)
∑
a∈A

L(x, a)δ(y, a).

Taking the expectation w.r.t. the state of nature, the “expected
risk” (denoted by ER) in a statistical experiment K when the
decision function is δ and the loss is L can be taken as:

ERK(δ, L) =
∑
x∈X

p(x)
∑
y∈Y

K(y|x)
∑
a∈A

L(x, a)δ(y, a).

When making a decision, one is usually interested in choos-
ing δ that minimizes ERK(δ, L). The minimum expected risk
of K under loss function L, denoted by µRK(L), is thus:

µRK(L) = min
δ
ERK(δ, L).

With a bit of manipulation, we obtain:

µRK(L) = min
δ

∑
x∈X

p(x)
∑
y∈Y

K(y|x)
∑
a∈A

L(x, a)δ(y, a)

= min
δ

∑
y∈Y

p(y)
∑

x∈X ,a∈A
L(x, a)δ(y, a)pX|y(x)

=
∑
y

p(y) min
a∈A

∑
x

L(x, a)pX|y(x).

The last inequality follows from observing that the minimum
can always be attained by a deterministic δ, i.e., one that
uniquely maps each output to a possible state.

Notice that the function p → mina
∑
x L(x, a)p(x) is

concave. Therefore, letting:

HR =

(
x 7→ x, p→ min

a

∑
x

L(x, a)p(x)

)
,

we see that HR ∈ H, and HR(Y |X) = µRK(L). In the
following, we will drop µ for brevity.

The value HR(X) can be interpreted simply as the mini-
mum expected risk of K, when K is a null channel 0 i.e. all
rows in K are identical. The channel 0 corresponds to a non-
informative experiment, that is, a statistical experiment where
any observation gives no information about the true state. From
Theorem 2, some interesting properties regarding statistical
decisions can be derived from the fact that HR(X) ∈ H.
• From CRE, we have that the minimum expected risk of

any experiment K is never greater than that of a non-
informative experiment: ∀K, RK(L) ≤ R0(L).

• From DPI, whenever an experiment can be emulated
from the observable of another experiment, the minimum
expected risk of the former will never be greater than
that of the latter. More formally, given K1 : X → Y and
K2 : X → Z , if

∃W : Y → Z; K2(z|x) =
∑
y∈Y

K1(y|x)W (z|y), (3)

then RK1(L) ≤ RK2(L).
An important remark to make is that concavity and risk

functions in fact coincide, that is, any concave function F can
be written as mina∈A

∑
x L(x, a)p(x) for some loss function

L, if we allow A to be infinite. This is a known result in the
statistics community [11], [30]. At a high level the proof of
this fact is based on the following two observations:
• All concave functions can be written as an infimum of a

family of linear functions;
• Given a loss function L, p 7→

∑
x L(x, a)p(x) is a linear

function for each a ∈ A.
In the next section we further study the relation (3), and

what is known in the literature as the Blackwell Theorem,
which can be summarized by stating that if RK1

(L) ≤
RK2

(L) holds for all choices of L, then (3) also holds.
Blackwell’s result was motivated by comparison of statisti-

cal experiments. It turns out that a similar conclusion can be
derived when the quantification is taken over the set of core-
concave entropies, instead of the loss functions L. To this end,
we dedicate the next section to a derivation of Blackwell’s
theorem using the framework developed in this paper.

G. Blackwell Theorem for Core-concave entropies

Throughout this section, let K1 : X → Y and K2 : X → Z
share an input X and produce outputs Y and Z, respectively.

Channel K2 is degraded from K1 [5], written as K1 ≥d K2,
if exists a channel R : Y → Z such that K2 = K1R, i.e.,

K2(z|x) =
∑
y∈Y

K1(y|x)R(z|y) ∀x ∈ X , z ∈ Z.

It follows immediately from Theorem 2, by DPI, that
whenever K1 ≥d K2, then:
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∀H ∈ H, pX ; H(X|Y ) ≤ H(X|Z). (4)

Whenever channels K1, K2 respect (4), we write K1 ≥H K2.
The converse statement, i.e., that K1 ≥H K2 ⇒ K1 ≥d K2

is a result that can be traced back to a theorem by Blackwell on
comparison of experiments [14], [31]. It also relates to more
recent results in [7], [23]. Here, we prove the theorem using
Dahl’s work on matrix majorization [7]. We start with the
following definition which provides a useful characterization
of conditional entropy.

Definition 6. Given a continuous and concave function F :
∆n → R, we define GF , for all q = {q1, . . . , qn} ∈ Rn≥0, as

GF (q) =

(
n∑
i=1

qi

)
F

(
q1∑n
j=1 qj

, . . . ,
qn∑n
j=1 qj

)
if q is not the null vector, and GF (0, . . . , 0) = 0.2 In short, us-

ing the 1-norm notation, we have GF (q) = ‖q‖1F
(

q

‖q‖1

)
.

Given H = (η, F ) ∈ H, it is possible to define the
conditional entropy H(X|Y ) in terms of the functions GF and
of the joint probability distribution p(x, y) as the following:

H(X|Y ) = η

∑
y∈Y+

GF (p(x1, y), . . . p(xn, y))

 . (5)

Definition 7. A cone V ⊂ Rn is a set such that for all λ ∈
R>0, q ∈ V =⇒ λq ∈ V . A function φ : V → R over a
cone V ⊂ Rn is positively homogeneous if, for all λ∈ R>0

and q ∈ V , φ(λq) = λφ(q).

Proposition 10. A function φ : Rn≥0 → R is continuous, pos-
itively homogeneous and concave if, and only if, it coincides
with GF for some concave function F .

Proof: First, we prove that GF is continuous, positively
homogeneous and concave. It is immediate to see that GF is
continuous and positively homogeneous. To see that GF is
concave, consider the affine map:

g1(q1, . . . , qn) =

(
q1, . . . , qn,

∑
i

qi

)
,

and the perspective function g2(q, t) = tF (q/t), which is
concave since F is concave [32, Chapter 3.2.6]. Then, for
all non zero q ∈ Rn≥0, GF (q) = g2(g1(q)). Therefore, being
the composition of an affine map and a concave function, GF
is concave [32, Chapter 3.2.2].

Conversely, suppose φ : Rn≥0 → R is continuous, positively
homogeneous and concave. Then we can write φ as a GF by
taking F = φ|∆n

, where φ|∆n
the restriction of φ to ∆n. To

see that, notice that φ( q
‖q‖1

) = 1
‖q‖1

φ(q), and hence:

Gφ|∆n (q) = ‖q‖1φ
(

q

‖q‖1

)
= φ(q).

2Notice that, as F is continuous over a compact set (and thus, bounded),
limε→0+ GF (εq) = 0 = GF (0, . . . , 0), for all q ∈ Rn≥0.

The proof of the main result relies on the following ( [7]):

Theorem 5. Let A and B be real-valued matrices with m
rows, and denote by Ai, Bi their i-th column. There is a row
stochastic matrix R such that AR = B if and only if for all
positively homogeneous convex functions φ : Rm → R,∑

i

φ(Ai) ≥
∑
j

φ(Bj).

Theorem 6 (Blackwell Theorem for core-concavity). We
have:

K1 ≥d K2 ⇔ K1 ≥H K2,

that is, given channels K1 : X → Y and K2 : X → Z ,
K2 = K1R for some channel R : Y → Z if, and only if,
for all distributions p over X, H(X|Y ) ≤ H(X|Z) for all
core-concave entropies H .

Proof: The forward implication is the “data processing”
inequality and is proved in Proposition 4.

For the reverse implication, suppose that H(X|Y ) ≤
H(X|Z) for a full support p and all core-concave H . Let
diag(p) be the matrix with the values of p in the diagonal and
0 elsewhere, and let A = diag(p)K1, B = diag(p)K2 – that
is, A and B are the matrices of the joint distributions obtained
from p and K1, K2. Then, for all choices of F , we have∑

y∈Y+

GF (Ay) ≤
∑
z∈Z+

GF (Bz).

Notice that all positively homogeneous functions over Rn
are also positively homogeneous over Rn≥0, and that a convex
function over Rn is continuous. Therefore, from Theorem
5 and Proposition 10, there is a row stochastic (channel)
matrix R such that AR = B. As p has full support, diag(p)
is non-singular, and therefore K1R = diag(p)−1AR =
diag(p)−1B = K2.

CONCLUSION

In this work, we formalized a general form of conditional
entropy by introducing the notion of “core-concavity” in an ax-
iomatic framework. Using these axioms, we showed that core-
concavity characterizes the largest class of functions for which
the data-processing inequality holds, under the assumption
that conditional entropy is defined as a generalized average.
We also showed that given core-concavity, the data-processing
inequality and “conditioning reduces entropy” are equivalent.
Several other well known properties of Shannon entropy are
generalized in this framework, including perfect secrecy and
Fano’s inequality. A natural connection to the problem of
statistical decision making was also developed. Finally, we
established that core-concavity completely characterizes the
“degradedness” ordering.

A potential future direction of this axiomatic work is to
study divergence-based definitions of entropy within the core-
concave framework. For instance, [33], [34] develop improved
lower and upper bounds on data-processing inequalities and
generalized Fano’s inequality based on higher order properties
of the divergence functions. It would be interesting to study
these bounds within the core-concave framework and their
possible applications to computer security and privacy.
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