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Task-based Solutions to Embedded Index Coding

Ishay Haviv∗

Abstract

In the index coding problem a sender holds a message x ∈ {0, 1}n and wishes to broadcast

information to n receivers in a way that enables the ith receiver to retrieve the ith bit xi. Every

receiver has prior side information comprising a subset of the bits of x, and the goal is to

minimize the length of the information sent via the broadcast channel. Porter and Wootters

have recently introduced the model of embedded index coding, where the receivers also play the

role of the sender and the goal is to minimize the total length of their broadcast information.

An embedded index code is said to be task-based if every receiver retrieves its bit based only on

the information provided by one of the receivers.

This paper studies the effect of the task-based restriction on linear embedded index coding.

It is shown that for certain side information maps there exists a linear embedded index code

of length quadratically smaller than that of any task-based embedded index code. The result

attains, up to a multiplicative constant, the largest possible gap between the two quantities.

The proof is by an explicit construction and the analysis involves spectral techniques.

1 Introduction

In the index coding problem, introduced by Birk and Kol [5], a sender holds a message x ∈ {0, 1}n

and wishes to broadcast information to n receivers R1, . . . , Rn in a way that enables each receiver

Ri to retrieve its own message xi ∈ {0, 1}. For this purpose, the receivers are allowed to use

some side information that they have in advance comprising a subset of the bits of x. The side

information map is naturally represented by a directed graph G on the vertex set [n] = {1, 2, . . . , n}

that includes a directed edge (i, j) if the receiver Ri knows xj. We will usually consider symmetric

side information maps and will thus refer to G as undirected. For a given side information graph

G, the goal is to design a coding function that maps any n-bit message x ∈ {0, 1}n to a broadcast

information of as few bits as possible so that the receivers are able to retrieve their messages based

on this information and on the side information that they have. For example, for the complete

graph on n vertices, which corresponds to the situation where every receiver Ri knows all the bits

of x except xi, broadcasting one bit of information that consists of the xor of the xi’s suffices for

the receivers to discover their messages. Of special interest is the setting of linear index coding in

which the sender is restricted to apply a linear encoding function over the binary field F2. Bar-

Yossef, Birk, Jayram, and Kol [4] have shown that the minimum length of a linear index code for a

side information graph G is precisely characterized by the minrank parameter denoted minrk2(G).
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In a recent work, Porter and Wootters [20] have introduced a variant of the index coding prob-

lem called embedded index coding whose study is motivated by applications in distributed com-

putation. In this model, the receivers also play the role of the sender, namely, the coding scheme

involves a set of receivers each of which broadcasts to all other receivers information that depends

only on the messages known to it according to the side information graph. As before, every re-

ceiver should be able to retrieve its message based on the broadcasted information and on the

side information that it has. The goal here is to minimize the total number of bits broadcasted

by all receivers. Note that any coding scheme used for embedded index coding induces a coding

scheme of the same length for the sender in the standard centralized setting. On the other hand, it

was shown in [20] that for every side information graph G (with no isolated vertices) there exists

a linear embedded index code whose length is at most twice the length of an optimal linear index

code for G in the centralized setting, i.e., at most 2 · minrk2(G).

A special family of solutions to embedded index coding is that of task-based index codes, de-

fined and studied in [20]. As before, for a given side information graph G a subset of the receivers

broadcasts information to all other receivers. However, while in a general embedded index code

a receiver is allowed to retrieve its message using the entire broadcast information (and the side

information), in a task-based solution every receiver can use only the broadcast information pro-

vided by one of the receivers. In other words, every receiver that plays the role of a sender in a

task-based solution is responsible to a subset of its neighborhood in the side information graph,

in the sense that the information that it broadcasts enables each receiver in this subset to retrieve

its message. Clearly, the length of an optimal task-based embedded index code for a given side

information graph G is at least as large as the length of an optimal general embedded index code

for G.

The study of task-based solutions to embedded index coding is motivated by several aspects

of the general embedded index coding problem. Firstly, task-based solutions seem to be more

computationally tractable than those of general embedded index coding. Indeed, a heuristic al-

gorithm of [20] produces a task-based solution to a given instance of embedded index coding by

first choosing a partition of the receivers into sets each of which is associated with a sender, and

then computing the optimal centralized solutions of the instances induced by each of these sets.

Secondly, task-based solutions are more robust compared to general solutions of embedded in-

dex coding, in the sense that a receiver is able to retrieve its message whenever the single sender

responsible to it succeeds in broadcasting its information, independently of errors and delays of

other senders. Finally, task-based embedded index coding is related to other notions studied in the

area. This includes instantly decodable network codes [13], whose study is concerned with maxi-

mizing the number of receivers that a sender can handle, and locally decodable index codes [10, 17]

in which every receiver is allowed to use only a small part of the entire broadcast information.

1.1 Our Contribution

The present paper studies the effect of the task-based restriction on linear embedded index coding.

For a side information graph G, let tb(G) denote the minimum total length of a linear task-based

embedded index code for G. We first observe that tb(G) is at most quadratic in the minimum

length of a linear index code for G in the centralized setting.
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Proposition 1.1. For every graph G with no isolated vertices, tb(G) ≤ O(minrk2(G)2).

Our main result is the following matching lower bound.

Theorem 1.2. For every integer k there exists a graph G such that minrk2(G) = k and tb(G) = Θ(k2).

As mentioned before, for a graph G with no isolated vertices the length of an optimal linear

embedded index code is at most 2 · minrk2(G) (see Theorem 2.5). Hence, Theorem 1.2 provides

graphs G for which there exists a linear embedded index code of length quadratically smaller than

tb(G). This implies an inherent limitation on the algorithm of [20] to embedded index coding.

Note that in contrast to the graphs given in Theorem 1.2, for most graphs G the value of tb(G) is

linear in minrk2(G). This follows from the fact that the minrank parameter of a typical random

graph is linear in its clique cover number [7].

The proof of Theorem 1.2 relies on an explicit graph family defined by Peeters [19] (see also [6])

and on a spectral technique due to Alon and Krivelevich [3].

1.2 Related Work

The index coding problem, introduced in [5] and further developed in [4], has been studied in

various variations and extensions. This research is motivated by applications such as distributed

storage [16], wireless communication [11], and the more general problem of network coding [1].

The variant called embedded index coding, introduced in [20], can be viewed as a special case of

the multi-sender index coding model studied in [18] which allows multiple senders and multiple

receivers but as disjoint sets of vertices (see also [14]). The framework of index coding studied

in [20] is more general than the one considered in the current work and allows the receivers to

request multiple messages.

A significant attention was given in the literature to the study of linear index coding which is

characterized, as shown in [4], by the minrank parameter (see Definition 2.3). This graph param-

eter has been originally defined in 1979 by Haemers [8] in the study of the Shannon capacity of

graphs and has later found a useful equivalent definition based on a graph family introduced by

Peeters in [19] (see Section 3.2). This graph family was used in [19] to obtain relations between the

minrank of a graph and the chromatic number of its complement, and it was further investigated

in [6] where its spectral properties were involved in the analysis of an approximation algorithm

for minrank based on semi-definite programming (see also [9]). Our proof of Theorem 1.2 relies on

the graph family from [19] and combines its spectral properties proved in [6] with a result of [3] on

pseudo-random graphs. Our approach is inspired by a work of Vinh [21] who studied the number

of orthogonal vector sets in large subsets of vector spaces over finite fields.

1.3 Outline

The rest of the paper is organized as follows. In Section 2, we gather several definitions and results

needed throughout the paper. In Section 3, we prove Proposition 1.1 and Theorem 1.2 and provide

an analogue of Theorem 1.2 for non-linear index coding. We end the paper in Section 4 with a few

concluding remarks.
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2 Preliminaries

For a graph G = (V, E), we let N(i) denote the set of vertices in V adjacent to a vertex i ∈ V. We

also let G[U] denote the subgraph of G induced by a subset U of V. For an n-dimensional vector

x and a set A ⊆ [n], we let x|A denote the restriction of x to the indices in A.

Index coding. We turn to formally define the variants of the index coding problem considered

in this work. Since the graphs in our construction in Theorem 1.2 are undirected, we restrict our

attention to the undirected case.

Definition 2.1 (Index Coding). Let G be a side information graph on the vertex set [n].

1. A linear index code of length ℓ for G is a linear encoding function E : F
n
2 → F

ℓ
2 for which there

exist n linear decoding functions D(i) : F
ℓ+|N(i)|
2 → F2 (i ∈ [n]) such that the following holds: For

all x ∈ F
n
2 and i ∈ [n], D(i)(E(x), x|N(i)) = xi.

2. A linear embedded index code of length ℓ for G is a collection of linear encoding functions E(j) :

F
|N(j)|
2 → F

ℓ j

2 (j ∈ S for some S ⊆ [n]) where ℓ = ∑j∈S ℓj, for which there exist n linear decoding

functions D(i) : F
ℓ+|N(i)|
2 → F2 (i ∈ [n]) such that the following holds: For all x ∈ F

n
2 and i ∈ [n],

D(i)((E(j)(x|N(j)))j∈S, x|N(i)) = xi.

3. A linear task-based embedded index code of length ℓ for G is a collection of linear encoding

functions E(j) : F
|N(j)|
2 → F

ℓ j

2 (j ∈ S for some S ⊆ [n]) where ℓ = ∑j∈S ℓj, for which there exist

indices j1, . . . , jn ∈ S and n linear decoding functions D(i) : F
ℓ ji
+|N(i)|

2 → F2 (i ∈ [n]) such that the

following holds: For all x ∈ F
n
2 and i ∈ [n], D(i)(E(ji)(x|N(ji)), x|N(i)) = xi.

Remark 2.2. Note that a graph with isolated vertices cannot have an embedded index code.

The minrank parameter over F2 is defined as follows.

Definition 2.3. Let G = ([n], E) be a directed graph. We say that an n by n matrix M over F2 represents

G if Mi,i 6= 0 for every i ∈ [n], and Mi,j = 0 for every distinct i, j ∈ [n] such that (i, j) /∈ E. The minrank

of G over F2 is defined as

minrk2(G) = min{rankF2
(M) | M represents G}.

The definition is naturally extended to undirected graphs by replacing every undirected edge with two

oppositely directed edges.

Notice that every (undirected) graph G satisfies minrk2(G) ≥ α(G), where α(G) stands for the

independence number of G.

The minimum length of a linear index code (Definition 2.3, Item 1) was characterized by the

minrank parameter in [4].

Theorem 2.4 ([4]). For every graph G, the minimum length of a linear index code for G is minrk2(G).

The minimum length of a linear embedded index code (Definition 2.3, Item 2) was bounded

in [20] from above using the minrank parameter.
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Theorem 2.5 ([20]). For every graph G with no isolated vertices, the minimum length of a linear embedded

index code for G is at most 2 · minrk2(G).

A neighborhood partition of a graph G = (V, E) is a partition (Ni)i∈S of the vertex set V, where

S ⊆ V and ∅ 6= Ni ⊆ N(i) for all i ∈ S. For a graph G, let tb(G) denote the minimum length

of a linear task-based embedded index code for G (Definition 2.3, Item 3). This quantity was

characterized in [20] using the minrank parameter and the notion of neighborhood partitions.

Lemma 2.6 ([20]). For every graph G with no isolated vertices, tb(G) is the minimum of

∑
i∈S

minrk2(G[Ni])

over all possible neighborhood partitions (Ni)i∈S of G.

3 Proofs

3.1 Proof of Proposition 1.1

A dominating set in a graph G = (V, E) is a subset D ⊆ V of the vertex set such that every vertex

of G either belongs to D or is adjacent to a vertex of D. Let γ(G) denote the minimum size of a

dominating set in a graph G. We prove the following bound.

Proposition 3.1. For every graph G with no isolated vertices, tb(G) ≤ γ(G) · (minrk2(G) + 1).

Proof: Let G = (V, E) be a graph. Consider a dominating set D ⊆ V in G of minimum size and

denote its vertices by D = {i1, . . . , id} where d = γ(G). We define a neighborhood partition of

G as follows. First, for every j ∈ [d] consider the set Nij
= N(ij) \ ∪h<jN(ih), that is, the set of

vertices that are adjacent to ij but not to any ih with h < j. Next, since D is a dominating set,

the only vertices that have not been covered yet belong to D, and since G has no isolated vertices

they can be partitioned into sets (Ni)i∈S for some S ⊆ V \ D where ∑i∈S |Ni| ≤ d and Ni ⊆ N(i)

for all i ∈ S. It follows that the sets of (Nij
)j∈[d] and (Ni)i∈S (omitting empty sets, if any) form a

neighborhood partition of G. Moreover, we clearly have minrk2(G[Nij
]) ≤ minrk2(G) for every

j ∈ [d] and minrk2(G[Ni]) ≤ |Ni| for every i ∈ S. By Lemma 2.6, it follows that

tb(G) ≤ ∑
j∈[d]

minrk2(G[Nij
]) + ∑

i∈S

minrk2(G[Ni])

≤ d · minrk2(G) + ∑
i∈S

|Ni| ≤ d · (minrk2(G) + 1),

and we are done.

The assertion of Proposition 1.1 follows now easily.

Proof of Proposition 1.1: Observe that every graph G satisfies γ(G) ≤ α(G) ≤ minrk2(G). By

Proposition 3.1, it follows that a graph G with no isolated vertices satisfies tb(G) ≤ O(minrk2(G)2),

as desired.
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3.2 Proof of Theorem 1.2

The proof of Theorem 1.2 relies on a graph family introduced in [19], defined as follows.

The Graph Family Gk. For an integer k ≥ 1 we define the (undirected) graph Gk = (V, E) on the

vertex set

V = {(u, v) ∈ F
k
2 × F

k
2 | 〈u, v〉 = 1},

in which two vertices (u1, v1) and (u2, v2) are adjacent if and only if 〈u1, v2〉 = 〈v1, u2〉 = 0.

Observe that |V| = (2k − 1) · 2k−1 and that Gk is regular with degree (2k−1 − 1) · 2k−2. It is easy to

show that the minrank over F2 of the complement Gk of the graph Gk is precisely k.

Claim 3.2. For every k ≥ 1, α(Gk) = minrk2(Gk) = k.

Proof: By the definition of Gk = (V, E), every vertex x ∈ V is associated with a pair (ux, vx) ∈

F
k
2 × F

k
2 satisfying 〈ux, vx〉 = 1. Let M1 and M2 be the k × |V| matrices over F2 with columns

indexed by V, such that the column associated with vertex x in M1 consists of the vector ux and

the column associated with it in M2 consists of the vector vx. The matrix M = MT
1 · M2 represents

the graph Gk, because for every x ∈ V we have 〈ux, vx〉 = 1 whereas every distinct vertices (ux, vx)

and (uy, vy) that are not adjacent in Gk (i.e., adjacent in Gk) satisfy 〈ux, vy〉 = 〈uy, vx〉 = 0. Since M

has rank at most k over F2, it follows that minrk2(Gk) ≤ k. On the other hand, the set of vertices

{(ei, ei)}i∈[k], where ei denotes the vector in F
k
2 that has a nonzero entry only in the ith coordinate,

forms an independent set in Gk. Since the size of an independent set in a graph bounds from

below its minrank, we obtain k ≤ α(Gk) ≤ minrk2(Gk) ≤ k, and we are done.

The graph family Gk can be used to provide an alternative definition for the minrank parameter

over F2. Indeed, it is straightforward to verify that for every graph G, minrk2(G) is the smallest

integer k for which there exists a homomorphism from G to Gk. This means, in a sense, that the

graph Gk captures the structure of all graphs with minrank k, and as such, it is natural to consider

it for obtaining a graph G with minrank k and yet a significantly larger tb(G). This is precisely

the approach taken in our proof of Theorem 1.2. To prove the lower bound on tb(Gk) we show,

roughly speaking, that every economical neighborhood partition of Gk includes Ω(k) vertices i

associated with a ‘large’ neighborhood Ni. For those vertices i, it is shown that the subgraph of Gk

induced by Ni contains an independent set of size linear in k, implying that its minrank is linear in

k as well. This yields, using Lemma 2.6, that the length of any linear task-based embedded index

code for Gk is at least of order k2. The existence of large independent sets in the induced subgraphs

of Gk is proved by a spectral technique, described next.

The graph Gk was shown in [6] to be vertex-transitive and edge-transitive. Moreover, the

strong symmetry properties of Gk were used there to exactly determine its eigenvalues (i.e., the

eigenvalues of its adjacency matrix).

Lemma 3.3 ([6]). For every k ≥ 3, the second largest eigenvalue of Gk in absolute value is 23k/2−3.

An (n, d, λ)-graph is a d-regular graph on n vertices in which all eigenvalues, but the largest

one, are of absolute value at most λ. It is well known that (n, d, λ)-graphs with λ much smaller

than d have various pseudo-random properties (see, e.g., [12]). In particular, the following result
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from [3] says that every sufficiently large subset of the vertex set of an (n, d, λ)-graph contains a

large complete graph.

Proposition 3.4 ([3]). Let G be an (n, d, λ)-graph. Then for every integer r ≥ 2 and every subset U of the

vertex set of G satisfying

|U| >
(λ + 1)n

d
·
(

1 +
n

d
+ · · ·+

(n

d

)r−2)

,

the graph G[U] contains a copy of the complete graph Kr.

Applying Proposition 3.4 to the graph Gk, we obtain the following result.

Lemma 3.5. There exists a constant c > 0 such that for all integers k ≥ 3 and r ≥ 2 and for every subset

U of the vertex set of Gk satisfying |U| ≥ c · 23k/2+2r , the graph Gk[U] contains a copy of Kr.

Proof: Let k ≥ 3 and r ≥ 2 be integers. By Lemma 3.3, the graph Gk is an (n, d, λ)-graph for

n = (2k − 1) · 2k−1, d = (2k−1 − 1) · 2k−2, and λ = 23k/2−3.

Observe that n
d = 4 · (1 + 1

2k−2
) and that λ · ( n

d )
r−1 = Θ(23k/2+2r), where we have used the as-

sumption that, say, r ≤ k/4 (Otherwise the assertion of the lemma trivially holds, because there

is no subset U of the vertex set of Gk with the required size). By Proposition 3.4, for every subset

U of the vertex set of Gk satisfying |U| ≥ Ω(λ · ( n
d )

r−1) = Ω(23k/2+2r), the graph Gk[U] contains a

copy of Kr, so we are done.

Remark 3.6. An equivalent statement to that of Lemma 3.5 is the following. For integers k ≥ 3 and r ≥ 2,

let F ⊆ F
k
2 × F

k
2 be a collection of non-orthogonal vector pairs such that |F| ≥ c · 23k/2+2r where c > 0 is

an absolute constant. Then there exist r pairs (u1, v1), . . . , (ur, vr) ∈ F such that ui and vj are orthogonal

whenever i 6= j.

We need the following simple linear algebra lemma.

Lemma 3.7. Let W1, W2 ⊆ F
k
2 be two subspaces of dimension at least k − ℓ. Then the number of pairs

(w1, w2) ∈ W1 × W2 satisfying 〈w1, w2〉 = 1 is at least (2k−ℓ − 2ℓ) · 2k−ℓ−1.

Proof: For every vector w1 ∈ W1 the number of vectors w2 ∈ W2 satisfying 〈w1, w2〉 = 1 depends

on whether w1 belongs to the orthogonal complement of W2 or not: If w1 ∈ W⊥
2 then there are no

such vectors w2 and otherwise their number is |W2|/2. By dim(W2) ≥ k − ℓ, we have |W⊥
2 | ≤ 2ℓ.

This implies, using dim(W1) ≥ k − ℓ, that for at least 2k−ℓ − 2ℓ of the vectors w1 ∈ W1 there are

|W2|/2 ≥ 2k−ℓ−1 vectors w2 ∈ W2 satisfying 〈w1, w2〉 = 1. Hence, the total number of the required

pairs is at least (2k−ℓ − 2ℓ) · 2k−ℓ−1.

Equipped with Lemmas 3.5 and 3.7, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2: For a given integer k, we prove that the complement Gk of the graph Gk

satisfies the assertion of the theorem. By Claim 3.2 we have minrk2(Gk) = k, and by Proposi-

tion 1.1 we have tb(Gk) ≤ O(k2). We turn to prove the lower bound on tb(Gk). Because of the

asymptotic nature of the bound, we may assume from now on that k is sufficiently large.
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By Lemma 2.6, it suffices to show that every neighborhood partition (Ni)i∈S of Gk satisfies

∑
i∈S

minrk2(Gk[Ni]) = Ω(k2).

Let (Ni)i∈S be a neighborhood partition of Gk. It can be assumed that |S| ≤ k2 as otherwise there

is nothing to prove. Denote r = ⌊k/8⌋, and let L ⊆ S be the collection of vertices i ∈ S such that

|Ni| ≥ c · 23k/2+2r, where c is the positive constant from Lemma 3.5. Note that

∑
i∈S\L

|Ni| ≤ c · 23k/2+2r · k2 ≤ c · k2 · 27k/4. (1)

Denote L = {(u1, v1), . . . , (uℓ, vℓ)} where ℓ = |L|. We turn to prove that ℓ must be linear in k.

To this end, consider the subspaces of F
k
2 defined by W1 = {w ∈ F

k
2 | 〈w, vj〉 = 0 for all j ∈ [ℓ]}

and W2 = {w ∈ F
k
2 | 〈w, uj〉 = 0 for all j ∈ [ℓ]}, and notice that each of them has dimension at

least k− ℓ. By the definition of Gk, the pairs (w1, w2) ∈ W1 ×W2 such that 〈w1, w2〉 = 1 are vertices

that are not adjacent in Gk to any of the vertices of L, hence they must be covered by the sets of

(Ni)i∈S\L. By Lemma 3.7, the number of these vertices is at least (2k−ℓ − 2ℓ) · 2k−ℓ−1, so using (1)

we obtain that (2k−ℓ − 2ℓ) · 2k−ℓ−1 ≤ c · k2 · 27k/4. This inequality, unless ℓ ≥ k/2, implies that

22(k−ℓ−1) ≤ c · k2 · 27k/4, and thus ℓ ≥ (1/8 − o(1)) · k, as desired.

Finally, for every i ∈ L we have |Ni| ≥ c · 23k/2+2r , hence by Lemma 3.5 the subgraph of Gk

induced by Ni contains a complete graph Kr, that is, α(Gk[Ni]) ≥ r for every i ∈ L. We derive that

∑
i∈S

minrk2(Gk[Ni]) ≥ ∑
i∈L

α(Gk[Ni]) ≥ ℓ · r ≥ Ω(k2),

and we are done.

3.3 Task-based Non-linear Index Coding

For a graph G on the vertex set [n], let β1(G) denote the minimum length of a general (i.e., not

necessarily linear) index code for G over the binary alphabet. Namely, β1(G) is the smallest integer

ℓ such that there exist an encoding function E : {0, 1}n → {0, 1}ℓ and n decoding functions D(i) :

{0, 1}ℓ+|N(i)| → {0, 1} (i ∈ [n]) such that the following holds: For all x ∈ {0, 1}n and i ∈ [n],

D(i)(E(x), x|N(i)) = xi. It is well known and easy to check that every graph G satisfies

α(G) ≤ β1(G) ≤ minrk2(G). (2)

While the model of embedded index coding was defined and studied in [20] for the linear setting,

it is natural to consider it for the more general setting where the encoding and decoding functions

are not necessarily linear. The linearity restriction on index coding may sometimes significantly

affect the length of the broadcast information (see, e.g., [15]). However, we observe here that the

proof of Theorem 1.2 can be used to provide a quadratic gap between the minimum length of an

index code and the minimum length of a task-based index code for the non-linear setting as well.

Proposition 3.8. For every integer k there exists a graph G with β1(G) = k such that the minimum total

length of a (not necessarily linear) task-based embedded index code for G is Θ(k2).
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Proof (sketch): For a given integer k, we claim that the complement Gk of the graph Gk satisfies

the assertion of the proposition. First, by Claim 3.2 combined with (2) we obtain that β1(Gk) = k.

Next, the minimum total length of a task-based index code for Gk is clearly bounded from above

by tb(Gk) which was shown in Theorem 1.2 to be Θ(k2). For the lower bound, observe that the

minimum total length of a task-based index code for any graph G is the minimum of

∑
i∈S

β1(G[Ni]) (3)

over all possible neighborhood partitions (Ni)i∈S of G. This follows from the fact that every task-

based index code for G naturally induces a neighborhood partition with a set of receivers for every

receiver that plays the role of a sender. Recalling that the proof of Theorem 1.2 provides an Ω(k2)

lower bound on the minimum of ∑i∈S α(Gk[Ni]) over all neighborhood partitions (Ni)i∈S of Gk,

applying again (2) we get the same lower bound for the quantity in (3), and we are done.

4 Concluding Remarks

• Lemma 3.5 shows that every induced subgraph of Gk on Ω(23k/2+2r) vertices must include

a copy of the complete graph Kr. The proof is based on spectral properties of Gk and on a

pseudo-random property of (n, d, λ)-graphs that guarantees the existence of a large com-

plete graph Kr in any sufficiently large induced subgraph (see Proposition 3.4). In fact,

such subgraphs are known even to include many copies of Kr, just as expected in a ran-

dom graph with edge probability d/n (see [12, Theorem 4.10]). For the graph family Gk, one

can show that for every r ≥ 2 and for every strict subset U of the vertex set of Gk satisfying

|U| = m ≥ ω(23k/2+2r), the graph Gk[U] contains (1 + o(1)) · mr

r! · 4−(r
2) copies of Kr.

• The bound provided by Lemma 3.5 on the number of vertices in an induced subgraph of

Gk that guarantees the existence of Kr suffices for us to obtain a tight lower bound, up to

a multiplicative constant, for the question studied in this work (see Theorem 1.2). Never-

theless, it will be interesting to better understand the minimum number of vertices needed

for Lemma 3.5 to hold. It seems plausible that the bound given there, whose proof relies

on spectral techniques, can be somewhat improved. For example, for the special case of

r = 2 the spectral analysis implies that any independent set in Gk has size at most O(23k/2),

whereas Alon [2] has proved an improved upper bound of 2(1+o(1))·k using different tech-

niques (see [6, Section 5]).
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