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METRIC MEAN DIMENSION AND ANALOG COMPRESSION

YONATAN GUTMAN AND ADAM ŚPIEWAK

Abstract. Wu and Verdú developed a theory of almost lossless analog compression, where one
imposes various regularity conditions on the compressor and the decompressor with the input
signal being modelled by a (typically infinite-entropy) stationary stochastic process. In this work
we consider all stationary stochastic processes with trajectories in a prescribed set of (bi-)infinite
sequences and find uniform lower and upper bounds for certain compression rates in terms of metric
mean dimension and mean box dimension. An essential tool is the recent Lindenstrauss-Tsukamoto
variational principle expressing metric mean dimension in terms of rate-distortion functions. We
obtain also lower bounds on compression rates for a fixed stationary process in terms of the rate-
distortion dimension rates and study several examples.

I. Introduction

I.A. Overview. In recent years, the theory of compression for analog sources (modeled by real-
valued stochastic processes) underwent a major development (as a sample of such results see [2],
[3], [4], [5], [6], [7], [8], [9]). There are two key differences with the classical Shannon’s model of
compression for discrete sources. The first one is the necessity to employ regularity conditions on
the compressor and/or decompressor functions (e.g. linearity or Lipschitz/Hölder continuity). This
requirement makes the problem both non-trivial (since highly irregular bijections between R and
R
n cannot be applied to obtain arbitrary small compression rates) and reasonable from the point

of view of applications (since it induces robustness to noise). The second difference is the fact
that non-discrete sources have in general infinite Shannon entropy rate, hence a different measure
of complexity for stochastic processes must be considered. One of the most fruitful approaches
taken in the literature is to assume a specific structure of the source signal. Apparently the most
prominent instance of such an approach is the theory of compressed sensing, where the input vectors
are assumed to be sparse. 1 In this setting, the theory of linear compression with efficient and
stable recovery algorithms has been developed. However, strong assumptions posed on the structure
of the signal reduce the applicability of the technique. A different approach was developed in the
pioneering work of Wu and Verdú [2]. Instead of making assumptions on the structure of the signal,
new measures of complexity related to the box-counting (Minkowski) dimension of the signal were
introduced and proved to be bounds on the compression rates for certain classes of compressors
and decompressors. Jalali and Poor ([4], [5]) developed the theory of universal compressed sensing
for stochastic processes with the ψ∗-mixing property, where the compression and decompression
algorithms do not require an a priori knowledge of the source distribution. The corresponding
compression rates are given in terms of a certain generalization of the Rényi information dimension.
Compression algorithms for general stationary processes (assuming an a priori knowledge of process
dependent compression codes) were obtained in [6].

The goal of this paper is twofold. We adapt the setting from [2], but instead of a single process
we consider all stationary stochastic processes with trajectories in a prescribed set S ⊂ [0, 1]Z of
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(bi-)infinite sequences. This corresponds to an a priori knowledge of all possible trajectories of the
process rather than its distribution. We are interested in the question of calculating the almost
lossless compression rate in the sense of [2] sufficient for all stationary stochastic processes supported
in S (i.e. taking into account the worst-case scenario) for compressors and decompressors in given
regularity classes. Such a rate is universal in the sense that it can be achieved for every stationary
stochastic process, independently of its distribution, as long as it fulfils the geometric constraints
given by S. Universality, especially from the algorithmic point of view, is an important subject in
compression theory - in the discrete case, the classical Lempel-Ziv codes [17] attain the optimal
compression rate without knowledge of the distribution of the source. Our method can be applied
whenever the distribution governing the source is not known, but geometric information is given
(e.g. signals emitted by the source are known to be sparse, but the corresponding probabilities
are not available). We use the geometric properties of the system S to obtain information on
compression rates of the stochastic processes supported in S. Our approach can be seen as a
combination of deterministic and stochastic perspectives on signal compression. Such an approach
was already hinted in the classical work of Ziv [18], where coding theorems for individual sequences
were studied and related to the Shannon’s entropy theory dealing with probabilistic sources (see
also [19, 20, 21]).

We focus on two compression schemes: with Borel or linear compressors and Hölder (Lipschitz)
decompressors. Such or similar schemes were considered in the literature in the case of a single
stochastic process (e.g. [2, 5, 6, 8]). Except for considering an ensemble of processes instead of
a single one, there are two main differences in our approach with respect to [2]. We consider
processes with trajectories in [0, 1]Z, hence we assume a uniform bound on the attained values.
We also demand decompressor functions to fulfil (L,α)-Hölder condition with fixed L > 0 and
α ∈ (0, 1] for all block lengths. In particular, the Lipschitz constant L has to be uniformly bounded
for arbitrary long codes. This novelty guarantees improved robustness to noise. Our results are
upper and lower bounds for such rates in terms of certain dynamical-geometric characteristics of
the considered set S. The main result is a lower bound on the worst-case compression rate for
Borel compression and (L,α)-Hölder decompression in terms of the metric mean dimension of the
set S. We illustrate this fundamental limit by several examples, including parametrized family of
sparse signal subshifts, where we show that our fundamental bound turns out to be tight (in the
asymptotic range L → ∞). Admitting general Borel compressors makes this result applicable to a
wide class of compression schemes (e.g. both linear and ones involving quantization). This result
is accompanied by two upper bounds (achievability results). The first one is an upper bound in
the context of Borel compression and (L,α)-Hölder decompression. It is obtained by employing
constructions akin to the Peano space-filling curve of Hölder surjective maps between unit cubes.
This type of construction would not be possible for more stringent regularity requirements for
the compressor. The second upper bound is a zero-probability error bound for linear compression
with (L,α)-Hölder decompression. It is given in terms of the mean box dimension of the set S
and it is deduced from a finite-dimensional embedding theorem involving the upper box-counting
(Minkowski) dimension (see [22]). We obtain also lower bounds on compression rates for a fixed
stationary process in terms of the rate-distortion dimension (see [6]; see also [9] for a more detailed
treatment on the connections between various notions of dimension for stochastic processes).

The fact that above bounds are obtained in terms of the metric mean dimension and mean box
dimension of the set S realizes the second goal of the paper: introducing notions from the theory
of dynamical systems to the study of compression rates. As we consider stationary processes, it
is natural to assume the set S to be invariant under the shift transformation and hence it can
be considered as a topological dynamical system. Metric mean dimension is a geometrical invari-
ant of dynamical systems introduced and studied by Lindenstrauss and Weiss in [23]. Existence
of connections between signal processing and mean dimension theory was observed first in [24],
where the use of sampling theorems was an essential tool for proving the embedding conjecture of
Lindenstrauss (cf. [25], see also [26]). Another connection between these domains was established
recently in [27], where a variational principle for metric mean dimension was given in terms of
rate-distortion functions - objects well studied in information theory, describing the entropy rate of
the quantization of a stochastic process at a given scale (for more details see [28]). This variational
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principle is our main tool in developing lower bounds on compression rates for all stationary pro-
cesses supported in S. Mean box dimension is a box-counting dimension version of the projective
dimension introduced by Gromov in [29]. The results of this paper can be also seen as an attempt
to provide operational meaning for metric mean dimension in stochastic terms (in the sense that
it gives fundamental limits for the corresponding compression problem), hence they contribute to
the program of relating ergodic theory to the theory of mean dimension initiated in [24].

I.B. Organization of the paper. In Section II we introduce basic notions and notations. In
Section III we define analog compression rates (following [2]). In Section IV we introduce geometric
and dynamical notions of dimension (box-counting dimension, metric mean dimension and mean
box dimension) and illustrate them by basic examples. In Section V we state the main results
of the paper. In Section VI we present several examples, which serve as illustrations to the main
results. Section VII contains the variational principle for metric mean dimension in the case of
subshifts, which is our main tool in developing lower bounds on certain compression rates. Section
VIII discusses related works by other authors. Section IX contains proofs of the main results.
Section X contains concluding remarks. In the Appendices we give more details on metric mean
dimension theory from the perspective of dynamical systems, prove several auxiliary results and
present calculations for examples from Sections IV and VI.

II. Notation

By N = {1, 2, . . .} we will denote the set of natural numbers, by N0 = {0, 1, 2, . . .} the set of
natural numbers with zero and by Z the set of integers. We take the base of the logarithm to be
equal to 2. For a (finite or infinite) vector x = (xn) and ℓ ≤ k we denote x|kℓ = (xℓ, . . . , xk). By
#A we will denote the cardinality of the set A.

In this paper, we apply results from the theory of dynamical systems to the theory of signal
processing. From the signal processing perspective, we will consider stationary stochastic process
{Xn : Ω → [0, 1] | n ∈ Z} defined on some probability space (Ω,P). Usually, instead of a single
process, we will be interested in considering all the stationary processes with trajectories in some
prescribed set S.

A useful description of this setting can be given in terms of dynamical systems and we will
usually take this perspective. By a (topological) dynamical system we will understand a triple
(X , T, ρ), where (X , ρ) is a compact metric space with metric ρ and T : X → X is a homeomorphism.
Many notions which we consider (e.g. metric mean dimension) are metric dependent, hence we do
not suppress ρ from the notation. For a (countably-additive) Borel measure µ on X , by T∗µ we
will denote its push-forward by T , i.e. a Borel measure on X given by T∗µ(A) = µ(T−1(A)) for
Borel A ⊂ X . We will say that measure µ is T -invariant, if T∗µ = µ. By Prob(X ) we will
denote the set of all Borel probability measures on X and by PT (X ) the set of all T -invariant
Borel probability measures on X . For a Borel measure µ on X its support is the closed set
supp(µ) = {x ∈ X : µ(U) > 0 for all open neighbourhoods U of x}. This is the smallest closed set
of full measure µ. For an introduction to topological dynamics and its connections with ergodic
theory see [30, Chapters 5-8].

Formally, the connection between signal processing and dynamical systems is given by considering
a special class of systems: subshifts with shift transformation. Assume that (A, d) is a compact
metric space, which we will treat as the alphabet space. We will focus on the case A ⊂ [0, 1]
with the standard metric. AZ is itself a compact metrizable space when endowed with the product
topology. This topology is metrizable by the product metric

(1) ρ(x, y) =
∑

i∈Z

d(xi, yi)

2|i|
,

where x = (xi)i∈Z, y = (yi)i∈Z. Note that diam(AZ, ρ) = 3diam(A, d). Define the shift transfor-
mation σ : AZ → AZ as

σ((xi)i∈Z) = (xi+1)i∈Z.

We will be interested in the properties of a given subshift, i.e. a closed (in the product topology)
and shift-invariant subset S ⊂ AZ, which we will interpret as the set of all admissible signals that
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can occur in the input and treat as a dynamical system with transformation σ. For n ∈ N denote
by πn : S → An the projection

πn(x) = x|n−1
0 , x = (xi)i∈Z ∈ S.

We will endow [0, 1]Z with a product metric as in (1), i.e.

(2) τ(x, y) =

∞
∑

i=−∞

1

2|i|
|xi − yi|.

Throughout the paper, the letter τ will always denote this specific metric. It metrizes the product
topology on [0, 1]Z. Note that diam(τ) = 3. This choice of the metric may seem arbitrary, but
it turns out that metric mean dimension for subshifts takes a natural form when calculated with
respect to τ (see Proposition A.3). We will consider mainly subshifts S ⊂ [0, 1]Z, i.e. shift-invariant
subsets of [0, 1]Z which are closed in the topology given by the metric τ . In this language, for a given
subshift S ⊂ [0, 1]Z, the set Pσ(S) consists of all distributions of stationary stochastic processes
taking values in a given subshift S (i.e. distributions of stationary stochastic processes Xn, n ∈ Z

such that (Xn)n∈Z ∈ S with probability one). For vectors x, y ∈ [0, 1]n, x = (x0, . . . , xn−1), y =
(y0, . . . , yn−1) and p ∈ [1,∞) we define the (normalized) ℓp distance (coming from the p-th norm):

‖x− y‖p =
( 1

n

n−1
∑

k=0

|xk − yk|
p
)

1

p

and
‖x− y‖∞ = max{|xk − yk| : 1 ≤ k ≤ n}.

The following inequalities hold on [0, 1]n for 1 ≤ p ≤ q <∞ (see [31, Chapter 3 - Exercise 5])

‖ · ‖p ≤ ‖ · ‖q ≤ ‖ · ‖∞ and ‖ · ‖∞ ≤ n
1

p ‖ · ‖p.

Note also that diam([0, 1]n, ‖ · ‖p) = 1 for every n ∈ N, p ∈ [1,∞]. For x ∈ [0, 1]n we will denote
supp(x) = {0 ≤ i < n : xi 6= 0} and ‖x‖0 = #supp(x).

Let ν be a Borel measure on [0, 1]. We denote the product measure induced by ν on [0, 1]Z as
⊗

Z

ν. It corresponds distributions of memoryless (i.i.d) sources.

A sequence N ∋ n 7→ an ∈ [0,∞) is called subadditive if an+k ≤ an+ak for every n, k ∈ N. We
will apply several times the following well-known fact (see e.g [32, Propoition 6.2.3]): if n 7→ an is
a subadditive sequence, the limit lim

n→∞

an
n

exists and equals inf
n∈N

an
n

.

Remark II.1. In the paper [2], Wu and Verdú consider processes taking values in the space R
N,

whereas we will consider the space [0, 1]Z. From the formal point of view, this assumption is made
in order to obtain compactness of the considered space. From the point of view of applications, this
corresponds to an a priori bound on signals (up to rescaling). We also consider two-sided sequences
instead of one-sided - this corresponds to having an access to the past of the state of the system and
makes the acting transformation σ invertible, which is a useful assumption in dynamical systems.
However, all notions under consideration depend only on the future and the corresponding results
remain unchanged in the non-invertible case.

III. Analog compression rates

In this section we introduce analog compression rates for sources with non-discrete alphabet.
They measure the rate at which a given signal can be compressed assuming certain restrictions
on the performance and regularity of the compression-decompression process. The definitions are
analogous to the achievable rates as defined in [2, Definition 5]. We consider subshifts in [0, 1]Z and
invariant measures supported in them. In this setting it is natural to assume further constraints
on the compressor and decompressor functions. This follows from the fact that the alphabet [0, 1]
is infinite: there exists an injection from any A ⊂ [0, 1]n into [0, 1]. Therefore, if we do not assume
any regularity of the compressor or decompressor functions, the asymptotic compression rate is
always 0. This is also true if we allow only Borel compressors and decompressors (see [2, Section
IV-B]). On the other hand, from the point of view of applications it is also desirable to assume some
regularity conditions on the compressor and decompressor functions, since they induce robustness
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to noise and enable numerical control of the errors occurring in the compression and decompression
processes (e.g. by requiring encoders and decoders to be Hölder).

III.A. Definitions of compression rates. We will introduce now several regularity classes which
will be used throughout the paper.

Definition III.A.1. A regularity class with respect to the norm ‖ · ‖p, p ∈ [1,∞] is a set C of

functions between finite dimensional unit cubes, i.e. C ⊂ {f : [0, 1]n → [0, 1]k : n, k ∈ N}. We will
consider the following regularity classes:

(1) Borel B = {f : [0, 1]n → [0, 1]k
∣

∣ n, k ∈ N, f is Borel}
(2) L−Lipschitz for L > 0

Lp
L = {f : [0, 1]n → [0, 1]k

∣

∣ n, k ∈ N, ‖f(x)− f(y)‖p ≤ L‖x− y‖p for all x, y ∈ [0, 1]n}

(3) Lipschitz

L = {f : [0, 1]n → [0, 1]k
∣

∣ n, k ∈ N, ∃
L>0

‖f(x)− f(y)‖p ≤ L‖x− y‖p for all x, y ∈ [0, 1]n}

(4) (L,α)-Hölder for L > 0, α ∈ (0, 1]

Hp
L,α = {f : [0, 1]n → [0, 1]k

∣

∣ n, k ∈ N, ‖f(x)− f(y)‖p ≤ L‖x− y‖αp for all x, y ∈ [0, 1]n}

(5) α-Hölder for α ∈ (0, 1]

Hα = {f : [0, 1]n → [0, 1]k
∣

∣ n, k ∈ N, ∃
L>0

‖f(x)− f(y)‖p ≤ L‖x− y‖αp for all x, y ∈ [0, 1]n}

(6) Hölder

H = {f : [0, 1]n → [0, 1]k
∣

∣ n, k ∈ N, ∃
L>0

∃
α∈(0,1]

‖f(x)− f(y)‖p ≤ L‖x− y‖αp for all x, y ∈ [0, 1]n}

(7) Linear

LIN = {f : [0, 1]n → [0, 1]k
∣

∣ n, k ∈ N, ∃
F :Rn→Rk

F is linear and f = F |[0,1]n}

Remark III.A.2. Note that we omit p in the notation for classes B and LIN, as they clearly do not
depend on the choice of the norm. Classes H,Hα and L are also independent of p, as all norms
on a finite-dimensional real vector space are equivalent, yet note that the Lipschitz constant of a
given map in any of these classes may depend on the choice of the norm.

Remark III.A.3. Notice that the identity map id : [0, 1]n → [0, 1]n belongs to all of the above
classes, except for LL and Hp

L,α. Indeed for those two classes, we have id ∈ LL,H
p
L,α if and only if

L ≥ 1.

Let us define now three compression rates that we will study throughout the paper.

Definition III.A.4. (See [2, Definition 3]) Let µ ∈ Pσ([0, 1]
Z). Let C,D ⊂ {f : [0, 1]n → [0, 1]k :

n, k ∈ N} be regularity classes. For n ∈ N and ε ≥ 0, the C − D almost lossless analog
compression rate rC−D(µ, ε, n) ≥ 0 of µ with n-block error probability ε is the infimum of

k

n
,

where k runs over all natural numbers such that there exist maps

f : [0, 1]n → [0, 1]k, f ∈ C and g : [0, 1]k → [0, 1]n, g ∈ D

with
µ({x ∈ [0, 1]Z| g ◦ f(x|n−1

0 ) 6= x|n−1
0 }) ≤ ε.

Define further:
rC−D(µ, ε) = lim sup

n→∞
rC−D(µ, ε, n).

In the next definition, we fix a subshift S ⊂ [0, 1]Z and consider compressors and decompressors
providing almost lossless compression for all measures µ ∈ Pσ(S). In such a case, compression can
be performed without knowledge of the distribution from which the signal comes, as long as the
process is supported in S.
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Definition III.A.5. Let S ⊂ [0, 1]Z be a subshift. Let C,D ⊂ {f : [0, 1]n → [0, 1]k : n, k ∈ N} be
regularity classes. For n ∈ N and ε ≥ 0, the C−D uniform almost lossless analog compression
rate rC−D(S, ε, n) ≥ 0 of S with n-block error probability ε is the infimum of

k

n
,

where k runs over all natural numbers such that there exist maps

f : [0, 1]n → [0, 1]k, f ∈ C and g : [0, 1]k → [0, 1]n, g ∈ D

such that
µ({x ∈ S| g ◦ f(x|n−1

0 ) 6= x|n−1
0 }) ≤ ε holds for all µ ∈ Pσ(S).

Define further:
rC−D(S, ε) = lim sup

n→∞
rC−D(S, ε, n).

We introduce also an Lp variant.

Definition III.A.6. Let µ ∈ Pσ([0, 1]
Z). Let C,D ⊂ {f : [0, 1]n → [0, 1]k : n, k ∈ N} be regularity

classes with respect to the norm ‖ · ‖. 2 For n ∈ N, ε ≥ 0 and p ∈ [1,∞), the C − D Lp-analog
compression rate rL

p

C−D(µ, ε, n) ≥ 0 of µ with n-block mean error ε is the infimum of

k

n
,

where k runs over all natural numbers such that there exist maps

f : [0, 1]n → [0, 1]k, f ∈ C and g : [0, 1]k → [0, 1]n, g ∈ D

with
ˆ

[0,1]n

‖x− g ◦ f(x)‖pd(πn)∗µ(x) ≤ εp.

Define further:
rL

p

C−D(µ, ε) = lim sup
n→∞

rL
p

C−D(µ, ε, n).

Note that in this work we will consider the Lp-compression rate for regularity classes with respect
to the matching norm ‖ · ‖p.

Remark III.A.7. All of the above compression rates are non-increasing in ε, i.e. if ε ≤ ε′ then
r(µ, ε, n) ≥ r(µ, ε′, n) and r(µ, ε) ≥ r(µ, ε′). Let C,D be regularity classes such that id|[0,1]n ∈ C,D
for every n ∈ N. Then r(µ, ε) ≤ 1 holds for all µ ∈ Pσ(S) and ε ≥ 0. If C and D are regularity
classes with respect to a norm such that diam([0, 1]n, ‖ · ‖) = 1 for every n ∈ N (note that we
normalize norms ‖ · ‖p, p ∈ [1,∞] such that this holds), then

(3) rL
p

C−D(µ, ε) ≤ rC−D(µ, ε
p).

for 1 ≤ p <∞ and µ ∈ Pσ(S).

Remark III.A.8. One could have used a seemingly more permissive definition with the compressor
function defined only on a set of words of length n occuring in S, i.e. with conditions

(4) f : πn(S) ⊂ [0, 1]n → [0, 1]k, f ∈ C and g : f(πn(S)) ⊂ [0, 1]k → [0, 1]n, g ∈ D.

However, if one can apply suitable extension theorems to extend functions f, g to the full cubes
[0, 1]n and [0, 1]k , respectively, while maintaining assumed regularity, then this would have resulted
with an equivalent definition. All of the classes in Definition III.A.1 other than LIN admit such
an extension when considered with respect to the ‖ · ‖∞ norm. In particular, for classes H∞

L,α this
follows from Banach’s theorem on extension of Hölder and Lipschitz functions, stating that a real-
valued function defined on a subset A of a metric space and satisfying |f(x) − f(y)| ≤ Ld(x, y)α

for all x, y ∈ A, can be extended to the whole metric space so as to satisfy the same inequality

2recall that this is recorded in the notation, e.g. Hp

L,α denotes the set of (L,α)-Hölder maps between unit cubes
with respect to the norm ‖ · ‖p

6



([33, Theorem IV.7.5], see also [34]). Therefore, given a function f : A → [0, 1]k , A ⊂ [0, 1]n, f =
(f1, . . . , fk) satisfying ‖f(x) − f(y)‖∞ ≤ L‖x − y‖α∞ on A, one can apply Banach’s theorem to
coordinate functions f1, . . . , fk (clearly satisfying |fj(x)−fj(y)| ≤ L‖x−y‖α∞), obtaining extensions

f̃1, . . . , f̃k : [0, 1]n → R. Then f1, . . . , fk : [0, 1]n → [0, 1] given as f j(x) = max{min{f(x), 1}, 0}

are again (L,α)-Hölder and satisfy f j = fj on A. Therefore f = (f1, . . . , fk) is an extension of f
from A to [0, 1]n and

‖f(x)− f(x)‖∞ = max
1≤j≤k

‖f j(x)− f j(y)‖ ≤ L‖x− y‖α∞.

This yields an extension theorem for H∞
L,α. By [34, Theorem 1], analogous result is true for the

class H2
L,α. The above considerations apply also to Hp

L,α for other p ∈ [1,∞), however the extended
function might have a worse Lipschitz constant L. Namely, repeating the above argument for a
function f : A → [0, 1]k satisfying ‖f(x) − f(y)‖p ≤ L‖x − y‖αp , the coordinate functions fj will

satisfy |fj(x) − fj(y)| ≤ k
1

p ‖f(x) − f(y)‖p ≤ k
1

pL‖x− y‖αp . Therefore, the extended function f is
guaranteed to satisfy

‖f(x)− f(y)‖p ≤ k
1

pL‖x− y‖αp .

In other words, (L,α)-Hölder function in the norm ‖ · ‖p can be extended to an element of Hp

k
1
pL,α

.

It is known that in general one cannot have an extension theorem for Hölder maps preserving
the Lipschitz constant for p ∈ (1,∞) \ {2} (see [35, Section 1.30]). In conclusion, if C,D ∈
{B,LIN,Hα,H

∞
L,α,H

2
L,α}, then (4) will result in equivalent definitions of compression rates.

IV. Mean dimensions

In this section we will introduce two dynamical notions of mean dimensions: metric mean di-
mension and mean box dimension. They attempt to capture the average number of dimensions per
time unit required to describe a given system and can serve as complexity measures of a subshift.
The main results of this paper are certain bounds on compression rates in terms of these mean
dimensions.

IV.A. Box dimension. Let us begin by introducing the non-dynamical notion of box-counting
dimension. It will serve a basis for dynamical definitions of mean dimensions.

Definition IV.A.1. Let (X , ρ) be a compact metric space. For ε > 0, the ε-covering number of
a subset A ⊂ X , denoted by #(A, ρ, ε), is the minimal cardinality N of an open cover {U1, . . . , UN}
of A such that all Un have diameter smaller than ε. The ε-net in A is a subset E ⊂ A such that
for every x ∈ A the distance dist(x,E) := inf

y∈E
ρ(x, y) is strictly smaller than ε.

Note that in A there exists an ε-net of cardinality #(A, ρ, ε). When the metric ρ is coming from
a norm ‖ · ‖ (i.e. ρ(x, y) = ‖x− y‖), we will write simply #(A, ‖ · ‖, ε) for #(A, ρ, ε).

Definition IV.A.2. Let (X , ρ) be a compact metric space. The upper box-counting
(Minkowski) dimension of A ⊂ X is defined as

dimB(A) = lim sup
ε→0

log#(A, ρ, ε)

log 1
ε

.

Similarly the lower box-counting dimension of A is defined as

dimB(A) = lim inf
ε→0

log#(A, ρ, ε)

log 1
ε

.

If upper and lower limits coincide, then we call its common value the box-counting dimension
of A and denote it by dimB(A).

In the sequel we will consider primarily sets A ⊂ [0, 1]n with the distance induced by the norm
‖ · ‖∞. Note that, any other equivalent metric on [0, 1]n (e.g. ‖ · ‖p, p ∈ [1,∞)) will give the same
values of box-counting dimensions. Some of the basic properties of box-counting dimensions are
summarized in the next proposition (see e.g. [36, Prop. 3.3 and 3.4]).

Proposition IV.A.3. Let A,B be subsets of compact metric spaces. Then
7



(1) if A ⊂ B, then dimB(A) ≤ dimB(B) and dimB(A) ≤ dimB(B)
(2) dimB(A ∪B) ≤ max{dimB(A),dimB(B)}
(3) dimB(A×B) ≤ dimB(A) + dimB(B)
(4) dimB([0, 1]

n) = n

For more on the dimension theory see [37], [38] and [36].

IV.B. Metric mean dimension and mean box dimension. The notion that we will be mostly
interested in is the metric mean dimension:

Definition IV.B.1. Let S ⊂ [0, 1]Z be a subshift. The upper and lower metric mean dimensions
of the system S are defined as

mdimM (S) = lim sup
ε→0

lim
n→∞

log #(πn(S), || · ||∞, ε)

n log 1
ε

and

mdimM (S) = lim inf
ε→0

lim
n→∞

log #(πn(S), || · ||∞, ε)

n log 1
ε

.

(the limit with respect to n exists as the sequence n 7→ log#(πn(S), || · ||∞, ε) is subadditive). If
upper and lower limits coincide, then we call its common value the metric mean dimension of
S and denote it by mdimM (S).

The study of mean dimension type invariants in dynamical systems goes back to Gromov [29].
The notion of metric mean dimension was introduced by Lindenstrauss and Weiss in [23]. The above
formula is valid for subshifts in [0, 1]Z, however metric mean dimension was originally defined by a
different (but equivalent) formula, which applies to any dynamical system on a compact metric space
(see Proposition A.3). In Appendix A we present the general definition, the proof of equivalence
and more remarks on metric mean dimension from the point of view of dynamical systems. We
will consider one more notion of mean dimension. It is a box-counting dimension version of the
projective dimension introduced by Gromov in [29].

Definition IV.B.2. For a subshift S ⊂ [0, 1]Z we define its upper mean box dimension as

mdimB(S) = lim
n→∞

dimB(πn(S))

n
,

where dimB(πn(S)) is calculated with respect to any ‖ · ‖p norm on [0, 1]n (the limit exists as the

sequence n 7→ dimB(πn(S)) is subadditive, since πn+k(S) ⊂ πn(S)× πk(S)).

Note that mdimB(S) is defined as mdimM (S), but with exchanged order of limits. They fulfill
the following inequality, which is an analog of Gromov’s pro-mean inequality [29, Subsection 1.9.1].

Proposition IV.B.3. Let S ⊂ [0, 1]Z be a subshift. Then

mdimM (S) ≤ mdimB(S).

For the proof see Appendix B.

IV.C. Examples. Let us present now several examples (with some of the calculations postponed
to Appendix E).

Example IV.C.1. Let A ⊂ [0, 1] be a closed subset. Then S = AZ ⊂ [0, 1]Z is a subshift satisfying

(5) mdimM (S) = mdimB(S) = dimB(A).

By Proposition IV.B.3 it is enough to prove

dimB(A) ≤ mdimM (S) and mdimB(S) ≤ dimB(A)

The lower bound follows from [39, Thm. 5]. For the upper bound note that πn(S) = An, hence by
Proposition IV.A.3.3, dimB(πn(S)) = dimB(A

n) ≤ ndimB(A). �

In general, equality does not hold in Proposition IV.B.3:
8



Example IV.C.2. For m ≥ 1 let

Am := {(. . . , 0, 0)} × [0,
1

2m
]m × {(0, 0, . . .)} ⊂ [0, 1]Z,

where the cube [0, 1
2m ]m is located on coordinates 0, 1, . . . ,m− 1. Set

Sm =
⋃

n∈Z

σn(Am) and S :=
⋃

m≥1

Sm.

Then S is a subshift satisfying

mdimM (S) = 0 and mdimB(S) = 1.

For calculations see Appendix E.A. �

Let us now consider an example which arises naturally in the context of compressed sensing for
sparse signals. It will be our main example throughout the paper.

Example IV.C.3. Fix K,N ∈ N with K ≤ N . Let S ⊂ [0, 1]Z be the subshift consisting of
(N,K)-sparse vectors, i.e.

S = {x ∈ [0, 1]Z : ∀
j∈Z

‖x|j+N−1
j ‖0 ≤ K}.

We will call S the (N,K)-sparse subshift. It satisfies

mdimM (S) = mdimB(S) =
K

N
.

Let us prove these equalities. By Proposition IV.B.3, it is enough to prove

K

N
≤ mdimM (S) and mdimB(S) ≤

K

N
.

For the upper bound, observe that πlN (S) for ℓ ∈ N is a finite union of sets of the upper box-
counting dimension at most ℓK (as every x ∈ πℓN (S) satisfies ‖x‖0 ≤ ℓK). Consequently, by
Proposition IV.A.3.2, dimB(πℓN (S)) ≤ ℓK, hence mdimB(S) ≤

K
N

. For the lower bound, note that

πℓN (S) contains the set Aℓ := ([0, 1]K ×{0}N−K)ℓ. For fixed ε > 0 we have therefore (see e.g. [37,
Section 2.2])

#(πlN (S), || · ||∞, ε) ≥ #(Aℓ, || · ||∞, ε) ≥
(1

ε

)Kℓ

,

hence

mdimM (S) = lim inf
ε→0

lim
ℓ→∞

log #(πℓN (S), || · ||∞, ε)

ℓN log 1
ε

≥ lim inf
ε→0

lim
ℓ→∞

ℓK log 1
ε

ℓN log 1
ε

=
K

N
.

�

V. Main results

In this section we present the main results of the paper. Instead of assuming specific properties
for the measure governing the source, we consider the setting in which the set of all possibles
trajectories is known and we look for compression rates corresponding to the worst-case scenario.
Therefore the following question is our main question:

Main Question: Given a subshift S ⊂ [0, 1]Z, calculate

sup
ε>0

sup
µ∈Pσ(S)

rC−D(µ, ε), sup
ε>0

sup
µ∈Pσ(S)

rL
p

C−D(µ, ε), sup
ε>0

rC−D(S, ε) and rC−D(S, 0)

for fixed regularity classes C and D.

The above suprema correspond to rates which can be achieved whenever geometric information
on the signal is given (i.e. S is known), but its statistics are unknown (i.e. the particular µ ∈ S
which governs the source is not known) and can be a priori given by any stationary distribution
supported in S.

9



We will be mainly interested in this question for C ∈ {B,LIN} and D = Hp
L,α. Such or similar

regularity conditions have appeared previously in the literature (e.g. in [2, 5, 6]. See Section VIII
for a more detailed discussion). Our goal is to connect the above uniform compression rates with
geometric-dynamical invariants of the given subshift S - its mean dimensions.

Remark V.1. Note that for any compression variant it holds

sup
µ∈Pσ(S)

sup
ε>0

rC−D(µ, ε) = sup
ε>0

sup
µ∈Pσ(S)

rC−D(µ, ε) =

= lim
ε→0

sup
µ∈Pσ(S)

rC−D(µ, ε) = sup
µ∈Pσ(S)

lim
ε→0

rC−D(µ, ε).

Below we formulate the main results of the paper. For their proofs see Section IX.

V.A. Lower bounds. Our main result is a worst-case fundamental limit on sup
ε>0

rL
p

B−Hp

L,α

(µ, ε) (and

therefore on sup
ε>0

rB−Hp
L,α

(µ, ε) – see (3)) for µ ∈ Pσ(S) in terms of the metric mean dimension

of S. This corresponds to the setting where the distribution of the signal is not known, but the
set S of all possible trajectories is known (i.e. one has knowledge of the words that can occur in
the input, but not their probabilities) and one is interested in the worst (largest) compression rate
which is required to code the signal.

Theorem V.A.1. Let S ⊂ [0, 1]Z be a subshift. The following holds for every 0 < α ≤ 1, L > 0
and p ∈ [1,∞):

αmdimM (S) ≤ sup
ε>0

sup
µ∈Pσ(S)

rL
p

B−Hp

L,α
(µ, ε) ≤ sup

ε>0
sup

µ∈Pσ(S)
rB−Hp

L,α
(µ, ε).

Similarly for p = ∞
αmdimM (S) ≤ sup

ε>0
sup

µ∈Pσ(S)
rB−H∞

L,α
(µ, ε).

Intuitively, this result states that for a given set of trajectories S, we can always find a stationary
stochastic process supported in S, which cannot be compressed at a better rate than αmdimM (S).
Note that we work with Borel compressors, which allows very general compression schemes (e.g.
non-continuous quantizations) for which this bound can be applied. We consider Hölder decom-
pressors with both Hölder exponent α and Lipschitz constant L fixed, i.e. decompressors have to
fulfill (L,α)-Hölder condition for every blocklength (hence uniform control of the decompression
error is guaranteed for arbitrary long messages). We consider compressors and decompressors as
functions between finite-dimensional unit cubes, hence the Lipschitz constant of the decompressor
cannot be arbitrary reduced as this necessitates expanding the image of the compressor to beyond
the unit cube - this makes the above constraint non-trivial. As shown by examples in the next sec-
tion, fixing L (i.e. choosing D = Hp

L,α instead of D = Hα) is necessary for the above bound to hold

(see Example VI.A.2). It is not sharp in general (see Example VI.A.1), yet equality holds for some
subshifts after letting L → ∞ (we prove it for (N,K)-sparse subshifts in Example VI.B.1). Such
equality, whenever holds, can be seen as an operational characterization of metric mean dimension.
For the proof of Theorem V.A.1 see Section IX.A.

We obtain also a lower bound on rL
2

B−H2
L,α

(µ, ε) for fixed µ ∈ Pσ(S) and ε > 0 (see Theorem

IX.A.1) and on sup
ε>0

rL
2

B−HL,α
(µ, ε) for fixed µ ∈ Pσ(S) in terms of the rate-distortion dimension of

a measure (see Corollary IX.A.2 for details).

V.B. Upper bounds. The lower bound of Theorem V.A.1 is accompanied by two upper bounds.
The first one, concerning linear compressors and (L,α)-Hölder decompressors, gives an upper bound
on the worst-case compression rate for zero-probability error in terms of mean box dimension. It
is an application of the finite-dimensional linear embedding theorem with Hölder inverse.

Theorem V.B.1. Let S ⊂ [0, 1]Z be a subshift. Then, for every 0 < α < 1 and p ∈ [1,∞]

inf
L>0

rLIN−Hp

L,α
(S, 0) ≤

2

1− α
mdimB(S).

10



By the definition of rLIN−Hp

L,α
(S, 0), the sequence of coders and decoders which achieves the

above upper bound is independent of µ ∈ Pσ(S), hence compression for a given distribution µ ∈
Pσ(S) can be performed without prior knowledge of µ, as long as µ is supported in S. The
infimum over L means that we can obtain compression rates arbitrary close to 2

1−α
mdimB(S)

from above, at the cost of increasing L (which, once fixed, is valid for all blocklengths). Since
rLIN−Hp

L,α
(S, 0) ≤ 1 for L ≥ 1 (as identity belongs to both classes LIN and Hp

L,α), we always have

min{1, 2
1−α

mdimB(S)} as the upper bound. For that reason, Theorem V.B.1 gives a meaningful

bound as long as mdimB(S) <
1−α
2 . Combining Theorems V.A.1 and V.B.1 we obtain the following

corollary:

Corollary V.B.2. Let S ⊂ [0, 1]Z be a subshift. For every 0 < α < 1 and p ∈ [1,∞) the following
holds:

αmdimM (S) ≤ inf
L>0

sup
ε>0

sup
µ∈Pσ(S)

rL
p

B−Hp

L,α
(µ, ε) ≤ inf

L>0
sup
ε>0

sup
µ∈Pσ(S)

rB−Hp

L,α
(µ, ε) ≤

≤ inf
L>0

sup
ε>0

sup
µ∈Pσ(S)

rLIN−Hp

L,α
(µ, ε) ≤ min{1,

2

1− α
mdimB(S)}.

Similarly for p = ∞
αmdimM (S) ≤ inf

L>0
sup
ε>0

sup
µ∈Pσ(S)

rB−H∞
L,α

(µ, ε) ≤

≤ inf
L>0

sup
ε>0

sup
µ∈Pσ(S)

rLIN−H∞
L,α

(µ, ε) ≤ min{1,
2

1− α
mdimB(S)}.

For the proof of Theorem V.B.1 see Section IX.B.
The second upper bound concerns the setting of Theorem V.A.1: Borel compression and (L,α)-

Hölder decompression. It is a universal upper bound, independent of S. Moreover, the compressor
and decompressor functions are independent of the choice of measure µ ∈ Pσ(S) and operate with
zero-probability error.

Proposition V.B.3. Let S ⊂ [0, 1]Z be a subshift. Then for every 0 < α ≤ 1 and p ∈ [1,∞]

inf
L>0

rB−Hp

L,α
(S, 0) ≤ α.

Note that this upper bound is general is a sense that it does not depend on S (in particular, it
is true for the full shift S = [0, 1]Z). The proof is based on the existence of Hölder surjective maps
between unit cubes (constructions akin to the Peano curve construction). See Section IX.C.

Proposition V.B.3 together with Theorem V.A.1 gives the following inequalities.

Corollary V.B.4. Let S ⊂ [0, 1]Z be a subshift. For every 0 < α ≤ 1 and p ∈ [1,∞) the following
holds:

αmdimM (S) ≤ inf
L>0

sup
ε>0

sup
µ∈Pσ(S)

rL
p

B−Hp

L,α
(µ, ε) ≤ inf

L>0
rB−Hp

L,α
(S, 0) ≤ α.

In particular, if mdimM (S) = 1, then the above compression rates are all equal to α.

VI. Examples

In this section we present several examples illustrating results of the previous section. For the
proofs and calculations see Appendix E.

VI.A. Discrete signals. In general, equality does not hold in Theorem V.A.1.

Example VI.A.1. Let S := {0, 1}Z. Then mdimM (S) = dimB({0, 1}) = 0 (see Example IV.C.1).
For any α ∈ (0, 1] and L > 0 it holds that

(6) sup
ε>0

sup
µ∈Pσ(S)

rL
1

B−H1
L,α

(µ, ε) ≥
α(1 −H(14))

log
(

max{8L, 8}
) > 0,

where H(p) = −p log(p) − (1 − p) log(1 − p) is the Shannon entropy of the probability vector
(p, 1− p). For the proof of (6) see Appendix E.B. �
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This example shows that equality in Theorem V.A.1 might not hold for any fixed L > 0. Note
however that the above lower bound tends to 0 as L→ ∞.

The next example shows that one cannot change the class Hp
L,α to Hα in Theorem V.A.1.

Example VI.A.2. Let A = {0} ∪ { 1
n
: n ∈ N} and S := AZ. Then, according to Example IV.C.1

and [37, Example 2.7]

mdimM (S) = mdimB(S) = dimB(A) =
1

2
.

On the other hand, we will prove

sup
ε>0

sup
µ∈Pσ(S)

rB−Hα(µ, ε) = 0 for every α ∈ (0, 1].

Actually, a stronger claim is true:

sup
ε>0

sup
µ∈Pσ(S)

rLIN−L(µ, ε) = 0.

For the proof of above statements see Appendix E.C. �

VI.B. Sparse signals. It turns out that the lower bound in Theorem V.A.1 is tight (after taking
infimum over Lipschitz constants, i.e. letting L→ ∞) in the case of subshifts consisting of (N,K)-
sparse vectors.

Example VI.B.1. Let S ⊂ [0, 1]Z be the subshift from Example IV.C.3, i.e.

S = {x ∈ [0, 1]Z : ∀
j∈Z

‖x|j+N−1
j ‖0 ≤ K}

for N,K ∈ N, K ≤ N . Recall that mdimM (S) = mdimB(S) = K
N

. For every p ∈ [1,∞] and
α ∈ (0, 1] it holds

(7) inf
L>0

sup
µ∈Pσ(S)

sup
ε>0

rB−Hp
L,α

(µ, ε) = inf
L>0

rB−Hp
L,α

(S, 0) = αmdimM (S) =
αK

N
.

For the proof see Appendix E.D. �

Such strong compression properties are, similarly as in Proposition V.B.3, obtained by employing
constructions akin to the Peano curve construction between unit cubes.

The following example gives a lower bound on compression rates for the linear compression with
Hölder decompression in case of the (N,K)-sparse subshift. It does not match the upper bound
from Theorem V.B.1, but it shows that one cannot improve (in general) the constant 2

1−α
to t

1−α

for any t < 2.

Example VI.B.2. Let S ⊂ [0, 1]Z be the subshift from Example IV.C.3, i.e.

S = {x ∈ [0, 1]Z : ∀
j∈Z

‖x|j+N−1
j ‖0 ≤ K}

for K,N ∈ N, K ≤ N . For any α ∈ (0, 1] inequality

(8) sup
µ∈Pσ(S)

rLIN−Hα(µ, 0) ≥ min
{2K

N
, 1
}

= min{2mdimM (S), 1}

holds. Consequently, for every p ∈ [1,∞]

min{2mdimM (S), 1} ≤ inf
L>0

rLIN−Hp

L,α
(S, 0) ≤ min{

2

1− α
mdimM (S), 1}.

For the proof see Appendix E.E. Let us emphasize that the proof of (8) does not use any other
properties of α-Hölder maps than continuity. Therefore the lower bound (8) holds also for merely
continuous decompressors. �
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VII. Variational principle for metric mean dimension

In this section we present the main tool of the proof of Theorem V.A.1: a variational principle
for metric mean dimension, which expresses the metric mean dimension of a subshift S in terms
of rate-distortion functions corresponding to the stationary stochastic processes supported in S. It
was proved by Lindenstrauss and Tsukamoto in [27]. We present its formulation which is suitable for
our applications. It differs slightly from the one in [27]. In Appendix C we deduce the formulation
below from the original result of [27].

VII.A. Rate-distortion function. The information-theoretic notion used in the formulation of
the variational principle is the rate-distortion function. We provide a slight modification of the
expression used in [27], better suited for the setting of subshifts (and closer to the standard def-
inition, see e.g. [28]). We state the definition for subshifts with alphabet space being a general
compact metric space (A, d), however in this work we will consider mainly the case A = [0, 1] with
the standard metric.

Definition VII.A.1. Let (A, d) be a compact metric space. Let S ⊂ AZ be a subshift and
µ ∈ Pσ(S). For p ∈ [1,∞), ε > 0 and n ∈ N we define the Lp rate-distortion function
Rµ,p(n, ε) as the infimum of

(9)
I(X;Y )

n
,

where X = (X0, . . . ,Xn−1) and Y = (Y0, . . . , Yn−1) are random variables defined on some proba-
bility space (Ω,P) such that

• X = (X0, . . . ,Xn−1) takes values in An, and its law is given by (πn)∗µ.
• Y = (Y0, . . . , Yn−1) takes values in An and approximates (X0,X1, . . . ,Xn−1) in the sense

that

(10) E

(

1

n

n−1
∑

k=0

d(Xk, Yk)
p

)

≤ εp.

Here E(·) is the expectation with respect to the probability measure P and I(X;Y ) is the mutual
information of random vectors X and Y (see [28] and [27]). As proved in [40, Theorem 9.6.1], the

sequence n 7→ nR̃µ,p(n, ε) is subadditive. [40] provides a proof for stationary stochastic process
with finite alphabet, but it extends verbatim to our setting. Hence, we can define

Rµ,p(ε) = lim
n→∞

Rµ,p(n, ε) = inf
n∈N

Rµ,p(n, ε).

Remark VII.A.2. Similarly to [27, Remark IV.3], in Definition VII.A.1 it is enough to consider
random vectors Y taking only finitely many values. As I(X;Y ) ≤ H(Y ) <∞ for Y taking finitely
many values, we obtain that Rµ,p(ε) < ∞ for every ε > 0 (see also Remark C.A.4). Note that
Rµ,1(ε) ≤ Rµ,p(ε) for p ∈ [1,∞) and ε ≥ 0. For more details on the rate-distortion function see
[28, 40].

VII.B. Variational principle for metric mean dimension. The following theorem is a variant
of the variational principle for metric mean dimension for subshifts S ⊂ [0, 1]Z. It is deduced from
the original theorem in [27] - see Appendix C.

Theorem VII.B.1. Let S ⊂ [0, 1]Z be a subshift. Then for p ∈ [1,∞)

mdimM(S) = lim sup
ε→0

supµ∈Pσ(S)Rµ,p(ε)

log 1
ε

.(11)

VIII. Related works

In this section we discuss results by other authors which aim at establishing analog compression
rates in various settings, together with corresponding compression-decompression algorithms. The
main difference with our work is that these results give bounds on compression rates for a fixed
distribution µ ∈ Pσ([0, 1]

Z) rather than all distributions supported by a given subshift. The bounds
are given in terms of notions which can be seen as probabilistic notions of mean dimension.
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In their pioneering article [2] Wu and Verdú calculated or bounded from below or above rC−D(µ, ε)
for certain C,D and µ ∈ Pσ(R

N). The notion which appears in the bounds is the Minkowski-
dimension compression rate, which (similarly to metric mean dimension and mean box dimension)
is based on the geometrical notion of the box-counting (Minkowski) dimension.

Definition VIII.1. [2, Definition 10] For a subshift S ⊂ [0, 1]Z, invariant measure µ ∈ Pσ(S) and
0 ≤ ε < 1 define the Minkowski-dimension compression rate as

RB(µ, ε) = lim sup
n→∞

inf
{dimB(A)

n
: A ⊂ [0, 1]n, A - compact, µ(π−1

n (A)) ≥ 1− ε
}

.

One can bound the Minkowski-dimension compression rate from above by mean box dimension.
More precisely, the following inequalities hold for every subshift S ⊂ [0, 1]Z, µ ∈ Pσ(S) and 0 ≤
ε < 1

(12) RB(µ, ε) ≤ RB(µ, 0) ≤ mdimB(S).

Similarly to Theorems V.A.1 and V.B.1, Wu and Verdú give lower bounds for Borel-Hölder
compression scheme and upper bounds for linear-Hölder compression scheme. Note that they work
with the class Hα instead of Hp

L,α, hence their results do not guarantee a uniform bound on the
Lipschitz constant among the sequence of decoders.

Theorem VIII.2. [2, Eq. (75) and Theorem 18] For µ ∈ Pσ[0, 1]
Z, ε ∈ (0, 1) and α ∈ (0, 1) the

following holds:

αRB(µ, ε) ≤ rB−Hα(µ, ε) ≤ rLIN−Hα(µ, ε) ≤
1

1− α
RB(µ, ε).

Consequently,

rLIN−H(µ, ε) ≤ RB(µ, ε).

Our Corollary V.B.2 can be seen as a uniform analog of the above result. Note that in Corollary
V.B.2 the constant in the upper bound is worse: 2

1−α
instead of 1

1−α
. This is a consequence of

considering the zero-probability error case and, as shown in Example VI.B.2, cannot be improved.
Note also that the upper bound of Theorem VIII.2 together with (12) imply

sup
µ∈Pσ(S)

sup
ε>0

rLIN−Hα(µ, ε) ≤
1

1− α
mdimB(S),

yet this is not enough to obtain a similar bound with Hp
L,α replacing Hα, as this would require

assuring that the Lipschitz constant L is uniformly bounded among the sequence of decompressors
achieving the upper bound in Theorem VIII.2. Wu and Verdú proved in [2] the lower bound only
for Lipschitz decompressors. For the convenience of the reader, we include the proof for Hölder
decompressors in Appendix F (see Proposition F.1). The upper bound on rLIN−Hα(µ, ε) comes from
minimizing R in [2, (172)] for fixed β. Stronger result than the existence of linear compressor and
Hölder decompressor was proven in [8], where it is shown that almost every linear transformation
of rank large enough serves as a good compressor in this setting. Namely, the authors proved that
for every η > 0, Lebesgue almost every matrix A ∈ R

n×k with k ≥ ( 1
1−α

RB(µ, ε) + η)n admits an

α-Hölder decompressor g : Rk → R
n satisfying

µ({x ∈ X | g ◦A(x|n−1
0 ) 6= x|n−1

0 }) ≤ ε.

For details see [8, Subsection VIII]. Similar results for signal separation have been obtained in [7]
and [8].

Remark VIII.3. We assume the compressor functions to take values in the unit cube [0, 1]k, hence
we assume an universal bound on signals after compression. Results in [2] are stated with the
compressor taking values in R

k, but note that (since we consider compact spaces) composing with
suitable affine transformations will give compressor functions with values in [0, 1]k with the same
Hölder exponent α of the decompressor and possibly different (but not arbitrary) Lipschitz constant
L.

Let us discuss now results of [6, 5]. This requires introducing one more type of compression rate.
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Definition VIII.4. Let µ ∈ Pσ([0, 1]
Z). Let C,D ⊂ {f : [0, 1]n → [0, 1]k : n, k ∈ N} be regularity

classes with respect to the norm ‖ · ‖p. For n ∈ N and ε ≥ 0, δ ≥ 0, the C − D probability

analog compression rate rP,pC−D(µ, ε, n, δ) ≥ 0 of µ with n-block error probability δ at scale ε is
the infimum of

k

n
,

where k runs over all natural numbers such that there exist maps

f : [0, 1]n → [0, 1]k, f ∈ C and g : [0, 1]k → [0, 1]n, g ∈ D

with
µ({x ∈ [0, 1]Z : ‖x|n−1

0 − g ◦ f(x|n−1
0 )‖p ≥ ε}) ≤ δ.

Define further:
rP,pC−D(µ, ε, n) = lim

δ→0
rP,pC−D(µ, ε, n, δ),

rP,pC−D(µ, ε) = lim sup
n→∞

rP,pC−D(µ, ε, n).

Note that if C,D are regularity classes with respect to the norm ‖ · ‖p for p ∈ [1,∞) , then for
any ε′ > ε ≥ 0

(13) rL
p

C−D(µ, ε
′) ≤ rP,pC−D(µ, ε).

This follows from the observation that condition µ({x ∈ [0, 1]Z : ‖x|n−1
0 − g ◦ f(x|n−1

0 )‖ ≥ ε}) ≤ δ
implies

´

[0,1]n
‖x− g ◦ f(x)‖pd(πn)∗µ ≤ δ + εp ≤ (ε′)p for δ small enough.

The results of [6] are given in terms of the rate-distortion dimension of a measure µ ∈ Pσ([0, 1]
Z),

defined as

(14) dimR(µ) = lim sup
ε→0

Rµ,2(ε)

log 1
ε

,

where Rµ,2(ε) is the L2 rate-distortion function (see Definition VII.A.1). In [6] results on ana-
log compression in terms of the rate-distortion dimension are obtained using the techniques of
compressed sensing. The authors consider a linear compression algorithm in which decompression
(given via a suitable minimization problem) is based on a sequence of compression codes with
distortion approaching zero. These codes depend on the process and are assumed to be known a
priori. In our notation, the authors obtained the following result.

Theorem VIII.5. [6, Corollary 2] Let µ ∈ Pσ([0, 1]
Z). Then

sup
ε>0

rP,2LIN−B(µ, ε) ≤ dimR(µ).

Remark VIII.6. In applications, the measure governing the source is not always known, hence one
may not have an access to the compression codes required in [6]. A universal algorithm for a certain
class of processes was proposed by Jalali and Poor in [5]. For a measure µ ∈ Pσ([0, 1]

Z) define its
upper information dimension as

d0(µ) = lim
n→∞

ID((πn)∗µ)

n
,

where ID((πn)∗µ) is the upper Rényi information dimension of the measure (πn)∗µ on [0, 1]n (see [5,
Section IV] for details). In terms of analog compression rates, [5, Theorems 7,8] give the following
bound (for the definition of ψ∗-mixing see [5, Definition 3]):

(15) sup
ε>0

rP,2LIN−B(µ, ε) ≤ d0(µ) if µ ∈ Pσ([0, 1]
Z) is ψ∗-mixing.

Theorem VIII.5 is stronger than (15). Indeed, in general dimR,2 ≤ d0(µ) (see [9, Theorem
14]) and the equality can be strict (see [41, Example 1]). Also, ψ∗-mixing is a quite restrictive
assumption. However, inequality (15) does not reflect the full substance of the original results of [5].
Jalali and Poor proved more than merely existence of suitable linear compressors. More precisely,
they proved that for any η > 0, if (Xn)n∈Z is a ψ∗-mixing stochastic process with distribution µ

15



and An ∈ R
n×mn are independent random matrices with entries drawn i.i.d according to N (0, 1)

and independently from (Xn)n∈Z with mn

n
≥ (1 + η)d0(µ), then

‖X|n−1
0 − gn ◦ An(X|n−1

0 )‖2
n→∞
−→ 0 in probability

for some explicitly defined Borel functions gn : Rmn → R
n (depending only on An). Hence, for

such a random sequence of matrices, the expected value

Eµ({x ∈ X : ‖x|n−1
0 − gn ◦ An(x|

n−1
0 )‖2 ≥ ε})

tends to zero as n → ∞ for any ψ∗-mixing measure µ ∈ Pσ([0, 1]
Z). Inequality (15) follows from

this, since for any δ > 0 and n large enough, there exists An ∈ R
n×mn satisfying

(16) µ({x ∈ X : ‖x|n−1
0 − gn ◦ An(x|

n−1
0 )‖2 ≥ ε}) ≤ δ.

Decompressors gn are defined via a certain minimization problem (which makes the decompression
algorithm implementable, though not efficient (cf. [5, Remark 3])). The authors proved also that,
in a certain setting, such a compression scheme is robust to noise. More precisely, they proved ([5,
Theorems 9 and 10])

‖X|n−1
0 − gn(AnX|n−1

0 + Zn)‖2
n→∞
−→ 0 in probability

as long as An ∈ R
n×mn has i.i.d entries distributed according to N (0, 1

n
) and (Zn)n∈N0

is a
stochastic process converging to zero in probability fast enough. Since the functions gn, defined
by a certain minimization problem, take only finitely many values, they cannot be taken to be
continuous. The strength of the result is the universality of the compression scheme, which is
designed without any prior knowledge of the distribution µ: a random Gaussian matrix will
serve as a good compressor as long as the rate is at least d0(µ) and the decompressor is explicit.
However, it does not follow that one can choose a sequence of matrices An satisfying (16) for all
ψ∗-mixing measures µ with d0(µ) ≤ d for some d ∈ [0, 1].

We are also able to prove a lower bound on sup
ε>0

rL
2

B−H2
L,α

(µ, ε) for a fixed measure µ in terms

of rate-distortion dimension dimR(µ) (see Corollary IX.A.2). It turns out that dimR is equal to
the information dimension rate d(µ) introduced in [41]. Under certain assumptions both of them
coincide with d0(µ). See Section [9, Section V] for a comprehensive discussion and [9, Section VI]
for more on the operational meaning of the information dimensions d(µ) and d0(µ).

IX. Proofs of the main results

IX.A. Proof of Theorem V.A.1. Theorem V.A.1 is a direct consequence of Theorem VII.B.1,
inequality (3) and Theorem IX.A.1 below. The latter one is of independent interest, as it gives a
lower bound for compression rates rL

p

B−Hp

L,α

(µ, ε) and rB−H∞
L,α

(µ, ε) for fixed µ ∈ Pσ(S) and ε > 0

(see also Corollary IX.A.2 below).

Theorem IX.A.1. Let S ⊂ [0, 1]Z be closed and shift-invariant. The following holds for µ ∈
Pσ(S), 0 < α ≤ 1, L > 0 and p ∈ [1,∞):

Rµ,p((
Lp

2pα + εp(1−α))
1

p εα)

log(⌈1
ε
⌉)

≤ rL
p

B−Hp

L,α
(µ, ε).

Similarly, for p = ∞ the following holds

Rµ,1((
L
2α + ε(1−α))εα)

log(⌈1
ε
⌉)

≤ rB−H∞
L,α

(µ, ε).

Proof. Let us begin with proving the first assertion (for p < ∞). Fix δ, ε > 0. By the definition
of rL

p

B−Hp

L,α

(µ, ε), one may find k, n ∈ N with k
n
≤ rL

p

B−Hp

L,α

(µ, ε) + δ and functions f : [0, 1]n →
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[0, 1]k , f ∈ B, g : [0, 1]k → [0, 1]n, g ∈ Hp
L,α such that

(17)

ˆ

[0,1]n

‖x− g ◦ f(x)‖ppd(πn)∗µ(x) ≤ εp.

Regularly partition [0, 1]k into ⌈1
ε
⌉k cubes of side ⌈1

ε
⌉−1 Borel-wise (thus every point in [0, 1]k is

associated by a Borel selector to exactly one cube with edge length ⌈1
ε
⌉−1 which contains it) and

let c : [0, 1]k → F associate to each point the center of its cube. Note that #F = ⌈1
ε
⌉k and

||x− c(x)||p ≤ ||x− c(x)||∞ ≤ ε
2 for all x ∈ [0, 1]k . Define Y : [0, 1]n → [0, 1]n by

Y (p) = g(c(f(p))).

and X : [0, 1]n → [0, 1]n by X = id. This gives a pair of random vectors on the probability space
([0, 1]n, (πn)∗µ). We now estimate:

Eµ‖(X0,X1, . . . ,Xn−1)− (Y0, Y1, . . . , Yn−1)‖
p
p =

ˆ

[0,1]n

‖x− g ◦ c ◦ f(x)‖ppd(πn)∗µ(x) ≤

≤

ˆ

[0,1]n

‖x− g ◦ f(x)‖ppd(πn)∗µ(x) +

ˆ

[0,1]n

‖g ◦ f(x)− g ◦ c ◦ f(x)‖ppd(πn)∗µ(x) ≤

≤ εp +

ˆ

[0,1]n

Lp‖f(x)− c ◦ f(x)‖pαp d(πn)∗µ(x) ≤ εp + Lp ε
pα

2pα
.

This implies that we have found X and Y obeying condition (10) at scale (εp + Lp εpα

2pα )
1

p = ( Lp

2pα +

εp(1−α))
1

p εα, hence

Rµ,p((
Lp

2pα
+εp(1−α))

1

p εα) ≤
1

n
I(X;Y ) ≤

1

n
H(Y ) ≤

log(⌈1
ε
⌉k)

n
=
k log(⌈1

ε
⌉)

n
≤ log(⌈

1

ε
⌉)(rL

p

B−Hp

L,α
(µ, ε)+δ).

We end the proof by dividing by log(⌈1
ε
⌉).

For p = ∞ one considers the same construction, but functions f and g belong now to B and
H∞

L,α respectively and satisfy

µ
(

{x ∈ X | g ◦ f(x|n−1
0 ) 6= x|n−1

0 }
)

≤ ε

instead of (17). Defining X and Y as before, we have

Eµ‖(X0,X1, . . . ,Xn−1)− (Y0, Y1, . . . , Yn−1)‖1 ≤

≤

ˆ

[0,1]n

‖x− g ◦ f(x)‖∞d(πn)∗µ(x) +

ˆ

[0,1]n

‖g ◦ f(x)− g ◦ c ◦ f(x)‖∞d(πn)∗µ(x) ≤

≤ ε+

ˆ

[0,1]n

L‖f(x)− c ◦ f(x)‖α∞d(πn)∗µ(x) ≤ ε+ L
εα

2α
.

This implies

Rµ,1((
L

2α
+ε1−α)εα) ≤

1

n
I(X;Y ) ≤

1

n
H(Y ) ≤

log(⌈1
ε
⌉k)

n
=
k log(⌈1

ε
⌉)

n
≤ log(⌈

1

ε
⌉)(rB−H∞

L,α
(µ, ε)+δ).

�

Corollary IX.A.2. Let µ ∈ Pσ([0, 1]
Z), α ∈ (0, 1], L > 0. Then (recall (14) for the definition of

dimR(µ))

(18) αdimR(µ) ≤ rL
2

B−H2
L,α

(µ).
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Remark IX.A.3. Note that taking supremum over µ ∈ Pσ(S) in (18) yields

sup
µ∈Pσ(S)

αdimR(µ) ≤ sup
ε>0

sup
µ∈Pσ(S)

rL
2

B−H2
L,α

(µ, ε).

This, however, does not imply Theorem V.A.1, since there are systems with

sup
µ∈Pσ(S)

lim sup
ε→0

Rµ,2(ε)

log 1
ε

< mdimM (S)

(cf. [27, Section VIII]). In other words, to obtain Theorem V.A.1, the supremum over µ ∈ Pσ(S)
has to be taken before passing with ε to zero, as one cannot exchange these two operations in the
variational principle.

IX.B. Proof of Theorem V.B.1. In order to develop the upper bound in Theorem V.B.1, we
will make use of the embedding theorem for the upper box-counting dimension. Below we present
a corollary of [36, Theorem 4.3] (with proof attributed to [42], based on an earlier result in [22]).

Theorem IX.B.1. Let A be a compact subset of Rn and fix p ∈ [1,∞]. If k > 2dimB(A), then
given any α with

0 < α < 1−
2dimB(A)

k
,

for Lebesgue almost every linear map F ∈ LIN(Rn,Rk) ≃ R
nk there exists L = L(F, p) such that

‖x− y‖p ≤ L‖F (x)− F (y)‖αp for all x, y ∈ A.

In particular, F is one-to-one on A with inverse which is (L,α)-Hölder in the norm ‖ · ‖p.

Remark IX.B.2. The only manner in which choosing the norm ‖ · ‖p influences the above theorem
is the dependence of the Lipschitz constant L on the norm.

See also [43] for an almost sure embedding theorem for Hausdorff dimension. However, it does
not provide Hölder inverse and argues that it cannot exist in general in the probabilistic context.
Similar results for the modified lower box-counting dimension have been obtained also in [44].

We will use now Theorem IX.B.1 to prove Theorem V.B.1. Let S ⊂ [0, 1]Z be a subshift. We
shall prove

(19) inf
L>0

rLIN−Hp

L,α
(S, 0) ≤

2

1− α
mdimB(S)

for every 0 < α < 1 and p ∈ [1,∞]. Fix η > 0. By Lemma D.1 (applied with C = LIN) it suffices
to prove that there exists L > 0 and n ∈ N such that

(20) rLIN−Hp

L,α
(S, 0, n) ≤

2

1− α
mdimB(S) + η.

Fix n ∈ N large enough to obtain 1
n
≤ η

4 and

(21)
dimB(πn(S))

n
≤ mdimB(S) +

η(1 − α)

4
.

By Theorem IX.B.1, if α ∈ (0, 1) and k ∈ N, k > 2dimB(πn(S)) fulfil

(22) α < 1−
2dimB(πn(S))

k
,

then there exists f : [0, 1]n → [0, 1]k in LIN and L > 0 such that f |πn(S) is injective with (L,α)-

Hölder inverse in the norm ‖ · ‖p. According to the Remark III.A.8, f−1 : f(πn(S) → [0, 1]n can

be extended to function g : [0, 1]k → [0, 1]n belonging to Hp
L′,α for some L′ ≥ L. We obtain

that rLIN−HL′,α
(S, 0, n) ≤ k

n
for every such k. For fixed α ∈ (0, 1), condition (22) is satisfied for

k = ⌈2dimB(πn(S))
1−α

⌉+ 1, hence by (21)

rLIN−Hp

L′,α
(µ, 0, n) ≤

1

n

(

⌈
2dimB(πn(S))

1− α
⌉+ 1

)

≤
1

n

(2dimB(πn(S))

1− α
+ 2
)

≤

≤
2

1− α

(

mdimB(S) +
η(1− α)

4

)

+
2

n
≤

2

1− α
mdimB(S) + η.
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Therefore L′ and n satisfy (20). This concludes the proof of (19) and Theorem V.B.1.

Remark IX.B.3. Example VI.A.1 shows that one cannot improve Theorem V.B.1 by claiming that
there exists finite L > 0 such that rLIN−H1

L,α
(S, 0) ≤ 2

1−α
mdimB(S). Indeed, for S = {0, 1}Z we

have mdimB(S) = 0, yet for L > 0 inequality

rLIN−H1
L,α

(S, 0) ≥ sup
ε>0

sup
µ∈Pσ(S)

rL
1

B−H1
L,α

(µ, ε) > 0

holds.

IX.C. Proof of Proposition V.B.3. The proof of Proposition V.B.3 is based on an existence
of surjective Hölder maps between unit cubes. It is well known that there exists a surjective 1

n
-

Hölder map from [0, 1] onto [0, 1]n (see [45, Thm. 4.55]). This is a generalization of the classical
Peano curve construction (see e.g. [46]). We will use a similar construction to obtain the following
proposition:

Proposition IX.C.1. For every n, k ∈ N, k ≤ n, p ∈ [1,∞] and α < k
n

there exist maps

f : [0, 1]n → [0, 1]k and g : [0, 1]k → [0, 1]n such that f ∈ B, g ∈ Hα and g ◦ f(x) = x for every
x ∈ [0, 1]n.

Proof. As α < k
n
, there exists a surjective and α-Hölder map g : [0, 1]k → [0, 1]n (see [47, Comments

to Problem 1988-5] or [48]). Let C([0, 1]k) be the space of closed non-empty subsets of [0, 1]k

equipped with the Vietoris topology. Recall that its Borel space B(C([0, 1]k)) is the Effros Borel
space of [0, 1]k, i.e. the σ-algebra generated by the sets of the form {F ∈ C([0, 1]k) : F ∩ U 6= ∅}
for open U ⊂ [0, 1]k ([49, 12.7]). Note that M : [0, 1]n → C([0, 1]k) given as M(x) = g−1({x}) is
Borel, as for every open U ⊂ [0, 1]k there is

M−1({F ∈ C([0, 1]k) : F ∩ U 6= ∅}) =
{

x ∈ [0, 1]n : g−1({x}) ∈ {F ∈ C([0, 1]k) : F ∩ U 6= ∅}
}

=

= {x ∈ [0, 1]n : g−1({x}) ∩ U 6= ∅} = g(U).

The latter set is Borel as g is continuous and U is Fσ an open subset of a compact space [0, 1]k.
By the Kuratowski-Ryll-Nardzewski selection theorem ([49, 12.13]) there is a Borel selector s :
C([0, 1]k) → [0, 1]k (i.e. a Borel map satisfying s(A) ∈ A for every A ∈ C([0, 1]k)). Let f :
[0, 1]n → [0, 1]k be given as f = s ◦M . Then f is Borel and g(f(x)) = x as f(x) = s(g−1({x})) ∈
g−1({x}). �

Let us prove now Proposition V.B.3. Let S ⊂ [0, 1]Z be a subshift. Fix 0 < α ≤ 1 and p ∈ [1,∞].
We shall prove

(23) inf
L>0

rB−Hp

L,α
(S, 0) ≤ α.

The inequality is clear for α = 1, hence we can assume α < 1. Fix arbitrary η > 0. By Lemma D.1
(applied with C = B)

inf
L>0

rB−Hp
L,α

(S, 0) = inf
L>0

inf
n∈N

rB−Hp
L,α

(S, 0, n),

hence it is enough to prove that there exists n ∈ N and L > 0 with rB−Hp

L,α
(S, 0, n) ≤ α + η.

Let k, n ∈ N be such that k ≤ n and α < k
n

≤ α + η. By Proposition IX.C.1 there exists

f : [0, 1]n → [0, 1]k and g : [0, 1]k → [0, 1]n such that f ∈ B, g ∈ Hα and g ◦ f(x) = x for every
x ∈ [0, 1]n. Therefore there exists L > 0 such that

rB−Hp

L,α
(S, 0, n) ≤

k

n
≤ α+ η.

As η was arbitrary, (23) is proved.
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X. Concluding remarks

In this paper, we have considered the problem of finding worst-case compression rates, which
are sufficient for all stationary stochastic processes taking values in a given set S ⊂ [0, 1]Z, under
certain constraints of the compression and decompression process. In the case of Borel compression
and (L,α)-Hölder decompression (with both parameters fixed among the sequence of decoders), we
have obtained a lower bound in terms of the metric mean dimension mdimM (S) of the dynamical
system (S, shift):

(24) αmdimM (S) ≤ sup
µ∈Pσ(S)

sup
ε>0

rL
p

B−Hp
L,α

(S, ε).

Intuitively, this result states that for a given set of trajectories S, one can always find a stationary
stochastic process supported in S, which cannot be compressed at a better rate than αmdimM (S).
This can be applied whenever geometric information on the signal is given (i.e. one knows S), but
its statistics are unknown.

We have obtained also two zero-probability error upper bounds on the compression rates. The
first one considers linear compression and Hölder decompression:

inf
L>0

rLIN−Hp

L,α
(S, 0) ≤

2

1− α
mdimB(S).

It is obtained by applying a finite-dimensional embedding theorem for the upper box-counting
dimension. By considering (N,K)-sparse subshifts, we have shown that in general the constant
2

1−α
mdimB(S) above cannot be improved in the zero-probability error case. The second upper

bound considers Borel compression and Hölder decompression:

inf
L>0

rB−Hp
L,α

(S, 0) ≤ α.

The proof employs constructions of surjective Hölder maps between unit cubes akin to the Peano
curve construction. This type of construction would not be possible for more stringent regularity
requirements for the compressor.

This paper introduces notions and techniques from the theory of dynamical systems to the
study of analog compression rates. Its main tool is the variational principle of Lindenstrauss
and Tsukamoto [27], which had previously established a link between ergodic theory and mean
dimension theory.

As our main example, we have considered a parametrized family of sparse signal subshifts for
which we proved that the lower bound (24) is in fact an equality (after taking infimum over L > 0).
Whenever equality holds in (24), it can be seen an operational characterization of metric mean
dimension, as well as an answer to the given compression problem. It is therefore desirable to
answer the following:

Problem X.1. Under what conditions (for which subshifts) does equality hold in (24) (possibly
after taking inf

L>0
)?

Appendix A. Metric mean dimension in dynamical systems

In this section we present metric mean dimension in its original setting - the theory of dynamical
systems. Recall that by a dynamical system we understand triple (X , ρ, T ) consisting of a compact
metric space (X , ρ) and a homeomorphism T : X → X . First, we introduce the notion of complexity
of the system at scale ε > 0.

Definition A.1. Let (X , ρ) be a compact metric space and let T : X → X be a homeomorphism.
For n ∈ N define a metric ρn on X by ρn(x, y) = max

0≤k<n
ρ(T kx, T ky). The upper and lower metric

mean dimensions of the system (X , T, ρ) are defined as

mdimM (X , T, d) = lim sup
ε→0

lim
n→∞

log #(X , ρn, ε)

n log 1
ε

and

mdimM (X , T, d) = lim inf
ε→0

lim
n→∞

log #(X , ρn, ε)

n log 1
ε

,
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where #(X , ρn, ε) is the ε-covering number of X with respect to the metric ρn (see Defini-
tion IV.A.1). The limit with respect to n exists due to the subadditivity of the sequence
n 7→ log #(X , ρn, ε). If the upper and lower limits coincide, then we call its common value the
metric mean dimension of (X , T, ρ) and denote it by mdimM (X , T, ρ).

Remark A.2. Metric mean dimension is an invariant for bi-Lipshitz isomorphisms. Precisely, if
(X , T, ρ1) and (Y, S, ρ2) are dynamical systems and Φ : X → Y is a bi-Lipshitz bijection (i.e. a
Lipschitz map with a Lipschitz inverse) which is equivariant (i.e. it satisfies Φ ◦ T = S ◦ Φ), then
mdimM (X , T, ρ1) = mdimM (Y, S, ρ2).

A topological version of mean dimension for actions of amenable groups was introduced by
Gromov in [29]. This invariant of topological dynamical systems was used by Lindenstrauss and
Weiss in [23] to answer a long standing question in topological dynamics: does every minimal3

topological dynamical system embed into ([0, 1]Z, σ)? The answer is negative, since any system
embeddable in ([0, 1]Z, σ) has topological mean dimension at most one and in [23] a minimal system
with mean dimension strictly greater than one was constructed. Moreover, it was proved in [24],
that any minimal system with topological mean dimension strictly smaller than D

2 is embeddable

into (([0, 1]D)Z, σ). This constant is known to be optimal (cf. [50]). One of the main tools
in the proof is a variant of the Whittaker-Nyquist-Kotelnikov-Shannon sampling theorem, which
indicates a connection between mean dimension theory and signal processing. For similar results
for Z

k actions see [26] and [51]. For more on mean topological dimension see [32]. Metric mean
dimension was introduced in [23] and proved to be, when calculated with respect to any compatible
metric, an upper bound for the topological mean dimension. It was recently successfully used in
[52] and [53] to obtain formulas for mean dimension of dynamical systems arising from geometric
analysis.

If S ⊂ [0, 1]Z is a subshift, then Definition A.1 with the dynamics given by the shift

σ : S → S, σ((xi)
∞
i=−∞) = (xi+1)

∞
i=−∞

and the metric

τ(x, y) =

∞
∑

i=−∞

1

2|i|
|xi − yi|, x, y ∈ S

gives the same value of metric mean dimension as Definition IV.B.1:

Proposition A.3. For a subshift S ⊂ [0, 1]Z it holds

mdimM (S, σ, τ) = lim sup
ε→0

lim
n→∞

log #(πn(S), || · ||∞, ε)

n log 1
ε

.

For the proof of Proposition A.3 we will use the following lemma:

Lemma A.4. Let S ⊂ [0, 1]Z be a subshift. Fix ε > 0 and m ∈ N such that 2−m+2 < ε. Then for
n ∈ N and A ⊂ S the inequality

#(A, τn, 8ε) ≤ #(πn+m
−(m−1)(A), ‖ · ‖∞, ε)

holds (τn denotes here the dynamical metric τn(x, y) = max
0≤k<n

τ(σkx, σky)).

Proof. Let E ⊂ πn+m
−(m−1)(A) be an ε-net (recall Definition IV.A.1) in the metric ‖ · ‖∞ on

[0, 1]n+2m with #E = #(πn+m
−(m−1)(A), ‖ · ‖∞, ε). Take D ⊂ A consisting of representatives of

sets (πn+m
−(m−1))

−1({x}), x ∈ E. Then D is a 4ε-net in A in the metric τn. Indeed, for y ∈ A, there

exists x ∈ D such that ‖πn+m
−(m−1)(y)− πn+m

−(m−1)(x)‖∞ < ε, hence for 0 ≤ j < n we have

τ(σjy, σjx) ≤ 2−m+2 +
∑

|k|<m

1

2k
|yk+j − xk+j| < 2−m+2 + ε

∑

|k|<m

1

2k
< 4ε.

Taking a cover of A by 4ε-balls with centers in D, we obtain the result. �

3A system (X , ρ, T ) is called minimal if for every x ∈ X , the orbit {Tnx : n ∈ Z} is dense in X .
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Proof. (of Proposition A.3) Observe first that for x, y ∈ [0, 1]Z, the inequality τn(x, y) < ε implies
‖πn(x)− πn(y)‖∞ < ε and hence

#(πn(S), ‖ · ‖∞, ε) ≤ #(S, τn, ε).

This gives

lim sup
ε→0

lim
n→∞

log#(πn(S), || · ||∞, ε)

n log 1
ε

≤ lim sup
ε→0

lim
n→∞

log #(S, τn, ε)

n log 1
ε

= mdimM (S, σ, τ).

On the other hand, using Lemma A.4 with m = ⌈log 1
ε
⌉+2 and submultiplicativity of the function

n 7→ #(πn(S), ‖ · ‖∞, ε) we obtain

#(S, τn, 8ε) ≤ #(πn+m
−(m−1)(S), ‖ · ‖∞, ε) ≤ #(πn(S), ‖ · ‖∞, ε)#(πm(S), ‖ · ‖∞, ε)

2.

This yields

lim
n→∞

log #(S, τn, 8ε)

n
≤ lim

n→∞

log#(πn(S), ‖ · ‖∞, ε) + 2 log#(πm(S), ‖ · ‖∞, ε)

n
=

= lim
n→∞

log#(πn(S), ‖ · ‖∞, ε)

n
.

Dividing both sides by log 1
8ε and taking lim sup

ε→0
ends the proof. �

Appendix B. Proof of Proposition IV.B.3

We shall prove

mdimM (S) ≤ mdimB(S)

for a subshift S ⊂ [0, 1]Z. Fix η > 0. Take N ∈ N with 1
N
dimB(πN (S)) ≤ mdimB(S) + η. Choose

ε0 > 0 such that

#(πN (S), ‖ · ‖∞, ε) ≤ ε−dimB(πN (S))−η for 0 < ε < ε0.

Fix ε < ε0. By the submultiplicativity of the function n 7→ #(πn(S), ‖ · ‖∞, ε), for k ∈ N we have

log #(πkN(S), ‖ · ‖∞, ε)

kN
≤

log#(πN (S), ‖ · ‖∞, ε)

N
≤

(dimB(πN (S)) + η) log 1
ε

N
≤

≤ (mdimB(S) + η(1 +
1

N
)) log

1

ε
.

Therefore

mdimM (S) = lim sup
ε→0

lim
n→∞

log#(πn(S), ‖ · ‖∞, ε)

n log 1
ε

≤ mdimB(S) + 2η.

As η > 0 was arbitrary, the proof is finished.

Appendix C. Variational principle - details

The goal of this section is to prove Theorem VII.B.1. It can be easily deduced from the variational
principle for metric mean dimension in [27], which is valid for dynamical systems more general than
subshifts, once the corresponding rate-distortion functions are compared (see Proposition C.B.1
below). Let us begin by formulating the original result of [27].

C.A. Variational principle for general dynamical systems.

Definition C.A.1. ([27, Condition II.3]) Let (X , ρ) be a compact metric space. It is said to have
the tame growth of covering numbers if for every δ > 0 we have

lim
ε→0

εδ log #(X , ρ, ε) = 0.

Remark C.A.2. Lindenstrauss and Tsukamoto observed that ([0, 1]Z, τ) has the tame growth of
covering numbers, since log#([0, 1]Z, τ, ε) = O(| log ε|2).

In [27] the following definition is made:
22



Definition C.A.3. Let (X , T, ρ) be a dynamical system and µ ∈ PT (X ). For p ∈ [1,∞) and n ∈ N

define R̃µ,p(ε, n) as the infimum of
I(X;Y )

n
,

where X and Y = (Y0, . . . , Yn−1) are random variables defined on some probability space (Ω,P)
such that

• X takes values in X , and its law is given by µ.
• Each Yk takes values in X , and Y approximates the process (X,TX, . . . , T n−1X) in the

sense that

(25) E

(

1

n

n−1
∑

k=0

ρ(T kX,Yk)
p

)

< εp.

Similarly as in the Definition VII.A.1, we can make use of the subadditivity of the sequence n 7→
nR̃µ,p(ε, n) (which follows as in [40, Theorem 9.6.1]), to make the following definition:

R̃µ,p(ε) = lim
n→∞

R̃µ,p(ε, n) = inf
n∈N

R̃µ,p(ε, n).

Remark C.A.4. As pointed out in [27, Remark IV.3], in Definition C.A.3 it is enough to consider
random vectors Y taking finitely many values. As I(X;Y ) ≤ H(Y ) ≤ ∞ for such Y , we obtain

also R̃µ,p(ε) <∞ for every ε > 0.

In this setting, the variational principle for metric mean dimension states the following:

Theorem C.A.5. ([27, Corollary III.6]) Let (X , ρ) be a compact metric space having the tame
growth of covering numbers and let T : X → X be a homeomorphism. Then, for any p ∈ [1,∞)

mdimM (X , T, ρ) = lim sup
ε→0

supµ∈PT (X ) R̃µ,p(ε)

log 1
ε

and

mdimM (X , T, ρ) = lim inf
ε→0

supµ∈PT (X ) R̃µ,p(ε)

log 1
ε

.

Velozo and Velozo [39] provided an alternative formulation in terms of Katok entropy. For the
extension of the Theorem VII.B.1 to actions of countable discrete amenable groups see [54].

C.B. Proof of Theorem VII.B.1. The difference between our formulation of Theorem VII.B.1
and the original result of Lindenstrauss and Tsukamoto (Theorem C.A.5) is in the use of two
different definitions of rate-distortion functions: Theorem VII.B.1 uses Rµ,p as defined in Definition

VII.A.1, while Theorem C.A.5 uses R̃µ,p as defined in Definition C.A.3. The former one is more
convenient to work with in the case of subshifts S ⊂ AZ, yet it is formally different from the latter
one: Rµ,p is defined in terms of the metric d on the alphabet A, while R̃µ,p is defined in terms of
the product metric

(26) ρ(x, y) =
∑

i∈Z

d(xi, yi)

2|i|

on the space S ⊂ AZ. Therefore deducing Theorem VII.B.1 from Theorem C.A.5 requires a
technical lemma comparing the two rate-distortion functions. Indeed, Theorem VII.B.1 follows
Theorem C.A.5, Proposition C.B.1 and Remark C.A.2 below.

The following proposition shows that for a subshift S ⊂ [0, 1]Z considered as a dynamical system
(S, σ, τ), the above definition of the rate-distortion function is comparable with the one introduced
in Definition VII.A.1.

Proposition C.B.1. Let (A, d) be a compact metric space, S ⊂ AZ a subshift and µ ∈ Pσ(S).
Then, for any p ∈ [1,∞)

R̃µ,p(14ε) ≤ Rµ,p(ε) ≤ R̃µ,p(ε),

where Rµ,p is defined as in Definition VII.A.1, while R̃µ,p is defined as in Definition C.A.3 with
metric ρ given by (26).
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Proof. We will first show Rµ,p(ε) ≤ R̃µ,p(ε). Fix δ > 0 and let n ∈ N be such that, R̃µ,p(ε, n) <

R̃µ,p(ε) + δ. In particular we may find random variables X and Y = (Y0, . . . , Yn−1) taking values

in S and Sn respectively, obeying (25) and satisfying I(X;Y )
n

< R̃µ,p(ε) + δ. Define X̃k = π0(σ
kX)

and Ỹk = π0(Yk) for k = 0, . . . , n− 1. Note that

d(Ỹk, X̃k) ≤ ρ(σkX,Yk),

hence Ỹ obeys (10). Thus Rµ,p(ε) ≤ Rµ,p(n, ε) ≤
I((X̃0,...,X̃n−1);(Ỹ0,...,Ỹn−1)

n
≤ I(X;Y )

n
< R̃µ,p(ε) + δ.

We have used here the data-processing lemma [27, Lemma 2.2].

We will show now R̃µ,p(14ε) ≤ Rµ,p(ε). Fix δ > 0 and let m,n ∈ N be such that

2p(−m+2)−1diam(A)p < εp, (3diam(A))p 2m
n

< εp, n > 2m and Rµ,p(ε, n) < Rµ,p(ε) + δ. In

particular for such n we may find random variables X̃ = (X̃0, . . . , X̃n−1) and Ỹ = (Ỹ0, . . . , Ỹn−1)

taking values in An, obeying (10) and I(X̃;Ỹ )
n

< Rµ,p(ε) + δ. Let us denote by dp the metric on An

given by

(27) dp(x, y) =

(

1

n

n−1
∑

i=0

d(xi, yi)
p

)
1

p

.

Take any Borel map S : An → S, S = (Si)i∈Z such that for x ∈ An and y = (yi)i∈Z ∈ S the
following holds:

(28) dp(x, πn(S(x))) ≤ dp(x, πn(y)).

Formally, such S can be constructed as follows. Define t : An → R as

t(x) = min{dp(x, πn(y)) : y ∈ S}

(t is well defined as (A, d) is compact). Let C(S) be the space of closed non-empty subsets of S
equipped with the Vietoris topology. Recall that its Borel space B(C(S)) is the Effros Borel space
of S, i.e. the σ-algebra generated by the sets of the form {F ∈ C(S) : F ∩ U 6= ∅} for open U ⊂ S
([49, 12.7]). Define M : An → C(S) as

M(x) =
{

y ∈ S : dp(x, πn(y)) = t(x)
}

.

Note that M : [0, 1]n → C(S) is Borel as M−1({F ∈ C(S)|F ∩U 6= ∅)}) is open in [0, 1]n for all
U open in S. By the Kuratowski-Ryll-Nardzewski selection theorem ([49, 12.13]) there is a Borel
selector s : C(S) → S. Now S : An → S defined as S(x) = s(M(x)) satisfies (28).

Since the distribution of X̃ is (πn)∗µ, there exist random variables X = (Xk)k∈Z taking values
in S with distribution µ and Z = (Z0, . . . , Zn−1) taking values in An such that the conditional

distributions satisfy P(Z|πn(X) = x) = P(Ỹ |X̃ = x). Define random variables Y0, . . . , Yn−1 taking
values in S by Yk = σk ◦ S ◦ Z. Using (28) we obtain

(29)

E
(

dp(πn(X), πn(Y0))
)p

= E
(

dp(πn(X), πn(S ◦ Z))
)p

≤

≤ E
(

dp(πn(X), Z) + dp(Z, πn(S ◦ Z))
)p

≤ 2pE
(

dp(πn(X), Z)
)p

= 2pE
(

dp(X̃, Ỹ )
)p
.

We have the following series of inequalities (see below for explanations)
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1

n

n−1
∑

k=0

ρ(σkX,Yk)
p ≤ (3diam(A))p

2m

n
+

1

n

n−m−1
∑

k=m

ρ(σkX,σk(S ◦ Z))p

(30)

≤ εp +
1

n

n−m−1
∑

k=m

(

m
∑

i=−m

1

2|i|
d(Xk+i, Sk+i ◦ Z) + 2−m+1diam(A)

)p
(31)

≤ εp +
2p−1

n

n−m−1
∑

k=m

(

(

m
∑

i=−m

1

2|i|
d(Xk+i, Sk+i ◦ Z)

)p
+ 2p(−m+1)diam(A)p

)

(32)

≤ εp + 2p(−m+2)−1diam(A)p +
3p−12p−1

n

n−m−1
∑

k=m

m
∑

i=−m

1

2|i|
d(Xk+i, Sk+i ◦ Z)

p(33)

≤ 2εp +
3p2p−1

n

n−1
∑

k=0

d(Xk, Sk ◦ Z)
p(34)

= 2εp + 3p2p−1
(

dp(πn(X), πn(Y0))
)p
.(35)

Inequality (30) follows from equality diam(AZ) = 3diam(A), while (31) follows from (26). Inequality
(32) is obtained by applying inequality (a + b)p ≤ 2p−1(ap + bp) for a, b ≥ 0, p ∈ [1,∞) (which
follows from Jensen’s inequality [31, Theorem 3.3]). (33) follows from Jensen’s inequality (recall

that
∞
∑

i=−∞

1
2|i|

= 3), while (34) follows from (26) and (28). Equality (35) follows from the definition

of dp (see (27)). Taking the expected value and estimating further we obtain

E

( 1

n

n−1
∑

k=0

ρ(σkX,Yk)
p
)

≤ 2εp + 3p2p−1
E
(

dp(πn(X), πn(Y0))
)p

≤ 2εp + 3p22p−1
E
(

dp(X̃, Ỹ )
)p

(36)

≤ (2 + 3p22p−1)εp(37)

≤ (2p + 3p22p)εp ≤ (14ε)p.

Inequality (36) follows from (29). For (37) recall that X̃, Ỹ obey (10). We conclude that Y =

(Y0, . . . , Yn−1) obeys (25) with 14ε. Thus R̃µ,p(14ε) ≤ R̃µ,p(14ε, n) ≤
I(X;Y )

n
≤ I(X̃;Ỹ )

n
< Rµ,p(ε)+δ.

We have used here the data-processing lemma [27, Lemma 2.2]. �

Remark C.B.2. Theorem VII.B.1 holds true for subshifts S ⊂ AZ for general compact metric space
(A, d), as long as S has the tame growth of covering numbers (see Definition C.A.1). This follows
from the fact that Proposition C.B.1 is true in such generality.

Appendix D. "Almost subadditivity" lemma

The following lemma shows that, in some cases, the upper limit with respect to n in the definition
of the compression rate can be replaced by an infimum. The proof is based on the fact that, for
suitable regularity classes C and D, the sequence n 7→ nrC−D(S, 0, n) is "almost subadditive".

Lemma D.1. Let C be a regularity class such that

• C is closed under taking (tensor) products, i.e. if f1 : [0, 1]n1 → [0, 1]k1 , f2 : [0, 1]n2 →
[0, 1]k2 belong to C then so does f : [0, 1]n1+n2 → [0, 1]k1+k2 given by f(x, y) = (f1(x), f2(y))
for x ∈ [0, 1]n1 , y ∈ [0, 1]n2 ,

• the identity id : [0, 1]n → [0, 1]n belongs to C for every n ∈ N.

Then, for every p ∈ [1,∞], L ≥ 1, α ∈ (0, 1] and ε > 0, the following holds

(38) rC−Hp
L+ε,α

(S, 0) ≤ inf
n∈N

rC−Hp
L,α

(S, 0, n).
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Consequently,

(39) inf
L>0

rC−Hp

L,α
(S, 0) = inf

L>0
inf
n∈N

rC−Hp

L,α
(S, 0, n).

In particular, (38) and (39) are true for C ∈ {B,LIN}.

Proof. Let us begin by proving (38). Fix δ > 0 and choose n0 ∈ N such that

(40) rC−Hp
L,α

(S, 0, n0) ≤ inf
n∈N

rC−Hp
L,α

(S, 0, n) + δ.

Let rC−Hp

L,α
(S, 0, n0) =

k0
n0

, i.e. there exist functions f0 : [0, 1]
n0 → [0, 1]k0 and g0 : [0, 1]

k0 → [0, 1]n0

such that f0 ∈ C, g0 ∈ Hp
L,α and

(41) µ({x ∈ S : g0 ◦ f0(x|
n0−1
0 ) 6= x|n0−1

0 }) = 0

for every µ ∈ Pσ(S). As id ∈ C, we can assume that k0 ≤ n0.
Fix n ∈ N and write it (uniquely) as n = ℓn0 +m, where ℓ,m ∈ N0 and 0 ≤ m < n0. Define

f : [0, 1]n → [0, 1]ℓk0+m as the ℓ-fold product of f0 followed by the identity on the remaining m
coordinates. More precisely, we set

f(x0, x1, . . . , xn−1)

:= (f0(x0, . . . , xn0−1), f0(xn0
, . . . , x2n0−1), . . . , f0(x(ℓ−1)n0

, . . . , xℓn0−1), xℓn0
, . . . , xℓn0+m−1).

By the assumptions on C, f belongs to C. Similarly, we define g : [0, 1]ℓk0+m → [0, 1]n as the ℓ-fold
concatenation of g0 followed by the identity on the remaining m coordinates. More precisely, we
set

g(x0, x1, . . . , xℓk0+m)

:= (g0(x0, . . . , xk0−1), g0(xk0 , . . . , x2k0−1), . . . , g0(x(ℓ−1)k0 , . . . , xℓk0−1), xℓk0 , . . . , xℓk0+m−1).

The shift-invariance of µ together with (41) and definitions of f and g give

µ({x ∈ S : g ◦ f(x|n−1
0 ) 6= x|n−1

0 }) = µ({x ∈ S : ∃
0≤j<ℓ

g0 ◦ f0(x|
(j+1)n0−1
jn0

) 6= x|
(j+1)n−1
jn0

}) =

= µ
(

ℓ−1
⋃

j=0

σ−jn0({x ∈ S : g0 ◦ f0(x|
n0−1
0 ) 6= x|n0−1

0 })
)

= 0.

Let us show now that for large n, the map g belongs to Hp
L+ε,α, i.e. it is (L + ε, α)-Hölder in

the norm ‖ · ‖p. Let us consider the case p ∈ [1,∞), as the case p = ∞ is straightforward. Fix

x, y ∈ [0, 1]ℓk0+m. We have the following series of inequalities (see below for explanations)
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‖g(x) − g(y)‖pp =

=
n0

ℓn0 +m

ℓ−1
∑

i=0

‖g0(x|
(i+1)k0−1
ik0

)− g0(y|
(i+1)k0−1
ik0

)‖pp +
1

ℓn0 +m

m−1
∑

i=0

|xℓk0+i − yℓk0+i|
p(42)

≤ Lp
( n0
ℓn0 +m

ℓ−1
∑

i=0

‖x|
(i+1)k0−1
ik0

− y|
(i+1)k0−1
ik0

‖pαp +
1

ℓn0 +m

m−1
∑

i=0

|xℓk0+i − yℓk0+i|
pα
)

(43)

≤ Lp
( n0
ℓn0 +m

ℓ−1
∑

i=0

‖x|
(i+1)k0−1
ik0

− y|
(i+1)k0−1
ik0

‖pp +
1

ℓn0 +m

m−1
∑

i=0

|xℓk0+i − yℓk0+i|
p
)α

(44)

≤ Lp
(n0(ℓk0 +m)

k0(ℓn0 +m)

)α( k0
ℓk0 +m

ℓ−1
∑

i=0

‖x|
(i+1)k0−1
ik0

− y|
(i+1)k0−1
ik0

‖pp

+
1

ℓk0 +m

m−1
∑

i=0

|xℓk0+i − yℓk0+i|
p
)α

(45)

= Lp
(n0(ℓk0 +m)

k0(ℓn0 +m)

)α

‖x− y‖pαp(46)

≤ Lp
(n0(ℓk0 + n0)

ℓk0n0

)α

‖x− y‖pαp

= Lp
(

1 +
n0
ℓk0

)α

‖x− y‖pαp .

Equality (42) follows from the definition of the p-th norm (recall that it is normalized). Inequality
(43) follows from g0 ∈ Hp

L,α, L ≥ 1, α ∈ (0, 1] and x, y ∈ [0, 1]ℓk0+m. Applying Jensen’s inequality

(see e.g. [31, Theorem 3.3]) yields (44). As k0 ≤ n0, inequality (45) follows. For (46) we use the

definition of the p-th norm once more. If n is large enough, then Lp
(

1 + n0

ℓk0

)α

≤ (L + ε)p (since

ℓ → ∞ as n → ∞). We have therefore found a compressor-decompressor pair consisting of f ∈ C
and g ∈ Hp

L+ε,α, hence we can estimate (for n large enough)

rC−Hp
L+ε,α

(S, 0, n) ≤
ℓk0 +m

n
=
ℓk0 +m

ℓn0 +m
≤
k0
n0

+
n0 − 1

n
= rC−Hp

L,α
(S, 0, n0) +

n0 − 1

n
.

Taking lim sup
n→∞

and applying (40), we obtain

lim sup
n→∞

rC−Hp

L+ε,α
(S, 0, n) ≤ rC−Hp

L,α
(S, 0, n0) ≤ inf

n∈N
rC−Hp

L,α
(S, 0, n) + δ.

As δ > 0 was arbitrary, (38) is proved. For (39) observe that the definition of rC−Hp

L+ε,α
(S, 0) and

(38) imply that

inf
n∈N

rC−Hp

L+ε,α
(S, 0, n) ≤ rC−Hp

L+ε,α
(S, 0) ≤ inf

n∈N
rC−Hp

L,α
(S, 0, n).

Taking inf
L>0

on both sides yields (39), as the function (0,∞) ∋ L 7→ inf
n∈N

rC−Hp
L,α

(S, 0, n) is non-

increasing in L. �

Appendix E. Examples - calculations

E.A. Example IV.C.2. Let

Sm =
⋃

n∈Z

σn(Am) and S :=
⋃

m≥1

Sm,

where

Am := {(. . . , 0, 0)} × [0,
1

2m
]m × {(0, 0, . . .)} ⊂ [0, 1]Z,

with the cube [0, 1
2m ]m located on coordinates 0, 1, . . . ,m− 1. We shall prove

mdimM (S) = 0 and mdimB(S) = 1.
27



S is clearly σ-invariant. Let ~0 = (. . . , 0, 0, 0, . . .) ∈ [0, 1]Z. Note that each Sm is compact (in the
metric τ) with

diam(Sm) ≤
2m

2m
and ~0 ∈ Sm,

hence S is compact. Moreover, for every x ∈ S it holds σnx → ~0 as n → ∞, hence Pσ(S) = {δ~0}.

It follows from the Variational Principle (Theorem VII.B.1) that mdimM (S) = 0. On the other
hand, for every m ≥ 1 it holds

[0,
1

2m
]m ⊂ πm(S),

hence dimB(πm(S)) ≤ m and therefore mdimB(S) = 1.

E.B. Example VI.A.1. The goal of this subsection is to prove inequality (6). We will need the
following lemma.

Lemma E.1. Fix δ ∈ (0, 12 ], n ∈ N and x ∈ {0, 1}n. Let B(x, δ) be the ball in the norm ‖ · ‖1 on
{0, 1}n, i.e.

B(x, δ) = {y ∈ {0, 1}n : ‖x− y‖1 < δ}.

Then #B(x, δ) ≤ 2nH(δ), where H(δ) = −δ log δ − (1− δ) log(1− δ).

Proof. Fix y ∈ B(x, δ). Then

1

n

n−1
∑

i=0

|xi − yi| < δ, where x = (x0, . . . , xn−1), y = (y0, . . . , yn−1).

Therefore, the set Iy = {0 ≤ i < n : xi 6= yi} satisfies Iy ≤ δn. Moreover, vector y is uniquely
determined by Iy, hence the assignment B(x, δ) ∋ y 7→ Iy ⊂ {0, . . . , n−1} is injective. Consequently

#B(x, δ) ≤ #{I ⊂ {0, . . . , n− 1} : #I ≤ nδ} =
∑

0≤i≤nδ

(

n

i

)

≤ 2nH(δ),

where the last inequality follows from [28, Lemma 3.6] (recall that we take logarithms in the base
2). �

Let S := {0, 1}Z. We will show that for any α ∈ (0, 1] and L ≥ 1 it holds that

(47) sup
ε>0

sup
µ∈Pσ(S)

rL
1

B−H1
L,α

(µ, ε) ≥
α(1 −H(14))

log 8L
> 0.

As the quantity rL
1

B−H1
L,α

(µ, ε) is decreasing in L, this will be sufficient for proving (6) for all L > 0.

We will find a single measure for which the lower bound in (47) holds. Let µ =
⊗

Z

(12δ0 +
1
2δ1) ∈

Pσ(S). Fix ε ∈ (0, 1
16). Fix n ∈ N and let rL

1

B−H1
L,α

(µ, ε, n) = k
n

for some k ∈ N. There exists then a

Borel map f : [0, 1]n → [0, 1]k and (L,α)-Hölder map g : [0, 1]k → [0, 1]n (in norm ‖ · ‖1) such that

(48)

ˆ

[0,1]n

‖x− g ◦ f(x)‖1d(πn)∗µ(x) ≤ ε.

Clearly (πn)∗µ = (12δ0+
1
2δ1)

⊗n. Let An ⊂ {0, 1}n be defined as An = {x ∈ {0, 1}n : ‖x−g◦f(x)‖1 ≤
2ε}. By the Chebyshev inequality (see e.g. [55, (5.30)]) and (48) we have

#
(

{0, 1}n \ An) ≤
2n

2ε

ˆ

{0,1}n\An

‖x− g ◦ f(x)‖1d(πn)∗µ(x) ≤ 2n−1.

Therefore

(49) #An ≥ 2n−1.

Lemma E.1 (applied with δ = 8ε) implies that there exists a subset Bn ⊂ An satisfying

(50) ‖x− y‖1 ≥ 8ε for every x, y ∈ Bn such that x 6= y
28



and

(51) #Bn ≥
#An

2nH(8ε)
.

By the triangle inequality, (50) and the definition of An, for distinct x, y ∈ Bn we have

‖g ◦ f(x)− g ◦ f(y)‖1 ≥ ‖x− y‖1 − ‖x− g ◦ f(x)‖1 − ‖y − g ◦ f(y)‖1 ≥ 4ε.

and consequently, as g is (L,α)-Hölder in ‖ · ‖1,

(52) 4ε ≤ ‖g ◦ f(x)− g ◦ f(y)‖1 ≤ L‖f(x)− f(y)‖α1 for x, y ∈ Bn, x 6= y.

This implies that f is injective on Bn, hence #f(Bn) = #Bn. Moreover, by (52), elements of the

set f(Bn) are
(

4ε
L

)
1

α -separated in the norm ‖ · ‖1 on [0, 1]k , hence #f(Bn) ≤
(

4ε
L

)− k
α (as f(Bn) is

(

4ε
L

)
1

α -separated in the norm ‖ · ‖∞ as well, since ‖ · ‖∞ ≥ ‖ · ‖1). Combining this with (49) and
(51) gives bounds

2n(1−H(8ε))−1 ≤ #Bn = #f(Bn) ≤
(4ε

L

)− k
α .

Taking logarithms we obtain

n(1−H(8ε)) − 1 ≤
k

α
log

L

4ε
,

therefore (recall that L ≥ 1 and ε < 1
16 , hence L

4ε > 1 and H(8ε) < 1)

rL
1

B−H1
L,α

(µ, ε, n) =
k

n
≥
α(1−H(8ε))

log L
4ε

−
1

n log L
4ε

.

This implies

rL
1

B−H1
L,α

(µ, ε) = lim sup
n→∞

rL
1

B−H1
L,α

(µ, ε, n) ≥
α(1−H(8ε))

log L
4ε

.

We finally obtain

sup
ε>0

rL
1

B−H1
L,α

(µ, ε) ≥ rL
1

B−H1
L,α

(µ,
1

32
) ≥

α(1 −H(14))

log 8L
.

Taking supremum over µ ∈ Pσ(S) gives (47).

E.C. Example VI.A.2. Let A = {0} ∪ { 1
n
: n ∈ N} and S = AZ. Then, according to Example

IV.C.1,

mdimM (S) = mdimB(S) = dimB(A) =
1

2
.

We will prove

sup
ε>0

sup
µ∈Pσ(S)

rB−Hα(µ, ε) = 0 for every α ∈ (0, 1].

To that end, fix ε > 0, n ∈ N and µ ∈ Pσ(S). Since (πn)∗µ is a discrete measure with countably
many atoms, there exists a finite set B ⊂ [0, 1]n with (πn)∗µ(B) ≥ 1 − ε. Since B is finite, there
exists a linear map F : Rn → R such that F ([0, 1]n) ⊂ [0, 1] and F is injective on B (e.g. projection
onto a suitable line - there is only finitely many directions such that projection onto them will
fail to be injective on a given finite set). Let f : [0, 1]n → [0, 1] be given by f = F |[0,1]n . Let
g : f(B) → [0, 1]n be its inverse on f(B). Note that g is L-Lipschitz with respect to the norm

‖ · ‖∞ for L =
(

min
{

‖x− y‖∞ : x, y ∈ f(B), x 6= y
}

)−1
. The function g can be extended to an

L-Lipschitz map from [0, 1] to [0, 1]n for some L > 0 (see Remark III.A.8). Now

µ({x ∈ S : g ◦ f ◦ πn(x) = πn(x)}) ≥ (πn)∗µ(B) ≥ 1− ε,

hence rLIN−L(µ, n, ε) ≤
1
n

and rLIN−L(µ, ε) = 0. Consequently

sup
ε>0

sup
µ∈Pσ(S)

rB−Hα(µ, ε) ≤ sup
ε>0

sup
µ∈Pσ(S)

rLIN−L(µ, ε) = 0.

Note that in the above calculation we cannot guarantee a uniform bound on L (with respect to n)

as
(

min
{

‖x− y‖∞ : x, y ∈ f(B), x 6= y
}

)−1
can be arbitrary large for n→ ∞.
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E.D. Example VI.B.1. Let S ⊂ [0, 1]Z be the subshift from Example IV.C.3, i.e.

S = {x ∈ [0, 1]Z : ∀
j∈Z

‖x|j+N−1
j ‖0 ≤ K}

for N,K ∈ N, K ≤ N . We shall prove that for every p ∈ [1,∞], α ∈ (0, 1] it holds

(53) inf
L>0

sup
µ∈Pσ(S)

sup
ε>0

rB−Hp

L,α
(µ, ε) = inf

L>0
rB−Hp

L,α
(S, 0) = αmdimM (S) =

αK

N
.

Theorem V.A.1 and the calculation from Example IV.C.3 give

αK

N
= αmdimM (S) ≤ inf

L>0
sup

µ∈Pσ(S)
sup
ε>0

rB−Hp

L,α
(µ, ε),

hence it suffices to prove

(54) inf
L>0

rB−Hp
L,α

(S, 0) ≤
αK

N
.

We will apply Lemma D.1 and Proposition IX.C.1. Fix ε > 0. Let ℓ ∈ N be such that 3
ℓN

≤ ε. Set

d := ⌈αℓK⌉ + 1. Then α < d
ℓK

, hence by Proposition IX.C.1 there exist φ : [0, 1]ℓK → [0, 1]d, ψ :

[0, 1]d → [0, 1]ℓK such that φ ∈ B, ψ ∈ Hα and ψ ◦ φ(x) = x for every x ∈ [0, 1]ℓK . Define the set

A := {A ⊂ {0, . . . , ℓN − 1} : #A = ℓK}

consisting of all subsets of {0, . . . , ℓN − 1} of cardinality ℓK. Let C : πℓN (S) → A be any Borel
map such that supp(x) ⊂ C(x) holds for every x ∈ πℓN (S). Such map exists as #supp(x) ≤ ℓK
for every x ∈ πℓN (S) (for vectors x ∈ πℓN (S) with #supp(x) < ℓK, one can set C(x) to be e.g.
the union of supp(x) with ℓK −#supp(x) first zero coordinates of x. This is clearly a Borel map).
Moreover, let s : A → [12 , 1] be a map such that |s(A) − s(B)| ≥ 1

2(#A−1) for A 6= B (i.e. it

assigns to sets A ∈ A points from [12 , 1] in a maximally separated fashion). We are now ready to

define a compressor f : [0, 1]ℓN → [0, 1]d+1 and a decompressor g : [0, 1]d+1 → [0, 1]ℓN with f ∈ B
and g ∈ Hp

L,α for some L large enough. The compressor f will assign to x ∈ πℓN (S) the image

under φ of x restricted to the set C(x) (which contains the support of x), together with a signature
s(C(x)). Knowing s(C(x)) (and hence C(x) itself) will allow us to decode x uniquely by applying
ψ and setting coordinates from the complement of C(x) to zero. The fact that ψ is α-Hölder and s
separates sets from A will allow us to conclude that the decompressor is Hölder as well. Specifically
let us define f : [0, 1]ℓN → [0, 1]d+1,

f(x) =

{

0, x /∈ πℓN (S)

(φ(x|C(x)), s(C(x)), x ∈ πℓN (S)
.

Clearly f is Borel. Define g : f([0, 1]ℓN ) → [0, 1]ℓN as

g(x1, . . . ., xd, xd+1) =

{

0, xd+1 = 0

ψ(x1, . . . , xd) ↿ s
−1(xd+1), xd+1 6= 0

,

where ψ(x1, . . . , xd) ↿ s
−1(xd+1) denotes the vector in [0, 1]ℓN obtained by putting the consecutive

elements of the vector ψ(x1, . . . , xd) (which has length ℓK) in the consecutive coordinates from the
set s−1(xd+1) ∈ A (of cardinality ℓK as well) and setting other coordinates to zero. Note that g
is well defined on f([0, 1]ℓN ) and g ◦ f = id on πℓN (S). Let us show now that g is α-Hölder on
f([0, 1]ℓN ). As ψ ∈ Hα, there exists L > 0 such that ψ is (L,α)-Hölder in the norm ‖ · ‖p. Note

that f([0, 1]ℓN ) ⊂ [0, 1]d × {0, 12 ,
1
2 + 1

2(#A−1) , . . . , 1−
1

2(#A−1) , 1}. Fix x = (x1, . . . , xd, xd+1), y =

(y1, . . . , yd, yd+1) ∈ f([0, 1]ℓN ). Assume first that xd+1 6= yd+1. Then |xd+1 − yd+1| ≥
1

2(#A−1) ,

hence ‖x − y‖p ≥ M , where M = 1

(d+1)
1
p 2(#A−1)

for p ∈ (1,∞) and M := 1
2(#A−1) for p = ∞.

Therefore

(55) ‖g(x) − g(y)‖p ≤ 1 ≤
1

Mα
‖x− y‖αp if xd+1 6= yd+1

Assume now that xd+1 = yd+1. By (L,α)-Hölder continuity of ψ on [0, 1]d, we have
30



(56)

‖g(x) − g(y)‖p ≤ ‖ψ(x1, . . . , xd)− ψ(x1, . . . , xd)‖p

≤ L‖(x1, . . . , xd)− (y1, . . . , yd)‖
α
p

≤ L̃‖x− y‖αp if xd+1 = yd+1,

where L̃ := L(d+1)
α
p

d
α
p

if p ∈ (1,∞) and L̃ := L if p = ∞. Setting L′ = max{ 1
Mα , L̃}, we can

conclude from (55) and (56) that g is (L′, α)-Hölder on f([0, 1]ℓN ). It can be extended to (L′′, α)-

Hölder function g : [0, 1]d+1 → [0, 1]ℓN , where L′′ = (ℓN)
1

pL′ if p ∈ [1,∞) and L′′ = L′ if p = ∞
(see Remark III.A.8). As noted above, g ◦ f = id on πℓN (S), hence µ({x ∈ S : g ◦ f(x|ℓN−1

0 ) 6=

x|ℓN−1
0 }) = 0 for every µ ∈ Pσ(S). We therefore obtain bound

rB−Hp

L′′,α
(S, 0, ℓN) ≤

d+ 1

ℓN
=

⌈αℓK⌉+ 2

ℓN
≤
αK

N
+

3

ℓN
≤
αK

N
+ ε.

By Lemma D.1 applied with C = B, we arrive at

inf
L>0

rB−Hp
L,α

(S, 0) ≤ rB−Hp

L′′,α
(S, 0, ℓN) ≤

αK

N
+ ε.

As ε > 0 was arbitrary, (54) is proved and consequently (53) holds.

E.E. Example VI.B.2. Let S ⊂ [0, 1]Z be the subshift from Example IV.C.3, i.e.

S = {x ∈ [0, 1]Z : ∀
j∈Z

‖x|j+N−1
j ‖0 ≤ K}

for K,N ∈ N, K ≤ N . We will show that for any α ∈ (0, 1]

(57) sup
µ∈Pσ(S)

rLIN−Hα(µ, 0) ≥ min
{2K

N
, 1
}

= min{2mdimM (S), 1}.

Actually, we will construct a single measure µ which realizes the above bound. Let ν ∈ Prob([0, 1]N )
be any Borel probability measure with supp(ν) = [0, 1]K × {0}N−K (e.g. product of the Lebesgue
measure on [0, 1]K with the Dirac’s delta at zero in [0, 1]N−K). Define measure

µ =
1

N

N−1
∑

j=0

σj∗(
⊗

Z

ν).

Note that µ ∈ Pσ(S). Fix n, k ∈ N and consider any pair of functions f : [0, 1]n → [0, 1]k, g :
[0, 1]k → [0, 1]n such that f ∈ LIN, g ∈ Hα and

(58) µ({x ∈ S : g ◦ f(x|n−1
0 ) 6= x|n−1

0 }) = 0.

We will prove now a lower bound on k and use it to conclude (57). We can decompose n uniquely
as n = ℓN +m for some ℓ ∈ N0 and m ∈ {0, 1, . . . , N − 1}. Define set A ⊂ [0, 1]n as

A =
(

(

[0, 1]K × {0}N−K
)ℓ

× {0}m
)

∪
(

(

{0}N−K × [0, 1]K
)ℓ

× {0}m
)

.

Note that A ⊂ supp((πn)∗µ). As both f and g are continuous, the set {x ∈ [0, 1]n : g ◦f(x) = x} is
closed and, by (58), of full measure (πn)∗µ. Therefore supp((πn)∗µ) ⊂ {x ∈ [0, 1]n : g ◦ f(x) = x}
and consequently

A ⊂ {x ∈ [0, 1]n : g ◦ f(x) = x}.

Therefore f is injective on A. Let F : Rn → R
k be the linear extension of f (it exists as f ∈ LIN).

We claim that F is injective on a larger set

E =
(

(

R
K × {0}N−K

)ℓ
× {0}m

)

∪
(

(

{0}N−K × R
K
)ℓ

× {0}m
)

.

Indeed, if x, y ∈ E are such that F (x) = F (y), then there exists v ∈ R
n and t > 0 such that

t(x+ v) ∈ A, t(y + v) ∈ A and f(t(x+ v)) = f(t(y + v)). Consequently t(x+ v) = t(y + v), hence
x = y. As F is linear, its injectivity on E implies that

(59) Ker(F ) ∩ (E − E) = {0}
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(here E − E denotes the algebraic difference, i.e. E − E = {x − y : x, y ∈ E}). Note that E − E
contains a linear subspace of dimension min{2ℓK, ℓN}. More precisely:

(

R
K × {0}N−2K × R

K
)ℓ

× {0}m ⊂ E − E if 2K ≤ N

and
(

R
N
)ℓ

× {0}m ⊂ E − E if 2K > N.

Therefore (59) implies dim(Ker(F )) ≤ n − min{2ℓK, ℓN} and consequently k ≥ dim(Im(F )) ≥
min{2ℓK, ℓN}. This gives bound

rLIN−Hp

L,α
(µ, 0, n) ≥

min{2ℓK, ℓN}

n
=
ℓmin{2K,N}

ℓN +m
≥
ℓmin{2K,N}

(ℓ+ 1)N
=

ℓ

ℓ+ 1
min

{2K

N
, 1
}

.

Taking lim sup
n→∞

and recalling that l → ∞ as n→ ∞, we obtain finally

rLIN−Hp

L,α
(µ, 0) ≥ min

{2K

N
, 1
}

.

Equality min
{

2K
N
, 1
}

= min{2mdimM (S), 1} follows from the calculation in Example IV.C.3.

This concludes the proof of (57). Note that the upper bound 2
1−α

mdimM (S) of Theorem V.B.1

approaches the above lower bound 2mdimM (S) as α → 0, hence the constant 2
1−α

in Theorem
V.B.1 cannot be in general replaced by any smaller one.

Appendix F. Lower bound for rB−Hα(µ, ε)

Following closely the proof of [2, Lemma 13] (see also [2, Equation (75)]) we have the following
proposition:

Proposition F.1. Let S be a closed and shift-invariant subspace of [0, 1]Z and µ ∈ Pσ(S). Then
for 0 < ε < 1 and α ∈ (0, 1] the following holds:

αRB(µ, ε) ≤ rB−Hα(µ, ε).

Proof. Fix n ∈ N and let rB−Hα(µ, ε, n) =
k
n
. There exist f : [0, 1]n → [0, 1]k , g : [0, 1]k → [0, 1]n

such that f is Borel, g is (L,α)-Hölder and B = {x ∈ S : g ◦ f(x|n−1
0 ) 6= x|n−1

0 } satisfies µ(B) ≤ ε.

Take A = πn(S \B) ⊂ [0, 1]n. Then A = g(f(A)), f(A) ⊂ [0, 1]k and dimB(f(A)) ≤ k. Since g is
α-Hölder, we have by [36, Lemma 3.3.(iv)] that dimB(A) = dimB(g(f(A))) ≤

1
α
dimB(f(A)) ≤

k
α
.

We also have µ(π−1
n (A)) ≥ µ(S \ B) ≥ 1 − ε, hence RB(µ, ε) ≤ 1

α
k
n
= 1

α
rB−Hα(µ, ε, n). Taking

lim sup
n→∞

on the right side, we get the desired result. �
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