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Abstract

Signal detection in colored noise with an unknown covariance matrix has a myriad of applications

in diverse scientific/engineering fields. The test statistic is the largest generalized eigenvalue (l.g.e.) of

the whitened sample covariance matrix, which is constructed via m-dimensional p signal-plus-noise

samples and m-dimensional n noise-only samples. A finite dimensional characterization of this statistic

under the alternative hypothesis has hitherto been an open problem. We answer this problem by deriving

cumulative distribution function (c.d.f.) of this l.g.e. via the powerful orthogonal polynomial approach,

exploiting the deformed Jacobi unitary ensemble (JUE). Two special cases and an asymptotic version

of the c.d.f. are also derived. With this new c.d.f., we comprehensively analyze the receiver operating

characteristics (ROC) of the detector. Importantly, when the noise-only covariant matrix is nearly rank

deficient (i.e., m = n), we show that (a) when m and p increase such that m/p is fixed, at each fixed

signal-to-noise ratio (SNR), there exists an optimal ROC profile. We also establish a tight approximation

of it; and (b) asymptotically, reliable signal detection is always possible (no matter how weak the signal

is) if SNR scales with m.
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I. INTRODUCTION

Eigenvalue based detection of a signal embedded in noise is a fundamental problem with a

myriad of applications in diverse fields including signal processing, wireless communications,

cognitive radio, bioinformatics and many more [1]–[8]. Thus, sample eigenvalue (of the sample

covariance matrix) based detection has gained prominence recently ( [9], [10] and references

therein). In this context, the largest sample eigenvalue based detection, also known as the Roy’s

largest root test [11], has been popular among detection theorists. Under the common Gaussian

setting with white noise, this amounts to the use of the largest eigenvalue of a Wishart matrix

having a so-called spiked covariance [12]–[17].

However, colored noise (or correlated noise) occurs in multitudes of applications [8], [18]–

[22]. In this case, we can utilize the maximum eigenvalue of the matrix formed by whitening the

signal-plus-noise sample covariance matrix with the noise-only sample covariance matrix. For this

estimator, Nadakuditi and Silverstein [4] proposed a framework to use the generalized eigenvalues

of the whitened signal-plus-noise sample covariance matrix for detection. The assumption of

having the noise only sample covariance matrix is realistic in many practical situations as

detailed in [4]. The fundamental high dimensional limits of the generalized sample eigenvalue

based detection in colored noise have been thoroughly investigated in [4]. However, to our best

knowledge, a tractable finite dimensional analysis is not available in the literature. Thus, in this

paper, we characterize the statistics of the Roy’s largest root in the finite dimensional colored

noise setting. Moreover, we investigate certain limiting behaviors of the Roy’s largest root to

deepen our understanding of the classical detection problem in colored noise. These limiting

expressions are derived based on their finite dimensional counterparts, whereas in the literature,

it is customary to use entirely different tools for finite and asymptotic analyses.

The Roy’s largest root of the generalized eigenvalue detection problem in the Gaussian setting

amounts to finite dimensional characterization of the largest eigenvalue of the deformed Jacobi

ensemble. Various asymptotic expressions (high dimensional and high signal-to-noise ratio) for

it have been derived in [23]–[26] for deformed Jacobi ensemble. However, finite dimensional

expressions are available for Jacobi ensemble only (without deformation) [27]–[29]. Although
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finite dimensional, these expressions are not amenable to further manipulations. Therefore, in

this paper, we present a simple and tractable closed form solution to the cumulative distribution

function (c.d.f.) of the maximum eigenvalue of the deformed Jacobi ensemble. This expression

further facilitates the analysis of the receiver operating characteristics (ROC) of the Roy’s largest

root test. All these results are made possible due to a novel alternative joint eigenvalue density

function that we have derived based on the contour integral approach due to [30]–[34].

The key results developed in this paper enable us to understand the joint effect of the system

dimensionality (m), the number of signal-plus-noise samples (p) and noise-only samples (n),

and the signal-to-noise ratio (γ) on the ROC. For instance, the relative disparity between m and

n improves the ROC profile for fixed values of the other parameters. However, the general finite

dimensional ROC expressions turns out to give little analytical insights. Therefore, to obtain more

insights, we have particularly focused on the case for which the system dimensionality equals the

number of the noise-only samples (i.e., m = n). Since this equality is the minimum requirement

for the validity of the whitening operation, from the ROC perspective, it corresponds to the worst

possible case when then other parameters being fixed. It turns out that, in this scenario, when

p increases for fixed m,n and γ, the ROC profile improves. In this respect, the ROC profile

converges to a limiting profile as p → ∞. In contrast, when we increase p and m simultaneously

such that m/p is a constant (≤ 1) for fixed γ, we can observe an optimal ROC profile for some

special values of p and m. However, as p,m, n → ∞ such that m/p approaches a constant (≤ 1)

(the high dimensional limit) and m/n = 1 for fixed γ, the maximum eigenvalue tend to lose

its detection power. This phenomenon amounts to stating that the maximum eigenvalue has no

power below the phase transition. This has been observed in random matrix theory literature

[4], [26], [35]–[37]. Be that as it may, the most interesting result emerged from our analysis is

that, when γ scales with m under the latter assumptions, the ROC attains a finite limit. In other

words, the maximum eigenvalue still retains its detection power in the high dimension when

γ scales with m as m → ∞. For instance, under Rayleigh fading, as m → ∞, γ scales with

m (due to the strong law of large numbers). Therefore, the above insight can be of paramount

importance in designing future wireless communication systems (5G and beyond).

The remainder of this paper is organized as follows. In Section II, we formulate the classical

detection problem in unknown colored noise. A new c.d.f. expression for the maximum eigen-

value (i.e., Roy’s largest root) of the deformed Jacobi unitary ensemble is derived in Section

III. It also gives certain particularizations of the general c.d.f. expression. Subsequently, Section
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IV investigates the ROC characteristics of the Roy’s largest root test in the light of the c.d.f.

derived in Section III. Moreover, the interplay between the system dimensionality, the number

of signal-plus-noise samples, and the noise-only samples has been analytically characterized in

Section IV. Finally, conclusions are drawn in Section V.

The following notation is used throughout this paper. The superscript (·)† indicates the Her-

mitian transpose, det(·) denotes the determinant of a square matrix, tr(·) represents the trace of

a square matrix, and etr(·) stands for exp (tr(·)). The n× n identity matrix is represented by In

and the Euclidean norm of a vector w is denoted by ||w||. A diagonal matrix with the diagonal

entries a1, a2, . . . , an is denoted by diag(a1, a2, . . . , an). We denote the m × m unitary group

by U(m). Finally, we use the following notation to compactly represent the determinant of an

n× n block matrix:

det [ai bi,j ]i=1,2,...,n
j=2,3,...,n

=

∣∣∣∣∣∣∣∣∣∣∣

a1 b1,2 b1,3 . . . b1,n

a2 b2,2 b2,3 . . . b2,n
...

...
...

. . .
...

an bn,2 bn,3 . . . bn,n

∣∣∣∣∣∣∣∣∣∣∣

.

II. PROBLEM FORMULATION

Consider the following generic signal detection problem in colored Gaussian noise

x =
√
ρhs+ n

where x,h ∈ Cm are m-dimensional complex vectors, ρ > 0 is a signal power measure, s ∼
CN (0, 1) is a complex Gaussian transmit symbol and n ∼ CNm(0,Σ) is random Complex

Gaussian noise vector with covariance matrix Σ, which may or may not be known at the detector.

The classical signal detection problem amounts to the following hypothesis testing problem:

H0 : ρ = 0 Signal is absent

H1 : ρ > 0 Signal is present.

Nothing that the covariance matrix of x can be written as

S = ρhh† +Σ,

where (·)† denotes the conjugate transpose, we can have the following equivalent form

H0 : R = Σ Signal is absent

H1 : S = ρhh† +Σ Signal is present.
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If the signal-plus-noise covariance matrix S and the noise covariance matrix Σ were known, we

may compute matrix

Ψ = R
−1
S = ρΣ−1

hh
† + I.

Denote the eigenvalues of Ψ by λ1 ≤ λ2 ≤ . . . ≤ λm. These eigenvalues are in fact the

generalized eigenvalues of the matrix pair (S,R). Since the rank of hh
† is one, then m − 1

eigenvalues are all equal to one (λ1 = λ2 = . . . = λm−1 = 1), while the remaining maximum

eigenvalue of Ψ (λm) is strictly greater than one. Thus, the maximum eigenvalue of Ψ could

be used to detect the presence of a signal [4].

In most practical settings, R and S matrices are unknown. To circumvent this difficulty, we

may replace R and S by their sample estimates. To this end, we assume the availability of p > 1

i.i.d. signal-plus-noise samples {x1,x2, . . . ,xp}, and n i.i.d. noise-only samples {n1,n2, . . . ,nn}.

Thus, the sample estimates of R and S become

R̂ =
1

n

n∑

ℓ=1

nℓn
†
ℓ (1)

Ŝ =
1

p

p∑

k=1

xkx
†
k (2)

where we assume that n, p ≥ m (this ensures that both R̂ and Ŝ are positive definite with

probability 1 [37], [38]). Consequently, following [4], we form the matrix

Ψ̂ = R̂
−1
Ŝ (3)

and focus on its maximum eigenvalue as the test statistic1. As such, we have

nR̂ ∼ CWm (n,Σ)

pŜ ∼ CWm

(
p,Σ+ ρhh†

)

Noting that the eigenvalues of Ψ̂ do not change under the simultaneous transformations R̂ 7→
Σ

−1/2
R̂Σ

−1/2, and Ŝ 7→ Σ
−1/2

ŜΣ
−1/2, without loss of generality we assume that Σ = σ2

Im.

Therefore, in what follows we focus on the maximum eigenvalue of Ψ̂, where

nR̂ ∼ CWm (n, Im) (4)

pŜ ∼ CWm

(
p, Im + γuu†

)
(5)

1This is also known as the Roy’s largest root test which is a consequence of Roy’s union intersection principle [11].
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with γ = ρ||h||2/σ2 and u = h/||h|| being a unit vector.

Let us denote the maximum eigenvalue of Ψ̂ as λ̂max(γ). Now, in order to assess the perfor-

mance of the maximum-eigen based detector, we need to evaluate the detection2 and false alarm

probabilities. They may be expressed as

PD(γ, µ) = Pr
(
λ̂max(γ) > µth|H1

)
(6)

and

PF (γ, µ) = Pr
(
λ̂max(γ) > µth|H0

)
(7)

where µth is the threshold. The (PD, PF ) pair characterizes the detector and is called the ROC

profile.

Our main challenge is to characterize the maximum eigenvalue of Ψ̂ under the alternative H1.

This particular matrix is also referred to as the multivariate F matrix in the statistics literature

[38]. It is also related to the so called Jacobi ensemble in random matrix theory [39], [40]. The

joint eigenvalue distribution of the F (also Jacobi ensemble) matrix has been well documented in

the literature [38], [39], [41]. The extreme eigenvalues of F under the null has been characterized

in [27]–[29] in terms of hypergeometric function of one matrix argument. To gain more insights

into the behavior of the extreme eigenvalues, focus has been shifted to various asymptotic

domains (high dimensionality or high SNR). In this respect, various asymptotic expressions

for the extreme eigenvalues, under the null, have been established in [23], [24], [42], [43].

Recently, capitalizing on new contour integral representations of hypergeometric functions of

matrix arguments by [30]–[33], [44], several new asymptotic results (including phase transition

phenomena) for the maximum eigenvalue, under the alternative, have been established [25]. Also,

the authors in [4], [26], [36] have employed the Stiltjes transform technique to relax the Gaussian

assumption, thereby establishing the universality nature of the above results. Despite those

asymptotic results, a finite-dimensional characterization of the maximum eigenvalue under the

alternative hypothesis has been an open problem. Therefore, in this paper, we attack this problem

by exploiting orthogonal polynomial techniques due to Mehta [39] to obtain a closed-form

solution. In particular, we derive an expression which contains a determinant whose dimension

depends through the relative difference between m and n. Consequently, this property is used

2This is also known as the power of the test.
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to establish an interesting asymptotic result on the maximum eigenvalue under the alternative

hypothesis.

III. C.D.F. OF THE MAXIMUM EIGENVALUE

Before proceeding further, we present some fundamental results pertaining to the joint eigen-

value distribution of an F -matrix and Jacobi polynomials.

A. Preliminaries

Definition 1: Let W1 ∼ Wm (p,Σ) and W2 ∼ Wm (n, Im) be two independent Wishart

matrices with p, n ≥ m. Then the joint eigenvalue density of the ordered eigenvalues, λ1 ≤
λ2 ≤ . . . ≤ λm, of W1W

−1
2 is given by [41]

f(λ1, λ2, · · · , λm) =
K1(m,n, p)

detp (Σ)

m∏

j=1

λp−m
j ∆2

m(λ)1F̃0

(
p+ n;−Σ

−1,Λ
)

(8)

where 1F̃0 (·; ·, ·) is the generalized complex hypergeometric function of two matrix arguments,

∆2
m(λ) =

∏
1≤i<j≤m (λj − λi) is the Vandermonde determinant, Λ = diag (λm, . . . , λ1), and

K1(m,n, p) =
πm(m−1)Γ̃m(n+ p)

Γ̃m(m)Γ̃m(n)Γ̃m(p)

with the complex multivariate gamma function is written in terms of the classical gamma function

Γ(·) as

Γ̃m(n) = π
1
2
m(m−1)

m∏

j=1

Γ (n− j + 1) .

Definition 2: Jacobi polynomials can be defined as follows [45, eq. 5.112]

P (a,b)
n (x) =

n∑

k=0

(
n + a

n− k

)(
n+ k + a+ b

k

)(
x− 1

2

)k

for a, b > −1 (9)

where
(
n
k

)
= n!

(n−k)!k!
with n ≥ k ≥ 0.

We may alternatively express the Jacobi polynomial as [45]

P (a,b)
n (x) =

(
n+ a

a

)
2F1

(
−n, n + a+ b+ 1; 1 + a;

1− x

2

)
(10)

where 2F1(·; ·; ·) is the Gauss hypergeometric function. Following (10), the successive derivatives

of the Jacobi polynomial can be written as

dk

dxk
P (a,b)
n (x) = 2−k(n+ a + b+ 1)kP

(a+k,b+k)
n−k (x) (11)

February 8, 2019 DRAFT
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where (a)k = a(a + 1) . . . (a + k − 1) with (a)0 = 1 denotes the Pochhammer symbol. It is

noteworthy that, for a negative integer −n with n ∈ Z+, we have [45]

(−n)k =





(−1)kn!
(n−k)!

if 0 ≤ k ≤ n

0 if k > n.

B. Finite Dimensional Analysis of the C.D.F.

Armed with these preliminary definitions, now we focus on deriving the new c.d.f. for the

maximum eigenvalue of W1W
−1
2 when the covaraince matrix Σ takes the so called rank-1

spiked form. That is, the covariance matrix can be decomposed as

Σ = Im + ηvv† = Vdiag (1 + η, 1, 1, . . . , 1)V† (12)

where V = (v v2 . . .vm) ∈ Cm×m is a unitary matrix and η ≥ 0. Before developing our method,

it is important to highlight the difficulty of a direct solution via (8). Following Khatri [46], the

hypergeometric function of two matrix arguments given in the join density (8) can be written as

a ratio between the determinants of two m × m square matrices. Since the eigenvalues of the

matrix Σ
−1 are such that 1/(1+η) has algebraic multiplicity one and 1 has algebraic multiplicity

m − 1, the resultant ratio takes an indeterminate form. Therefore, one has to repeatedly apply

L’Hospital’s rule to obtain a deterministic expression. However, the resulting expression is not

amenable to apply Mehta’s [39] orthogonal polynomial technique. Therefore, to apply it, we first

derive an alternative joint eigenvalue density expression. This alternative derivation technique

has also been used earlier in [30] to derive a single contour integral representation for the joint

eigenvalue density when the matrices are real3. The following corollary gives the alternative joint

density expression.

Corollary 3: Let W1 ∼ Wm(p, Im + ηvv†) and W2 ∼ Wm(n, Im) be independent Wishart

matrices with m ≤ p, n and η ≥ 0. Then the joint density of the ordered eigenvalues 0 ≤ λ1 ≤
λ2 ≤ · · · ≤ λm < ∞ of W1W

−1
2 is given by

f(λ1, λ2, · · · , λm) = fuc(λ1, λ2, · · · , λm)fcor(λ1, λ2, · · · , λm) (13)

where

fuc(λ1, λ2, · · · , λm) = K1(m,n, p)

m∏

j=1

λp−m
j

(1 + λj)p+n
∆2

m(λ), (14)

3However, when the matrices are real, the hypergeometric function of two matrix arguments does not admit such a determinant

representation.
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fcor(λ1, λ2, · · · , λm) =
K2(m,n, p)

ηm−1(1 + η)p+1−m

m∏

j=1

(1 + λj)
m∑

k=1

(1 + λk)
p+n−1

m∏

j=1
j 6=k

(λk − λj)

(
1 +

λk

η + 1

)p+n+1−m
,

and

K2(m,n, p) =
(m− 1)! (p+ n−m)!

(p+ n− 1)!
,

Proof: See Appendix A.

Remark 4: It is worth noting that the function fuc(λ1, λ2, · · · , λm) denotes the joint density

of the ordered eigenvalues of W1W
−1
2 corresponding to the case W1 ∼ Wm(p, Im) and W2 ∼

Wm(n, Im).

To facilitates further analysis, nothing that the continuous mapping h : x 7→ x
x+1

, x ≥ 0 is

strictly increasing (i.e., order preserving), we use the variable transformations

xj =
λj

1 + λj

, j = 1, 2, · · · , m, (15)

with 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm < 1 in (13) to obtain

g(x1, x2, · · · , xm) =
K3(m,n, p)

ηm−1(1 + η)p+1−m
∆2

m(x)

m∏

j=1

xp−m
j (1− xj)

n−m

×
m∑

k=1

1
m∏

j=1
j 6=k

(xk − xj)

(
1− η

η + 1
xk

)p+n+1−m (16)

where K3(m,n, p) = K1(m,n, p)K2(m,n, p).

The joint eigenvalue density (16) in turn facilitates the use of Mehta’s orthogonal polynomial

approach in our subsequent c.d.f. analysis.

Remark 5: Alternatively, (16) represents the joint density of the ordered eigenvalues of de-

formed Jacobi ensemble, W1(W2+W1)
−1 with W1 ∼ Wm(p, Im+ηvv†) and W2 ∼ Wm(n, Im).

We now consider the main contribution of of this paper, namely, the derivation of the c.d.f.

of the maximum eigenvalue. By the definition, the c.d.f. of xmax (i.e., xm) can be written as,

Fxmax(t) = Pr(xmax ≤ t) =

∫

0≤x1≤x2≤···≤xm≤t

g(x1, x2, · · · , xm) dx (17)

where, for notational concision, we have used dx = dx1dx2 . . .dxm. By evaluating the above

Selberg-type integral, the c.d.f. of xmax can be found and hence the c.d.f. of λmax, which is

given by the the following theorem.

February 8, 2019 DRAFT
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Theorem 6: Let W1 ∼ Wm(p, Im+ηvv†) and W2 ∼ Wm(n, Im) be independent with m ≤ p, n

and η ≥ 0. Then the c.d.f. of the maximum eigenvalue λmax of W1W
−1
2 is given by

(18)F
(α)
λmax

(t; η) =
K(m, p, α)

(p− 1)! (1 + η)p

(
t

1 + t

)m(α+β+m)

det [Φi(t, η) Ψi,j(t)]i=1,2,...,α+1
j=2,3,...,α+1

where

Ψi,j(t) = (m+ i+ β − 1)j−2P
(j−2,β+j−2)
m+i−j

(
2

t
+ 1

)
,

Φi(t, η) = Qi(m,n, p)
α−i+1∑

k=0

(p+ i− 1)k(α− i+ 2)!

k! (p+m+ 2i− 2)k(α− i− k + 1)!

(ηt)k+i−1 ((1 + η)(1 + t))p+k

(1 + η + t)p+k+i−1
,

Qi(m,n, p) =
(n + p+ i− 2)! (p+ i− 2)!

(p+m+ 2i− 3)!
,

and

K(m, p, α) =

α−1∏

j=0

(p+m+ j − 1)!

(p+m+ 2j)!

with α = n−m and β = p−m.

Proof: See Appendix B.

Remark 7: Alternatively, Φi(t, η) can be expressed in terms of Gauss hypergeometric function

as follows

Φi(t, η) = Qi(m,n, p)

(
ηt

(1 + η)(1 + t)

)i−1

× 2F1

(
β +m+ i− 1, n+ p+ i− 1; β + 2m+ 2i− 2;

ηt

(1 + η)(1 + t)

)
. (19)

The new exact c.d.f. expression for the maximum eigenvalue of W1W
−1
2 , which contains

the determinant of a square matrix whose dimension depends on the difference α = n −m, is

highly desirable when the difference between m and n is small irrespective of their individual

magnitudes. For instance, when n = m (α = 0) the determinant vanishes and we obtain a scalar

result. This concise result is one of the many advantages of using the orthogonal polynomial

approach. This key representation, also facilitates the derivation of the limiting distribution of

the maximum eigenvalue (when m,n → ∞ such that m− n is fixed).

For some special values of α and η, the c.d.f. expression (18) admits the following simple

forms.
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Corollary 8: The exact c.d.f. of the maximum eigenvalue of W1W
−1
2 when η = 0 is given

by

(20)F
(α)
λmax

(t; 0) = K(m, p, α)
(n + p− 1)!

(m+ p− 1)!

(
t

1 + t

)m(α+β+m)

det [Ψi+1,j+1(t)]i,j=1,2,...,α .

Proof: Following (19), it is easy to see that, when η = 0, all the elements in the first column of the

determinant in (18) become zero except the first entry which is (p−1)! (n+p−1)! /(m+p−1)!.

Therefore, we expand the determinant with its first column and shift the indices i and j to

conclude the proof.

Alternative expressions for c.d.f and p.d.f. of xmax (xmax = λmax/(1 + λmax)) in the same

scenario (η = 0) are given in [27] and [28], respectively. However, these results are fundamentally

structurally different from our expression (20), since they contain complex hypergeometric

functions of one matrix argument. In particular, the matrix argument in [27] assumes the form

tIm, whereas the matrix argument in [28] takes the form tIα−1. Further simplification of these

expressions requires the repeated application of L’Hospital’s rule followed by the evaluation of

the resultant determinants, a cumbersome process. In contrast, the c.d.f. expression (20) does

not suffer from these drawbacks.

Corollary 9: The exact c.d.f. of the maximum eigenvalue of W1W
−1
2 when α = 0 is given

by ( t ≥ 0)

(21)F
(0)
λmax

(t; η) =

(
t

1 + t

)mp

(
1 +

η

1 + t

)p .

Proof: When α = 0, the determinant in (18) reduces to a single term given by

Φ1(t, η) = (p− 1)! 2F1

(
p, n+ p;n+ p;

ηt

(1 + η)(1 + t)

)
.

Nothing that 2F1(a, b; b; z) = 1F0(a; z) = (1−z)−a with some algebraic manipulations concludes

the proof.

In the sequel, this remarkably simple result (21) is used to establish an important high

dimensional limit for the maximum eigenvalue. Also, we have, for η2 > η1 > 0,

F (0)(t; η2) < F (0)(t; η1) < F (0)(t; 0).

Having established the finite dimensional c.d.f. results, we now focus on the asymptotic

characterization of the maximum eigenvalue.
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C. Asymptotic Analysis of the C.D.F.

Here we characterize the asymptotic behavior of the maximum eigenvalue of W1W
−1
2 by

deriving various limiting c.d.f. expression for (18). In particular, we focus on suitably centerd

and scaled maximum eigenvalue in the following two important scenarios:

1) As m,n, p → ∞ such that α, β, and η are fixed,

2) As m,n, p, η → ∞ such that m
n
→ 1, m

p
→ c ∈ (0, 1], and η

m
→ θ ≥ 0.

Asymptotic behavior of the Jacobi ensemble has been thoroughly studied in the literature

( [42], [40], [43] and references therein). For instance, Johnstone [42] has shown that, for a

large class of Jacobi ensembles, properly centered and scaled maximum eigenvalue (the high

dimensional limit) admits a Tracy-Widom type limiting distribution. Recently, Ioana [28] has

derived a new limiting p.d.f. expression for the maximum and minimum eigenvalues of the

Jacobi ensemble for certain new asymptotic regimes. Despite the differences in the asymptotic

regimes of their choice, one common features of all the above mentioned investigations is that

W1 and W2 are white Wishart matrices. In contrast, more recently, high dimensional limit of

the maximum eigenvalue (including the so called universality) has been established when W2

has certain spiked covariance structures (akin to the structure given in (12)) [25], [4], [35], [36],

[26]. Most importantly those authors have observed a so called phase transition (also known as

BBP phase transition) phenomena associated with the maximum eigenvalue. In a nutshell, phase

transition means, in the high dimensional limit, when η is below a certain critical threshold, the

maximum eigenvalue does not separate from the rest of the eigenvalues4, whereas when η is above

the threshold, it separates from the rest of the eigenvalues5. Despite all these efforts, the behavior

of the maximum eigenvalue in the above two asymptotic regimes have not been addressed in the

literature. Therefore, in what follows we give limiting c.d.f. expressions pertaining to the above

two scenarios.

Theorem 10: As m, p and n tend to ∞ such that α = m−n, β = p−m, and η are fixed, the

centered and scaled maximum eigenvalue (1 + λmax)/m
2 converges in distribution to a random

variable X with the c.d.f. F
(α)
X (x; η). In particular, we have

lim
m→∞

F
(α)
1+λmax

m2

(x) = F
(α)
X (x) = exp

(
−1

x

)
det

[
Ij−i

(
2√
x

)]

i,j=1,2,···,α

(22)

4To be precise, it converges almost surely to the upper support of the limiting spectral density [4], [36], [25]

5It converges almost surely to a location above the upper support of the limiting spectral density [25], [36].
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where Ik(z) is the k-th order modified Bessel function of the first kind.

Proof: See Appendix D.

It is interesting to see that the limiting c.d.f. is independent of η. Due to this independence,

(22) should be the limiting c.d.f. for η = 0 as well. However, an alternative expression for the

limiting p.d.f. of xmax when η = 0 has been given in [28]. That particular expression contains a

hypergeometric function of one matrix argument, and therefore does not admit a simple form. In

contrast, the limiting c.d.f. (22) is simple from the representation as well as numerical evaluation

perspectives. Since (22) has the same form under both hypotheses, the maximum eigenvalue

based test does not have power in this particular regime.

The following theorem characterizes the maximum eigenvalue in one of the most important

high dimensional setting outlined in the above second scenario.

Theorem 11: As m, p, n, and η tend to ∞ such that m/n → 1, m/p → c ∈ (0, 1], and

η/m → θ ≥ 0, the centered and scaled maximum eigenvalue (1 + λmax)/m
2 converges in

distribution to a random variable X with the c.d.f. FX(x; c, θ). In particular, we have

lim
m→∞

F
(0)
1+λmax

m2

(x; θm) = FX(x; c, θ) = exp

(
−1 + θ

cx

)
.

Proof: Following (21), we take α = 0 and p = m/c to yield

F
(0)
λmax

(x; η) =

(
x

1 + x

)m2/c

(
1 +

η

1 + x

)m/c
,

from which we obtain, noting that η = θm,

lim
m→∞

F
(0)
1+λmax

m2

(x; θm) = FX(x; θ, c) = lim
m→∞

(
1− 1

xm2

)m2/c

(
1 +

θ

xm

)m/c
. (23)

The final result now follows by evaluating the limits as m → ∞.

This remarkably simple limiting c.d.f. sheds some new light on the behavior of the maximum

eigenvalue in this particular asymptotic domain. Following [47], [4], we can easily show that,

for m/n → 1 and m/p → c ∈ (0, 1], the upper support of the limiting spectral density diverges

to infinity6 for fixed η. Therefore, under this scaling, the operatinal regime is below below the

6Following [47], [48] we can show that the exact limiting spectral density takes the form
√

x−a

πx(x+c)
, where a = (1− c)2/4 ≤

x < ∞.
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phase transition, where the maximum eigenvalue has no detection power [25], [4]. In contrast,

when η also scales with m, it turns out that (see next section), the maximum eigenvalue has

detection power as shown in Theorem 11. The reason is that the all earlier results treated η as

a constant when dealing with the high dimensional limits. This new simple result shows that,

when n, p and η scale with m, an interesting new phenomenon occurs.

Having armed with the finite and asymptotic characteristics of the maximum eigenvalue of

W1W
−1
2 , we next focus on the ROC curve of the maximum eigenvalue based detector.

IV. ROC OF THE MAXIMUM EIGENVALUE OF Ψ̂

We now investigate the behavior of detection and false alarm probabilities of the maximum

eigenvalue based test. To this end, noting that the eigenvalues of Ψ̂ and W1W
−1
2 are related

by λ̂j = (n/p)λj , for j = 1, 2, . . . , m, we represent the c.d.f. of the maximum eigenvalue

corresponding to Ψ̂ as F
(α)
λmax

(κx; γ), where κ = p/n. For convenient presentation, we treat the

finite dimensional and asymptotic behaviors of the ROC in two separate sub sections.

A. Finite Dimensional Analysis

We first consider the case where matrix dimensions (m,n, and p) are finite. Now following

Theorem 6 and Corollary 8 along with with (6), (7), the detection and false alarm probabilities

can be written, respectively, as

PD(γ, µth) = 1− F
(α)
λmax

(κµth; γ) (24)

PF (µth) = 1− F
(α)
λmax

(κµth; 0). (25)

In general, deriving a functional relationship between PD and PF by eliminating the parametric

dependency on µth is challenging. However, when α admits zero, an explicit relationship between

them is specified in Corollary 12.

Corollary 12: For notational brevity, we suppress the parameters γ and µth and represent the

detection and false alarm probabilities, simply as PD and PF . Then, when α = 0, PD and PF

are functionally related as

PD = 1− 1− PF(
1 + γ − γ [1− PF ]

1/mp
)p . (26)

From (26), taken PD as a function of γ, we can easily see that, for γ1 > γ2,

PD(γ2) > PD(γ1).
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Fig. 1: Probability of detection, PD, as a function of γ and PF for (m,n, p) = (5, 8, 10).

This confirms the common observation that the SNR is positively correlated with the detection

probability for a fixed value of PF .

The ROC curves corresponding to different parameter settings are shown in Figs. 1 and 2a

and 2 depicts the power profile as a function of SNR for different PF values. As can be seen, for

a fixed PF , the power increase with the SNR, which is consistent with our intuition. The ROC

of maximum eigenvalue based detection is shown in Fig. 1b for several SNR (γ) values, which

clearly shows that ROC profile improves with the increasing SNR. Since the next important

parameter determining the ROC profile is the dimensionality of the covariance matrices, we

investigate its effect on the ROC profile. To this end, Fig. 2a shows the effect of m/n for

m/p = 1. As can be seen, the disparity between m and n improves the ROC profile. The reason

behind this observation is that the quality of the sample covariance matrix is improved when the

length of the data record (n) increases in comparison with the dimensionality of the receiver (m).

Since the minimum requirement for R̂ to be invertible is m = n, we can observe the worst ROC

performance corresponds to m/n = 1. Therefore, the effect of m/p on the ROC for m/n = 1 is

shown in Fig. 2b. As can be seen, for constant p, increasing m degrades the ROC profile. Since

we have a closed-form ROC equation for m/n = 1, we conduct a deeper investigation on the
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joint effect of m and p on the ROC.

The joint effect of m and p is characterized in two scenarios. In particular, we consider i)

varying p for fixed m and ii) m and p both vary such that m/p = ν, where ν > 0 is a constant.

Since p and m take integer values only, the analysis is intractable. To circumvent this difficulty,

we let p and m be continuous. We can thus write the derivative of PD with respect to p as

1

(1− PD)

dPD

dp
= ln

(
1 + γ − γ(1− PF )

1/mp
)
+ γ

(1− PF )
1/mp ln(1− PF )

1/mp

1 + γ − γ(1− PF )1/mp
,

from which we obtain using the inequality ln z ≥ 1−1/z, dPD

dp
> 0. This in turn reveals that PD

increases with p for all γ and PF , which is consistent with our intuition. The next immediate

question of whether PD is bounded as p → ∞ is answered in the sequel.

We now focus on the second scenario. As such, noting that m/p = ν, we can write derivative

of PD as a function of p to yield

1

(1− PD)

dPD

dp
= ln

(
1 + γ − γ(1− PF )

1/νp2
)
+ 2γ

(1− PF )
1/νp2 ln (1− PF )

1/νp2

(1 + γ − γ(1− PF )1/νp
2)

.

A careful inspection of the right hand expression reveals that it has only one stationary point.

However, the direct evaluation of the stationary point based on the above expression does

not yield any closed-form solution. Therefore, to gain insights into the p value which maxi-

mizes/minimizes PD, in what follows, we derive a tight bound for the stationary point. To this

end, first we concentrate on the p values for which dPD

dp
< 0 for all γ and PF . As such, we use

the inequalities [49]

ln(1 + z) <
z(z + 2)

2(z + 1)
, z > 0,

and z ln z < z(z − 1), z > 0 to obtain

ln
(
1 + γ − γ(1− PF )

1/νp2
)
+ 2γ

(1− PF )
1/νp2 ln (1− PF )

1/νp2

(1 + γ − γ(1− PF )1/νp
2)

<
γ(1− (1− PF )

1/νp2)

2 (1 + γ − γ(1− PF )1/νp
2)

(
(γ + 2)− (γ + 4)(1− PF )

1/νp2
)
.

Therefore, dPD

dp
< 0 is strict in the regime where

p >

√√√√− ln(1− PF )

−ν ln
(

γ+2
γ+4

) . (27)
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Again, using the inequalities [49], ln(1+ z) > 2z/(2+ z), z > 0 and ln z > (1− z)/
√
z, 0 <

z < 1, we have

ln
(
1 + γ − γ(1− PF )

1/νp2
)
+ 2γ

(1− PF )
1/νp2 ln (1− PF )

1/νp2

(1 + γ − γ(1− PF )1/νp
2)

> 2γ(1− (1− PF )
1/νp2

(
1

2 + γ − γ (1− PF )
1/νp2

− (1− PF )
1/2νp2

1 + γ − γ(1− PF )1/νp
2

)
.

This in turn gives that dPD

dp
> 0 for

p <

√√√√− ln(1− PF )

−2ν ln
(

γ+1
γ+2

) . (28)

Thus, we conclude that PD attains its maximum at p = p∗, where
√√√√− ln(1− PF )

−2ν ln
(

γ+1
γ+2

) < p∗ <

√√√√− ln(1− PF )

−ν ln
(

γ+2
γ+4

) . (29)

Having obtained the upper and lower bounds on p∗, a good approximation of p∗ can be written

as7

p∗ ≈ 1

2



√√√√− ln(1− PF )

−ν ln
(

γ+2
γ+4

) +

√√√√− ln(1− PF )

−2ν ln
(

γ+1
γ+2

)


 . (30)

To further highlight the accuracy of the proposed approximation, in Fig. 3 we compare the

optimal ROC profiles evaluated based on (30) and by numerically optimizing (26). As can be

seen from the figure, the disparity between the proposed approximation and the exact optimal

solution is insignificant. Therefore, when m = n, under the second scenario, we can choose p

as per (30) for fixed PF , γ, and ν in view of maximizing the detection probability.

The detection of a very weak signal embedded in noise is particularly challenging. In this

respect, it is of paramount importance to understand the behavior of PD as a function of SNR in

the low SNR regime. To this end, we need to analytically characterize PD around γ = 0, which

is the focus of Corollary 13.

Corollary 13: As γ → 0, for a fixed value of PF , PD(γ) admits the following form

PD(γ) =





PF + pRǫ(1− PF )γ + o(γ) if n > m

PF + p
[
1− (1− PF )

1/mp
]
(1− PF ) γ + o(γ) if n = m,

(31)

7In general any convex combination of the upper and lower bounds can be a candidate for the p∗.
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Fig. 2: PD vs PF for different (m,n, p) configurations with γ = 5 dB.

where

Rǫ(z) = z −
(
p+ n

p +m

)
G(z)

1 +G(z)
z +K(m, p, α)

(p+ n)!

(p+m+ 1)!

(
G(z)

1 +G(z)

)m(m+α+β+m)+1

× det [hi,j (G(z))] (32)

with

hi,j(z) =





Ψ1,j+1(z) i = 1; j = 1, 2, . . . , α

Ψi+1,j+1(z) i = 2, 3, . . . , α; j = 1, 2, . . . , α

and G(z) being the inverse function of F
(α)
λmax

(z; 0).

The proof simply follows by obtaining the Taylor expansion of the PD(γ) in the vicinity of

γ = 0.

Let us now examine the factors affecting weak signal detection with the proposed scheme.

Since the ROC curve for the case n > m is too complicated, we confine ourselves to the

scenario m = n. Moreover, as we have already seen, this scenario may result in the worst

possible ROC and hence serves as a benchmark. Therefore, any improvement in this case will

further enhance other ROC curves. Clearly, for very low SNR values, the most critical factor
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Fig. 3: PD vs PF for the optimal p and approximated p.

which determines the power is the coefficient of γ given by p
[
1− (1− PF )

1/mp
]
(1− PF ).

Since this coefficient depends on two parameters m and p for fixed PF , we investigate the

power profile when these parameters are related as follows: i) fixed m, p varies, ii) m and p

both vary such that m/p = k ∈ (0, 1], and iii) m and p both vary such that p−m is a constant.

It is easy to show that under the above both options (ii) and (iii), the coefficient degrades when

we increase both p and m. In contrast, when m is fixed, the coefficient gradually improves when

we increase p. To show this, we rewrite the above coefficient, omitting the factor (1 − PF ), as

a function of p to yield

a(p) = p
[
1− (1− PF )

1/mp
]
.

Now we treat p as a continuous variable and differentiate a(p) over p to yield

d

dp
a(p) = (1− PF )

1/mp ln (1− PF )
1/mp + 1− (1− PF )

1/mp .

Nothing the inequality, ln z ≥ 1− 1/z, we can easily show that d
dp
a(p) ≥ 0 for all p,m. This in

turn establishes that a(p) is a non decreasing function of p. The next natural question is whether
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there exist an upper bound for a(p) as p grows large. A simple limiting argument involving

L’Hôpital’s rule will then give

lim
p→∞

a(p) = − 1

m
ln (1− PF ) . (33)

Therefore, we can conclude that a power enhancement is expected in the low SNR regime if we

increase p for fixed m and PF . In particular, in the low SNR regime (i.e., as γ → 0), we have

PF < PD(γ) < PF − (1− PF )

m
ln (1− PF ) γ + o(γ). (34)

To further asses the quality of the derived first order approximations, here we numerically

evaluate the relative error between the exact PD(γ) and the corresponding first order expansions

given in (31). To be precise, we define the relative error as

RE =
PD(γ)− P f.o.

D (γ)

PD(γ)

where P f.o.
D (γ) stands for the first order expansions give in (31). Figure 4a depicts the behavior

of the relative error as a function of PF for a set of small values of γ. The other parameters have

been chosen as m = n = 10 and p = 15. Fig. 4a shows that the diminishing γ improves the

relative error, which is anticipated. Fig. 4b shows the relative error versus PF curve for a set of

small values of γ when m = n = 10 and p = 20. Although we can observe the general trend of

improving relative error with the diminishing γ, for a given γ, the relative error is maximized at

a certain value of PF . However, the analytical determination of this value seems an arduous task.

The relative error improvement in the case of increasing p is depicted in Fig. 5. It is interesting

to observe that the relative error does not deviate much from the corresponding asymptotic limit

even for finite small values of p when γ is moderately low.

Having completed the finite-dimensional analysis, we now examine the ROC behavior in the

asymptotic regime.

B. Asymptotic Analysis

Here we analyze the ROC profile in three important asymptotic regimes. In particular, we

consider the following three regimes

1) As m,n, p → ∞ such that α, β and γ are fixed,

2) As p → ∞ such that m = n, and γ are fixed,

3) As m,n, p, γ → ∞ such that m
n
→ 1, m

p
→ c ∈ (0, 1], and γ

m
→ θ ≥ 0.
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Following Theorem 10, we can easily see that the maximum eigenvalue has no detection power

in the first regime. Therefore, we now turn our attention to the second and third regimes. The

asymptotic ROC pertaining to the second scenario can be obtained with the help of Corollary

12 as

PAsyp

D (γ) = lim
p→∞

PD(γ) = 1− (1− PF )
1+ γ

m . (35)

It is noteworthy that this convergence is uniform in γ. Asymptotic ROC corresponding to the

third regime, is given by the following corollary

Corollary 14: As m,n, p, γ → ∞ such that m
n
→ 1, m

p
→ c ∈ (0, 1], and γ

m
→ θ ≥ 0, the

ROC admits the following asymptotic limit

PAsy

D (θ) = 1− (1− PF )
1+θ . (36)

Since the above asymptotic ROC profile is independent of c, this expression should be valid for

c = 0 as well. Therefore, we can extend the domain of c such that c ∈ [0, 1]. Clearly, when

θ = 0 (γ does not scale with m), the maximum eigenvalue has no detection power in the high

dimension. This is consistent with what has been reported in [35] on the power of the maximum

eigenvalue below the phase transition. In contrast, when γ scales with m, in the high dimension,

the maximum eigenvalue still retains its detection power. For instance, when θ → 0 (the signal

component is extremely weak), we have

PAsy

D (θ) = PF − (1− PF ) ln(1− PF )θ + o(θ). (37)

This valuable insight is of paramount importance in detecting signals over fading channels. For

instance, for Rayleigh fading, which is the most commonly used statistical model in the literature,

h takes the form h ∼ CNm (0, Im). Now, by invoking the strong law of large numbers, we obtain

lim
m→∞

||h||2
m

→ 1, almost surely. (38)

This in turn shows that γ ∝ m as m → ∞ for Rayleigh fading channels. This is a clear testament

to the utility of our new asymptotic ROC profile given in Corollary 14 in wireless applications.

The above dynamics are depicted in Figs. 6, 7, and 7. In particular, Fig. 6 compares the

analytical ROC profiles with the numerical results for an increasing sequence of m values when

α = 1, β = 2, and γ = 5 dB are fixed. As can be seen from the figure, when m increases the

ROC profiles go arbitrary closer to PD = PF curve, thereby demonstrating the loss of the power

of the test. This observation is consistent with what we have analytically shown related to the

DRAFT February 8, 2019



23

0 0.2 0.4 0.6 0.8 1
PF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

Analytical α = 1,β = 2, η = 5 dB

Simulation α = 1,β = 2, η = 5 dB

m = 10, 25, 50, 100
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fixed.

0 0.2 0.4 0.6 0.8 1
PF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

Simulation

Analytical

γ = 20 dB

γ = 10 dB

γ = 5 dB

Fig. 7: Comparison of asymptotic and finite dimensional ROC profiles corresponding to Case 2
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Fig. 8: Comparison of asymptotic and finite dimensional ROC profiles corresponding to Case 3

for different values of θ with m = n = 25 and c = 1.

regime where α and β are fixed with γ = 5 dB. The effect of increasing p on the ROC profile

is depicted in Fig. 7. The analytical curves are based (35) and the close matching between the

analytical and simulation results can be seen from the figure. This in turn shows us that that

the analytical asymptotic result (as p → ∞) derived in (35) serves as a good approximation

to finite values of p as well. Finally, Fig. 7 compares the analytical asymptotic result for the

third region where m,n, p, γ → ∞ such that m
n

→ 1, m
p
→ c ∈ (0, 1], and γ

m
→ θ ≥ 0 with

the simulation results. Again, closely matching two results reveal that our asymptotic analytical

expression serves as a good approximation to the finite dimensional case as well. These results

clearly indicate that, when γ scales with m, the maximum eigenvalue retains its detection power,

whereas it looses the detection power when γ does not scale with m.

V. CONCLUSION

This paper investigates the signal detection problem in colored noise with unknown covariance

matrix. Thus, the presence of a signal is detected by using the maximum generalized eigenvalue

of the whitened sample covariance matrix. Equivalently, we need to determine the distribution of
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the maximum eigenvalue of the deformed Jacoby unitary ensemble. To this end, we exploited the

powerful orthogonal polynomial approach to develop a new c.d.f. expression of the maximum

eigenvalue of the deformed JUE. Subsequently, we used it to determine the ROC of the detector.

It turns out that, for a fixed SNR, when m (i.e., the dimensionality of the detector), n (i.e., the

number of noise-only samples), and p (i.e., the number of signal-plus-noise samples) increase

over finite values such that m = n and m/p is constant, we obtain an optimal ROC profile

corresponding to specific m,n, and p values. In contrast, in the above setting, when m, p, and

n increase asymptotically, the maximum eigenvalue gradually loses its detection power. This

is not surprising, since under the above asymptotic setting, the detector operates below the so

called phase transition where the maximum eigenvalue has no detection power. However, when

the SNR scales with m, in the same asymptotic regime, the maximum eigenvalue retains its

detection power. This fact is of paramount importance in detecting a signal in colored noise over

fading channels (Rayleigh fading) where the SNR scales with the dimensionality of the system.

Clearly, m = n is the minimum requirement for the noise-only covariance matrix to be full rank

(or nearly rank deficient). Therefore, some of the key results developed in this paper related to

the setting m = n shed some light into the regime where noise-only covariance matrix is nearly

rank deficient. However, the analysis pertaining to the regime where the latter matrix is fully

rank deficient remains an important open problem.

APPENDIX A

PROOF OF THE JOINT DENSITY OF THE EIGENVALUES

Following James [41], we can write the joint density of the eigenvalues of W1W
−1
2 as

f(λ1, λ2, · · · , λm) =
K1(m,n, p)

(1 + η)p

m∏

j=1

λp−m
j ∆2

m(λ)

∫

U(m)

1

detα[Im +Σ
−1
1 UΛU†]

dU. (39)

where α = p + n and dU is the invariant measure on the unitary group U(m), normalized to

make the total measure unity. Let us now focus on simplifying the above matrix integral. To this

end, we use (12) to rewrite

∫

U(m)

1

detα[Im +Σ
−1
1 UΛU†]

dU =

∫

U(m)

1

detα[Im +UΛU† −VΛηV
†UΛU†]

dU

=

∫

U(m)

1

detα[Im +Λ−U†VΛηV
†UΛ]

dU (40)

February 8, 2019 DRAFT



26

where Λ̄ = Λ(Im +Λ)−1 = diag
(
λ̄m, · · · , λ̄1

)
= diag

(
λm

1+λm
, · · · , λ1

1+λ1

)
. Therefore, after some

algebra, we obtain
∫

U(m)

1

detα[Im +Σ
−1
1 UΛU†]

dU =
1

detα[Im +Λ]

∫

U(m)

1

detα[Im −HΛηH
†Λ̄]

dH

where dH is the invariant measure on the unitary group U(m), normalized to make the total

measure unity. Since Λη is rank one, we can further simplify the above matrix integral to yield
∫

U(m)

1

detα[Im +Σ
−1
1 UΛU†]

dU =
1

detα[Im +Λ]

∫

U(m)

1(
1− tr

(
HΛηH

†Λ̄
))α dH. (41)

Now it is worth observing that

tr
(
HΛηH

†
Λ̄
)
=

η

1 + η
h1Λ̄h

†
1 ≤

η

1 + η

λm

1 + λm
< 1. (42)

This in turn enables us to utilize the relation

1

sα
=

1

Γ(α)

∫ ∞

0

yα−1e−sydy, s > 0 (43)

to express the above matrix integral as
∫

U(m)

1

detα[Im +Σ
−1
1 UΛU†]

dU =
1

detα[Im +Λ]

1

Γ(α)

∫ ∞

0

yα−1e−yΦ(y)dy (44)

where

Φ(y) =

∫

U(m)

eytr(HΛηH
†Λ̄)dH (45)

and we have taken the liberty of changing the order of integration. Noting the fact that

eytr(HΛηH
†Λ̄) = 0F̃0(yHΛηH

†
Λ̄) (46)

we may use the splitting formula [eq. 92, James] to yield

Φ(y) =

∫

U(m)
0F̃0(yHΛηH

†
Λ̄)dH = 0F̃0

(
yΛη, Λ̄

)
. (47)

Following [34], we can show that

0F̃0

(
yΛη, Λ̄

)
= Γ(m)

(
1 + η

η

)m−1

y1−m
m∑

k=1

e
ηλ̄k

(1+η)
y

∏
j=1
j 6=k

(λ̄k − λ̄j)
(48)

from which we obtain upon substituting into (44) with some algebra
∫

U(m)

1

detα[Im +Σ
−1
1 UΛU†]

dU =
Γ(α−m+ 1)Γ(m)

Γ(α)

(
1 + η

η

)m−1
1∏m

j=1(1 + λj)α

×
m∑

k=1

1∏
j=1
j 6=k

(λ̄k − λ̄j)

1
(
1− ηλ̄k

1+η

)α−m+1 . (49)

Finally, using (49) in (39) with some algebraic manipulation we obtain (13), which concludes

the proof.

DRAFT February 8, 2019



27

APPENDIX B

PROOF OF THE C.D.F. OF THE MAXIMUM EIGENVALUE

By exploiting the symmetry, the ordered region of integration in (17) can be rearranged as an

unordered region to yield

Pr(xmax ≤ t) =
K(m,n, p)

(m)! ηm−1(1 + η)p+1−m

m∑

k=1

∫

[0,t]m
∆2

m(x)

∏m
j=1 x

p−m
j (1− xj)

n−m

∏m
j=1
j 6=k

(xi − xj)
(
1− η

1+η
xk

)p+n+1−m dx

(50)

where [0, t]m = [0, t] × [0, t] × . . . × [0, t] with × denoting the Cartesian product. Since each

term in the above summation contributes the same amount to the final solution, it can be further

simplified as

Pr(xmax ≤ t) =
K

(m− 1)!

∫

[0,t]m
∆2

m(x)

∏m
j=1 x

β
j (1− xj)

α

∏m
j=2(x1 − xj)

(
1− η

1+η
x1

)γ dx.

where,

K =
K(m,n, p)

ηm−1(1 + η)p+1−m
.

Here we have relabeled the variables as α = n−m, β = p−m and γ = m+α+β+1 for notational

concision. To facilitate further analysis, let us decompose the Vandermonde determinant as

∆m(x) =

m∏

j=2

(x1 − xj)∆m−1(x)

and relabel the variables x1 = y and xj = zj−1, j = 2, 3, ..., m, to obtain

Pr(xmax ≤ t) =
K

(m− 1)!

∫

[0,t]m

yβ(1− y)α(
1− η

1+η
y
)γ

m−1∏

j=1

zβj (1− zj)
α(y − zj)∆

2
m−1(z) dz (51)

where z ∈ Rm−1. Now we apply the variable transformations y = tx and zj = tsj , j =

1, 2, ..., m−1, to make the region of integration independent of t in (51). Consequently we have

after some algebraic manipulations

Pr(xmax ≤ t) =
K

(m− 1)!
tm(β+m−1)+1

∫ 1

0

xβ(1− tx)α(
1− ηt

1+η
x
)γQm−1(β, α, x, t)dx (52)

where,

Qm(β, α, x, t) =

∫

[0,1]m

m∏

j=1

sβj (1− tsj)
α(x− sj)∆

2
m(s)ds. (53)
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Following Appendix C, we can solve the above multidimensional integral to yield

(54)

Qm(β, α, x, t) = C̃(0,β,m)
tαm+1

2m(α+β+m+1)+α
2
(α+1)

∏α−1
j=1 (j)!

1

(1− xt)α

× det
[
P

(0,β)
m+i−1

(
h 1

x

)
(m+ i+ β)j−2P

(j−2,β+j−2)
m+i−j+1 (ht)

]
i=1,2,...,α+1
j=2,3,...,α+1

where

C̃(0,β,m) = C(0,β,m)

α+1∏

j=1

2m+j−1 (m+ j − 1)! (m+ β + j − 1)!

(2m+ 2j + β − 2)!
, (55)

(56)C(0,β,m) = 2m(β+m)
m−1∏

j=0

(j)! (j + 1)! (β + j)!

(β +m+ j)!
,

and ht =
2
t
− 1. Using (54) in (52) with some algebraic manipulation we have

Pr(xmax ≤ t) =
KC̃(0,β,m−1)t

m(α+β+m−1)+1

(m− 1)! 2(m−1)(α+β+m)+α
2
(α+1)

∏α−1
j=1 (j)!

×
∫ 1

0

xβ

(
1− ηt

1+η
x
)γ det

[
P

(0,β)
m+i−2(2x− 1) Ψi,j

(
t

1− t

)]

i=1,2,...,α+1
j=2,3,...,α+1

dx. (57)

Having observed that only the first column of the determinant in the integrand depends on x,

we can rewrite the above integral as

Pr(xmax ≤ t) =
KC̃(0,β,m−1)t

m(α+β+m−1)+1

(m− 1)! 2(m−1)(α+β+m)+α
2
(α+1)

∏α−1
j=1 (j)!

× det



∫ 1

0

xβ

(
1− ηt

1+η
x
)γP (0,β)

m+i−2(2x− 1) Ψi,j

(
t

1− t

)


i=1,2,...,α+1
j=2,3,...,α+1

dx. (58)

For clarity, let us focus on the integral in the above equation. In this respect, we may use the

relation (10) followed by the variable transformation y = 1− x to arrive at
∫ 1

0

xβ

(
1− ηt

1+η
x
)γP (0,β)

m+i−1(2x− 1) dx

=
1(

1− ηt
1+η

)γ
∫ 1

0

(1− y)β(
1 + ηt

1+η(1−t)
y
)γ 2F1(−m− i+ 2, m+ β + i− 1; 1; y) dy,

which can be solved using [50, eq. 399.6] to obtain
∫ 1

0

xβ

(
1− ηt

1+η
x
)γP (0,β)

m+i−1(2x− 1) dx

=
Γ(β + 1)

Γ(β +m+ i)Γ(3−m− i)
3F2

(
β + 1, γ, 1; β +m+ i, 3−m− i;

ηt

1 + η

)
. (59)
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To facilitate further analysis, nothing that ηt
1+η

< 1, we may replace the hypergeometric function

with its equivalent infinite series expansion to yield
∫ 1

0

xβ

(
1− ηt

1+η
x
)γP (0,β)

m+i−1(2x− 1) dx

=
Γ(β + 1)

Γ(β +m+ i)Γ(3−m− i)

∞∑

k=0

(β + 1)k(γ)k(1)k
k! (β +m+ i)k(3−m− i)k

(
ηt

1 + η

)k

. (60)

Since the Gamma function has poles at negative integer values including zero, the above series is

nonzero if the argument of Γ (3−m− i+ k) = Γ(3−m− i) (3−m− i)k is a positive integer.

To this end, k should satisfy the inequality k ≥ m+ i− 2. Therefore, by relabeling summation

index k as j = k −m− i+ 2, we obtain

(61)

∫ 1

0

xβ

(
1− ηt

1+η
x
)γP (0,β)

m+i−2(2x− 1) dx

=
Γ(β + 1)

Γ(β +m+ i)

∞∑

j=0

(β + 1)m+i+j−2(γ)m+i+j−2(1)m+i+j−2

(m+ i+ j − 2)! (β +m+ i)m+i+j−2Γ(j + 1)

(
ηt

1 + η

)m+i+j−2

.

The above infinite series can be rearranged by using the addition formula (a)n+k = (a)n(a+n)k

with some algebraic manipulations to yield
∫ 1

0

xβ

(
1− ηt

1+η
x
)γP (0,β)

m+i−2(2x− 1) dx =
Γ(ai)Γ(bi)

Γ(γ)Γ(ci)

(
ηt

1 + η

)m+i−2

2F1

(
ai, bi; ci;

ηt

1 + η

)
,

(62)

where ai = β +m+ i− 1, bi = γ +m+ i− 2, and ci = β + 2m+ 2i− 2. Now we substitute

(62) into (58) followed by some algebraic manipulations to obtain the c.d.f. of xmax as

Pr(xmax ≤ t) =
tm(α+β+m)

(p− 1)! (1 + η)p

(
α−1∏

j=0

(p+m+ j − 1)!

(p+m+ 2j)!

)

× det

[
Γ(ai)Γ(bi)

Γ(ci)

(
ηt

1 + η

)i−1

2F1

(
ai, bi; ci;

ηt

1 + η

)
Ψi,j

(
t

1− t

)]

i=1,2,...,α+1
j=2,3,...,α+1

.

(63)

Now (18) with Φ(t, η) given by (19) follows by transforming the variable xmax to λmax using

the functional relation λmax = xmax/(1− xmax). Finally, noting that ci − bi is a negative integer,

we may use the hypergeometric transformation [51, eq. 15.3.4],

(64)2F1(a, b, c, z) = (1− z)−a
2F1

(
a, c− b, c,

z

z − 1

)
,

to arrive at the finite series form of Φ(t, η), thereby concluding the proof.
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APPENDIX C

Let us change the region of integration in (53) from [0, 1]m to [−1, 1]m by using the variable

transformation sj =
1+zj
2

, j = 1, 2, ..., m, to yield

Rm(β, α, x, t) =
tαm

2m(m+β+α+1)
Rm(β, α, x, t) (65)

where

Rm(β, α, x, t) =

∫

[−1,1]m

m∏

j=1

(1 + zj)
β(ht − zj)

α
(
h 1

x
− zj

)
∆2

m(z) dz, (66)

with ht =
2
t
− 1 and z ∈ R

m. Our strategy is to start with a related integral given in [39, Eqs.

22.4.2, 22.4.11] as
∫

[−1,1]m

m∏

j =1

(1 + zj)
β

α+1∏

i =1

(ri − zj)∆
2
m(z) dz = C(0,β,m)∆

−1
α+1(r) det [Cm+i−1(rj)]i,j=1,2,...,α+1

(67)

where

C(0,β,m) = 2m(β+m)

m−1∏

j=0

(j)! (j + 1)! (β + j)!

(β +m+ j)!

and Ck(x) are monic polynomials orthogonal with respect to the weight (1 + x)β , over −1 ≤
x ≤ 1. Since Jacobi polynomials are orthogonal with respect to the preceding weight, we use

Ck(x) = 2k (k+β)!(k)!
(2k+β)!

P
(0,β)
k (x) in (67) to obtain

∫

[−1,1]m

m∏

j=1

(1 + zj)
β
α+1∏

i=1

(ri − zj)∆
2
m(z) dz =

C̃(0,β,m)

∆α+1(r)
det
[
P

(0,β)
m+i−1(rj)

]
i,j=1,2,...,α+1

(68)

where,

C̃(0,β,m) = C(0,β,m)

α+1∏

j=1

2m+j−1 (m+ j − 1)! (m+ β + j − 1)!

(2m+ 2j + β − 2)!
. (69)

In the above, ris are generally distinct parameters. Nevertheless, if we choose ri such that

ri =





h 1
x

if i = 1

ht if i = 2, 3, . . . , α+ 1,

then the the left side of (68) coincides with the multidimensional integral of our interest in (66).

Under the above parameter selection, however, the right side of (68) takes the indeterminate

form 0/0. Therefore, we have to evaluate following limit:

Rm(β, α, x, t) = C̃(0,β,m) lim
r1→h 1

x
r2,r3,...,rα+1→ht

det
[
P

(0,β)
m+i−1(rj)

]
i,j=1,2,...,α+1

∆α+1(r)
. (70)
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To this end, following Khatri [46], we have

lim
r1→h 1

x
r2,r3,...,rα+1→ht

det
[
P

(0,β)
m+i−1(rj)

]
i,j=1,2,...,α+1

∆α+1(r)
=

det
[
P

(0,β)
m+i−1(h 1

x
) dj−2

dhj−2
t

P
(0,β)
m+i−1(ht)

]
i=1,2,...,α+1
j=2,3,...,α+1

det
[
hi−1

1
x

dj−2

dhj−2
t

hi−1
t

]
i=1,2,...,α+1
j=2,3,...,α+1

(71)

Now the determinant in the denominator of (71) simplifies as

det

[
hi−1

1
x

dj−2

dhj−2
t

hi−1
t

]

i=1,2,...,α+1
j=2,3,...,α+1

=

α−1∏

j=1

j! (ht − h 1
x
)α.

The numerator can be rewritten with the help of (11) as

det

[
P

(0,β)
m+i−1(h 1

x
)

dj−2

dhj−2
t

P
(0,β)
m+i−1(ht)

]

i=1,2,...,α+1
j=2,3,...,α+1

= 2−
α
2
(α−1) det

[
P

(0,β)
m+i−1(h 1

x
) (m+ β + i)j−2P

(j−2,β+j−2)
m+i−j+1 (ht)

]
i=1,2,...,α+1
j=2,3,...,α+1

.

Substituting the above two expression into (71) and then the result into (70) gives

Rm(β, α, x, t) = C̃(0,β,m)
tα

2
α
2
(α+1)

∏α−1
j=1 (j)! (1− xt)α

× det
[
P

(0,β)
m+i−1

(
h 1

x

)
(m+ i+ β)j−2P

(j−2,β+j−2)
m+i−j+1 (ht)

]
i=1,2,...,α+1
j=2,3,...,α+1

.

APPENDIX D

PROOF OF THE MICROSCOPIC LIMIT OF THE C.D.F. OF THE MAXIMUM EIGENVALUE

Let us rewrite (63), keeping in mind α = n−m , β = p−m, and γ = m+ α + β + 1, as

(72)

Pr(xmax ≤ t) = tm(α+β+m)

(
α−1∏

j=0

(β + 2m+ j − 1)!

(β + 2m+ 2j)!

)
× det

[
Pi(m,α, β, η, t) (m+ i

+ β − 1)j−2P
(j−2,β+j−2)
m+i−j

(
2

t
− 1

)]

i=1,2,...,α+1
j=2,3,...,α+1

where

(73)
Pi(m,α, β, η, t) =

Γ(α + β + 2m+ i− 1)Γ(β +m+ i− 1)

Γ(β + 2m+ 2i− 2)Γ(m+ β)(1 + η)m+β

(
ηt

1 + η

)i−1

× 2F1

(
β +m+ i− 1, α+ β + 2m+ i− 1; β + 2m+ 2i− 2;

ηt

1 + η

)
.
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Following (10), the Jacobi polynomial P
(j−2,β+j−2)
m+i−j can be written as

P
(j−2,β+j−2)
m+i−j

(
2

t
− 1

)
=

(j − 1)m+i−j

(m+ i− j)!
2F1

(
−(m+ i− j), m+ β + i+ j − 3; j − 1; 1− 1

t

)
,

(74)

from which we obtain

P
(j−2,β+j−2)
m+i−j

(
2

t
− 1

)

=
(m+ i− 2)!

(m+ i− j)! (j − 2)!

m+i−j∑

kj=0

(−(m+ i− j))kj(m+ β + i+ j − 3)kj
(kj)! (j − 1)kj

(
1− 1

t

)kj

. (75)

To facilitate further analysis, we need to eliminate the dependence of summation upper limit

on i. To this end, we decompose the two Pochhammer symbols in the numerator of the above

summation as

(76)(−(m+ i− j))kj =
(−(m+ α− j + 1))kj(m+ i− j − kj + 1)α−i+1(m+ i− j)!

(m+ α− j + 1)!

and

(77)(m+ β + i+ j − 3)kj =
(m+ β + j − 2))kj(m+ β + j + kj − 2)i−1(m+ β + j − 3)!

(m+ β + i+ j − 4)!
.

Therefore, we obtain

(78)
(m+ i+ β − 1)j−2P

(j−2,β+j−2)
m+i−j

(
2

t
− 1

)

=
(m+ i− 2)! (m+ β + j − 3)! (j − 2)! (m+ i− j)!

(m+ i+ β − 2)! (m+ i− j)! (j − 2)! (m+ α− j + 1)!
Skj (t)Ui,j(m,α, β)

where,

(79)Skj (t) =

m+α−j+1∑

kj=0

(−(m+ α− j + 1))kj(m+ β + j − 2)kj
(kj)! (j + kj − 2)!

(
1− 1

t

)kj

and
(80)Ui,j(m,α, β) = (m+ β + j + kj − 2)i−1(m+ i− j − kj + 1)α−i+1.

Now we substitute (78) into (72) with some algebraic manipulation to yield

(81)

Pr(xmax ≤ t) = tm(α+β+m)

(
α−1∏

j=0

Skj+2
(t)(β + 2m+ j − 1)! (m+ β + j − 1)!

(β + 2m+ 2j)! (m+ α− j − 1)!

)

× det

[
Pi(m,α, β, η, t)

(m+ i− 2)!

(m+ β + i− 2)!
Ui,j(m,α, β)

]

i=1,2,...,α+1
j=2,3,...,α+1

,
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from which we obtain after some rearrangements

(82)

Pr(xmax ≤ t) = tm(α+β+m)

(
(m− 1)!

(m+ α+ β − 1)!

)(α−1∏

j=0

Skj+2
(β + 2m+ j − 1)!

(β + 2m+ 2j)!

)

× det

[
(m+ β + i− 2)!

(m+ i− 2)!
Pi(m,α, β, η, t) Ui,j(m,α, β)

]

i=1,2,...,α+1
j=2,3,...,α+1

.

For convenience, let us rewrite the above equation as

Pr(xmax ≤ t)

= tm(α+β+m)

(
α−1∏

j=0

Skj+2
(t)(β + 2m+ j − 1)!

(β + 2m+ 2j)!

)
det [Vi(m,α, β, η, t) Ui,j(m,α, β)]i=1,2,...,α+1

j=2,3,...,α+1

(83)

where

Vi(m,α, β, η, t)

=
(m+ β + i− 2)! (α + β + 2m+ i− 2)! (β +m+ i− 2)! (m− 1)!

(m+ i− 2)! (β + 2m+ 2i− 3)! (m+ β − 1)! (m+ α + β − 1)! (1 + η)m+β

(
ηt

1 + η

)i−1

× 2F1

(
β +m+ i− 1, α+ β + 2m+ i− 1; β + 2m+ 2i− 2;

ηt

1 + η

)
.

(84)

Further manipulation of Vi(m,α, β, η, t) in its current form is an arduous task due to the presence

of the hypergeometric function. To this end, noting that (α+β+2m+i−1)−(β+2m+2i−2) =

−(α + 1 − i), which is a negative integer, we use the hypergeometric transformation (64) to

arrive at

(85)

Vi(m,α, β, η, t) =
(m+ i− 1)β
(m− 1)β

(2m+ β + 2i− 2)α−i+1

(m+ β + i− 1)α−i+1

(
(ηt)i−1

(1 + η − ηt)m+β+i−1

)

×
α−i+1∑

ℓ=0

(β +m+ i− 1)ℓ(−(α − i+ 1))ℓ
(β + 2m+ 2i− 2)ℓℓ!

(
ηt

ηt− 1− η

)ℓ

.

A careful inspection of (83) reveals that the suitable scaling as m → ∞ would be to consider

the scaled t given by t = 1− x

m2
. Consequently, we can write (83) as

(86)
Pr
(
xmax ≤ 1− x

m2

)
=
(
1− x

m2

)m(α+β+m)




α−1∏

j=0

Skj+2

(
1− x

m2

)
(β + 2m+ j − 1)!

(β + 2m+ 2j)!




× det
[
Vi

(
m,α, β, η, 1− x

m2

)
Ui,j(m,α, β)

]
i=1,2,...,α+1
j=2,3,...,α+1

.
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Now taking the limits of the both sides of (86) as m → ∞ yields

lim
m →∞

Pr(xmax ≤ 1− x

m2
) = e−x lim

m→∞




α−1∏

j=0

Skj+2

(
1− x

m2

)
(β + 2m+ j − 1)!

(β + 2m+ 2j)!

× det
[
Vi

(
m,α, β, η, 1− x

m2

)
Ui,j(m,α, β)

]
i=1,2,...,α+1
j=2,3,...,α+1




(87)

Towards taking the limit inside the determinant, let us first consider the lim
m→∞

Vi

(
m,α, β, η, 1− x

m2

)
.

To this end, noting that lim
m→∞

(m+ i− 1)β
(m− 1)β

= 1 and lim
m→∞

(2m+ β + 2i− 2)α−i+1

(m+ β + i− 1)α−i+1

= 2α−i+1,

we may determine the limit of (85) as

lim
m→∞

Vi

(
m,α, β, η, 1− x

m2

)
= 2α

α−i+1∑

ℓ=0

(η
2

)ℓ+i−1
(
α− i+ 1

ℓ

)
= 2αTi(η)

where Ti(η) = 2α
(
η
2

)i−1 (
1 + η

2

)α−i+1

Let us Now consider the other columns of the determinant in (87). Following (80), we may

rewrite U(m,α, β) as

Ui,j(m,α, β) = (m+ i− j − kj + 1)α−i+1(m+ β + j + kj − 2)i−1

=

α−i∏

ℓ1=0

(cj − ℓ1)

i−2∏

ℓ2=0

(∆m − cj + ℓ2)

where, cj = m+α−j−kj+1 and ∆m = 2m+α+β−1. Consequently, the terms in determinant

in (87) can be rearranged as

2α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T1(η)
∏α−1

ℓ1=0 (c2 − ℓ1) · · · ∏α−1
ℓ1=0 (cα+1 − ℓ1)

T2(η)
∏α−2

ℓ1=0 (c2 − ℓ1)(∆m − c2) · · · ∏α−2
ℓ1=0 (cα+1 − ℓ1)(∆m − cα+1)

...
...

. . .
...

Tα(η) (c2)
∏α−2

ℓ2=0 (∆m − c2 + ℓ2) · · · (cα+1)
∏α−2

ℓ2=0 (∆m − cα+1 + ℓ2)

Tα+1(η)
∏α−1

ℓ2=0 (∆m − c2 + ℓ2) · · · ∏α−1
ℓ2=0 (∆m − cα+1 + ℓ2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Towards making the determinant independent of ∆m, we perform the following row operations

Ri → Ri +Ri−1, i = 2, 3, ..., α+ 1

on each row, starting from the second row, to yield
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2α
α−1∏

ℓ =0

(∆m − (α− 1) + 2ℓ)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T1(η)
∏α−1

ℓ1=0 (c2 − ℓ1) · · · ∏α−1
ℓ1=0 (cα+1 − ℓ1)

T2(η)+T1(η)
∆m−(α−1)

∏α−2
ℓ1=0 (c2 − ℓ1) · · · ∏α−2

ℓ1=0 (cα+1 − ℓ1)
...

...
. . .

...

Tα(η)+Tα−1(η)
∆m+α−3

(c2)
∏α−3

ℓ2=0 (∆m − c2 + ℓ2) · · · (cα+1)
∏α−3

ℓ2=0 (∆m − cα+1 + ℓ2)

Tα+1(η)+Tα(η)
∆m+α−1

∏α−2
ℓ2=0 (∆m − c2 + ℓ2) · · · ∏α−2

ℓ2=0 (∆m − cα+1 + ℓ2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
α−1∏

ℓ=0

(∆m − (α− 1) + 2ℓ)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2αT1(η) 2α
∏α−1

ℓ1=0 (c2 − ℓ1) · · · 2α
∏α−1

ℓ1=0 (cα+1 − ℓ1)

T2(η)+T1(η)
∆m−(α−1)

∏α−2
ℓ1=0 (c2 − ℓ1) · · · ∏α−2

ℓ1=0 (cα+1 − ℓ1)
...

...
. . .

...

Tα(η)+Tα−1(η)
∆m+α−3

(c2)
∏α−3

ℓ2=0 (∆m − c2 + ℓ2) · · · (cα+1)
∏α−3

ℓ2=0 (∆− cα+1 + ℓ2)

Tα+1(η)+Tα(η)
∆m+α−1

∏α−2
ℓ2=0 (∆m − c2 + ℓ2) · · · ∏α−2

ℓ2=0 (∆m − cα+1 + ℓ2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

To facilitate further simplification, noting that

R1 → R1 +
α+1∑

i=2

(−1)i−1 (Ri × (∆m − (α− 1) + 2(i− 2)))

(
2α −

i−2∑

j=0

(
α

j

))
,

set the 1st element of the 1st column to 1 and

lim
m→∞

Ti(η) + Ti−1(η)

∆m − (α− 1) + 2(i− 2)
= 0, i = 2, 3, . . . , α + 1,

we apply the row operation Ri → Ri +Ri−1, for i = 3, 4, ..., α+ 1, repeatedly to obtain

α−1∏

j =0

j∏

ℓj =0

(∆m − j + 2ℓj)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ∗2 · · · ∗α+1

0
∏α−2

ℓ1=0 (c2 − ℓ1) · · · ∏α−2
ℓ1=0 (cα+1 − ℓ1)

...
...

. . .
...

0 (c2) · · · (cα+1)

0 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Here the exact form of the ∗ marked entries are tacitly avoided, since they do not contribute to

the determination evaluation. As such, by expanding the determinant using the first column, we
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have

α−1∏

j =0

j∏

ℓj =0

(∆m − j + 2ℓj)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∏α−2
ℓ1=0 (c2 − ℓ1)

∏α−2
ℓ1=0 (c3 − ℓ1) · · · ∏α−2

ℓ1=0 (cα+1 − ℓ1)
∏α−3

ℓ1=0 (c2 − ℓ1)
∏α−3

ℓ1=0 (c3 − ℓ1) · · · ∏α−3
ℓ1=0 (cα+1 − ℓ1)

...
...

. . .
...

c2 c3 · · · cα+1

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The above determinant can be simplified using [52, Lemma A.1] to yield

α−1∏

j =0

j∏

ℓj =0

(∆m − j + 2ℓj)∆̃α(c̃)

where ∆̃α(c̃) =
∏

1≤j<i≤α (c̃i − c̃j) with c̃ = {c̃1(k2), c̃2(k3), · · · , c̃α(kα+1)} and c̃j(kj+1) =

j + kj+1. Now we substitute the above result into (87) to obtain

lim
m →∞

Pr
(
xmax ≤ 1− x

m2

)
= e−x lim

m→∞




α−1∏

j=0

Skj+2

(
1− x

m2

)

×
(

α−1∏

j=0

(β + 2m+ j − 1)!

(β + 2m+ 2j)!

)
α−1∏

j=0

j∏

ℓj=0

(∆̃m − j + 2ℓj)∆α(c̃)




= e−x lim
m→∞




α−1∏

j=0

Skj+2

(
1− x

m2

)

×
α−1∏

j=0

j∏

ℓj=0

(2m+ β + α− j + 2l − 1)

2m+ β + 2j − l
∆̃α(c̃)




= e−x lim
m→∞

(
α−1∏

j=0

Skj+2

(
1− x

m2

)
∆̃α(c̃)

)
.

For notational convenience, the index j is shifted forward by one unit to yield

(88)lim
m →∞

Pr
(
xmax ≤ 1− x

m2

)
= e−x lim

m→∞

(
α∏

j=1

Skj

(
1− x

m2

)
∆α(c)

)

where,

Skj(t) =

m+α−j∑

kj=0

(−(m+ α− j))kj (m+ β + j − 1)kj
kj ! (j + kj − 1)!

(
1− 1

t

)kj

and ∆α(c) =
∏

1≤j<i≤α (ci − cj) with c = {c1(k1), c2(k1), · · · , cα(kα)} and cj(kj) = j + kj .

Having noted that ∆α(c) is independent of m and

lim
m→∞

(m+ α− j − kj + 1)kj
mkj

= 1, lim
m→∞

(m+ β + j − 1)kj
mkj

= 1,
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we evaluate the limit of Skj

(
1− x

m2

)
as

lim
m →∞

Skj

(
1− x

m2

)

= lim
m→∞

m+α−j∑

kj=0

(−(m+ α− j))kj (m+ β + j − 1)kj
kj ! (j + kj − 1)!

(
1− 1

t

)kj

= lim
m→∞

m+α−j∑

kj=0

(m+ α− j − kj + 1)kj
mkj

(m+ β + j − 1)kj
mkj

xkj

kj! (kj + j − 1)!

1
(
1− x

m2

)kj

=
∞∑

kj=0

xkj

kj! (kj + j − 1)!
.

Therefore, (88) simplifies to

lim
m →∞

Pr
(
xmax ≤ 1− x

m2

)
= e−x

∞∑

k1=0

∞∑

k2=0

· · ·
∞∑

kα=0

α∏

j=1

xkj

kj! (kj + j − 1)!
∆α(c),

from which we obtain using [53, Appendix B]

lim
m →∞

Pr
(
xmax ≤ 1− x

m2

)
= e−x det

[
Ij−i(2

√
x)
]
i,j=1,2,···,α

.

The above result implies that,

lim
m →∞

Pr(m2(1− xmax) ≤ x) = 1− e−x det
[
Ij−i(2

√
x)
]
i,j=1,2,···,α

.

Finally, noting that

lim
m→∞

Fm2(1−xmax)(x) = lim
m→∞

Pr
(
m2(1− xmax) ≤ x

)
= lim

m→∞
F m2

1+λmax

(x) = FX(x),

we may use the continuous mapping theorem [54] to obtain (22), which concludes the proof.
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