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Abstract—A new lower bound is proposed in this article. Like
Levenshtein bound, it relates to the maximum correlation value
(autocorrelation and cross-correlation) a set of sequences can
achieve. The novelty introduced here is that each sequence is
associated with a mismatched filter. The proposed bound is
inspired from Levenshtein’s, holds for any set of unimodular
sequences and can be applied in both aperiodic and periodic
cases. It appears that the obtained expression does not deviate a
lot from the (matched) Levenshtein, which indicates that the use
of a mismatched filter will not guarantee much better sidelobe
performance, as the number fo sequences is significant, contrary
to the popular belief.

Index Terms—Aperiodic correlation lower bound, correlation,
Levenshtein bound, mismatched filter, periodic correlation lower
bound, Welch bound

I. INTRODUCTION

CORRELATION plays a crucial role in order to determine
the performance a system can achieve. For example, in

the field of telecommunications, performance of a  DS-CDMA 
system (Direct-Sequence Code-Division Multiple Access) is di-
rectly linked to the highest correlation value of each spreading 
sequence [1], called the Peak-to-Sidelobe Level Ratio (PSLR). 
In radar systems also, low PSLR codes are desired so that 
small targets remain detectable in the presence of stronger tar-
gets and clutter. It is thus relevant to design a set of sequences 
with the lowest cross-correlation and autocorrelation values 
for cooperative systems (e.g. statistical MIMO radars [2]), as 
it may reduce detection errors — a small PSLR improves the 
discrimination capacity between a weak target and a stronger 
one — and increase the average Signal-to-Noise Ratio (SNR). 

Alongside extensive works to find sequences with the lowest 
PSLR (e.g. see [3], [4]), some studies have been conducted 
to define l ower b ounds o n t he P SLR —  i n o ther w ords, the 
performance that might be achieved at best —, according to 
some parameters: the number of sequences, their length, the 
assumptions made on the sequences, the type of correlation, 
etc. This paper deals with correlations of a set of sequences 
(both periodic and aperiodic cases are concerned), meaning 
that each correlation sequence from a pair of the set (auto-
correlation and/or cross-correlation, for every delay) has to be 
handled. Notice that it is different from the optimal codebook

topic [5], [6], in which only the correlation at the zero-delay
is considered.

Welch was the first to establish a lower bound on correlation
sidelobes for a set containing M sequences of length N , under
the identical energy assumption [7]. About 25 years later, a
new lower bound was found by Levenshtein [8], [9] but only in
the aperiodic case. At first, this bound was restricted to binary
sequences, but it was later proved to hold for any sequence
sets over the complex roots of unity [10] and even later for
unimodular sequences [11]. This bound is tighter than the
Welch one in most of the cases [9], [10], [12].

Levenshtein’s bound is only valid for the aperiodic corre-
lation, encountered in practice in radar systems by applying
a matched filter at the reception side. The matched filter is
known for maximising the Signal-to-Noise Ratio in Gaussian
noise, but it may suffer from high sidelobes. Hence, in certain
applications, for instance in the presence of multiple targets
or in a strong clutter, it is interesting to replace this matched
filter by another, identified as a mismatched filter, that may
provide a better PSLR at the cost of some Loss-in-Processing
Gain (LPG) [13]. Alongside numerous papers on waveform
diversity [14], [15], [16], mismatched filters have gained an
increasing interest in the recent years. Most notably it is of
importance in joint radar and communication applications, in
which specific waveforms are required to transmit information,
and where the effort on the sidelobe level will thus be mainly
turned back to the reception filter [17], [18], [19]. For that
matter, it may seem interesting to determine a lower bound on
the minimum PSLR that can be achieved using such a filter.
To our knowledge, this question remains open.

This paper provides new results that enable to handle this
question. It formulates a lower bound on correlation values
— whether periodic or aperiodic — in the mismatched filter
case. More precisely, a set of sequences is considered; each is
associated with a mismatched filter (hence defining a second
set). The correlation between a sequence and its counterpart
is still refered as an “autocorrelation” by extension, while the
others are cross-correlations. The main result of this paper is
a lower bound on the maximum sidelobe value of all of these
correlation sequences. Like Levenshtein’s bound, it introduces
some weights on the correlation sequences, so that an optimal
weight vector may be calculated. The proof of this novelty is
also inspired from Levenshtein’s. But it holds for any set of



2

unimodular sequences, with any restrictive constraints on the 
mismatched filter set.

Note that computation of both sets of sequences is not the 
concern of the paper. Nevertheless, there is a lot of literature on 
related topics, especially in the field of waveform diversity: the 
aforementioned search of pseudo-orthogonal sequences [20],
[16], [21]; the generation of the optimal mismatched filter of a 
sequence [13] (optimal according to a criterion like the PSLR 
for instance) ; the joint optimisation of a sequence and its filter 
[22], [23], [24]; the definition of a  set of sequences and their 
associated mismatched filters [14], [15]. In practice, they help 
to get closer to their corresponding bounds but, akin to the 
matched filter case, t hese cannot probably be equalized.

This article is organised as follows. Section II provides a 
brief overview of some of the existing bounds in the matched 
filter case: the Welch bound and the Levenshtein bound. A new 
lower bound on the maximum correlation sidelobe with a set 
of mismatched filter i s f ormulated i n S ection I II. S ection IV 
suggests some interpretations, especially by comparing the 
new result with existing bounds from the matched filter case. 
Some details on the proofs are given in the appendices.

Notation: In the following, vectors and matrices are desig-
nated with bold lowercase letters (e.g. x) and bold uppercase 
letters (e.g. X) respectively. Additionally, xi, Xi and Xi,j

refer to the i-th element of vector x, the i-th row and 
the element in the i-th row and j-th column of matrix X , 
respectively. (.)∗, (.)T and (.)H denote the conjugate, the 
transpose and the transpose conjugate operator, respectively.

T
Gi
r(
v
X
en
)
an
and
m×n

rank(X
matrix

), 
X

whilst
, its

its
trace and

Frobenius
its rank

norm
is

is
denoted
X .

by
‖ ‖F ◦

stands for the Hadamard product (the entrywise product); by
extension, the operator (.)◦q refers to the Hadamard product of
power q, i.e. X◦q = X ◦ · · · ◦X (q times). Circulant matrices
are defined t hrough a  m ap d enoted c irc, a nd a re s pecified by
a vector x = [x1, . . . , xn]T of length n :

Cn → Cn×n

x 7→ circ(x) =



x1 x2 . . . xn−1 xn

xn x1 x2 xn−1

... xn x1
. . .

...

x3
. . .

. . . x2

x2 x3 . . . xn x1


.

d.e denotes the ceil function. Finally, for two integers a and
b, the modulo operator is denoted by mod, while J·, ·K is an
integer interval, that is, with a < b, Ja, bK = {a, a+1, . . . , b}.

II. REVIEW ON EXISTING BOUNDS IN THE MATCHED
FILTER CASE

A. Definitions

Let {xm ∈ CN}m∈J1,MK be a set of M polyphase se-
quences of length N . Each sequence of the set is unimodular,
meaning that any n-th element of any m-th sequence satisfies
|xmn |2 = 1/N , for each m ∈ J1,MK and n ∈ J0, N − 1K.

Therefore, their energy is constant:

N−1∑
n=0

|xmn |2 = 1, ∀m ∈ J1,MK. (1)

The correlation function may be expressed into two types,
periodic and aperiodic, according to the definition of each se-
quence of {xm}m outside its original support. More precisely,
for any n < 0 or n ≥ N :

xmn =

{
xm(nmodN) in the periodic correlation,
0 in the aperiodic correlation.

(2)

The correlation output between two sequences xm and xl is
also a sequence, denoted θm,l. At delay k, it is defined by:

θm,lk :=
N−1∑
n=0

xmn−k(x
l
n)
∗, for |k| < N. (3)

The latter is read as a cross-correlation if both sequences are
different, while as an autocorrelation if m = l. Besides, it can
be noticed that each autocorrelation mainlobe has the same
value: θm,m0 = 1, for each m ∈ J1,MK.

B. Lower Bounds on the PSLR

Several lower bounds have been developed on the maximum
sidelobe level of every auto- and cross-correlations. This level
will be denoted in this paper by θmax and is provided by:

θ2max = max

 max
|k|<N
m1 6=m2

∣∣θm1,m2

k

∣∣2,max
k 6=0
m1

∣∣θm1,m1

k

∣∣2 . (4)

Notice that Eq. (4) includes every delay k, and not only the
zero-delay (which is related to the inner product).

The Peak-to-Sidelobe Level Ratio, denoted by PSLR is
defined as the ratio between the maximum sidelobe level and
the peak level. Because of (1), it simply reduces to θ2max.

The most well-known bounds on the PSLR were provided
by Welch [7] and Levenshtein [8]1. The former is expressed
under the unimodular hypothesis by:

PSLR ≥ M − 1

ML− 1
, (5)

with

L =

{
N in the periodic case,
2N − 1 in the aperiodic case. (6)

In 1999, Levenshtein has established another bound [8] that
can be applied in the aperiodic case only. Originally designed
for a set of binary sequences, it actually also holds for any
unimodular polyphase sequences [11]. This bound is:

PSLR ≥ 1

N2

N −
Q2N−1

(
w,

N(N − 1)

M

)
1−

2N−1∑
i=1

w2
i /M

 , (7)

1In the literature, both bounds have been applied in the optimal codebook
topic, see e.g. [5], [6]. It is not the concern of this paper because it only
considers inner products, contrary to Eq. (4).
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where:
Q2N−1 (w, a) = a

2N−1∑
i=1

w2
i +

2N−1∑
s,t=1

ls,t,Nwswt,

ls,t,N = min(|s− t|, 2N − 1− |s− t|).
(8)

w is a weight vector — on each correlation delay — that
satisfies the following weighting condition:

2N−1∑
i=1

wi = 1

wi ≥ 0 for i ∈ J1, 2N − 1K.

(9)

This bound has been proved to be tighter than the Welch bound
in some cases2: for N ≥ 2 with M = 2, N ≥ 3 with M = 3
and for N ≥ 2 with M ≥ 4. Some current literature [10], [12],
[25] has been interested in the optimisation of this weight
vector, in order to enhance the Levenshtein bound. Notably
the authors of [25] have proposed an asymptotically locally
optimal weight vector — in the particular case where each
correlation delay is considered.

III. MISMATCHED FILTER BOUND

In this section is introduced a new bound on the PSLR
for the output of the correlations between a set of polyphase
sequences and a set of associated mismatched filters. This
bound is defined in both periodic and aperiodic cases. Some
proofs are given in the appendices.

A. Definitions

Akin to Section II-A, some definitions are given below.

1) A set of sequences: Let {xm ∈ CNx}m∈J1,MK be a set of
M polyphase unimodular sequences of length Nx, with same
energy equal to 1.

2) A set of mismatched filters: Let {ym ∈ CNy}m∈J1,MK be
a set of mismatched filters. For simplicity, it will be assumed
that the length Ny of the mismatched filter sequences is equal
to Ny := Nx + 2Ns, Ns ∈ N.

As implicitly mentioned in the introduction, a mismatched
filter is a substitute for a matched filter, meaning that it should
also help to detect a known signal (while rejecting the others).
In other words, for each m, l ∈ J1,MK,m 6= l, the inner
product3 between a sequence xm ...
• ... and its so-called associated mismatched filter ym

should be maximised,
• ... and another filter yl should be minimised.

In practice, mismatched filters can be generated4 for example
via a convex optimisation [13], [22], [14].

2Hence the Welch bound cannot be achieved in the aperiodic case. And, to
the best of our knowledge, the Levenshtein bound has not been reached yet.

3Sequences xm should of course be zero-padded if needed.
4While defining the bound, only the hypotheses in this section are needed:

it is not required to exhibit the set of mismatched filters. On the other side,
the bound calculation does not help to deduce the optimal set.

3) Correlations: Aperiodic and periodic correlations are
defined according to the definition of each sequence xm, see
(2). The output of the correlation between the m-th sequence
xm and the l-th mismatched filter yl is also a sequence,
denoted by θm,l ∈ CNx+Ny−1:

θm,lk =

Ny−1∑
n=0

xmn−k−Ns

(
yln
)∗
, for |k| ≤ Nx +Ns − 1. (10)

Set Nk := Nx +Ns − 1.

4) Mainlobe, sidelobe: The mainlobe is simply defined as
the central value of each correlation sequence θm,m between
a sequence xm and its associated mismatched filter ym, m ∈
J1,MK:

θm,m0 =

Ny−1∑
n=0

xmn−Ns
(ymn )

∗
=
∣∣θm,m0

∣∣ ejϕm , (11)

where ϕm ∈ [−π, π] is the phase of θm,m0 . Since phase shifting
each mismatched filter ym by −ϕm will affect neither any
sidelobe level nor the loss in processing gain, it is always
possible to find a new set of mismatched filter {y′m}m∈J1,MK
such that:{

y′
m

= yme−jϕm ,m ∈ J1,MK
}
,

θ′
m,m
0 =

Ny−1∑
n=0

xmn−Ns

(
y′
m
n

)∗
=
∣∣θm,m0

∣∣ ∈ R+.
(12)

It is clear that ym and y′m present the same sidelobes (except
for a constant phase). This property will be necessary in the
following proof.

5) Peak-to-Sidelobe Level Ratio: Using the same notation
as Section II-B, the Peak-to-Sidelobe Level Ratio (PSLR) is
expressed by:

PSLR =
θ2max

max
m

(
|θm,m0 |2

) , (13)

where θ2max is defined as in Eq. (4).

6) Loss-in-Processing-Gain (LPG): As already mentioned
in the introduction, using a mismatched filter necessarily
implies a loss in processing gain. This loss is defined by:

LPGm =
|θm,m0 |2
E2

ym

, (14)

where E2
ym := (ym)Hym is the energy of ym. If each filter

is designed as to provide a predefined mainlobe level θm,m0

(say equal to 1), then it clearly comes from its definition that
the LPG is fully defined by the energy of the filter. In other
words, an identical LPG for all these filters necessarily implies
that each filter has the same energy. For now, no hypothesis
has been set on each variable of Eq. (14).
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7) Mismatched filter l ength: I n t he p eriodic c ase, i t i s not 
relevant to consider mismatched filters that are larger than Nx.
With the assumption that yln = 0 if n ≥ Ny , Condition (2) 
indeed implies:

θm,lk =

Ny−1∑
n=0

xmn−k−Ns

(
yln
)∗

=

dNy/Nx−1e∑
κ=0

Nx−1∑
n=0

xmn+κNx−k−Ns

(
yln+κNx

)∗
=

Nx−1∑
n=0

xmn−k−Ns

dNy/Nx−1e∑
κ=0

(
yln+κNx

)∗
.

(15)

Hence a mismatched filter yl of length Ny is equivalent to a
mismatched filter y′ of length Nx, which coordinates are:

y′n =

dNy/Nx−1e∑
κ=0

yln+κNx
. (16)

B. A New Bound on the PSLR

A new lower bound is introduced now. It concerns the
maximum correlation value of a set of unimodular sequences
associated to a set of mismatched filters.

In the following are considered only sets of sequences
{xm}m∈J1,MK and filters {ym}m∈J1,MK such that each main-
lobe element θm,m0 is real positive. This hypothesis seems
restrictive at first. But, as mentioned in Section III-A4, any
sequence/filter pair may be resolved in that case by a simple
phase shift (on the filter, for instance). This assertion is clearly
stated in Proposition 1.

Proposition 1. (Extension of the bound to any complex filter)
Let us assume that θ2max ≥ B for any mismatched filter set
{y′m}m such that θm,m0 is real positive, for all m ∈ J1,MK.
Then, the lower bound B also applies for any other filter set
{ym}m such that θm,m0 is complex.

Proof. Assume it exists a set of mismatched filters {ym}m
such that its maximum sidelobe θ2max satisfies θ2max < B.
From each filter ym, m ∈ J1,MK, write:

θm,m0 := ρm ejϕm with ρm ∈ R+. (17)

Then, let us consider another filter set {y′m}m such that each
mainlobe is real positive, that is:

y′
m

:=yme−jϕm ,

=⇒ θ′
m,m
0 = ρm.

(18)

It is clear that each filter y′m shares the same sidelobe level
as ym, so its maximum sidelobe should satisfy θ2max < B.
However, since θ′m,m0 is real positive, it should also satisfy
θ′2max ≥ B by hypothesis. Therefore, the initial claim is
absurd: it cannot exist a set such that θ2max < B.

Let Xm and Y l be two square matrices, (m, l) ∈ J1,MK2.
Each matrix contains shifted versions of respectively xm and
yl, but its definition depends on the considered periodicity of

the signal. In the aperiodic case, Xm and Y l are circulant
square matrices of order NX := Nx +Ny − 1:

Xm = circ
(
[xm,0Ny−1,1]

)
= circ (Xm

1 ) ,

Y l = circ
(
Y l
1

)
,

(19)

where 0m,n denotes the zero matrix of size m × n. In the
periodic case, these matrices are of size NX := Nx (cf. III-A7):{

Xm = circ (xm) ,

Y l = circ
(
yl
)
.

(20)

For the sake of clarity, Eq. (19) is detailed below.

Xm = (21)

xm1 · · · · · · xmNx
0 · · · · · · · · · · · · · · · · · · · · · 0

0 xm1 xmNx
0

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . 0

0
. . . . . . xmNx

xmNx

. . . . . . . . .
...

... 0
. . . . . . . . .

...

xm2 · · · xmNx
0 · · · · · · · · · · · · · · · · · · · · · 0 xm1



,

Y l = (22)

ylNs+1
· · · · · · · · · · · · · · · ylNy

0 · · · 0 yl1 · · · ylNs

ylNs

. . . ylNy
0

. . .
...

...
. . . . . . . . . . . . ym1

yl1
. . . . . . . . . 0

0 yl1
. . . . . . . . .

...
... 0

. . . . . . . . . 0

0
. . . . . . . . . ylNy

ylNy
0

. . . . . . . . . ylNy−1

ylNy−1 ylNy

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...

ylNs+2
· · · · · · · · · · · · ylNy

0 · · · 0 yl1 · · · · · · ylNs+1



.

Consider the following matrices X and Y of size MNx×Nx:

X =


X1

X2

...
XM

 , Y =


Y 1

Y 2

...
Y M

 . (23)

All the correlation values are contained in a square matrix R
of order MNx.
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It is defined by:

R =XY H =

X
1(Y 1)H · · · X1(Y M )H

...
. . .

...
XM (Y 1)H · · · XM (Y M )H

 , (24)

such that:

Xm(Y l)H = circ
([
θm,l0 , θm,l−1 , . . . , θ

m,l
−Nk

, θm,lNk
, . . . , θm,l1

])
.

It is also possible to weight each correlation value, akin to
Levenshtein bound (7). Each row of Xm and Y l is weighted
by a coefficient wi, thus becoming:{
X̃m
i :=Xm

i

√
wi,

Ỹ l
i := Y l

i

√
wi for i ∈ J1, NXK, (l,m) ∈ J1,MK2,

(25)

where the weight vector w := {wi}Nx

i=1 satisfies the weighting
condition (9). Matrices X̃ , Ỹ and R̃ are constructed as above:

R̃ = X̃Ỹ H with X̃ =

 X̃
1

...
X̃M

 and Ỹ =

 Ỹ
1

...
Ỹ M

 , (26)

such that R̃ contains now a weighted version of all correlation
values. Remark that it is quite common to consider weights
that only handle the the K-first delays:

K∑
i=1

wi = 1 such that
{
wi ≥ 0 i ∈ J1,KK,
wi = 0 i > K or i < 0.

(27)

Under these hypotheses, an upper and a lower bound on the
Frobenius norm of R̃, ‖R̃‖2F , is suggested in the following.

Lemma 1. (Upper Bound) Under the above-mentioned hy-
potheses, an upper bound of the Frobenius norm of matrix R̃
is the following:

‖R̃‖2F ≤
M∑
m=1

(
|θm,m0 |2 − θ2max

)
wTw +M2θ2max. (28)

Proof. This result is similar to [9, Lemma 1] and is obtained
by a similar proof.

In addition, a lower bound on the Frobenius norm of matrix
R̃ can also be computed.

Lemma 2. (Lower bound) Under the above-mentioned hy-
potheses, a lower bound of the Frobenius norm of the matrix
R̃ is the following:

‖R̃‖2F ≥

∣∣∣∑M
m=1 θ

m,m
0

∣∣∣2
lNx,Ny,K

(29)

with lNx,Ny,K = min
(
Nx +Ny − 1, Nx +K − 1,MK

)
.

Proof. See Appendix A.

By gathering these lemmas, a lower bound of the maximum
correlation sidelobe θmax can easily be deduced. Its expression
is given in the following theorem:

Theorem 1. For any set of M unimodular sequences of length
Nx under the identical energy assumption, for any set of

associated mismatched filter of length Ny , a lower bound of
the maximum correlation sidelobe θmax is:

θ2max ≥
1

M2 −MwTw

×


∣∣∣∑M

m=1 θ
m,m
0

∣∣∣2
lNx,Ny,K

−wTw
M∑
m=1

|θm,m0 |2
 (30)

with: w a weight vector of length NX that satisfies (9),
lNx,Ny,K = min(Nx +Ny − 1, Nx +K − 1,MK),

K ∈ J1, NXK.

Theorem 1 establishes a bound for a given K. Actually, a
tighter bound can be obtained, considering those with a smaller
K, that is:

θ2max ≥ max
K′

K′≤K

1

M2 −MwTw

×


∣∣∣∑M

m=1 θ
m,m
0

∣∣∣2
lNx,Ny,K′

−wTw

M∑
m=1

|θm,m0 |2
 . (31)

Some papers may study a more general case, in which θ2qmax

is lower-bounded instead, with q ∈ N∗ (e.g. [26] with matched
filters). The suggested bound can easily be extended to that
case, and becomes:

Theorem 2. (General case, under the same hypotheses)

θ2qmax ≥
1

M2 −MwTw

×


∣∣∣∑M

m=1 θ
m,m
0

∣∣∣2
lNx,Ny,K,q

−wTw
M∑
m=1

|θm,m0 |2q
 (32)

with: w a weight vector of length NX that satisfies (9),
a different weighting, since X̃m

i =Xm
i w

1/2q
i ,

lNx,Ny,K,q = min
((
NX+q−1

q

)
,
(
Nx+K+q−2

q

)
,MK

)
,

K ∈ J1, NXK.

Proof. See Appendix B.

IV. DISCUSSION AND INTERPRETATION

Each bound introduced in the previous section depends on
several parameters such as the number of sequences M , their
length Nx, or the weight vector w. In this section, a discussion
is made on the influence of all these parameters. In particular,
the existence of an optimal weight vector is explained. Some
comparisons — especially with bounds on the matched filter
— are made at the end.

A. Optimal Weight Vector

Consider the right-hand side of Eq. (30) of Theorem 1 as a
function of the weight vector w. This parameter is said to be
“optimal” if it provides the tightest bound, i.e. the largest in
value.
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Notice that (30) can be rewritten as:

θ2max ≥
(

1

M

M∑
m=1

|θm,m0 |2
)
× (33)1−

M

M −wTw

lNx,Ny,K−

∣∣∣∑M
m=1 θ

m,m
0

∣∣∣2
M
∑M
m=1 |θ

m,m
0 |2

lNx,Ny,K

 .

It is now easier to observe that the lower wTw, the higher the
bound. This assertion is not necessarily true with Levenshtein
bound, since ls,t,N (similar to lNx,Ny,K) depends on the weight
vector. Optimizing w such that it minimizes wTw should thus
give a tighter bound. The Cauchy-Schwarz inequality writes:

wTw =
K∑
i=1

w2
i ≥

(∑K
i=1 wi

)2
K

=
1

K
. (34)

The best weight vector is obtained when the Cauchy-Schwarz
inequality meets, that is to say when wTw = 1/K. It is quite
clear that the constant weight vector, recalled below, fill this
requirement:

wi =

{
1/K

0

if i ≤ K
otherwise

(35)

Using this particular weight vector, Theorem 1 becomes:

Corollary 1. (Maximum correlation sidelobe bound, constant
weight vector)

θ2max ≥
(

1

M

M∑
m=1

|θm,m0 |2
)
× (36)1−

MK

MK − 1

lNx,Ny,K−

∣∣∣∑M
m=1 θ

m,m
0

∣∣∣2
M
∑M
m=1 |θ

m,m
0 |2

lNx,Ny,K

 .
This result is really interesting. It means that there exists an

optimal weight vector w, contrary to the Levenshtein bound,
in which the optimal weight vector is still a subject of research.
(However, note that the authors of [25] have proposed a locally
optimal weight vector, in the particular case K = 2N − 1.)

In the previous expression, θ2max is only determined by each
mainlobe value θm,m0 . Since θm,m0 is only expressed through
the energy of the filters and the loss in processing gain —
that have not been constrained — it can be set to θm,m0 = 1
without loss of generality. Hence, the lower bound becomes:

θ2max ≥
MK − lNx,Ny,K

(MK − 1)lNx,Ny,K
. (37)

B. Bounds Comparisons
In this section, the behaviour of the proposed bound is de-

scribed according to some parameters it depends on. Besides,
it will be compared with the matched filter bounds from Welch
[7] and Levenshtein [9].

1) Bound value: Like the Levenshtein bound, the proposed
one — Eq. (37) — is defined with a parameter K, the number
of considered correlation values. Fig. 1 depicts its effect in a
simple example: a set of M = 4 sequences of length Nx =
1024. In this figure, it seems that the length of the mismatched
filter Ny has an influence on the choice of K. Its optimal value
is indeed determined as the one that gives the tightest bound, in
other words, the greatest value in each curve. In the case Ny =
3Nx, the optimal value is not achieved for K = Kmax :=
Nx+Ny−1, meaning that considering every correlation value
is not necessarily useful. Additionally, as expected, a longer
filter goes with a looser bound (a noticeable difference of 1.15
dB here). Does this observation always hold? Check another
example, still with Nx = 1024, but with many more sequences
(M = 10).

Both curves of Fig. 2 show identical bounds, despite dif-
ferent mismatched filter lengths. In this example, each bound
appears to be independent of Ny , meaning that a filter larger
thanNx does not provide any enhancement. This phenomenon
has already been seen in the periodic case (see Section III-A7)
and may be explained here via lNx,Ny,K (cf. Lemma 2). As
illustrated in Fig. 3 (left) with a plain line, this parameter is in a
way piecewise linear as a function of K. But the bound reaches
its maximum at Kopt < Ny , while the corresponding “piece”
does not depend on Ny . Anyway, notice here an improvement
of 1.3 dB compared to the matched filter bound.

2) Comparison with matched filter bounds: Even though
their proofs are quite similar, Theorem 1 does not “include”
the earlier matched bounds (e.g. Levenshtein [9]) per se. That
can easily be seen with Figs. 1 and 2: neither their respective
curves are overlaid nor their highest values (i.e. the bound
value) are equal.

However, the matched filter is after all a particular mis-
matched filter. So, theoretically, Theorem 1 could be employed
under its constraints, that are5:

1) Same length: Nx = Ny;
2) Zero loss: |θm,m0 |2 = 1, LPGm = 0, for all m ∈ J1,MK.

Actually, this is represented on the left of Figs. 1 and 2. But,
as one could expect, Theorem 1 — in this particular case —
is looser6. This difference can be explained with the structure
of correlation sequences, which manifests in the proof of the
lower bound, cf. Appendix A.
• In the matched filter case, there is only one set of

unimodular sequences, {xm ∈ CNx}m∈J1,MK. Sidelobes
that are evaluated in those bounds come from correlations
between two sequences within the set. In addition, an
autocorrelation sequence has some structural properties
that are exploited in the proof (cf. the lower bound of
[11] and Lemma 2).

• In the mismatched filter case, there are two sets of
sequences: {xm ∈ CNx}m∈J1,MK, composed of unimod-
ular sequences, and {ym ∈ CNy}m∈J1,MK, in which no
hypothesis is put on. Correlations between two sequences

5There is no way to easily incorporate the restrictive constraint ym = xm

(for all m ∈ J1,MK).
6It also means that a mismatched filter with the same length may provide

some gain, compared to a matched filter.



7

500 1,000 1,500 2,000

−38

−36

−34

−32

Parameter K

P
S
L
R

(d
B
)

Welch Bound (Matched)
Matched Bound
Mismatched Bound

1,000 2,000 3,000 4,000

−38

−36

−34

−32

Parameter K

P
S
L
R

(d
B
)

Welch Bound (Matched)
Matched Bound
Mismatched Bound

Fig. 1. Comparison of aperiodic correlation bounds, as functions of K, for a set of M = 4 sequences. On the left: Ny = Nx. On the right: Ny = 3Nx.
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Fig. 2. Comparison of aperiodic correlation bounds as functions of K, for a set of M = 10 sequences. On the left: Ny = Nx. On the right: Ny = 3Nx.
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Fig. 4. Aperiodic correlation bound value vs. number of sequences M .
Sequences of length Nx = 1024. Mismatched filters three times longer.

of the same set are ignored. Instead, the mismatched
filter bound studies the correlations between xm and yl,
for each m, l ∈ J1,MK. However, no useful property is
known this time, to the best of our knowledge.

On the other side, it is confirmed that the Welch bound is
too loose. Its expected performance must be indeed “worse”
or, at best, equal. Nonetheless, Fig. 2 shows the opposite: the
Welch bound is there smaller.

Finally, note that the Welch bound can be retrieved from the
matched filter bound Eq. (7) or the mismatched filter one, in
a peculiar case. Indeed, adding the following hypothesis that
corresponds to Welch bound computation:

3) All correlation delays: K = 2Nx− 1 (and again, with a
constant weight vector),

it induces:

lNx,Ny,K = min
(
Nx +Ny − 1, Nx +K − 1,MK

)
= 2Nx − 1;

(38)

so that Eq. (37) writes:

θ2max ≥
MK − lNx,Ny,K

(MK − 1)lNx,Ny,K

=
M − 1

M(2Nx − 1)− 1
,

(39)

which is precisely the Welch bound, cf. Eq. (5).

3) Asymptotic behaviour: As expected, mismatched filters
may provide some improvements, in terms of sidelobes. But,
does this depend on the number of sequences of the set ? Let
us find out with Fig. 4.

This figure demonstrates a not-so-surprising behaviour: the
gain brought by mismatched filters compared to matched filters
becomes smaller and smaller as the number of sequences
increases. For small sets, mismatched filtering is fully realized
(a difference of 3 dB for a set of 2 sequences of length
Nx = 1024) while for larger sets, it loses its appeal as
both bounds are nearly equal. The cardinality of the set M
seems involved: although a mismatched filter provides some
additional degrees of freedom (it is not concerned by the

constant modulus constraint and its length Ny may be greater
than Nx), the number of constraints on the correlation se-
quences (M2 autocorrelation and cross-correlation sequences)
grows quicker. Hence, the impact of this provided relaxation
is poor and becomes insignificant, compared to the correlation
constraints induced by the system.

4) Effects of the LPG: Recall that the loss-in-processing
gain — LPG, Eq. (14) — is defined with the mainlobe level
|θm,m0 |2 and the energy of each filter E2

ym . In the proof, no
hypothesis is put on all these elements. Both statements are
thus equivalent:
(i) Set the mainlobe level θm,m0 , and let both parameters

LPGm and Eym be undefined.
(ii) Normalise each mismatched filter, i.e. E2

ym = 1, which
implies |θm,m0 |2 = LPGm.

Figs. 1 and 2 considers (i)7 with θm,m0 = 1, which yields to
Eq. 37. In order to study the behaviour of the LPG, consider
case (ii). Let us set for simplicity, for all m ∈ J1,MK:{

E2
ym = 1

α : = LPGm

(filter normalisation)
(identical loss)

(40)

which implies |θm,m0 |2 = α. Hence, Corollary 1 becomes:

θ2max ≥ α
MK − lNx,Ny,K

(MK − 1)lNx,Ny,K
, (41)

which is nearly Eq. (37), up to a factor α. This indicates that
LPGs only induce a shift of the bound.

In order to see that, Fig. 3 (right) represents Eq. (41) with
different values of α. Green curve is with zero loss, which
is equivalent to the “original” bound. Notice the difference of
around 1 dB with the blue curve (LPG = −1 dB). However, in
this case, the mainlobe value is also equal to −1 dB, because
of Eq. (40). At the end of the day, the Peak-to-Sidelobe Level
Ratio (PSLR) is the same... Finally, if the loss is taken into
account, each curve is equivalent, which means:
• The proposed bound is true whatever the loss considered,

provided that the constraint θm,m0 = 1 is satisfied (which
does not imply that there is no loss, but which implies
that the mismatched filter output for the zero delay must
provide a mainlobe).

• Allowing a significant loss will not enable to lower the
bound.

• This bound — the first on the mismatched filter case,
to our knowledge — has no dependence with the LPG.
Maybe another tighter bound will, but it is yet to be
found.

All these comments concern how these bounds behave, but
there is any mention on how loose they are. Previous figures
have noticed that a mismatched filter that is longer than the
initial sequence does not necessarily lead to a larger bound.
However in practice, the additional degrees of freedom it
procures may enable to get closer to these bounds, or at least
may provide some gain. But probably quite poor...

7As the filter energy has not been set, this hypothesis does not mean that
there is zero loss.
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V. CONCLUSION

A new lower bound has been introduced in this paper. It 
estimates the maximum correlation value of a set of sequences 
with a set of associated mismatched filters. I ts e xpression is 
fairly general, as it holds for any unimodular sequences, it can 
be applied in both aperiodic and periodic cases, and there is 
no constraint on the mismatched filters.

The obtained result can be interpreted in several ways.
• On one hand, this bound is somehow an extension of Lev-

enshtein’s work to the more general case of unimodular
sequences with corresponding mismatched filters. It en-
ables to set a lower bound on the minimum sidelobe level
that can be reached using such mismatched filters, and in
that sense provides important indications when designing
a given radar or joint communication and radar system.
Interestingly, it appears that this mismatched bound does
not deviate a lot from the matched Levenshtein, which
indicates that the use of a mismatched filter will not
guarantee much better sidelobe performance. While we
have been able to link the proposed bound with the Welch
bound, it has not been possible yet to provide a similar
link with the Levenshtein bound. Finding such a generic
bound that links both matched and mismatched filter may
be of interest for some future work.

• On the other hand, each bound has still not be reached
— to our knowledge — or can be possibly loose (take a
look at their asymptotic behavior). Does that change with
a mismatched filter?

APPENDIX A
PROOF OF LEMMA 2 (LOWER BOUND)

This appendix proves Property 2, recalled below :

Lemma 2. (Lower bound) Under the above-mentioned hy-
potheses, a lower bound of the Frobenius norm of the matrix
R̃ is the following:

‖R̃‖2F ≥

∣∣∣∑M
m=1 θ

m,m
0

∣∣∣2
lNx,Ny,K

(29)

with lNx,Ny,K = min
(
Nx +Ny − 1, Nx +K − 1,MK

)
.

Proof. Let
{
λi, i ∈ J1, rank(R̃)K

}
be the non-zero eigenval-

ues of R̃. They may define the Frobenius norm of matrix R̃:

‖R̃‖2F =

rank(R̃)∑
i=1

|λi|2, (42)

and its trace :

Tr(R̃) =

rank(R̃)∑
i=1

λi, (43)

that is also equal to, by construction :

Tr(R̃) =
M∑
m=1

Nx∑
i=1

θm,m0 wi

=
M∑
m=1

θm,m0 .

(44)

The Cauchy-Schwarz inequality links both :∣∣∣Tr(R̃)
∣∣∣2 ≤ rank(R̃)

rank(R̃)∑
i=1

∣∣λi∣∣2


≤ rank(R̃)‖R̃‖2F .

(45)

Hence,

‖R̃‖2F ≥
Tr(R̃)2

rank(R̃)
. (46)

From there, it remains to find an upper bound of rank(R̃).
Remind that R̃ = X̃Ỹ H . The particular structure of both
matrices gives us (with Ny ≥ Nx):

rank(X̃) =

{
min(MK,Nx +K − 1) if K ≤ Ny
min(MK,Nx +Ny − 1) otherwise,

rank(Ỹ ) = min(MK,Ny +min(K,Nx)− 1),

rank(R̃) ≤ min(rank(X̃), rank(Ỹ ))
= min(MK,Nx +K − 1, Nx +Ny − 1).

(47)
Set lNx,Ny,K := min(MK,Nx+K−1, Nx+Ny−1). Gathering
(46) and (47) gives the desired result:

‖R̃‖2F ≥

∣∣∣∑M
m=1 θ

m,m
0

∣∣∣2
lNx,Ny,K

(48)

APPENDIX B
PROOF OF THEOREM 2 (GENERAL CASE)

This appendix deals with a generalisation of Theorem 1,
where the term θ2qmax has to be lower-bounded, q ∈ N∗.

Theorem 2. (General case, under the same hypotheses)

θ2qmax ≥
1

M2 −MwTw

×


∣∣∣∑M

m=1 θ
m,m
0

∣∣∣2
lNx,Ny,K,q

−wTw
M∑
m=1

|θm,m0 |2q
 (32)

with: w a weight vector of length NX that satisfies (9),
a different weighting, since X̃m

i =Xm
i w

1/2q
i ,

lNx,Ny,K,q = min
((
NX+q−1

q

)
,
(
Nx+K+q−2

q

)
,MK

)
,

K ∈ J1, NXK.

This expression may also be proved via an upper and a
lower bound, but of the Frobenius norm of matrix R̃◦q .

Lemma 3. (Upper Bound, general case)

‖R̃◦q‖2F ≤
M∑
m=1

(
|θm,m0 |2q − θ2qmax

)
wTw +M2θ2qmax. (49)

Proof. Again, the proof is really similar to [9, Lemma 1].

Lemma 4. (Lower bound, general case)

‖R̃◦q‖2F ≥

∣∣∣∑M
m=1 θ

m,m
0

∣∣∣2
lNx,Ny,K,q

(50)



10

with lNx,Ny,K,q = min
((
NX+q−1

q

)
,
(
Nx+K+q−2

q

)
,MK

)
.

Proof. In the case where q 6= 1, some studies have been done
(see for instance [27], [28, Section 1.2] or [29, Section 4])
in order to get an upper bound of rank(R̃◦q) from an upper
bound of rank(R̃). The latter has already been considered in
Appendix A:

rank(R̃) ≤ min(MK,Nx +K − 1, Nx +Ny − 1). (51)

Incidentally, it is possible to show that — more details are
given in the following:

rank(R̃◦q) ≤ lNx,Ny,K,q, (52)

with lNx,Ny,K,q := min
((
Nx+q−1

q

)
,
(
Nx+K+q−2

q

)
,MK

)
. Fi-

nally, it should bring us to the conclusion that:

‖R̃◦q‖2F ≥

∣∣∣∑M
m=1 θ

m,m
0

∣∣∣2
lNx,Ny,K,q

. (53)

In order to be more thorough, let us give some details of (52).
This equation is based on the following property.

Property 1. Let R be a square matrix of size m ×m such
that R = XY H , where X,Y ∈ Cm×n. Denote the columns
of both matrices by respectively xi and yi, i ∈ J1, nK. The
rank of matrix R◦q can be upper-bounded as:

rank(R◦q) ≤
(
n+ q − 1

q

)
. (54)

Proof of the property. Matrix R can be developed as :

R =
n∑
i=1

xiy
H
i =

n∑
i=1

Ri, (55)

with Ri = xiy
H
i . Hence,

R◦q = R ◦ · · · ◦R︸ ︷︷ ︸
q

=

(
n∑
i=1

Ri

)◦q
. (56)

Applying the multinomial theorem [28] gives :

R◦q =
∑

∑n
i=1 qi=q

(
q

q1, . . . , qn

)(
R◦q11 ◦ · · · ◦R◦qnn

)
, (57)

where
(

q

q1, . . . , qn

)
=

q!

q1! . . . qn!
is a multinomial coefficient.

Using the following properties, defined for two matrices A
and B :

rank(A+B) ≤ rank(A) + rank(B),

rank(A ◦B) ≤ rank(A) rank(B),

rank(AB) ≤ min (rank(A), rank(B)) ,

(58)

it comes that :

rank(R◦q) ≤
∑

∑n
i=1 qi=q

rank(R1)
q1 × · · · × rank(Rn)

qn

≤
∑

∑n
i=1 qi=q

1, (59)

because rank(Ri) ≤ 1.

But the cardinality of set {q1, . . . , qn|
∑n
i=1 qi = q} is equal

to the number of q-combinations from a set of n elements. It
thus means that :

rank(R◦q) ≤
(
n+ q − 1

q

)
. (60)

Besides, as R◦q is a square matrix of order m, it follows :

rank(R◦q) ≤ min

(
m,

(
n+ q − 1

q

))
. (61)

In particular, if rank(R) ≤ k, there exists matrices A and
B of size m× k such that R = ABH , so that :

rank(R◦q) ≤ min

(
m,

(
k + q − 1

q

))
. (62)

From the defintion of matrix R̃◦q , Eq. (52) may be obtained
straightforwardly.
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cations, Mathématique et Mécanique de Bordeaux (ENSEIRB-MATMECA),
Talence, France, and the Ph.D. degree in Signal Processing in 2017 from
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