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A Classification of Functions in Multiterminal

Distributed Computing
Shun Watanabe

Abstract

In the distributed function computation problem, dichotomy theorems, initiated by Han-Kobayashi, seek to classify

functions by whether the rate regions for function computation improve on the Slepian-Wolf regions or not. In this

paper, we develop a general approach to derive converse bounds on the distributed function computation problem. By

using this approach, we recover the sufficiency part, i.e. the conditions such that the Slepian-Wolf regions become

optimal, of the known dichotomy theorems in the two-terminal distributed computing. Furthermore, we derive an

improved sufficient condition on the dichotomy theorem in the multiterminal distributed computing for the class of

i.i.d. sources with positivity condition. Finally, we derive the matching sufficient and necessary condition on the

dichotomy theorem in the multiterminal distributed computing for the class of smooth sources.

I. INTRODUCTION

The distributed function computing is one of the most basic but difficult problems in network information theory.

In this problem, correlated sources are observed at L terminals, and separately encoded messages are sent to the

decoder so that a function value of the sources can be computed at the decoder; see Fig. 1. A naive scheme to

compute a function is to first reproduce the entire source at the decoder and then to compute the function value.

Thus, it is apparent that the Slepian-Wolf (SW) region [28], [5] is an inner bound on the achievable rate region

for the function computing problem. However, since the entire source needs not be reproduced at the decoder, the

SW region can be improved in general. Then, we are interested in under what conditions the SW region can be

improved. For instance, it is well known that, when the number of terminals is two and the function to be computed

is the modulo-sum of the binary double symmetric source, the Körner-Marton (KM) coding improves upon the SW

region [13].1

A part of this paper is submitted to IEEE International Symposium on Information Theory 2018.

The work of S. Watanabe is supported in part by JSPS KAKENHI Grant Number 16H06091.
1More precisely, it was shown in [13] that the structured coding improves upon the two-helper extension of the Wyner-Ahlswede-Körner

(WAK) region [33], [3]. In a similar manner as [10, Lemma 1 and Lemma 2], it can be verified that the two-helper extension of the WAK

region coincides with the SW region for the modulo-sum function. It should be also noted that Ahlswede-Han (AH) showed a hybrid use of the

structured coding and the two-helper WAK scheme further improves upon the convex hull of the SW region and the KM region [2]. However,

as is conjectured in [26], the minimum sum-rate of the AH region may not improve on the minimum sum-rate of the convex hull of the SW

region and the KM region for the modulo-sum function.
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Fig. 1: A description of multiterminal distributed computing.

In [10], Han-Kobayashi initiated the study of classifying symbol-wise functions by whether the SW region

can be improved or not.2 When the number of terminals is two, they completely characterized the condition of

classification; the derived condition, termed “dichotomy theorem”, only depends on the structure of functions in

the following sense: if a given function satisfies the condition, then the achievable rate region of computing that

function coincides with the SW region for any independent and identically distributed (i.i.d.) sources as long as

the the positivity condition is satisfied;3 on the other hand, if a given function does not satisfy the condition, then

there exists an i.i.d. source satisfying positivity condition such that the SW region can be strictly improved. They

also studied the classification problem for more than two terminals, and derived a partial solution to the problem;

however, the complete characterization remained as an open problem.

It should be noted that, when a given function violates the Han-Kobayashi condition, the dichotomy theorem only

claims existence of a source such that the SW region can be improved; it is more challenging problem to decide if

the SW region can be improved or not for a given i.i.d. source with positivity condition. For instance, the modulo-

sum function violates the Han-Kobayashi condition, and, as we mentioned above, the SW region can be improved

for the binary double symmetric source. However, when the minimum of entropies of marginal distributions is

smaller than the entropy of the modulo-sum, the optimal region for computing the modulo-sum coincides with the

SW region [6, Problem 16.23(b)]. As long as the author know, it is an open problem to decide whether the optimal

region for computing the modulo-sum coincides with the SW region or not for a given binary double source.

So far, the above mentioned results are for i.i.d. sources. In [16], Kuzuoka-Watanabe introduced a class of sources

termed “smooth sources”. This class of sources includes i.i.d. sources with positivity condition as a special case;

but it also includes sources with memory, such as Markov sources with positive transition matrices, and non-ergodic

sources, such as mixtures of i.i.d. sources with positivity condition. Then, they considered the function classification

problem for smooth sources and derived an alternative dichotomy theorem that is different from the one in [10].

More specifically, since the class of sources considered in [16] is broader than that considered in [10], the condition

2The symbol-wise function means that, for a given function on a single observation space, we compute the same copies of the function for

a sequence of observations.
3The positivity condition is the condition such that all symbols occur with positive probability.
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on functions in [16] is more strict than that in [10]. This difference stems from the fact that, even when a given

function satisfies the Han-Kobayashi condition, the SW region may be improved for sources having memory, which

signifies an importance of studying distributed function computing beyond i.i.d. sources.

There are three motivations in this paper:

i) As we mentioned above, only a partial solution to the classification problem for more than two terminals was

derived in [10]. Even for the simplest setting of three terminals with binary sources, there are some functions

that cannot be classified by the conditions derived in [10]. In order to make a progress on this long-standing

open problem, it is desirable to have a new approach to tackle this problem.

ii) For the dichotomy theorems of two terminals, the sufficiency part4 of Han-Kobayashi [10] and Kuzuoka-

Watanabe [16] were derived by completely different methods. The former is based on the single letter

characterization; sources being i.i.d. is crucial, and it cannot be applied for general smooth sources. On

the other hand, the latter is based on the argument introduced by El Gamal [7]; functions having certain

structure called “total sensitivity” is crucial. The condition of total sensitivity is more restrictive than the

Han-Kobayashi condition, and the proof method in [16] does not reproduce the dichotomy theorem of [10]

when sources are restricted to i.i.d. sources. Thus, it is desirable to have an approach that provides both

the dichotomy theorems in a unified manner; currently, when a given function satisfies the Han-Kobayashi

condition but not total sensitivity, we cannot tell if the function computing region coincides with the SW

region even for a simple example of smooth sources such as mixtures of i.i.d. sources.

iii) For the two terminal distributed computing where the decoder has full side-information, a method to derive

converse bounds was proposed in [17]. In that method, from the nature of distributed computing and the

structure of the function to be computed, termed informative structure, we identify information that is

inevitably conveyed to the decoder. Then, we derive a bound in terms of the optimal rate needed to send that

information; when the inevitably conveyed information is the encoder’s source itself, we can conclude that

the Slepian-Wolf rate is optimal. In [17], in addition to recovering some of known results in [1], [7], [24],

the method was used to provide some novel results for the distributed computing with full side-information.

This method has a potential to resolve problems raised in the above mentioned two motivations. However,

the method crucially relies on the fact that the decoder has full side-information, and it does not apply to the

case where all observations are encoded; in the conclusion of [17], the authors left such an extension as an

important future research direction.

In this paper, we develop a general approach for showing dichotomy theorems, in particular, the sufficiency part.

The proposed approach is build upon the proof method based on informative structure proposed in [17], but requires

two new ideas described below.

As we mentioned above, the proof method based on informative structure relies on the fact that the decoder has

full side-information, and it does not apply to the case where all observations are encoded. However, when the

4The sufficiency part of dichotomy theorems claim that there exist no codes that improve upon the SW region.
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function induces conditional independence (CI) structure to the observed sources for some partition of the terminals,

then we can virtually decouple the entire coding system into multiple coding systems where each decoder observe

sources corresponding to parts of the partition as full side-information. Then, we can apply the proof method based

on informative structure to each decoupled coding system.

It should be noted that the CI structure and its relaxation have been known as crucial for proving converse in

multiterminal distributed computing or multiterminal rate-distortion problems [8], [4], [30], [20], [21], [25], [31],

[32], [22], [23], [29], [27]. In fact, the proof of the dichotomy theorem by Han-Kobayashi [10] crucially uses the CI

structure. More specifically, the Han-Kobayashi condition induces the CI structure for i.i.d. sources with positivity

condition, which facilitate single-letter characterization. Gel’fand-Pinsker [8] also used the CI structure to derive

single-letter characterization of the multiterminal source coding problem including the multiterminal distributed

function computing problem as a special case. Focusing on the CI structure in this paper is inspired by ideas in

these prior works. However, in our approach, the CI structure is used “operationally” to decouple the coding system

into multiple parts of coding systems with full side-information, which facilitates using of the proof method based

on informative structure. As long as the author know, such an operational usage of the CI structure in converse

proof has never appeared in the literature, and is of independent interest.

Another new element is recursion. When we apply the above mentioned two ingredients to a given function, we

can show that the function computation region of the given function is included in the function computation region

of a “finer” function.5 If the finer function is tantamount to the identity function, then we can conclude that the

function computation region of the original function coincides with the Slepian-Wolf region. However, even when

the finer function is not the identity function, we can apply the same argument to that finer function to show that

the function computation region of the finer function is included in the function computation region of a further

finer function. By repeating this procedure recursively, we can eventually show that the function computation region

of the original function coincides with the Slepian-Wolf region.

As an application of our general approach, when the number of terminals is two, we reproduce the dichotomy

theorem of Han-Kobayashi [10] and that of Kuzuoka-Watanabe [16] in a unified manner. In addition to reproducing

these results, our approach can provide converse results for cases that cannot be covered by neither of the methods

in [10] nor [16], though we do not pursue the two terminals problem in depth in this paper; we will provide one

of such examples, a mixture of i.i.d. sources, in Section V-C. We also apply our approach to derive dichotomy

theorems for more than two terminals. In fact, for the the class of i.i.d. sources with positivity condition, we derive

a sufficient condition that strictly subsume the sufficient condition shown in [10]. Furthermore, for the class of

smooth sources, we establish the complete characterization of the classification problem. Note that the solution of

classification problem for smooth sources does not imply the solution of classification problem for i.i.d. sources

with positivity condition since the latter problem is not a special case of the former problem. As we mentioned

above, even when the optimal function computing region coincides with the SW region for every i.i.d. sources with

5A function f(x) is finer than function g(x) when there exists a function h such that g(x) = h(f(x)).

March 2, 2022 DRAFT



5

positivity condition, the SW region may be improved for sources having memory.

Organization of Paper

The rest of the paper is organized as follows: In Section II, we introduce the problem formulation of multiterminal

distributed computing. In Section III, we explain an overview of our approach, and in Section IV, we state and prove

our general results. In Section V, we revisit known results on two-terminal distributed computing from the view

point of our general approach. In Section VI and Section VII, we apply our approach to the multiterminal distributed

computing for the class of i.i.d. sources with positivity condition and the class of smooth sources, respectively. We

close the paper with some conclusion in Section VIII. Some of technical results and proofs are given in appendices.

Notations

Throughout this paper, random variables (e.g., X) and their realizations (e.g., x) are denoted by capital and

lower case letters, respectively. All random variables take values in some finite alphabets which are denoted by

the respective calligraphic letters (e.g., X ). The probability distribution of random variable X is denoted by PX .

Similarly, Xn := (X1, X2, . . . , Xn) and xn := (x1, x2, . . . , xn) denote, respectively, a random vector and its

realization in the nth Cartesian product Xn of X . We will use bold lower letters to represent vectors if the length

n is apparent from the context; e.g., we use x instead of xn.

For a finite set S, the cardinality of S is denoted by |S|. For a subset T ⊆ S, the complement S\T is denoted

by T c. For a given sequence s in the nth Cartesian product Sn of S, the type Ps = (Ps(s) : s ∈ S) of s is defined

by

Ps(s) :=
|{i ∈ [1 : n] : si = s}|

n
, s ∈ S, (1)

where [1 : n] := {1, 2, . . . , n}. The set of all types of sequences in Sn is denoted by Pn(S). The indicator function

is denoted by 1[·]. Information-theoretic quantities are denoted in the usual manner [5], [6]. The binary entropy is

denoted by h(·). All logarithms are with respect to base 2. For given distributions P,Q, the variational distance is

denoted by ‖P −Q‖1 := 1
2

∑
a |P (a)−Q(a)|.

II. PROBLEM FORMULATION

Let

(X1, . . . ,XL) = {(Xn
1 , · · · , Xn

L)}∞n=1 (2)

be a general correlated source with finite alphabet XL = X1 × · · · × XL; the source is general in the sense of

[11] (see also [9]), i.e., it may have memory and may not be stationary nor ergodic. Without loss of generality, we

assume X` = {0, 1, . . . , |X`| − 1} for ` = 1, . . . , L. For a subset A ⊆ L of the set L = {1, . . . , L} of all terminals,

we denote XA = (X` : ` ∈ A), Xn
A = (Xn

` : ` ∈ A), and etc.
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We consider a sequence f = {fn}∞n=1 of functions fn : XnL → Zn. A code Φn = (ϕ
(1)
n , . . . , ϕ

(L)
n , ψn) for

computing fn is defined by encoders ϕ(`)
n : Xn` →M

(`)
n for ` = 1, . . . , L and a decoder ψn :M(1)

n ×· · ·×M(L)
n →

Zn. The error probability of the code Φn is given by

Pe(Φn|fn) := Pr
(
ψn(ϕ(`)

n (Xn
` ) : ` ∈ L) 6= fn(Xn

` : ` ∈ L)
)
. (3)

Definition 1 For a given source XL and a sequence of functions f , a rate tuple RL = (R` : ` ∈ L) is defined to

be achievable if there exists a sequence {Φn}∞n=1 of codes satisfying

lim
n→∞

Pe(Φn|fn) = 0 (4)

and

lim sup
n→∞

1

n
log |M(`)

n | ≤ R`, ∀` ∈ L. (5)

The achievable rate region for computing f , denoted by R(XL|f), is the set of all achievable rate tuples.

One of the most simple classes of functions is the class of symbol-wise functions defined as follows; we will

investigate this class intensively later in Sections V-VII.

Definition 2 (Symbol-wise Function) For a given function f : XL → V , a function defined as fn(xL) =

(f(xL,1), . . . , f(xL,n)) is called symbol-wise function induced by f . We sometimes denote fn instead of fn to

emphasize that the symbol-wise function is n copies of f .

In order to compute functions, one approach is that all terminals send messages so that the decoder can reproduce

the entire source, which is known as the Slepian-Wolf coding.

Definition 3 (SW Region) For a given source XL, the achievable rate region R(XL|f id) for the sequence f id =

{f idn }∞n=1 of identity functions is called the Slepian-Wolf (SW) region, and denoted by RSW(XL).

Note that RSW(XL) is a trivial inner bound on R(XL|f), i.e., it holds that RSW(XL) ⊆ R(XL|f) for any f .

The Slepian-Wolf coding for general sources was first studied in [19] (see also [9, Section 7.2]). Even though

only the two terminal case was studied in the literature, it is straightforward to extend the result to the multiterminal

case; the SW region for general sources is characterized as follows.

Proposition 1 For a given general source XL, it holds that

RSW(XL) =

{
RL :

∑
`∈A

R` ≥ H(XA|XAc), ∀A ⊆ L
}
, (6)

where

H(XA|XAc) := inf

{
α : lim

n→∞
Pr

{
1

n
log

1

PXn
A|Xn

Ac
(Xn
A|Xn

Ac)
> α

}
= 0

}
(7)

is the spectral conditional sup-entropy rate of XA given XAc .
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TABLE I: f : X1 ×X2 → V

x1 \ x2 0 1 2

0 0 3 3

1 0 4 2

2 1 1 2

When the source is i.i.d., the characterization in Proposition 1 reduces to the well known formula by replacing

H(XA|XAc) with the conditional entropy H(XA|XAc) in (6).

In this paper, we shall develop an approach to characterize the function computation region R(XL|f) for general

sources. The function computation region can be sensitive to the support of distributions (cf. the comment at the

end of [10, Sec. III]). To avoid such a complication, we consider the following class of smooth sources introduced

in [16].

Definition 4 (Smooth Source) A general source XL is said to be smooth if there exists a constant 0 < q < 1,

which does not depend on n, satisfying

PXn
L

(xL) ≥ qPXn
L

(x̂L) (8)

for every xL, x̂L ∈ XnL with dH(xL, x̂L) = 1, where dH(·, ·) is the Hamming distance.

The class of smooth sources is a natural generalization of i.i.d. sources with positivity condition studied in [10],

[1], and enables us to study distributed computation for a variety of sources in a unified manner. Indeed, this class

contains sources with memory, such as Markov sources with positive transition matrices, or non-ergodic sources,

such as mixtures of i.i.d. sources with positivity condition; see [16] for the detail.

III. AN OVERVIEW OF THE APPROACH

In this section, we shall explain an overview of our approach for the special case of the two terminals and

symbol-wise functions. In our approach, we use three ingredients: the proof method based on informative structure

[17], the conditional independence structure, and the recursion. Since the third one, recursion, is not needed in the

two terminals case, we only explain the first two ingredients here. For concreteness, let us consider symbol-wise

function given by Table I. Since this function satisfies the Han-Kobayashi condition [10] (see also Section V),

the function computation region R(XL|f) for this symbol-wise function coincides with the Slepian-Wolf region

RSW(XL) for any i.i.d. sources with positivity condition. As an overview of our approach, we shall provide an

alternative proof of this known fact.

Let us first consider the special case where Xn
2 is observed at the decoder as full side-information (see Fig. 2).

For this special case, the following approach to prove R1 ≥ H(X1|X2) was proposed in [17]. Let Φn = (ϕ
(1)
n , ψn)

be a code to compute fn with vanishing error probability εn. Since message ϕ(1)
n (Xn

1 ) is encoded without knowing

the realization of side-information Xn
2 , if we input πbi (X

n
2 ) to ψn(ϕ

(1)
n (Xn

1 ), ·) instead of Xn
2 , then we expect it

March 2, 2022 DRAFT
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will outputs fn(Xn
1 , π

b
i (X

n
2 )) with high probability, where πbi shifts ith symbol of Xn

2 by b, i.e., X2,i 7→ X2,i + b

(mod |X2|). In fact, by noting the smoothness of the source, i.e., the fact that the probability does not change

drastically when one symbol is shifted, we can show

Pr

(
ψn(ϕ(1)

n (Xn
1 ), πbi (X

n
2 )) 6= fn(Xn

1 , π
b
i (X

n
2 ))

)
≤ εn

q
. (9)

This implies that, via union bound, the decoder can reproduce the list
(
f(X1,i, x2) : x2 ∈ X2

)
with vanishing error

probability. Here, note that every rows in Table I are different. Thus, the decoder can distinguish X1,i from the

list. By doing this procedure for 1 ≤ i ≤ n, the decoder can reproduce the entire source Xn
1 with vanishing error

probability.6 This means that the rate R1 must be as large as the Slepian-Wolf rate H(X1|X2). A similar argument

can be applied to prove R2 ≥ H(X2|X1) since every columns in Table I are different. This is the first ingredient,

informative structure, i.e., the function has a structure that reveals information about X`,i.

In order to consider the entire region R(XL|f), we need the second ingredient, conditional independence

structure. In the above argument to bound individual rates, a crucial step is to input πbi (X
n
2 ) to ψn(ϕ

(1)
n (Xn

1 ), ·);

this is possible because Xn
2 is directly observed at the decoder in the system of Fig. 2. When we consider the

entire region, the same argument cannot be used since the decoder only gets ϕ(1)
n (Xn

1 ) and ϕ(2)
n (Xn

2 ). In order to

circumvent this problem, we note that the function in Table I induces conditional independence, i.e., the Markov

chain X1−◦− f(X1, X2)−◦−X2 holds.7 In fact, it can be verified from the fact that either x1 or x2 is determined

from f(x1, x2). Because of this observation, once the decoder can reproduce V n = fn(Xn
1 , X

n
2 ) (with vanishing

error probability), the decoder can generate X̃n
1 and X̃n

2 via channels PnX1|V and PnX2|V so that (Xn
1 , X̃

n
2 ) and

(X̃n
1 , X

n
2 ) have (approximately) the same joint distribution as (Xn

1 , X
n
2 ). By this argument, we can decouple the

entire system (see Fig. 3) into two virtual systems (see Fig. 4). Then, we can use the previous argument of the

full side-information case, and show that the decoder can reproduce the entire sources Xn
1 and Xn

2 with vanishing

error probability. This means that the function computation region R(XL|f) must be included in the Slepian-Wolf

region RSW(XL).

In the above argument, the function being symbol-wise and the source being i.i.d. are not necessary. In fact, the

argument goes thorough as long as the function reveals (partial) information about X`,i and the function induces

conditional independence for the given source. In the next section, we will introduce an approach to derive converse

bounds on the multiterminal distributed computing by generalizing the above argument.

IV. GENERAL RESULT

For ` ∈ L, let X ` be a partition of X`; i.e., X ` = {C1, . . . , Ct} is a set of nonempty subsets Ci ⊆ X` (i = 1, . . . , t)

satisfying Ci ∩ Cj = ∅ (i 6= j) and X` = ∪C∈X `
C. We say that partition X ` is nontrivial if t ≥ 2. For each

x` ∈ X`, the subset C ∈ X ` satisfying x` ∈ C is uniquely determined and denoted by [x`]X `
. For a sequence

6For simplicity, we have omitted one step in which we boost the small symbol error probability to the small block error probability (see

Lemma 3).
7Note that this CI structure is also used in the proof of [10] to facilitate single letter characterization.
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Enc. 1
Xn

1

Xn
2

Dec.
R1 fn(X

n
1 , X

n
2 )

Fig. 2: A description of distributed computing with full side-information.

Enc. 1

Enc. 2

Xn
1

Xn
2

Dec.

R1

R2

fn(X
n
1 , X

n
2 )

Fig. 3: A description of two-terminal distributed computing.

x` = (x`,1, . . . , x`,n) ∈ Xn` , we apply [·]X `
to each symbol, i.e., [x`]X `

= ([x`,1]X `
, . . . , [x`,n]X `

) ∈ Xn` . For

a subset A ⊆ L and a tuple XA = (X ` : ` ∈ A) of partitions, we denote [xA]XA = ([x`]X `
: ` ∈ A) and

[xA]XA = ([x`]X `
: ` ∈ A).

For a subset A ⊆ L, a symbol aA ∈ XA, a sequence xA ∈ XnA, and an index i ∈ [1 : n], let aAx
(−i)
A be the

sequence such that elements xA,i of xA are replaced by aA.

In the following, we introduce a few structures of functions; we say that a sequence f = {fn}∞n=1 of functions

has certain structure if fn has that structure for every n.

Definition 5 (Local Function) For a given tuple of partitions XL = (X ` : ` ∈ L), the symbol-wise function

fn,XL : XnL →
∏L
`=1 X

n

` defined by

fn,XL(x` : ` ∈ L) := ([x`]X `
: ` ∈ L). (10)

is called local function.

Since a local function is a symbol-wise function, we sometimes just say local function fXL : XL →
∏L
`=1 X `.

As is clear from the definition, `th component of local functions can be locally computable at `th terminal. For a

sequence of local function fXL = {fn,XL}
∞
n=1, the achievable rate region R(XL|fXL) plays an important role.

Note that R(XL|fXL) = RSW(XL) when all the partitions are the finest partitions, i.e., X ` = {{x`} : x` ∈ X`}

for every ` ∈ L. In the rest of the paper, we write X ` ≡ X` when X ` is the finest partition.

The following class of functions is a multiterminal generalization of the function class introduced in [17]; for

the motivation of the definition, see [17, Sections III and IV].

Definition 6 (Informative Function) For a subset A ⊆ L, let XA = (X ` : ` ∈ A) be a tuple of partitons. A

function fn is said to be XA-informative if fn satisfies the following conditions:

March 2, 2022 DRAFT
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Enc. 1

Enc. 2

Xn
1

Xn
2

Dec.
R1

R2

fn(X
n
1 , X̃

n
2 )

Dec.
fn(X̃

n
1 , X

n
2 )

X̃n
2

X̃n
1

Fig. 4: A description of two virtual systems decoupled from the system in Fig. 3.

1) For each i ∈ [1 : n], there exists a mapping ξ(i)n,A : Z |XAc |
n → XA such that,8 for any aA = (a` : ` ∈ A) ∈ XA

and xL ∈ XnL ,

ξ
(i)
n,A

((
fn(aAx

(−i)
A , aAcx

(−i)
Ac ) : aAc ∈ XAc

))
= [aA]XA = ([a`]X `

: ` ∈ A). (11)

2) For every xL ∈ XnL , every ` ∈ A, and any permutation σ on [1 : n] satisfying [σ(x`)]X `
= [x`]X `

,

fn(x1, . . . , σ(x`), . . . ,xL) = fn(x1, . . . ,x`, . . . ,xL). (12)

On the other hand, when only Condition 1 is satisfied, fn is said to be semi XA-informative.

Remark 1 In contrast to the two terminal case in [17], when we say “XA-informative”, it also designates the

coordinates Ac we can vary in (11).

Remark 2 Condition (1) means that, for each i ∈ [1 : n] and for any aA = (a` : ` ∈ A) ∈ XA, the tuple of

equivalence classes (K` : ` ∈ A) satisfying a` ∈ K` for each ` ∈ A can be uniquely determined from the list(
fn(aAx

(−i)
A , aAcx

(−i)
Ac ) : aAc ∈ XAc

)
(13)

irrespective of xL ∈ XnL . From the definition, it is apparent that, if a function is XA-informative, then it is

XA′ -informative for every A′ ⊆ A.

For two terminals setting, three examples of informative functions are given in [17, Section IV]; the first one

is symbol-wise functions, and the latter two are not necessarily symbol-wise functions. For later convenience, we

would like to review the first one here; the multiterminal generalization will be studied in Sections VI and VII.

For a given function f : X1 × X2 → V , let X 1,f be the partition of X1 such that two symbols x1 and x̂1 are

in the same partition of X1 if and only if f(x1, x2) = f(x̂1, x2) for every x2 ∈ X2. Similarly, we define partition

X 2,f of X2 by interchanging the role of the two terminals. It is known that the equivalence class given by the

partition X i,f plays an important role to characterize the optimal rate for computing the function; it represents the

8By a slight abuse of notation, we also use notation XA to describe ×`∈AX ` though the same notation is used for a tuple of partitions.
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TABLE II: f : X1 ×X2 → V

x1 \ x2 0 1 2

0 0 1 2

1 3 4 2

2 3 4 2

equivalence class of the encoder’s observation that is learnable by the decoder when the function is computed [24],

[14]. For the function given by Table II, the partitions are given by X 1,f = {{0}, {1, 2}} and X 2,f ≡ X2. For two

terminal symbol-wise functions, we have the following characterization.

Proposition 2 ([17]) A symbol-wise function fn : Xn1 × Xn2 → Vn defined from f : X1 × X2 → V is X 1,f -

informative and X 2,f -informative, respectively.

Next, we shall introduce the class of functions that induce conditional independence.

Definition 7 (Conditional Independence) For a given source XL and a nontrivial partition L of L, we say that

f = {fn}∞n=1 induces (approximate) conditional independence for (XL,L) if there exists a sequence of random

variables S = {Sn}∞n=1 such that, for every n ≥ 1,

Xn
A −◦− Sn −◦−Xn

Ac (14)

for every A ∈ L and

Pr(γn(Zn) 6= Sn) ≤ µn (15)

for some function γn : Zn → Sn with µn → 0 as n→∞.

Note that whether conditional independence is induced or not depend on both functions and sources in general.

When the source XL is independent across a partition L, then any function induces conditional independence for

(XL,L) by taking S to be a constant. In latter sections, we will show some conditions of functions such that those

functions induce conditional independence for (XL,L) for every sources in the class of i.i.d. sources or the class

of smooth sources.

Finally, we shall introduce product functions.

Definition 8 (Product Function) For given functions f1 = {f1,n}∞n=1 and f2 = {f2,n}∞n=1, let us define the

product function as follows:

(f1,n, f2,n)(xL) := (f1,n(xL), f2,n(xL)). (16)

For the product function (f1,f2) = {(f1,n, f2,n)}∞n=1, the achievable rate region is denoted by R(XL|f1,f2). The

product of multiple functions is defined similarly.

March 2, 2022 DRAFT



12

Now, we are ready to state our main results.

Theorem 1 For a given smooth source XL and a nontrivial partition L of L, suppose that f = {fn}∞n=1 induces

conditional independence for (XL,L). Furthermore, for a given tuple XL = (X ` : ` ∈ L) of partitions, suppose

that f is XA-informative for every A ∈ L, where XA = (X ` : ` ∈ A). Then, we have

R(XL|f) = R(XL|fXL), (17)

where fXL is the local function defined by (10) for the tuple XL. On the other hand, if f is semi XA-informative

for every A ∈ L, then we have

R(XL|f) = R(XL|f ,fXL). (18)

We can apply the latter claim (18) of Theorem 1 recursively to obtain the following corollaries.

Corollary 1 (Recursion) Let XL be a smooth source. For a given sequence of nontrivial partitions {L(i)}ki=1 of

L and a given sequence of tuples of partitions {X (i)

L = (X (i)

` : ` ∈ L)}ki=1, suppose that, for every i = 1, . . . , k,

(f ,fX (1)
L
, . . . ,fX (i−1)

L
) induces9 conditional independence for (XL,L

(i)
) and semi X (i)

A -informative for every A ∈

L(i)
. Then, we have

R(XL|f) = R(XL|f ,fX (1)
L
, . . . ,fX (k)

L
). (19)

Corollary 2 Under the same condition as Corollary 1, if X (k)

` ≡ X` for every ` ∈ L, then we have

R(XL|f) = RSW(XL). (20)

A. Proof of Converse Part of Theorem 1

We first prove ⊆ part of (17). Let {Φn = (ϕ
(1)
n , . . . , ϕ

(L)
n , ψn)}∞n=1 be a code for computing f , and suppose that

it achieves a rate tuple RL = (R` : ` ∈ L) ∈ R(XL|f). From this code, we shall construct a modified code for

computing local function fXL . By letting Zn = fn(Xn
` : ` ∈ L) and Ẑn = ψn(ϕ

(`)
n (Xn

` ) : ` ∈ L), we have

Pr(Zn 6= Ẑn) ≤ εn (21)

for some εn → 0 as n → ∞. Since f induces conditional independence for (XL,L), we can find S = {Sn}∞n=1

such that

PXn
LSn

= PSn

∏
A∈L

PXn
A|Sn

. (22)

Also, there exists a mapping γn satisfying (15). Furthermore, since f is XA-informative for every A ∈ L, there

exists function ξ(i)n,A : Z |XAc |
n → XA satisfying (11) for each A ∈ L and i ∈ [1 : n].

9For i = 1, (f ,f
X (1)
L

, . . . ,f
X (i−1)
L

) means f .
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Upon receiving messages mL = (m` : ` ∈ L) from the encoders, the modified decoder first computes ŝn =

γn(ψn(mL)), and, for each A ∈ L, locally generate X̃n
A ∼ PXn

A|Sn
(·|ŝn). Then, for each A ∈ L, the decoder

computes

ξ
(i)
n,A

((
ψn
(
mA, ϕ

(Ac)
n (aAcX̃

(−i)
Ac )

)
: aAc ∈ XAc

))
, (23)

where mA = (m` : ` ∈ A), ϕ(Ac)
n (aAcX̃

(−i)
Ac ) = (ϕ

(`)
n (a`X̃

(−i)
` ) : ` ∈ Ac), and a`X̃

(−i)
` is the sequence obtained

by replacing ith coordinate X̃`,i of X̃n
` with a`. We shall show that, for each A ∈ L,

WA,i = ξ
(i)
n,A

((
ψn
(
ϕ(A)
n (Xn

A), ϕ(Ac)
n (aAcX̃

(−i)
Ac )

)
: aAc ∈ XAc

))
(24)

coincides with [XA,i]XA with high probability.

By applying Lemma 1, (21) and (15) imply

‖PXn
ASn − PXn

AŜn
‖1 ≤ Pr(Sn 6= Ŝn) (25)

≤ Pr(Zn 6= Ẑn or γn(Zn) 6= Sn) (26)

≤ εn + µn, (27)

where Ŝn = γn(Ẑn). Then, since taking marginal does not increase the variational distance, we have

‖PXn
AX

n
Ac
− PXn

AX̃
n
Ac
‖1 ≤ ‖PXn

AX
n
AcSn − PXn

AX̃
n
Ac Ŝn

‖1 (28)

=

∥∥∥∥∥∥PXn
ASn

∏
B∈L\{A}

PXn
B |Sn

− PXn
AŜn

∏
B∈L\{A}

PXn
B |Sn

∥∥∥∥∥∥
1

(29)

= ‖PXn
ASn − PXn

AŜn
‖1 (30)

≤ εn + µn. (31)

By noting (11), if (
ψn
(
ϕ(A)
n (Xn

A), ϕ(Ac)
n (aAcX̃

(−i)
Ac )

)
: aAc ∈ XAc

)
(32)

coincides with (
fn(Xn

A, aAcX̃
(−i)
Ac ) : aAc ∈ XAc

)
, (33)

then WA,i coincides with [XA,i]XA . Thus, we have

Pr(WA,i 6= [XA,i]XA) (34)

≤ Pr
((
ψn
(
ϕ(A)
n (Xn

A), ϕ(Ac)
n (aAcX̃

(−i)
Ac )

)
: aAc ∈ XAc

)
6=
(
fn(Xn

A, aAcX̃
(−i)
Ac ) : aAc ∈ XAc

))
(35)

≤ Pr
((
ψn
(
ϕ(A)
n (Xn

A), ϕ(Ac)
n (aAcX

(−i)
Ac )

)
: aAc ∈ XAc

)
6=
(
fn(Xn

A, aAcX
(−i)
Ac ) : aAc ∈ XAc

))
+ εn + µn,

(36)
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where the second inequality follows from Lemma 2 and (31). Furthermore, by using the smoothness of the source

Xn
L, we can show that (see Appendix B)

Pr
((
ψn
(
ϕ(A)
n (Xn

A), ϕ(Ac)
n (aAcX

(−i)
Ac )

)
: aAc ∈ XAc

)
6=
(
fn(Xn

A, aAcX
(−i)
Ac ) : aAc ∈ XAc

))
≤ |XA

c |
q

εn. (37)

Thus, we have

Pr(WA,i 6= [XA,i]XA) ≤
(

1 +
|XAc |
q

)
εn + µn, (38)

which implies

Pr(W`,i 6= [X`,i]X `
) ≤

(
1 +
|XAc |
q

)
εn + µn (39)

for each ` ∈ A. By conducting the above procedures for i ∈ [1 : n], Wn
` = (W`,1, . . . ,W`,n) satisfies

E
[

1

n
dH(Wn

` , [X
n
` ]X `

)

]
=

1

n

n∑
i=1

Pr(W`,i 6= [X`,i]X `
) (40)

≤
(

1 +
|XAc |
q

)
εn + µn. (41)

By the Markov inequality, for any β > 0, we have

Pr

(
1

n
dH(Wn

` , [X
n
` ]X `

) ≥ β
)
≤ 1

β

[(
1 +
|XAc |
q

)
εn + µn

]
. (42)

Then, by Lemma 3, there exists a code (κ
(`)
n , τ

(`)
n ) of size 2nδ such that

Pr
(
τ (`)n (κ(`)n ([Xn

` ]X `
),Wn

` ) 6= [Xn
` ]X `

)
≤ 1

β

[(
1 +
|XAc |
q

)
εn + µn

]
+ νn(β, |X`|)2−nδ. (43)

By taking δ > 0 appropriately compared to β > 0, the error probability in the right hand side of (43) converges

to 0 for every ` ∈ A and A ∈ L. This means that, if each encoder sends additional message of rate δ, then the

modified decoder can reproduce [Xn
L]XL with vanishing error probability. Thus, (R` + δ : ` ∈ L) ∈ R(XL|fXL).

Since β > 0 can be arbitrarily small, and we can make δ > 0 arbitrarily small accordingly, we have

R(XL|f) ⊆ R(XL|fXL). (44)

We also have (18) since the modified code can also compute f with vanishing error probability.

B. Proof of Achievability Part of Theorem 1

The proof of the achievability part, i.e., ⊇ part of (17), is essentially the same as [17]. First, we claim that, given

[x`]X `
and Px`

of a sequence x` ∈ Xn` , we can construct a sequence x̂` ∈ Xn` satisfying [x̂`]X `
= [x`]X `

and

x̂` = σ`(x`) for some permutation σ` on [1 : n]. Indeed, we can construct x̂` = x̂`([x`]X `
, Px`

) as follows. From

[x`]X `
, we can determine a partition {IC : C ∈ X `} of [1 : n] as

IC := {i ∈ [1 : n] : [x`,i]X `
= C}, C ∈ X `. (45)
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Then, for given Px`
, we can divide each IC into a partition {Ia : a ∈ C} so that10

|Ia| = nPx`
(a), ∀a ∈ C ⊆ X`. (46)

Note that {Ia : a ∈ X`} is also a partition of [1 : n]; i.e., for each i ∈ [1 : n], there exists only one x̂`,i ∈ X` such

that i ∈ Ix̂`,i
. Then, it is not hard to see that x̂` = (x̂`,1, . . . , x̂`,n) satisfies the desired property.

Now, suppose that we are given a code Φ̂n = (ϕ̂
(1)
n , . . . , ϕ̂

(L)
n , ψ̂n) for computing [Xn

L]XL = fn,XL(Xn
L) with

error probability εn. From this code, we shall construct a code for computing fn as follows. In the new code, upon

observing Xn
` = x`, the `th encoder sends the marginal type Px`

of x` by using |X`| log(n + 1) bits in addition

to the codeword ϕ̂
(`)
n (x`) of the original code. Suppose that the decoder obtained [x`]X `

from the codewords

(ϕ̂
(`)
n (x`) : ` ∈ L). Then, since Px`

is also sent from the `th encoder, for each ` ∈ L, the decoder can construct a

sequence x̂` = x̂`([x`]X `
, Px`

) satisfying [x̂`]X `
= [x`]X `

and x̂` = σ`(x`) for some permutation σ` on [1 : n] as

shown above. Since fn is XA-informative for every A ∈ L, we have

fn(x1,x2, . . . ,xL) = fn(x̂1,x2, . . . ,xL) (47)

= fn(x̂1, x̂2, . . . ,xL) (48)

... (49)

= fn(x̂1, x̂2, . . . , x̂L). (50)

This implies that the decoder can compute fn(xL) with error probability εn, and thus we have

R(XL|fXL) ⊆ R(XL|f). (51)

V. TWO TERMINALS

In this section, we apply Theorem 1 for the two terminal setting.

A. Han-Kobayashi’s Dichotomy

In [10], in order to classify symbol-wise functions by whether the function computation regions coincide with

the Slepian-Wolf region, Han and Kobayashi introduced the following class of functions (see also [16]).

Definition 9 (HK Function) A function fn is called a Han-Kobayashi (HK) function if fn is a symbol-wise

function defined by some f : X1 ×X2 → V such that

1) for every a 6= a′ in X1, the functions f(a, ·) and f(a′, ·) are distinct,

2) for every b 6= b′ in X2, the functions f(·, b) and f(·, b′) are distinct, and

10Although there are several partitions which satisfy (46), the choice of a partition does not affect the argument; we may choose a partition

so that, for a, â ∈ C satisfying a < â, i ∈ Ia and j ∈ Iâ imply i < j.
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3) f(a, b) 6= f(a′, b′) whenever a 6= a′ and b 6= b′.

In Proposition 2, we have seen that the symbol-wise function is X 1,f -informative and X 2,f -informative for

partitions induced by f . It is not difficult to verify the following.

Proposition 3 If symbol-wise function fn satisfies Conditions 1 and 2 of the HK function, respectively, then it is

X1-informative and X2-informative, respectively.11

We can find that Condition 3 of the HK function can be rephrased as follows: for every v ∈ V , the inverse image

satisfies either f−1(v) ⊆ X1 × {x2} for some x2 ∈ X2 or f−1(v) ⊆ {x1} × X2 for some x1 ∈ X1. Thus, for a

given correlated random variables (X1, X2) on X1 ×X2, we have X1 −◦− f(X1, X2)−◦−X2, which implies the

following.

Proposition 4 If symbol-wise function f = {fn}∞n=1 satisfies Conditions 3 of the HK function and (X1,X2) is

an i.i.d. source, then f induces conditional independence for ((X1,X2), {{1}, {2}}).

By noting Propositions 3 and 4, we can recover the sufficiency part of Han-Kobayashi’s dichotomy theorem as

a corollary of Theorem 1.

Corollary 3 ([10]) If f = {fn}∞n=1 is an HK function, then, for any i.i.d. sources satisfying the positivity condition,

we have R(X1,X2|f) = RSW(X1,X2).

B. Kuzuoka-Watanabe’s Dichotomy

In [16], the class of joint sensitive functions was introduced.

Definition 10 A function fn : Xn1 ×Xn2 → Zn is said to be jointly sensitive if fn(x1,x2) 6= fn(x̂1, x̂2) whenever

x1 6= x̂1 and x2 6= x̂2.

By a similar reasoning as Proposition 4,12 we have the following property of jointly sensitive functions.

Proposition 5 If f = {fn}∞n=1 is jointly sensitive, then, for any given source (X1,X2) (not necessarily i.i.d.), f

induces conditional independence for ((X1,X2), {{1}, {2}}).

By noting Proposition 5, Theorem 1 implies the following.

Corollary 4 If f is X 1-informative and X 2-informative for a given partition XL = (X 1,X 2) and f is jointly

sensitive, then, for any smooth source (X1,X2), we have R(X1,X2|f) = R(X1,X2|fXL).

11By a slight abuse of terminology, we say X`-informative to mean X `-informative for the finest partition X ` = {{x`} : x` ∈ X`}.
12Instead of one symbol function f , we consider the same argument for fn.
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In general, a function being HK function does not imply the same function being jointly sensitive (cf. [16,

Proposition 1]). Because of this fact, Han-Kobayashi’s dichotomy theorem is not valid for the class of smooth

sources, and an alternative dichotomy theorem was derived in [16]; the sufficiency part of the dichotomy theorem

in [16] can be recovered as a special case of Corollary 4.

Corollary 5 ([16]) If f is HK function and jointly sensitive, then, for any smooth sources, we haveR(X1,X2|f) =

RSW(X1,X2).13

C. Mixed Sources

When a source has memory, the statement of Proposition 4 may not hold in general. Thus, it was not clear if a

function being HK (but not jointly sensitive) implies R(X1,X2|f) = RSW(X1,X2) when the source has memory.

Here, we show that this claim holds for a mixture of i.i.d. sources.

Let (X1,X2) = {(Xn
1 , X

n
2 )}∞n=1 be a mixture of two i.i.d. sources with positivity condition such that

PXn
1 X

n
2

(x1,x2) = Pr(A = 0)PnX1X2,0(x1,x2) + Pr(A = 1)PnX1X2,1(x1,x2) (52)

for some random variable A taking values in {0, 1}. Let fn : Xn1 × X2 → Vn be an HK function. Suppose that

PV,0 6= PV,1, where PV,a is the distribution of V = f(X1, X2) under PX1X2,a. Then, there exists an estimator γn

such that the estimation error probability Pr(A 6= γn(V n)) vanishes asymptotically. Thus, by taking Sn = (A, V n),

the function f = {fn}∞n=1 induces conditional independence for ((X1,X2), {{1}, {2}}). Consequently, Theorem

1 and Proposition 3 imply R(X1,X2|f) = RSW(X1,X2).

VI. MORE THAN TWO TERMINALS WITH I.I.D. SOURCES

In [10], Han-Kobayashi considered classification of functions for more than two terminals; let F iid
SW be the set

of all functions f such that the symbol-wise function induced by f satisfies R(XL|f) = RSW(XL) for any i.i.d.

sources with positivity condition. They derived a necessary condition and sufficient conditions such that a given

function belongs to F iid
SW. In this section, as an application of the general results in Section IV, we derive a novel

sufficient condition that strictly subsumes the sufficient conditions in [10].

First, we shall review the necessary condition and the sufficient conditions derived in [10]. For that purpose, it

is convenient to introduce some “geometrical” notation of functions.

Definition 11 (Projection) For f : XL → V and a subset A ⊆ L, we define projected function fA : XA → V |XAc |

by14

fA(xA) =
(
f(xA, xAc) : xAc ∈ XAc

)
. (53)

13In [16], the dichotomy theorem was stated in terms of “totally sensitive function”; however, a function being HK and jointly sensitive is

equivalent to HK and totally sensitive.
14For A = L, note that fL = f .
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x1

x2

x3

Fig. 5: Coordinates.

Definition 12 (Span) For f : XL → V and v ∈ V , we define spanf−1(v) as the minimal subset B ⊆ L such that

there exists xBc ∈ XBc satisfying f−1(v) ⊆ XB ×{xBc}. In particular, when |f−1(v)| ≤ 1, then spanf−1(v) = ∅.

For a subset A ⊆ L, spanf−1A (v) is defined similarly by replacing f with projected function fA : XA → V |XAc |.

Essentially, spanf−1(v) is the set of coordinates ` such that the value of x` cannot be uniquely determined from

v. Let us verify Definition 11 and Definition 12 with some examples.

Example 1 Let us consider three terminal function f(x1, x2, x3), where values of (x1, x2, x3) are ordered as in

Fig. 5.15 For the function in Fig. 6(a), f{3}(0) = (0, 0, 3, 4) and f{3}(1) = (1, 2, 3, 2). For the same function,

spanf−1(1) = ∅ and spanf−1(0) = {2}, respectively. For the function in Fig. 6(f), spanf−1(0) = {1, 2, 3}.

Now, we are ready to review the conditions derived by Han and Kobayashi [10], where we rephrase their

conditions by using the notations introduced above.

Proposition 6 ([10]; Necessary Condition) A function f : XL → V belongs to F iid
SW only if the following

conditions holds: for every A ⊆ L,

fA(xA) 6= fA(x̂A) (54)

holds for any pair xA, x̂A ∈ XA satisfying x` 6= x̂` for every ` ∈ A.

Proposition 7 ([10]; Sufficient Condition) A function f : XL → V belongs to F iid
SW if the following two conditions

hold:

1) For any v ∈ V , the inverse image satisfies |spanf−1(v)| ≤ 1.

2) For arbitrary ` ∈ L, the projected function fL\{`} is injective.

Proposition 8 ([10]; Sufficient Condition) A function f : XL → V belongs to F iid
SW if, in addition to Condition

2 in Proposition 7, the following condition holds:

1’) ⋃
v∈V

spanf−1(v) ( L. (55)

15This method of describing functions was introduced in [10].
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Fig. 6: Representative patterns for f(x1, x2, x3).

In the following example, we examine if functions in Fig. 6 satisfy the conditions in Propositions 6, 7, and

8, which is summarized in Table III.16 In the rightmost column of the table, we also described if we can decide

f ∈ F iid
SW or not by using Propositions 6, 7, and 8, and Theorem 2 shown later in this section.

Example 2 All the functions in Fig. 6(a)-(h) satisfy the necessary condition in Proposition 6; the functions in

Fig. 6(i) and (j) violate the necessary condition in Proposition 6. From Proposition 6, we can determine that the

functions in (i) and (j) do not belong to F iid
SW; on the other hand, from Proposition 7 and Proposition 8, we can

determine that the functions in (a), (b), and (d) belong to F iid
SW. In [10], it is claimed that, by some inspection, the

16All the functions in Fig. 6 except (g) and (h) are the same as those in [10, Fig. 4] and [10, Fig. 5].
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TABLE III: Necessary/Sufficient Conditions for Functions in Fig. 6

f(x1, x2, x3) Neces. Cond. (Prop. 6) Suff. Cond. 1 (Prop. 7) Suff. Cond. 1’ (Prop. 8) Suff. Cond. 2 (Prop. 7) f ∈ F iid
SW

(a) X X X X(Prop. 7)

(b) X X X X(Prop. 7)

(c) X X X(Thm. 2 )

(d) X X X X(Prop. 8)

(e) X X X(Thm. 2)

(f) X X

(g) X X X(Thm. 2)

(h) X X X(Thm. 2)

(i) X × (Prop. 6)

(j) X × (Prop. 6)

function in (c) is found to belong to F iid
SW; later in Example 3, we will verify this fact from more general sufficient

condition.

The conditions in Propositions 7 and 8 can be rephrased in terms of the general framework in Section IV as

follows. When function f satisfies Conditions 1 and 2 of Proposition 7, then it induces conditional independence

for (XL,L) with the finest partition L ≡ L and it is semi X`-informative for every ` ∈ L. Thus, Corollary 2 with

k = 1 implies f ∈ F iid
SW. On the other hand, when function f satisfies Condition 2 of Proposition 7 and Condition

1’ of Proposition 8, then it induces conditional independence for (XL,L) with partiton L = {{`0},L\{`0}} for

some fixed `0 ∈ L and it is semi XL\{`0}-informative and semi X`0 -informative. Thus, Corollary 2 with k = 1

again implies f ∈ F iid
SW. In fact, Condition 2 of Proposition 7 is quite strong since it implies that f is semi

XL\{`}-informative for every ` ∈ L.

As we discussed above, Propositions 7 and 8 are implied as special cases of Corollary 2. In order to leverage

Corollary 2 in a full generality, let us rephrase conditional independence structure and informative structure in terms

of the basis function f : XL → V , which will be proved at the end of this section.

Theorem 2 For a given nontrivial partition L of L and tuple of partitions XL = (X ` : ` ∈ L), suppose that

f : XL → V satisfies the following condition:

1) For every v ∈ V , the inverse image satisfies spanf−1(v) ⊆ A for some A ∈ L.

Then, for any i.i.d. source XL, the symbol-wise function fn induces conditional independence for (XL,L). On

the other hand, suppose that f satisfies the following condition:

2) For every A ∈ L and every xA, x̂A ∈ XA with [xA]XA 6= [x̂A]XA , the projected function satisfies

fA(xA) 6= fA(x̂A). (56)

Then, the symbol-wise function fn is semi XA-informative for every A ∈ L.
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We can use Theorem 2 and Corollary 2 to verify if a given function f is included in F iid
SW. More specifically, if

a given function satisfies the two conditions in Theorem 2, then we can use Corollary 2 to show that that function

is included in F iid
SW. We will illustrate the utility of this approach with some examples in the following.

Example 3 Let us consider the function in Fig. 6(c). For the partition L = {{1, 2}, {3}}, since spanf−1(0) =

{1, 2} and spanf−1(v) = ∅ for v = 1, . . . , 4, we can verify that Condition 1 of Theorem 2 is satisfied. Furthermore,

for the finest partitions X i ≡ Xi for i = 1, 2, 3, since the projected functions f{1,2} and f{3} are both injective, we

can verify that Condition 2 is satisfied. Thus, the function in Fig. 6(c) belongs to F iid
SW.

Example 4 Let us consider the function in Fig. 6(e). There are two manners to show that this function belongs to

F iid
SW. The first manner is the same as Example 3: For the partition L = {{1, 2}, {3}}, we can verify that Condition 1

of Theorem 2 is satisfied. Furthermore, for the finest partitions X i ≡ Xi for i = 1, 2, 3, we can verify that Condition

2 is satisfied. Thus, it belongs to F iid
SW. The second manner is as follows: For the partition L = {{1}, {2}, {3}}, we

can verify that Condition 1 of Theorem 2 is satisfied. Furthermore, for the finest partitions X i ≡ Xi for i = 1, 2, 3,

we can verify that Condition 2 is satisfied. Thus, it belongs to F iid
SW.

Example 5 Let us consider the function in Fig. 6(h). For the partition L = {{1}, {2, 3}}, since spanf−1(0) =

{2, 3}, spanf−1(1) = {1}, and spanf−1(v) = ∅ for v = 2, . . . , 5, we can verify that Condition 1 of Theorem 2 is

satisfied. Furthermore, for the finest partitions X i ≡ Xi for i = 1, 2, 3, we can verify that Condition 2 is satisfied.

Thus, it belongs to F iid
SW.

For some examples, we need to use recursion of Corollary 2.

Example 6 Let us consider the function in Fig. 6(g). To prove that this function belongs to F iid
SW, we need to

use recursion of Corollary 2. For the partition L(1)
= {{1, 2}, {3}}, we can verify that f satisfies Condition 1 of

Theorem 2. Furthermore, for the partitions X (1)

1 = {{0, 1}}, X (1)

2 = {{0}, {1}}, and X (1)

3 = {{0}, {1}}, we can

verify that f satisfies Condition 2 of Theorem 2. Thus, we have R(XL|f) = R(XL|f ,fX (1)
L

), where (f ,fX (1)
L

) is

the sequence of symbol-wise functions that consists of the product of f and local function fX (1)
L

. In the recursion

step, we shall show that the product function (f, fX (1)
L

) belongs to F iid
SW. Since X 1 is the trivial partition and X 2

and X 3 are the finest partition, (f, fX (1)
L

) is equivalent to (f(x1, x2, x3), x2, x3); see Fig. 7. Then, for the partition

L(2)
= {{1}, {2}, {3}}, we can verify that (f, fX (1)

L
) satisfies Condition 1 of Theorem 2. Furthermore, for the

finest partitions X (2)

i ≡ Xi for i = 1, 2, 3, we can verify that (f, fX (1)
L

) satisfies Condition 2 of Theorem 2. Thus,

the function (f, fX (1)
L

) belongs to F iid
SW, which implies that f belongs to F iid

SW.

Example 7 Let us consider the function in Fig. 8(a), where X1 = X2 = {0, 1} and X3 = {0, 1, 2}. To prove that

this function belongs to F iid
SW, we need to use recursion of Corollary 2. For the partition L(1)

= {{1}, {2, 3}},

we can verify that f satisfies Condition 1 of Theorem 2. Furthermore, for the partitions X (1)

1 = {{0}, {1}},

X (1)

2 = {{0, 1}}, and X (1)

3 = {{0}, {1, 2}}, we can verify that f satisfies Condition 2 of Theorem 2. Thus, we
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(0,0,0)

(2,1,0)

(1,0,0)

(2,1,0)

(3,1,1)(3,1,1)

(3,0,1) (3,0,1)

Fig. 7: The function in recursion step of Example 6.

0

0

1

1

36

2 1

6 3

54

(a)

(0,0,a)

(0,0,a)

(1,1,a)

(1,1,a)

(3,1,b)(6,0,b)

(2,0,b) (1,1,b)

(6,0,b) (3,1,b)

(5,1,b)(4,0,b)

(b)

Fig. 8: (a) Description of f(x1, x2, x3) in Example 7; (b) Description of the function in recursion step in the same

example, where a = {0} and b = {1, 2}.

have R(XL|f) = R(XL|f ,fX (1)
L

). In the recursion step, since X (1)

2 is the trivial partition, (f, fX (1)
L

) is equivalent

to (f(x1, x2, x3), x1, [x3]X (1)
3

); see Fig. 8(b). Thus, for the partition L(2)
= {{1}, {2}, {3}}, we can verify that

(f, fX (1)
L

) satisfies Condition 1 of Theorem 2. Furthermore, for the partitions X (2)

i = {{0}, {1}} for i = 1, 2

and X (2)

3 = {{0}, {1}, {2}}, we can verify that (f, fX (1)
L

) satisfies Condition 2 of Theorem 2. Thus, the function

(f, fX (1)
L

) belongs to F iid
SW, which implies that f belongs to F iid

SW.

So far, we have seen examples such that the classification problem can be solved by our approach. However,

there are still some cases such that the classification problem cannot be solved by our approach. The following is

one of such examples.

Example 8 Let us consider the function in Fig. 6(f). In this case, Condition 1 of Theorem 2 is not satisfied for any

nontrivial partition L of {1, 2, 3}; in fact, spanf−1(0) = {1, 2, 3}. Thus, we cannot determine whether f belongs

to F iid
SW or not.

In the case of three terminals, a nontrivial partition L inevitably include a singleton part. In the case of more than

three terminals, this is not the case. Even when the function induces conditional independence among non-singleton

groups of parties, the classification problem can be solved, which is illustrated in the following example.
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TABLE IV: Description of f(x1, x2, x3, x4) in Example 9.

(x1, x2) \ (x3, x4) 00 01 10 11

00 0 0 4 0

01 1 6 4 2

10 1 6 4 5

11 1 3 3 3

Example 9 Let us consider the function in Table IV. For the partition L = {{1, 2}, {3, 4}}, we can verify that

Condition 1 of Theorem 2 is satisfied. Furthermore, for the finest partitions X i = Xi for i = 1, 2, 3, 4, we can

verify that Condition 2 is satisfied. Thus, the function in Table IV belongs to F iid
SW.

Proof of Theorem 2: Since the source is i.i.d. and the function is symbol-wise, in order to prove that the

function induces conditional independence, it suffices to show that, for XL ∼ PXL and V = f(XL), the joint

distribution PXLV factorizes as

PV
∏
A∈L

PXA|V . (57)

Since function f satisfies Condition 1, for each v ∈ V , we have f−1(v) ⊆ XA × {xAc} for some A ∈ L and

xAc ∈ XAc , i.e., the value of XAc is determined from V = v. Thus, PXLV factorizes as in (57).

On the other hand, since function f satisfies Condition 2, for each A ∈ L and any aA ∈ XA, the value [aA]XA

is uniquely determined from the list (f(aA, bAc) : bAc ∈ XAc). Thus, we can construct a mapping satisfying

Condition 1 of Definition 6. Thus, the symbol-wise function fn is semi XA-informative for every A ∈ L.

VII. MORE THAN TWO TERMINALS WITH SMOOTH SOURCES

In Section VI, we considered whether R(XL|f) = RSW(XL) holds or not for the class of i.i.d. sources with

positivity condition. In this section, we consider the same problem for the class of smooth sources. In contrast to the

classification problem for the class of i.i.d. sources in Section VI, we can completely solve the classification problem

for the class of smooth sources in this section. Let F smt
SW be the set of all functions f such that the symbol-wise

function induced by f satisfies R(XL|f) = RSW(XL) for any smooth sources. Since the class of smooth sources

is broader than the class of i.i.d. sources with positivity condition, apparently we have F smt
SW ⊆ F iid

SW. Throughout

this section, we use the notations introduced in Section VI such as Definition 11 and Definition 12.

Since the class of smooth sources include i.i.d. sources with positivity condition, the necessary condition in

Proposition 6 is valid for the classification problem for the class of smooth sources. In fact, since the class of

smooth sources includes sources with memory, we can apply the necessary condition in Proposition 6 for functions

on extended alphabets, which will be used in the proof of “only if” part of Theorem 3.

For the class of smooth sources, we can rephrase the conditions in Corollary 2 in a similar manner as Theorem

2. However, for the class of smooth sources, we can show the matching necessary and sufficient condition in more
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compact manner. For that purpose, let us introduce the concept of pseudo identity function, which is recursively

defined as follows.

Definition 13 (Pseudo Identity) For a given subset A ⊆ L, the projected function fA : XA → V |XAc | is said to

be pseudo identity if either of the following conditions is satisfied:

1) fA is injective;

2) It holds that

Ã :=
⋃

v∈V|XAc |

spanf−1A (v) ( A, (58)

and, for every B ∈ {Ã, {`} : ` ∈ A\Ã}, projected function fB : XB → V |XBc | is pseudo identity.

For the two terminal case, the pseudo identity function is equivalent to the totally sensitive function in [16].

Remark 3 Since (58) implies that the values of x` for ` ∈ A\Ã are uniquely determined from fA(xA), f{`} for

` ∈ A\Ã are injective, i.e., pseudo identity. Thus, we only need to verify if fÃ is pseudo identity in the recursion

step.

The following theorem, which will be proved in Sections VII-A and VII-B, completely solve the classification

problem for the class of smooth sources.

Theorem 3 A symbol-wise function f : XL → V belongs to F smt
SW if and only if f is pseudo identity.

Now, we shall illustrate Theorem 3 by some examples.

Example 10 The functions in Figs. 6(b), (c), (d), (e), and (g) are pseudo identity, and thus are included in F smt
SW .

Since it is not difficult to verify that (b), (c), (d), and (e) are pseudo identity, we only verify (g). Since⋃
v∈V

spanf−1(v) = {1, 2} ( {1, 2, 3}, (59)

it suffices to verify f{1,2} is pseudo identity (cf. Remark 3). Since⋃
v∈V|X3|

spanf−1{1,2}(v) = {1} ( {1, 2}, (60)

it suffices to verify f{1} is pseudo identity; it is pseudo identity since it is injective.

Example 11 The functions in Figs. 6(a), (f), (h), (i), and (j) are not pseudo identity, and thus are not included in

F smt
SW . For (a), (f), (h), (j), since ⋃

v∈V
spanf−1(v) = {1, 2, 3}, (61)

those functions violate the conditions of pseudo identity. On the other hand, for (i), even though⋃
v∈V

spanf−1(v) = {1, 2} ( {1, 2, 3}, (62)
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the projected function f{1,2} is not pseudo identity since⋃
v∈V|X3|

spanf−1{1,2}(v) = {1, 2}. (63)

Note that F smt
SW ( F iid

SW. In fact, the functions in (a) and (h) are included in F iid
SW\F smt

SW . Although it is shown that

the function in (f) does not belong to F smt
SW , it is not clear whether it is included in F iid

SW\F smt
SW or not (see also

Example 8).

Example 12 The function in Fig. 8(a) is not pseudo identity. In fact, even though⋃
v∈V

spanf−1(v) = {2, 3} ( {1, 2, 3}, (64)

f{2,3} is not pseudo identity since ⋃
v∈V|X1|

f−1{2,3}(v) = {2, 3}. (65)

Finally, let us consider an example of function such that multiple rounds of recursion are needed to verify that

is pseudo identity.

Example 13 We define function f recursively as follows, where X` = {0, 1} for every ` ∈ L. Let f[1](x1) := x1.

Then, for ` = 2, . . . , L, let

f[`](x1, . . . , x`−1, 0) := f[`−1](x1, . . . , x`−1), (66)

f[`](x1, . . . , x`−1, 1) := `. (67)

Then, the function f = f[L] : XL → V = {0, 1, . . . , L} is pseudo identity. In fact, even though f is not injective,

we can verify that ⋃
v∈V

spanf−1(v) = L\{L} ( L. (68)

Similarly, even though fL\{`+1,...,L} is not injective for ` = L− 1, . . . , 2, we can verify that⋃
v∈V2L−`

spanf−1L\{`+1,...,L}(v) = {1, . . . , `− 1} ( {1, . . . , `}. (69)

Eventually, we can verify that f{1} is injective. The special case for L = 3 is the function in Fig. 6(g).

It should be emphasized that the function in Example 13 belongs to F smt
SW even though the image size |V| = L+1

of the function is much smaller (exponential in the number of terminals) than the input size |XL| = 2L.

A. Proof of “if” part of Theorem 3

If f is injective, then it is trivial that f ∈ F smt
SW ; thus, we assume that f is not injective. Then, since f is pseudo

identity, there exists a sequence of subsets

Ak ( Ak−1 ( · · · ( A1 ( A0 = L (70)
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for some k ≥ 1 such that (58) holds with A = Ai−1 and Ã = Ai for i = 1, . . . , k, and fAk
is injective. From this

{Ai}ki=1, we shall construct a sequence of partitions {L(i)}ki=1 and a sequence of tuples of partitions {X (i)

L }ki=1

satisfying the requirement of Corollary 2. In fact, we set

L(i)
= {Ai, {`} : ` ∈ L\Ai} (71)

for i = 1, . . . , k;

X (i)

` ≡ X` for ` ∈ L\Ai+1 and X (i)

` = {X`} for ` ∈ Ai+1 (72)

for i = 1, . . . , k − 1; and

X (k)

` ≡ X` for ` ∈ L. (73)

Then, we can verify the requirement of Corollary 2, i.e., (f ,fX (1)
L
, . . . ,fX (i−1)

L
) induces conditional independence

for (XL,L
(i)

) and semi X (i)

A -informative for every A ∈ L(i)
for each i = 1, . . . , k, as follows.

For i = 1, since

A1 =
⋃
v∈V

spanf−1(v), (74)

the values of x` for ` ∈ L\A1 are uniquely determined from f(xL). Thus, f induces conditional independence for

(XL,L
(1)

). Furthermore, for ` ∈ L\A1, f is X (1)

` -informative.17 If k = 1, then f is semi X (1)

A1
-informative since

fA1
is injective. If k ≥ 2, since

A2 =
⋃

v∈V
|XAc

1
|

spanf−1A1
(v), (75)

the values of x` for ` ∈ A2\A1 are uniquely determined from fA1(xA1). Furthermore, X (1)

` = {X`} is the trivial

partition for ` ∈ A1. Thus, f is X (1)

A1
-informative.

For i ≥ 2, since X (i−1)
` ≡ X` for ` ∈ L\Ai, the values of x` is trivially determined from local function

fX (i−1)
L

(xL) for ` ∈ L\Ai. Thus, (f ,fX (1)
L
, . . . ,fX (i−1)

L
) induces conditional independence for (XL,L

(i)
). Fur-

thermore, for ` ∈ L\Ai, (f ,fX (1)
L
, . . . ,fX (i−1)

L
) is semi X (i)

` -informative18. If i = k, then (f ,fX (1)
L
, . . . ,fX (i−1)

L
)

is semi X (i)

Ai
-informative since fAi

is injective. If i ≤ k − 1, since

Ai+1 =
⋃

v∈V
|XAc

i
|

spanf−1Ai
(v), (76)

the values of x` for ` ∈ Ai\Ai+1 are uniquely determined from fAi(xAi). Furthermore, X (i)

` = {X`} is the trivial

partition for ` ∈ Ai+1. Thus, (f ,fX (1)
L
, . . . ,fX (i−1)

L
) is X (i)

Ai
-informative.

17Note that X (1)
` for ` ∈ L\A1 is defined by (72) when k ≥ 2 and defined by (73) when k = 1.

18Note that X (i)
` for ` ∈ L\Ai is defined by (72) when i ≤ k − 1 and defined by (73) when i = k.
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B. Proof of “only if” part of Theorem 3

Since f is not pseudo identity (cf. Definition 13), either

(i) there exists ` ∈ L such that f{`} is not injective;

(ii) there exists A ⊆ L such that ⋃
v∈V|XAc |

spanf−1A (v) = A. (77)

We construct a function such that RSW(XL) ( R(XL|f) in a similar manner as the proof of “only if part” of

two terminal dichotomy theorem in [16, Theorem 3].

When Case (i) is true, the function f violates the necessary condition in Proposition 6. Thus, there exists an i.i.d.

source XL such that the function computation region R(XL|f) is strictly broader than the Slepian-Wolf region

RSW(XL).

When Case (ii) is true, for each ` ∈ A, there exist a(`)A , â
(`)
A ∈ XA such that

a
(`)
` 6= â

(`)
` (78)

and

fA(a
(`)
A ) = fA(â

(`)
A ). (79)

By denoting m = |A|, let us consider m-length copy of function f , i.e.,

fm(xmL ) := (f(xL,1), . . . , f(xL,m)) (80)

for xmL = (xL,1, . . . , xL,m). Then, this function fm violates the necessary condition in Proposition 6 as a function

from XmL to Vm. In fact, because of (78) and (79), the pair (a
(1)
A , . . . , a

(m)
A ) and (â

(1)
A , . . . , â

(m)
A ) violate the

requirement of the necessary condition. Thus, there exists a block i.i.d. source X̃m,N
L = (X̃m

L [1], . . . , X̃m
L [N ]) on

extended alphabet XmL such that X̃m
L = {X̃m,N

L }∞N=1 and fm = {(fm)N}∞N=1 satisfy

RSW(X̃m
L ) ( R(X̃m

L |fm). (81)

Now, let X = X̃m
L , which is a smooth source on XL,19 and f = fm. Then, (81) implies (with scaling by the

common factor 1
m )

RSW(XL) ( R(XL|f). (82)

19When n 6= mN for any integer N , we appropriately pad some random variables, which does not affect the rate regions asymptotically.
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VIII. CONCLUSION

In this paper, we developed a general approach to derive converse bounds on multiterminal distributed function

computing. As an application of the proposed approach, we considered the function classification problem for the

class of i.i.d. sources in multiterminal setting, and derived a novel sufficient condition that strictly subsume the

sufficient conditions derived by Han-Kobayashi. As we have seen in Example 8, there are some functions that

cannot be classified by our approach. Currently, it is not clear whether the sufficient condition is loose or the

necessary condition is loose. If the necessary condition could be improved, a novel achievability scheme that is

more sophisticated than the Körner-Marton type scheme used in [10] may be needed; possibly, the approaches

studied in the literature [15], [12] might be useful.

APPENDIX

A. Technical Lemmas

The following lemma is a simple property of the variational distance (e.g. see [18, Lemma 11.3]).

Lemma 1 For a pair of random variables (X,Y ) on the same alphabet, we have

‖PX − PY ‖1 ≤ Pr(X 6= Y ). (83)

The following lemma is an immediate consequence of the alternative definition of the variational distance.

Lemma 2 For a pair of random variables (X,Y ) on the same alphabet and any event E , we have

Pr(X ∈ E) ≤ Pr(Y ∈ E) + ‖PX − PY ‖1. (84)

In the converse proof of Theorem 1, we need to boost a code with small symbol error probability to a code

with small block error probability. For that purpose, we use the following lemma shown in [17, Lemma 4]. For

0 < β < 1/2 and an integer m, let

νn(β,m) :=

dnβe−1∑
i=0

(m− 1)i
(
n

i

)
≤ nmnβ2nh(β). (85)

Lemma 3 [17] Suppose that (Wn, Xn) on Xn ×Xn satisfies

Pr

(
1

n
dH(Wn, Xn)) ≥ β

)
≤ εn. (86)

Then, there exists encoders κn : Xn → Kn with |Kn| ≤ 2nδ and a decoder τn : Kn ×Xn → Xn such that

Pr (τn(κn(Xn),Wn) 6= Xn) ≤ εn + νn(β, |X |)2−nδ. (87)
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B. Proof of (37)

The proof is essentially the same as [17, Proof of Theorem 1] (see also [17, Sec. III] for the high level idea of

the argument). For convenience of notation, we identify XAc as {0, 1, . . . , |XAc | − 1}. Let πi : XnAc → XnAc be the

permutation that shift only ith symbol of xAc ∈ XnAc , i.e., xAc,i 7→ xAc,i + 1 (mod |XAc |). By using this cyclic

permutation πi, we can rewrite (37) as follows:

Pr
((
ψn
(
ϕ(A)
n (Xn

A), ϕ(Ac)
n (aAcX

(−i)
Ac )

)
: aAc ∈ XAc

)
6=
(
fn(Xn

A, aAcX
(−i)
Ac ) : aAc ∈ XAc

))
(88)

= Pr
(
∃aAc ∈ XAc s.t. ψn

(
ϕ(A)
n (Xn

A), ϕ(Ac)
n (aAcX

(−i)
Ac )

)
6= fn(Xn

A, aAcX
(−i)
Ac )

)
(89)

=
∑

xA,xAc

PXn
L

(xA,xAc)1

[
∃aAc ∈ XAc s.t. ψn

(
ϕ(A)
n (xA), ϕ(Ac)

n (aAcx
(−i)
Ac )

)
6= fn(xA, aAcx

(−i)
Ac )

]
(90)

=
∑

xA,xAc

PXn
L

(xA,xAc)1

[
∃b ∈ XAc s.t. ψn

(
ϕ(A)
n (xA), ϕ(Ac)

n (πbi (xAc))
)
6= fn(xA, π

b
i (xAc))

]
(91)

≤
∑
b∈XAc

∑
xA,xAc

PXn
L

(xA,xAc)1

[
ψn
(
ϕ(A)
n (xA), ϕ(Ac)

n (πbi (xAc))
)
6= fn(xA, π

b
i (xAc))

]
, (92)

where πbi means b times application of πi. Then, since XL is smooth, for every b ∈ XAc and i ∈ [1 : n], we can

bound each term of (92) as follows:∑
xA,xAc

PXn
L

(xA,xAc)1

[
ψn
(
ϕ(A)
n (xA), ϕ(Ac)

n (πbi (xAc))
)
6= fn(xA, π

b
i (xAc))

]
(93)

≤
∑

xA,xAc

1

q
PXn
L

(xA, π
b
i (xAc))1

[
ψn
(
ϕ(A)
n (xA), ϕ(Ac)

n (πbi (xAc))
)
6= fn(xA, π

b
i (xAc))

]
(94)

=
1

q
Pr

(
ψn
(
ϕ(A)
n (Xn

A), ϕ(Ac)
n (Xn

Ac)
)
6= fn(Xn

A, X
n
Ac)

)
(95)

≤ εn
q
. (96)

Substituting this bound into (92), we have the desired bound.
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