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Vanishing Flats: A Combinatorial Viewpoint on

the Planarity of Functions and Their Application
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Abstract—For a function f from Fn

2 to Fn

2 , the planarity
of f is usually measured by its differential uniformity and
differential spectrum. In this paper, we propose the concept
of vanishing flats, which supplies a combinatorial viewpoint
on the planarity. First, the number of vanishing flats of f can
be regarded as a measure of the distance between f and the
set of almost perfect nonlinear functions. In some cases, the
number of vanishing flats serves as an “intermediate” concept
between differential uniformity and differential spectrum,
which contains more information than differential uniformity,
however less than the differential spectrum. Secondly, the
set of vanishing flats forms a combinatorial configuration
called partial quadruple system, since it conveys a detailed
structural information about f . We initiate this study by
considering the number of vanishing flats and the partial
quadruple systems associated with monomials and Dembowski-
Ostrom polynomials. In addition, we present an application of
vanishing flats to the partition of a vector space into disjoint
equidimensional affine spaces. We conclude the paper with
several further questions and challenges.

Index Terms—Almost perfect nonlinear function,
Dembowski-Ostrom polynomial, differential uniformity,
differential spectrum, equivalence, finite field, monomial,
partial quadruple system, planarity, vanishing flat, vector
space partition.

I. INTRODUCTION

In this paper, we propose a combinatorial viewpoint to

assess the planarity of functions from Fn
2 to Fn

2 . A function

f : Fn
2 → Fn

2 achieves the highest planarity if and only if

for each nonzero a ∈ Fn
2 , the function f(x + a) − f(x) is

as balanced as possible. A function from Fn
2 to Fn

2 with the

highest planarity is called almost perfect nonlinear and will

be formally defined later. Keeping in mind that planarity is

defined for functions over vector spaces, we always adopt

the finite field model F2n to represent the vector space Fn
2 ,
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as each mapping defined over F2n can be described by a

polynomial. In fact, the univariate polynomial representation

of functions over F2n may better serve our purpose and will

be used throughout.

We first recall some basic concepts and notation. For

a polynomial f over F2n and a ∈ F∗
2n , the first-order

derivative of f at a is the polynomial f(x + a) + f(x).
Given a polynomial f and field elements a ∈ F∗

2n , b ∈ F2n ,

we define

δf (a, b) = |{x ∈ F2n | f(x+ a) + f(x) = b}|.

Clearly, δf (a, b) must be even (since, if x0 is a solution of

the above equation, so is x0+a). The differential uniformity

of f is defined as

δf = max
a∈F

∗

2n
,b∈F2n

δf(a, b)

and the differential spectrum of f is the sequence

(ℓf,0, ℓf,2, . . . , ℓf,δf ), where ℓf,2i is the frequency of 2i in

the multiset [δf (a, b) | a ∈ F∗
2n , b ∈ F2n ]. For the sake of

convenience, we use ℓ2i to represent ℓf,2i, whenever the

function f is clear from the context. The polynomial f
is called almost perfect nonlinear (APN), if its differential

uniformity is δf = 2, which is the smallest possible. Equiv-

alently, f is APN if and only if the first-order derivative

f(x+ a) + f(x) is a 2-to-1 mapping for each a ∈ F∗
2n . For

a ∈ F∗
2n , we define the differential uniformity of f along

the direction a as

δf (a) = max
b∈F2n

δf (a, b).

Moreover, for a ∈ F∗
2n , we define

Ef (a) = {f(x+ a) + f(x) | x ∈ F2n}

to be the image set of the first-order derivative of f along the

direction a. Note that δf (a) ≥ 2 for each a ∈ F∗
2n and f is

APN if and only if δf (a) = 2 for each a ∈ F∗
2n . The recent

paper [12] calls a function f partially a-APN, if δf (a) = 2
at some a ∈ F∗

2n . Surely, f is partially a-APN if and only

if |Ef (a)| = 2n−1.

There has been intensive research about APN functions,

and we refer to [7] and [22], for comprehensive surveys

and extensive references on the subject. The fact that most

known APN polynomials are quadratic and there is only

one known class of APN permutations over F2n with

n = 6, further motivates our research into the “second

best” polynomials, which are not APN, but are closest

http://arxiv.org/abs/2006.01941v1


to APN functions in some sense (this was one of the

reasons for the introduction of the previously mentioned

partially APN functions). One natural research venue is

finding polynomials with differential uniformity 4, which

is the second smallest possible. Along this direction, a

considerable amount of research dealt with polynomials

having differential uniformity 4, also satisfying some other

properties (see [5], [9], [10], [21], [23], for example). The

main purpose of this paper is to propose yet another research

venue, namely the concept of vanishing flats, which offers

a combinatorial viewpoint to understand the planarity of

functions. The number of vanishing flats serves as a measure

of the planarity of functions, or equivalently, measure the

distance from a function to the set of APN functions. The

set of vanishing flats forms a configuration called partial

quadruple system, which is closely related to the classical

Steiner quadruple system. The partial quadruple system

contains detailed structural information of f . For instance,

one can easily determine the directions along which a

function f is partially APN, by reading through the partial

quadruple system of f .

The rest of the paper is organized as follows. In Sec-

tion II, we introduce the vanishing flats and the partial

quadruple system. Both the number of vanishing flats and

the partial quadruple system are invariants under the CCZ-

equivalence [13], as we shall show. Some relations among

the differential uniformity, the number of vanishing flats

and differential spectrum are discussed. With respect to the

partial quadruple systems, some combinatorial implications

of differential uniformity and differential spectrum are re-

vealed. In Section III, we consider the partial quadruple sys-

tem and the number of vanishing flats associated with mono-

mials and Dembowski-Ostrom polynomials. We determine

the partial quadruple systems of the inverse and the Gold

functions. For general Dembowski-Ostrom polynomials, a

formula for the number of vanishing flats is presented. In

addition, the number of vanishing flats of a few more classes

of monomials follows directly from their differential spectra.

Section IV presents an application of vanishing flats to a

problem of partitioning vector spaces over finite fields into

a collection of disjoint equidimensional affine subspaces, in

the spirit of Baum and Neuwirth [1]. By extending the notion

of vanishing flats, we propose a new approach to generate

this type of partition. In Section V, we give some concluding

remarks and raise some future research problems.

II. VANISHING FLATS AND PARTIAL QUADRUPLE

SYSTEMS ASSOCIATED WITH BOOLEAN FUNCTIONS

In this section, we propose the concept of vanishing

flats and a configuration named partial quadruple system

associated with non-APN functions. For a polynomial f :
F2n → F2n , we define the set of critical directions of f as

Df = {a ∈ F∗
2n | f(x+ a) + f(x) is not 2-to-1}

= {a ∈ F∗
2n | δf (a) ≥ 4}.

Clearly, f is APN if and only if Df = ∅, namely, there

exists no critical direction of f , or, the first-order derivative

is as much balanced as possible along each direction. Indeed,

in order to verify the APN property, elegant results in [2],

[14] say that checking about half of all the directions would

suffice. More precisely, if F∗
2n \ Df contains an (n − 1)-

dimensional vector space over F2 minus the zero vector,

then this much weaker condition ensures that f is APN [14,

Theorem 2] (this result was extended in [15, Theorem 6.2]

to show that if F∗
2n \ Df contains a t-dimensional vector

space over F2 minus the zero vector then the differential

uniformity is ≤ 2n−t). Surely, for a non-APN function f ,

the set Df indicates the critical directions where the 2-to-1
property fails. For instance, for a ∈ F∗

2n , a function f is

partially a-APN if and only if a 6∈ Df . Consequently, we

consider the set Df to be a crucial ingredient conveying

much information related to the planarity of f . In order to

understand Df , we trace back to its source and arrive at a

well-known alternative definition of APN functions.

For n ≥ 2, define the set of all 2-dimensional flats in F2n

as

Bn = {{x1, x2, x3,x4} | x1 + x2 + x3 + x4 = 0

and x1, x2, x3, x4 ∈ F2n are distinct}.

Conventionally, each subset in Bn is called a block. The

classical Steiner quadruple system is a pair (F2n ,Bn), so

that each 3-subset of F2n is contained in exactly one block

of Bn. A function f : F2n → F2n is APN if and only if for

each {x1, x2, x3, x4} ∈ Bn,

f(x1) + f(x2) + f(x3) + f(x4) 6= 0.

Namely, the summation of f over each 2-dimensional flat

is non-vanishing. For a function f : F2n → F2n , define the

set of vanishing flats with respect to f as

VBn,f = {{x1, x2,x3, x4} ∈ Bn |

f(x1) + f(x2) + f(x3) + f(x4) = 0}.

Note that each vanishing flat {x1, x2, x3, x4} in VBn,f ,

gives rise to three distinct critical directions a1 = x1 + x2,

a2 = x1+x3 and a3 = x1+x4, such that f(x+ai)+ f(x)
is not 2-to-1 for each 1 ≤ i ≤ 3. Therefore, the set

of critical directions Df follows immediately from VBn,f .

Since VBn,f ⊂ Bn, we call the set system (F2n ,VBn,f )
a partial quadruple system. Indeed, a partial quadruple

system is an instance of the much more general class of

configurations named packings. For comprehensive surveys

about general Steiner systems and packings, we refer to [17]

and [24], respectively.

For an APN function f , the associated partial quadruple

system is degenerate as the block set VBn,f is empty. Now,

we proceed to justify that the partial quadruple system is a

proper measure of the planarity of non-APN functions.
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Let f and g be two polynomials from F2n to F2n . They

are CCZ-equivalent [13] if there exists an affine permutation

A on Fn
2 × Fn

2 such that
{(

x
g(x)

)

∣

∣ x ∈ Fn
2

}

=

{

A

(

x
f(x)

)

∣

∣ x ∈ Fn
2

}

, (II.1)

where by choosing a basis of F2n over F2, the polynomials f
and g are regarded as two mappings from Fn

2 to Fn
2 . As it is

well-known, the CCZ-equivalence preserves the differential

uniformity, and therefore the APN property [11, Proposition

2]. Recall that two partial quadruple systems are isomorphic

if there exists a bijective mapping between their point sets,

which also induces a bijective mapping between their block

sets. Next, we will show that the CCZ-equivalence also

preserves partial quadruple systems up to isomorphism. Note

that we will use the notation ∼= to represent two isomorphic

partial quadruple systems.

Theorem II.1. Let f and g be two CCZ-equivalent functions

from F2n to F2n , in which
{(

x
g(x)

)

∣

∣ x ∈ Fn
2

}

=

{(

A11 A12

A21 A22

)(

x
f(x)

)

+

(

u
v

)

∣

∣ x ∈ Fn
2

}

.

Then, {x1, x2, x3, x4} ∈ VBn,f if and only if

{y1, y2, y3, y4} ∈ VBn,g, where yi = A11xi+A12f(xi)+u.

Consequently, (F2n ,VBn,f ) ∼= (F2n ,VBn,g) and the

number of vanishing flats is an invariant under the

CCZ-equivalence.

Proof. Suppose {x1, x2, x3, x4} ∈ VBn,f . Then

x1 + x2 + x3 + x4 = 0,

f(x1) + f(x2) + f(x3) + f(x4) = 0.

Let T be a mapping from Fn
2 to Fn

2 , such that T (x) =
A11x+A12f(x) + u. By the defining relation of the CCZ-

equivalence, T induces a permutation on F2n . Moreover, we

let yi = T (xi) and g(yi) = A21xi+A22f(xi)+ v. A direct

computation shows that

y1 + y2 + y3 + y4 = 0,

g(y1) + g(y2) + g(y3) + g(y4) = 0.

Therefore, {y1, y2, y3, y4} ∈ VBn,g and T induces an

injective mapping from VBn,f to VBn,g . Reversing the

above argument, one can show that by applying the inverse

of T to a vanishing flat {y1, y2, y3, y4} ∈ VBn,g, we

obtain a vanishing flat {x1, x2, x3, x4} ∈ VBn,f . Hence, T
induces a bijection between VBn,f and VBn,g , and therefore

(F2n ,VBn,f) ∼= (F2n ,VBn,g).

For a polynomial f over F2n and σ ∈ Gal(F2n/F2) (the

Galois group of F2n over F2), we define σf to be a function

satisfying σf(a) = σ(f(a)), for each a ∈ F2n . It is easy to

see that both applying a Galois automorphism of the field

extension F2n/F2 and adding an affine function keep the

partial quadruple systems invariant. In addition, if f is a

permutation, then the partial quadruple systems associated

with f and f−1 are isomorphic.

Remark II.2. Let f be a polynomial over F2n . Then we

have the following:

(1) For each σ ∈ Gal(F2n/F2), we have VBn,f = VBn,σf .

(2) For each affine polynomial A over F2n , we have

VBn,f = VBn,f+A.

(3) If f is a permutation, then (F2n ,VBn,f) ∼=
(F2n ,VBn,f−1).

A particularly interesting quantity associated with

(F2n ,VBn,f ) is the size of the block set VBn,f , or equiv-

alently, the number of vanishing flats of f . Note that the

number of vanishing flats is 0 if and only if f is APN.

In this sense, the number of vanishing flats measures the

distance between f and the set of APN functions. In fact,

the size of VBn,f follows from the differential spectrum of

f .

Theorem II.3. For a function f : F2n → F2n , we have

|VBn,f | =
1

3

∑

a∈F
∗

2n
,b∈F2n

(

δf (a, b)/2

2

)

.

Proof. By definition, each pair (a, b) with δf (a, b) ≤ 2 is

irrelevant to vanishing flats. Thus, we only need to consider

the pairs (a, b) ∈ F∗
2n×F2n with δf (a, b) ≥ 4. For each such

pair, there exist distinct x1, x2 ∈ F2n , such that f(x1+a)+
f(x1) = f(x2 + a) + f(x2) = b and therefore {x1, x1 +
a, x2, x2 + a} forms a vanishing flat. In total, the number

of vanishing flats derived from these (a, b) pairs is equal

to
∑

a∈F
∗

2n
,b∈F2n

(

δf (a,b)/2
2

)

. On the other hand, we claim

that each vanishing flat can be derived exactly three times

by considering the (a, b) pairs. Indeed, for distinct a1, a2,

a3 with a1 + a2 + a3 = 0, a vanishing flat {x, x+ a1, x+
a2, x+ a3} satisfying

f(x+ a1) + f(x) = f(x+ a2) + f(x+ a3) = b1,

f(x+ a2) + f(x) = f(x+ a1) + f(x+ a3) = b2,

f(x+ a3) + f(x) = f(x+ a1) + f(x+ a2) = b3,

occurs exactly three times when we consider the pairs

(ai, bi), 1 ≤ i ≤ 3. Consequently, |VBn,f | =
1
3

∑

a∈F
∗

2n
,b∈F2n

(

δf (a,b)/2
2

)

.

Observe that both the differential uniformity and the

number of vanishing flats carry partial information of the

differential spectrum. In general, they offer different view-

points to assess the planarity of functions. On the other hand,

when a function has two-valued differential spectrum, these

three notions are equivalent. We recall that a function f over

F2n with two-valued differential spectrum has the property

that {δf (a, b) | a ∈ F∗
2n , b ∈ F2n} = {0, 2s} for some

positive integer 1 ≤ s ≤ n [5, Lemma 3]. In the following

result, for the sake of simplicity, we only concentrate on the

nonzero entries in the differential spectrum.

Proposition II.4. Let f be a polynomial over F2n with two-

valued differential spectrum {0, 2s}, where 1 ≤ s ≤ n. Then

the following are equivalent:
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(1) δf = 2s.

(2) |VBn,f | =
2n−2(2n−1)(2s−1−1)

3 .

(3) ℓf,0 = (2n− 2n−s)(2n− 1) and ℓf,2s = 2n−s(2n− 1).

Proof. The proof follows easily from the definitions and

Theorem II.3.

For a function f over F2n , the number of its vanishing

flats tells the number of blocks in the partial quadruple

system (F2n ,VBn,f ). As one may expect, the differential

spectrum of f supplies more detailed structural information

of (F2n ,VBn,f). Indeed, for x ∈ F2n and a ∈ F∗
2n such

that f(x+ a) + f(x) = b, the value of δf (a, b) renders the

number of vanishing flats containing the pair x and x+ a.

Theorem II.5. Let f be a function over F2n .

(1) For x ∈ F2n and distinct a1, a2 ∈ F∗
2n , if the three

elements x, x + a1 and x + a2 belong to a vanishing

flat, then δf (a) ≥ 4 for each a ∈ {a1, a2, a1 + a2}.

(2) For x ∈ F2n and a ∈ F∗
2n , such that f(x+a)+f(x) =

b, the two elements x and x+ a belong to
δf (a,b)

2 − 1
vanishing flats.

Proof. The proof of (1) is easy and hence omitted. For (2),

note that there are
δf (a,b)

2 pairs of xi and xi + a, where

1 ≤ i ≤
δf (a,b)

2 and x1 = x, such that f(xi+a)+f(xi) = b.

Consequently, there are exactly
δf (a,b)

2 − 1 vanishing flats

containing x and x+ a.

Remark II.6. We note that the converse of Theorem II.5(1)

is not true. For instance, consider the inverse function

f(x) = x−1 over F2n with n being even. According to

Proposition III.1 below, δf (a) ≥ 4 for each a ∈ F∗
2n . On the

other hand, by Theorem III.3, for distinct a1, a2 ∈ F2n , the

three elements 0, a1 and a2 belong to the same vanishing

flat if and only if a1

a2
is a third root of unity in F2n .

III. VANISHING FLATS AND PARTIAL QUADRUPLE

SYSTEMS OF MONOMIALS AND DEMBOWSKI-OSTROM

POLYNOMIALS

In this section, we investigate the vanishing flats and the

partial quadruple systems associated with monomials and

Dembowski-Ostrom polynomials.

A. Vanishing Flats and Partial Quadruple Systems of Mono-

mials

We first consider the vanishing flats and the partial

quadruple systems derived from monomials. For the sake

of convenience, we write δd := δxd , δd(a, b) := δxd(a, b),
δd(a) := δxd(a), Dd := Dxd and VBn,d := VBn,xd .

A polynomial f being monomial ensures that the first-

order derivative f(x+ a)+ f(x) behaves uniformly at each

a ∈ F∗
2n .

Proposition III.1. Let xd be a non-APN monomial over

F2n . Then the multiset [δd(a, b) | b ∈ F2n ] is the same for

each a ∈ F∗
2n . Consequently, Dd = F2n \ {0} and

|VBn,d| ≥

{

2n+1
3 if n odd

2n−1
3 if n even.

(III.1)

Proof. For distinct a1, a2 ∈ F∗
2n and b ∈ F2n , x is a solution

to (x+a1)
d+xd = b if and only if a2

a1
x is a solution to (x+

a2)
d+xd =

(

a2

a1

)d

b. Hence, δd(a1, b) = δd

(

a2,
(

a2

a1

)d

b

)

and consequently, the multiset [δd(a, b) | b ∈ F2n ], and

therefore δd(a) is the same for each a ∈ F∗
2n . Since xd is not

APN, we have δd(a) ≥ 4 for each a ∈ F∗
2n and thus, Dd =

F2n \ {0}. Namely, xd has 2n − 1 critical directions. Note

that along each critical direction, there exists at least one

vanishing flat. Also, each vanishing flat gives three distinct

critical directions. To cover all 2n − 1 critical directions,

one needs at least 2n−1
3 vanishing flats. Hence, we have

|VBn,d| ≥
2n−1

3 , which leads to (III.1).

Remark III.2. In addition to (III.1), since VBn,f ⊂ Bn, we

have a natural upper bound

|VBn,f | ≤ |Bn| =
2n−2(2n−1 − 1)(2n − 1)

3
.

The upper bound is tight as VBn,1 = Bn and |VBn,1| =
2n−2(2n−1−1)(2n−1)

3 .

Equation (III.1) gives a general lower bound on the

number of vanishing flats for monomials. In fact, when n is

even, the lower bound is tight.

Theorem III.3. Let n be even and 3 ∤ d. Let α be a

primitive element of F2n and ζ = α
2n−1

3 . Then VBn,d ⊇
{{

0, αi, αiζ, αiζ2
}

| 0 ≤ i ≤ 2n−4
3

}

. In particular, for the

inverse function x 7→ x−1 := x2n−2, we have VBn,−1 =
{{

0, αi, αiζ, αiζ2
}

| 0 ≤ i ≤ 2n−4
3

}

.

Proof. If 3 ∤ d, then by definition, VBn,d ⊇
{{

0, αi, αiζ, αiζ2
}

| 0 ≤ i ≤ 2n−4
3

}

. Now, we proceed to

show that each vanishing flat in VBn,−1 contains 0, by

reduction to absurdity. Assume that {x1, x2, x3, x4} is a van-

ishing flat with x1x2x3x4 6= 0. Combining x1+x2 = x3+x4

and x−1
1 +x−1

2 = x−1
3 +x−1

4 , we have x1+x2 = x3+x4 = a
and x1x2 = x3x4 = b for some nonzero a and b. Hence,

xi, 1 ≤ i ≤ 4, are four distinct solutions to the quadratic

equation x2 + ax+ b = 0, which is impossible.

Without loss of generality, we assume x4 = 0 and x3 = β
for some nonzero β. Hence, we have x1+x2 = β and x−1

1 +
x−1
2 = β−1. It is easy to see that {x1, x2} = {βζ, βζ2}.

Therefore, two elements 0 and β determine the whole

vanishing flat {x1, x2, x3, x4} =
{

0, β, βζ, βζ2
}

. In conclu-

sion, VBn,−1 =
{{

0, αi, αiζ, αiζ2
}

| 0 ≤ i ≤ 2n−4
3

}

.

The partial quadruple system can also be determined for

the non-APN Gold function. We shall use (a, b) to denote

the greatest common divisor of a and b.
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Theorem III.4. Let f(x) = x2t+1 be a function over F2n

with (n, t) = s > 1. For a ∈ F2s \ {0, 1} and x ∈ F∗
2n , we

define a 2-dimensional vector space Va,x = {0, x, ax, (1 +
a)x} and

Ua,x = { {c, x+ c, ax+ c, (1 + a)x+ c} | c ranges

over all coset representatives of Va,x in F2n}.

Then VBn,f =
⋃

a∈F2s\{0,1}
x∈F

∗

2n

Ua,x and |VBn,f | =

2n−2(2s−1 − 1)(2n − 1)

3
.

Proof. Note that if {x1, x2, x3, x4} is a vanishing flat of f ,

then so is {x1 + c, x2 + c, x3 + c, x4 + c} for each c ∈ F2n .

Hence, it suffices to analyze the 2-dimensional vanishing

subspaces, which have the form {0, x1, x2, x3}, where the

nonzero x1, x2, x3 are distinct, x1 + x2 + x3 = 0 and

f(0)+f(x1)+f(x2)+f(x3) = x2t+1
1 +x2t+1

2 +x2t+1
3 = 0.

Note that x2t+1
1 + x2t+1

2 + x2t+1
3 = x2t+1

1 + x2t+1
2 +

(x1 + x2)
2t+1 = 0. Simplifying the last equation, we

have (x1

x2
)2

t

= x1

x2
. Thus, x1

x2
∈ F2s . Since x1 6= 0 and

x1 6= x2, we have x1

x2
∈ F2s \ {0, 1}. Indeed, we have

shown for each 1 ≤ j < ℓ ≤ 3,
xj

xℓ
∈ F2s \ {0, 1}. Note

that each 2-dimensional vanishing subspace {0, x1, x2, x3}
can be expressed in exactly six different ways: Vx2

x1
,x1

,

Vx3
x1

,x1
, Vx1

x2
,x2

, Vx3
x2

,x2
, Vx1

x3
,x3

and Vx2
x3

,x3
. Consequently,

we have VBn,f =
⋃

a∈F2s\{0,1}
x∈F

∗

2n

Ua,x. Moreover, |VBn,f | =

2n−2(2s−2)(2n−1)
6 = 2n−2(2s−1−1)(2n−1)

3 .

So far, we have determined the partial quadruple systems

associated with the inverse function (Theorem III.3) and the

Gold functions (Theorem III.4). It is worthy to note that

there are a few power functions whose differential spectra

are known. Therefore, employing Theorem II.3, the number

of vanishing flats follows immediately. We summarize these

results in Table III.1, where s = (n, t) and K is the

Kloosterman sum with the following explicit expression [6,

Remark 3]:

K = 1 +
(−1)n−1

2n−1

⌊n
2 ⌋
∑

i=0

(−1)i
(

n

2i

)

7i.

For two positive integers a and b, we define

∆(a, b) =

{

1 if a | b,

0 if a ∤ b.

By Proposition III.1, for every monomial, each entry among

the differential spectrum is divisible by 2n− 1. For simplic-

ity, we shall use wi = ℓi/(2
n−1) in Table III.1. The column

“Ref” indicates the references where the differential spectra

are calculated.

Remark III.5. The following are some observations based

on Table III.1, regarding the relationship between the dif-

ferential uniformity, the number of vanishing flats and the

differential spectrum.

(1) By Proposition II.4, for the first two classes, the differ-

ential uniformity, the number of vanishing flats and the

differential spectrum carry the same information.

(2) Comparing with the differential uniformity, there are

some cases where the number of vanishing flats is a

finer criterion to evaluate the planarity. For example,

the third and fourth classes have the same differential

uniformity but distinct number of vanishing flats. The

same happens to the fifth and sixth classes when 3 ∤ n.

(3) By Theorem II.3, the number of vanishing flats follows

from the differential spectrum. The converse is not true

as the number of vanishing flats does not contain the

information of w0 and w2. For example, whether 3 |n
or not, the differential spectra of the ninth class differ

at w0 and w2. However, the number of vanishing flats

remains the same.

In Table III.2, we list the number of vanishing flats of all

monomials over F2n , where 2 ≤ n ≤ 8. We use the super-

script ⋆ to mark the monomials whose number of vanishing

flats is not obtained from Table III.1 or Remark III.2. Note

that by Remark II.2, the number of vanishing flats of xd

is the same as x2id, for each 0 ≤ i ≤ n − 1, as well as,

x2id−1

for each 0 ≤ i ≤ n− 1, if (d, 2n − 1) = 1. Among

these monomials which necessarily have the same number

of vanishing flats, we only list one of them.

Finally, we mention a connection between the vanishing

flats of monomials and the binary cyclic codes defined by

the same monomials. For a more detailed account on such

cyclic codes, we refer the reader to [13], [16].

Proposition III.6. Let α be a primitive element of F2n . Let

Cd be a binary cyclic code of length 2n−1 having two zeroes

α and αd, in which each nonzero element of F2n indexes a

coordinate of the codewords in Cd. Each vanishing flat of

xd must be one of the following:

(1) For each weight three codeword, the zero element

plus the three nonzero elements indexing three nonzero

coordinates form a vanishing flat.

(2) For each weight four codeword, the four nonzero

elements indexing four nonzero coordinates form a

vanishing flat.

Consequently, the number of weight three codewords of Cd

equals the number of vanishing flats in VBn,d containing 0,

and the number of weight four codewords of Cd equals the

number of vanishing flats in VBn,d not containing 0.

Proof. First, we note that the binary cyclic code Cd has a

parity-check matrix
(

1 α α2 · · · α2n−2

1 αd α2d · · · α(2n−2)d

)

.

The rest follows easily from the definition of vanishing flats.

Remark III.7. Proposition III.6 can be further extended.

Let f be a polynomial over F2n . Using the same notation

as in Proposition III.6, there is a one-to-one correspondence
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TABLE III.1: Power functions xd over F2n with known differential spectra and number of vanishing flats

n d |VBn,d| Differential Spectrum Reference

n ≥ 2
2t + 1 2n−2(2s−1 − 1)(2n − 1)

3

w0 = 2n − 2n−s

[5, Section 5.2]
1 ≤ t ≤ n/2 w2s = 2n−s

n 6= 3t 22t − 2t + 1 2n−2(2s−1 − 1)(2n − 1)

3

w0 = 2n − 2n−s

[5, Theorem 2]
n/s odd 2 ≤ t ≤ n/2 w2s = 2n−s

n even 2n − 2
2n − 1

3

w0 = 2n−1 + 1

[21, Proposition 6]w2 = 2n−1 − 2

w4 = 1

n = 4t 22t + 2t + 1

(

2n−3 − 23t−3
)

(2n − 1)

3

w0 = 5 · 2n−3 − 23t−3

[5, Example 4]
w2 = 2n−2 + 23t−2

w4 = 2n−3 − 23t−3 [25, Theorem 1]

n ≥ 6 7

w0 = 2n−1 + 2w6 + w4

[6, Theorem 5]

(

2n−2+1−3w4

6 + (−1)nK
8

)

w2 = 2n−1 − 3w6 − 2w4

·(2n − 1) w4 = ∆(2, n)

w6 = 2n−2+1−5w4

6 + (−1)nK
8

n ≥ 6

2n−2 − 1 w0 = 2n−1 + 2w6 + 3w8

or
(

2n−1−3−(−1)n5
12 + (−1)nK

8 w2 = 2n−1 − 3w6 − 4w8 [6, Corollary 5]

2
n−1
2 − 1 +w8

)

· (2n − 1) w6 = 2n−1−3−(−1)n5
12 [8, Theorem 5]

n odd +(−1)nK
8 − w8

w8 = ∆(3, n)

2
n
2 − 1

w0 = 2n−1 + 2
n
2 −1 − 2 + w4

[6, Theorem 7]
n ≥ 6

(

(

2
n
2 −1 − 1

)

(

2
n
2 −2 − 1

)

w2 = 2n−1 − 2
n
2 −1 + 1− 2w4

n even +w4

)

· 2n−1
3 w4 = 1−∆(4, n)

w
2

n
2 −2

= 1

2
n
2 +1 − 1

w0 = 2n−1 + 2
n
2 −1 − 1

[6, Theorem 8]n ≥ 6
2

n
2 −2

(

2
n
2 −1 − 1

)

(2n − 1)

3
w2 = 2n−1 − 2

n
2 −1

n even w
2

n
2
= 1

2
n+3
2 − 1

w0 = 2n−1 + 2w6 + 2∆(3, n)

[8, Theorems 1,5]n ≥ 7
(

2n−2+1
6 − K

8

)

(2n − 1) w2 = 2n−1 − 3w6 − 3∆(3, n)

n odd w6 = 2n−2+1
6 − K

8

w0 = 89 · 2n−7 + 7 · 2t−7(4−K)

[26, Theorem 1.4]

n = 2t 2t+1 + 2
t+1
2 + 1 w2 = 5 · 2n−5 − 5 · 2t−5(4−K)

t ≥ 5 or
2n−2(2n − 1)

3
w4 = 7 · 2n−6 + 9 · 2t−6(4−K)

t odd 2t+1 + 3 w6 = 2n−5 − 2t−5(4−K)

w8 = 2n−7 − 2t−7(4−K)
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TABLE III.2: The number of vanishing flats of xd over F2n , for 2 ≤ n ≤ 8

n (d, |VBn,d|)

2 (1, 1)

3 (1, 14), (3, 0)

4 (1, 140), (3, 0), (5, 20), (7, 5)

5 (1, 1240), (3, 0), (5, 0), (15, 0)

6
(1, 10416), (3, 0), (5, 336), (7, 84), (9, 1008), (11, 336)⋆,

(15, 126), (21, 2520)⋆, (27, 1260)⋆, (31, 21)

7 (1, 85344), (3, 0), (5, 0), (7, 889), (9, 0), (11, 0), (19, 889)⋆, (21, 889), (23, 0), (63, 0)

8

(1, 690880), (3, 0), (5, 5440), (7, 3655), (9, 0), (11, 5185)⋆, (13, 5185)⋆, (15, 1785),

(17, 38080), (19, 4420)⋆, (21, 2040), (23, 4930)⋆, (25, 4420)⋆, (27, 15810)⋆,

(31, 2380), (39, 0), (43, 27625)⋆, (45, 1785)⋆, (51, 66300)⋆, (53, 7480)⋆, (55, 5440)⋆,

(63, 3570), (85, 174760)⋆, (87, 24480)⋆, (95, 2380)⋆, (111, 1020)⋆, (119, 41905)⋆, (127, 85)

between the vanishing flats of f and the indices of the weight

four codewords in the binary linear code having a parity-

check matrix

(

0 1 α α2 · · · α2n−2

f(0) f(1) f(α) f(α2) · · · f(α2n−2)

)

.

B. Vanishing Flats and Partial Quadruple Systems of

Dembowski-Ostrom Polynomials

A polynomial f over F2n is of Dembowski-Ostrom (DO)

type if

f =
∑

0≤i<j<n

cijx
2i+2j ,

where cij ∈ F2n . For DO polynomials, we have the

following result on the number of vanishing flats.

Theorem III.8. Let f(x) =
∑

0≤i<j<n

ci,jx
2i+2j be a non-

APN DO polynomial over F2n , n ≥ 2. The following hold:

(1) If {x1, x2, x3, x4} ∈ VBn,f , then {{x1+a, x2+a, x3+
a, x4 + a} | a ∈ F2n} ⊂ VBn,f for each a ∈ F2n .

Consequently, 2n−2
∣

∣ |VBn,f | and |VBn,f | ≥ 2n−2.

(2) For each a ∈ F2n , the subset {a, x1 + a, x2 + a, x1 +
x2 + a} ∈ VBn,f if and only if

∑

0≤i<j<n

ci,j

(

x2i

1 x2j

2 + x2j

1 x2i

2

)

= 0.

Proof. (1) Let f(x) =
∑

0≤i<j<n

cijx
2i+2j . Since

{x1, x2, x3, x4} ∈ VBn,f , we have x1 + x2 + x3 + x4 = 0

and f(x1) + f(x2) + f(x3) + f(x4) = 0. For a ∈ F2n and

1 ≤ ℓ ≤ 4, we have

f(xℓ + a) =
∑

0≤i<j<n

cij(xℓ + a)2
i+2j

=
∑

0≤i<j<n

cij

(

x2i+2j

ℓ + a2
i

x2j

ℓ + a2
j

x2i

ℓ + a2
i+2j

)

=f(xℓ) + f(a) +
∑

0≤i<j<n

cij

(

a2
i

x2j

ℓ + a2
j

x2i

ℓ

)

Note that

4
∑

ℓ=1

cija
2ix2j

ℓ = cija
2i

(

4
∑

ℓ=1

xℓ

)2j

= 0 and

4
∑

ℓ=1

cija
2jx2i

ℓ = cija
2j

(

4
∑

ℓ=1

xℓ

)2i

= 0. Therefore, we have

f(x1 + a) + f(x2 + a) + f(x3 + a) + f(x4 + a) = 0.

Hence, for each a ∈ F2n , {x1+a, x2+a, x3+a, x4+a} ∈
VBn,f . Namely, VBn,f contains all 2n−2 cosets of the flat

{x1, x2, x3, x4}. Indeed, VBn,f consists of a collection of 2-

dimensional vector spaces and all their cosets, which implies

our claim.

(2) By the first part, {a, x1 + a, x2 + a, x1 + x2 + a} ∈
VBn,f if and only if {0, x1, x2, x1 + x2} ∈ VBn,f . Note

that

f(x1+x2) = f(x1)+f(x2)+
∑

0≤i<j<n

cij

(

x2i

1 x2j

2 + x2j

1 x2i

2

)

.

Hence, {0, x1, x2, x1 + x2} ∈ VBn,f if and only if
∑

0≤i<j<n cij

(

x2i

1 x2j

2 + x2j

1 x2i

2

)

= 0.

Let f(x) =
∑

0≤i<j<n cijx
2i+2j be a DO polynomial

over F2n . For a ∈ F∗
2n , we define a linearized polynomial

Lf,a(x) =
∑

0≤i<j≤n−1

cij

(

a2
i

x2j + a2
j

x2i
)

.

7



For such a DO polynomial f , we next define the multiset

Rf = [rank(Lf,a) | a ∈ F∗
2n ] . (III.2)

The following theorem describes how to determine the

number of vanishing flats for a DO polynomial.

Theorem III.9. Let f be a DO polynomial. Then |VBn,f | =
2n−2

3

∑

h∈Rf

(

2n−h−1 − 1
)

.

Proof. For a ∈ F∗
2n , we have f(x + a) + f(x) =

Lf,a(x) + f(a). Hence, to determine the differential spec-

trum of f , it suffices to consider the multiset [Lf,a(x) +
f(a) | x ∈ F2n ]. Define ha = rank(Lf,a), then the

multiset [Lf,a(x) + f(a) | x ∈ F2n ] contains 2ha elements

each with multiplicity 2n−ha . Thus,
∑

b∈F2n

(

δf (a,b)/2
2

)

=

2ha
(

2n−ha/2
2

)

= 2n−2
(

2n−ha−1 − 1
)

. Hence, by Theo-

rem II.3, we have |VBn,f | =
1
3

∑

a∈F
∗

2n
b∈F2n

(

δf (a,b)/2
2

)

=
2n−2

3

∑

h∈Rf

(

2n−h−1 − 1
)

.

IV. PARTITIONING VECTOR SPACES INTO DISJOINT

EQUIDIMENSIONAL AFFINE SUBSPACES VIA VANISHING

FLATS

Given a vector space over a finite field, a long-standing

problem is to find a partition of that vector space into

a collection of equidimensional vector subspaces, see for

instance [3], [19]. As an example, for a vector space

V = F2n
q over Fq , a collection of qn + 1 subspaces of

V with dimension n, which contains each nonzero element

of V exactly once, is the well-known configuration named

spread, which has been intensively studied in finite geometry

(see [20], for example). A perhaps less known partition was

proposed by Baum and Neuwirth [1], which aims to partition

a vector space over a finite field into a collection of disjoint

affine subspaces with equal dimension. In this section, we

present an application of vanishing flats which generates this

kind of partition in an elegant way. We call an r-dimensional

affine subspace an r-flat. The following is a definition of [1].

Definition IV.1. Let n ≥ 2 and 1 ≤ d ≤ n− 1. A cover of

Fn
2 with dimension d is a partition of Fn

2 into 2n−d disjoint

affine subspaces each having dimension d. A d-dimensional

linear subspace of Fn
2 and all its cosets forms a trivial cover.

Let {Ai}2
n−d

i=1 and {Bi}2
n−d

i=1 be two covers of Fn
2 with

dimension d. They are equivalent if there exists an affine

permutation T , such that T (Ai) = Bi, where the order of

the affine subspaces in {Bi}2
n−d

i=1 can be adjusted if nec-

essary. Clearly, two trivial covers with the same dimension

are equivalent. A major question is, are there any covers

inequivalent to the trivial ones? In [1], Baum and Neuwirth

proposed to classify all covers up to equivalence, but that

seems to be elusive, so far. On the other hand, they made

considerable progress along this direction and in particular,

they provided constructions of nontrivial covers. To describe

their results, we need a few more concepts.

For an affine subspace Ai, we use A∗
i to denote the

associated linear subspace. A cover {Ai}2
n−d

i=1 of Fn
2 is called

nonparallel if A∗
i 6= A∗

j for every distinct i and j. A cover

{Ai}2
n−d

i=1 of Fn
2 is called totally skew if A∗

i ∩A∗
j = {0} for

every distinct i and j. In [1], the following nontrivial covers

were obtained.

Result IV.2. For each n ≥ 3, there exists a nonparallel

cover of Fn
2 with dimension d, where 1 ≤ d ≤ n− 2. Note

that each cover of Fn
2 with dimension (n − 1) necessarily

consists of two parallel (n − 1)-flats. Hence, there exists

a nonparallel cover of Fn
2 with dimension d if and only if

1 ≤ d ≤ n− 2.

Result IV.3. For each n ≥ 3, there exists a totally skew

cover of Fn
2 with dimension d, where 1 ≤ d ≤ n−1

2 .

In this section, we employ DO monomials to supply new

constructions of totally skew covers. Again, we use the

finite field F2n to represent the vector space Fn
2 . Given a

polynomial f over F2n and A = {x1, x2, x3, x4} ∈ VBn,f ,

define f(A) = {f(x1), f(x2), f(x3), f(x4)}. Moreover, for

a permutation polynomial f and a subset A ⊂ VBn,f , we

define

f(A) = {{f(x1), f(x2), f(x3),f(x4)} |

{x1, x2, x3, x4} ∈ A}.

The next theorem outlines the strategy of generating covers

by using permutation polynomials and their vanishing flats.

Theorem IV.4. Let f be a permutation polynomial over

F2n . Suppose A ⊂ VBn,f is a cover of F2n with dimension

2. Then, so is f(A).

Proof. The property of vanishing flats implies that f(A) is

a collection of 2-dimensional affine subspaces. The permu-

tation property ensures that f(A) is a cover.

The above theorem indicates that given a cover with

dimension 2 contained in the vanishing flats of a permutation

polynomial, a new cover can be derived by applying the

permutation. Naturally, the most interesting permutations are

the DO permutations, whose vanishing flats are formed by

a union of trivial covers with dimension 2:

Theorem IV.5. Let f be a DO permutation over F2n , which

is not APN. Then VBn,f is a disjoint union of trivial covers

Ai, 1 ≤ i ≤
1

3

∑

h∈Rf

(

2n−h−1 − 1
)

, with dimension 2, where

Ai = {{c, xi + c, yi + c, xi + yi + c} | c ∈ F2n}

and Rf is defined in (III.2). The set f(Ai) is a cover with

dimension 2 for each i. In addition, f(Ai) is totally skew if

and only if the following hold:

(1) δf (xi) = δf (yi) = δf(xi + yi) = 4,

(2) Ef (xi), Ef (yi) and Ef (xi + yi) are pairwise disjoint.

8



Proof. The first part follows from Theorems III.8(1), III.9

and IV.4. For distinct c, d ∈ F2n , write

Ai(c) = {c, xi + c, yi + c, xi + yi + c} ∈ Ai,

Ai(d) = {d, xi + d, yi + d, xi + yi + d} ∈ Ai.

Note that f(Ai) is totally skew if and only if for every

distinct c, d ∈ F2n , f(Ai(c))
∗ ∩ f(Ai(d))

∗ = {0}. Namely,

{0, f(xi+c)+f(c), f(yi+c)+f(c), f(xi+yi+c)+f(c)} and

{0, f(xi+d)+f(d), f(yi+d)+f(d), f(xi+yi+d)+f(d)}
intersect trivially at 0, for every distinct c, d ∈ F2n . This is

equivalent to the two conditions on the top of the next page.

Noting that f(c)+f(xi+c)+f(yi+c)+f(xi+yi+c) = 0,

we observe that Condition (a) is equivalent to δf (xi) =
δf (yi) = δf(xi + yi) = 4 and Condition (b) is equivalent to

Ef (xi), Ef (yi) and Ef (xi+yi) being pairwise disjoint.

By restricting to DO monomials, we expect more specific

information about the associated covers. We note that each

DO monomial is CCZ-equivalent to a Gold function. In view

of Theorem II.1, we only need to consider covers derived

from Gold functions. For f(x) = x2t+1 over F2n , f is a

permutation if and only if (2t+1, 2n−1) = 1 and is not APN

if and only if (n, t) > 1. We note that (2t+1, 2n−1) = 1 is

equivalent to n
(n,t) being odd. As a preparation, we have the

following crucial lemma which follows from [18, Theorem

3].

Lemma IV.6. Let x ∈ F2n . Suppose s = (t, n) and z ∈ F∗
2s .

Then the equation

x2t + x = z

has no solution in F2n if and only if n
(n,t) is odd. Moreover,

suppose that n
(n,t) is odd, then for x, y ∈ F2n and z1, z2 ∈

F2s , the equation

x2t + x+ z1 = y2
t

+ y + z2 (IV.1)

holds if and only if z1 = z2 and x, y belong to the same

additive coset of F2s in F2n .

Proof. According to [18, Theorem 3], the equation x2t+x =

z has no solution in F2n if and only if
∑

n
(n,t)

−1

i=0 z2
ti

6= 0.

Since z ∈ F∗
2s , s = (t, n) and n

(n,t) odd, we have
∑

n
(n,t)

−1

i=0 z2
ti

= z 6= 0 and the first part follows. For the

second part, the sufficiency is clear. Note that x2t +x+z1 =
y2

t

+y+z2 is equivalent to (x+y)2
t

+(x+y) = z1+z2. Since
n

(n,t) is odd, then (IV.1) holds only if z1 = z2, which forces

x, y being in the same additive coset of F2s in F2n .

Now we proceed to consider DO monomials.

Corollary IV.7. Let f(x) = x2t+1 be over F2n , where 1 ≤
t ≤ n − 1, (2t + 1, 2n − 1) = 1 and s = (n, t) > 1. Then

we have

(1) VBn,2t+1 is a disjoint union of trivial covers
{

Ai | 1 ≤ i ≤ (2s−1−1)(2n−1)
3

}

with dimension 2,

where

Ai = {{c, xi + c, yi + c, xi + yi + c} | c ∈ F2n} ,

for xi, yi ∈ F∗
2n and xi

yi
∈ F2s \ {0, 1}. For each i,

f(Ai) is a cover with dimension 2.

(2) For c ∈ F2n , write

Ai(c) = {c, xi + c, yi + c, xi + yi + c} ∈ Ai,

where xi, yi ∈ F∗
2n and xi

yi
∈ F2s \ {0, 1}. Write

xi = αzi and yi = αwi for some α ∈ F∗
2n and distinct

zi, wi ∈ F∗
2s . Let bα,j + αF2s , 1 ≤ j ≤ 2n−s, be

2n−s additive cosets of αF2s in F2n . Then f(Ai(c)) is

parallel to f(Ai(d)) if and only if c, d ∈ bα,j + αF2s ,

for some j. Otherwise, f(Ai(c))
∗ ∩ f(Ai(d))

∗ = {0}.

In particular, f(Ai) can be partitioned into 2n−s

subsets
⋃

c∈bα,j+αF2s
f(Ai(c)), 1 ≤ j ≤ 2n−s, where

each subset contains 2s−2 parallel 2-flats and for every

pair of 2-flats from distinct subsets, their associated

linear subspace intersect trivially. Consequently, for

each i, f(Ai) is a totally skew cover with dimension

2 if s = 2 and is a nontrivial cover with dimension 2
having parallel 2-flats, if s > 2.

Proof. We only need to show Part (2), as Part (1) follows

from Theorems III.4, III.8, and IV.5. Note that xi = αzi,
yi = αwi, where zi, wi ∈ F∗

2s are distinct. Since z2
t

i = zi
and w2t

i = wi, we can compute f(Ai(c))
∗ and f(Ai(d))

∗

in the middle of the next page.

Since zi, wi ∈ F∗
2s are distinct, by Lemma IV.6,

|f(Ai(c))
∗ ∩ f(Ai(d))

∗| ≥ 2 if and only if
(

βc
α

)2t

+ βc
α +

β2 =
(

βd
α

)2t

+ βd
α +β2 for some β ∈ {zi, wi, zi+wi}. Each

of these three cases is equivalent to
(

c+d
α

)2t

= c+d
α . Hence,

f(Ai(c))
∗ = f(Ai(d))

∗ if and only if c, d ∈ bα,j + αF2s ,

for some j. Otherwise, f(Ai(c))
∗ ∩ f(Ai(d))

∗ = {0}.

Consequently, f(Ai) can be partitioned into 2n−s subsets
⋃

1≤j≤2n−s(
⋃

c∈bj+αF2s
f(Ai(c))), where for every pair of

2-flats from distinct subsets, their associated linear spaces

intersect trivially. Note that f(Ai(c)) = f(Ai(d)) if and

only if c + d ∈ {0, xi, yi, xi + yi}. Thus, each sub-

set
⋃

c∈bj+αF2s
f(Ai(c)) contains 2s

4 = 2s−2 parallel 2-

flats.

Consequently, we have the following necessary and suf-

ficient condition determining which DO monomial leads to

totally skew covers.

Corollary IV.8. Let f(x) = x2t+1 be over F2n , where (2t+
1, 2n − 1) = 1 and s = (n, t) > 1. For each trivial cover

Ai = {{c, xi + c, yi + c, xi + yi + c} | c ∈ F2n},

where xi, yi ∈ F∗
2n and xi

yi
∈ F2s \ {0, 1}, the cover f(Ai)

is totally skew if and only if n ≡ 2 (mod 4) and s = 2.

More precisely, let γ be a primitive element of F2n . Then

each trivial cover Aj = {{c + γjF4} | c ∈ F2n}, where

0 ≤ j ≤ 2n−4
3 , gives a totally skew cover f(Aj).

Proof. We only need to prove the necessary and sufficient

condition, as the rest follows immediately. The sufficiency

follows from Corollary IV.7(2). Conversely, if f(Ai) is

9



(a) For each c ∈ F2n and d ∈ F2n \ {c, xi + c, yi + c, xi + yi + c},

f(xi + c) + f(c) 6= f(xi + d) + f(d),

f(yi + c) + f(c) 6= f(yi + d) + f(d),

f(xi + yi + c) + f(c) 6= f(xi + yi + d) + f(d).

(b) For each c ∈ F2n ,

f(xi + c) + f(c) /∈ {f(yi + d) + f(d), f(xi + yi + d) + f(d) | d ∈ F2n \ {c, xi + c, yi + c, xi + yi + c}},

f(yi + c) + f(c) /∈ {f(xi + d) + f(d), f(xi + yi + d) + f(d) | d ∈ F2n \ {c, xi + c, yi + c, xi + yi + c}},

f(xi + yi + c) + f(c) /∈ {f(xi + d) + f(d), f(yi + d) + f(d) | d ∈ F2n \ {c, xi + c, yi + c, xi + yi + c}}.

f(Ai(c))
∗ = {0, f(xi + c) + f(c), f(yi + c) + f(c), f(xi + yi + c) + f(c)}

=
{

0, xic
2t + x2t

i c+ x2t+1
i , yic

2t + y2
t

i c+ y2
t+1

i , (xi + yi)c
2t + (xi + yi)

2tc+ (xi + yi)
2t+1

}

=
{

0, αz2
t

i c2
t

+ α2tzic+ α2t+1z2i , αw
2t

i c2
t

+ α2twic+ α2t+1w2
i ,

α(zi + wi)
2tc2

t

+ α2t(zi + wi)c+ α2t+1(zi + wi)
2
}

=

{

0, α2t+1

(

(zic

α

)2t

+
zic

α
+ z2i

)

, α2t+1

(

(wic

α

)2t

+
wic

α
+ w2

i

)

,

α2t+1

(

(

(zi + wi)c

α

)2t

+
(zi + wi)c

α
+ (zi + wi)

2

)}

and similarly,

f(Ai(d))
∗ =

{

0, α2t+1

(

(

zid

α

)2t

+
zid

α
+ z2i

)

, α2t+1

(

(

wid

α

)2t

+
wid

α
+ w2

i

)

α2t+1

(

(

(zi + wi)d

α

)2t

+
(zi + wi)d

α
+ (zi + wi)

2

)}

.

totally skew, by Corollary IV.7(2), s = (n, t) = 2. Assume

n ≡ 0 (mod 4). Then we have t ≡ 2 (mod 4). In this case,

(2t + 1, 2n − 1) = 5, which gives a contradiction. Hence,

we must have n ≡ 2 (mod 4).

We observe that the concept of vanishing flats can be

extended to higher dimensions. Let f be over F2n , an s-flat

in F2n is called a vanishing s-flat of f , if its image under f
is again an s-flat. Clearly, a vanishing flat of f is a vanishing

2-flat. The following theorem generalizes Corollary IV.8 and

produces totally skew covers with higher dimensions. For

a subset A ⊂ F2n and a function f over F2n , we write

f(A) = {f(a) | a ∈ A}.

Theorem IV.9. Let f(x) = x2t+1 be over F2n , with (2t +
1, 2n − 1) = 1 and s = (n, t) > 1. For every α ∈ F∗

2n ,

the set {c + αF2s | c ∈ F2n} forms a trivial cover of F2n

with dimension s, which is a vanishing s-flat of f . Moreover,

{f(c+αF2s) | c ∈ F2n} is a totally skew cover of F2n with

dimension s.

Proof. Note that

f(c+ αF2s)

=
{

c2
t+1 + c2

t

αz + cα2tz2
t

+ α2t+1z2
t+1 | z ∈ F2s

}

=c2
t+1 + Sc,

where

Sc =
{

(c2
t

α+ cα2t)z + α2t+1z2 | z ∈ F2s

}

.

Clearly, Sc is a linear subspace. Since f is a permutation,

the dimension of Sc is s. Consequently, f(c+ αF2s) is an

s-flat and hence, c + αF2s is a vanishing s-flat, for each

c ∈ F2n . To prove that {f(c+ αF2s) | c ∈ F2n} is a totally

skew cover, it suffices to show that Sc = Sd if and only if

c+ d ∈ αF2s and Sc ∩ Sd = {0}, otherwise.

Assume Sc ∩ Sd contains a nonzero element. Then there

exist z1, z2 ∈ F∗
2s , such that

(c2
t

α+ cα2t)z1 + α2t+1z21 = (d2
t

α+ dα2t)z2 + α2t+1z22 .
(IV.2)

Rewrite (IV.2) as

(c2
t

z1 + d2
t

z2)α+ (cz1 + dz2)α
2t + (z1 + z2)

2α2t+1 = 0.

10



Noting that z2
t

1 = z1 and z2
t

2 = z2, we have

(cz1 + dz2)
2tα+ (cz1 + dz2)α

2t + (z1 + z2)
2α2t+1 = 0,

and therefore,

(
cz1 + dz2

α
)2

t

+
cz1 + dz2

α
= (z1 + z2)

2.

Since cz1+dz2
α ∈ F2n and z1, z2 ∈ F∗

2s , by Lemma IV.6, the

above equation holds only if z1 = z2. By Equation (IV.2),

z1 = z2 implies ( c+d
α )2

t

= c+d
α , and therefore, c+d ∈ αF2s .

Conversely, if c + d ∈ αF2s , a direct computation shows

Sc = Sd.

Remark IV.10. Assume the conditions of Theorem IV.9

hold. Let A be a 2-dimensional subspace of αF2s . Suppose

A = {Ai | 1 ≤ i ≤ 2n−2} is a trivial cover of F2n formed

by A and all its cosets. By Corollary IV.7(2), as a cover of

F2n , f(A) can be partitioned into 2n−s subsets, where each

subset contains 2s−2 parallel 2-flats. By taking a union of

all the parallel 2-flats in each subset, we exactly recover

the totally skew cover of F2n with dimension s derived in

Theorem IV.9.

V. CONCLUDING REMARKS

In this paper, we investigated the planarity of a function

from the viewpoint of vanishing flats. We showed that in

some cases, the number of vanishing flats is a criterion that

is finer than the differential uniformity and coarser than

the differential spectrum. Moreover, the partial quadruple

system formed by all the vanishing flats contains detailed

information about f . For monomials and DO polynomials,

we studied their number of vanishing flats and partial

quadruple systems in more detail. As an application, we

extended the concept of vanishing flats and proposed a new

construction of totally skew covers using DO monomials.

We believe that the vanishing flats and the partial quadru-

ple systems deserve further investigation. We propose next

some further questions:

(1) The lower bound in (III.1) is tight when n is even,

which is achieved by the inverse function. Are there any

other monomials achieving this lower bound? Another

natural question is to consider is whether (III.1) is

tight when n is odd. If so, characterize the monomials

achieving this lower bound.

(2) By Theorem III.8(1), the number of vanishing flats

of each non-APN DO polynomial over F2n is lower

bounded by 2n−2. According to Theorem III.4, DO

monomials cannot achieve this lower bound. On the

other hand, is there any DO polynomial having exactly

2n−2 vanishing flats?

(3) So far, we only know the partial quadruple systems

associated with the inverse and Gold functions. It is

interesting to determine the partial quadruple systems

associated with other polynomials.

(4) Instead of the partial quadruple systems, an easier

problem is to determine the number of vanishing flats

associated with other polynomials. For instance, the

open cases in Table III.2 may serve as a starting point.

(5) In Corollary IV.8, the 2n−1
3 trivial covers correspond to

2n−1
3 totally skew covers. It is interesting to consider

the equivalence problem of these totally skew covers.

Moreover, we ask whether the totally skew covers

derived from DO monomials are equivalent to those

in [1, Theorem 2].

(6) In Corollary IV.7, the totally skew covers were derived

from DO monomials whenever n ≡ 2 (mod 4). On

the other hand, there are some known DO permutations

other than monomials [4]. Thus, we ask if any totally

skew covers can be derived from these DO permuta-

tions, especially when n 6≡ 2 (mod 4).
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